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ABSTRACT
Trigger Action Programs (TAPs) are event-driven rules that allow
users to automate smart-devices and internet services. Users can
write TAPs by specifying triggers and actions from a set of pre-
defined channels and functions. Despite its simplicity, composing
TAPs can still be challenging for users due to the enormous search
space of available triggers and actions. The growing popularity of
TAPs is followed by the increasing number of supported devices
and services, resulting in a huge number of possible combinations
between triggers and actions. Motivated by such a fact, we improve
our prior work and propose RecipeGen++, a deep-learning-based ap-
proach that leverages Transformer seq2seq (sequence-to-sequence)
architecture to generate TAPs given natural language descriptions.
RecipeGen++ can generate TAPs in the Interactive, One-Click, or
Functionality Discovery modes. In the Interactive mode, users can
provide feedback to guide the prediction of a trigger or action com-
ponent. In contrast, the One-Click mode allows users to generate
all TAP components directly. Additionally, RecipeGen++ also en-
ables users to discover functionalities at the channel level through
the Functionality Discovery mode. We have evaluated RecipeGen++
on real-world datasets in all modes. Our results demonstrate that
RecipeGen++ can outperform the baseline by 2.2%-16.2% in the gold-
standard benchmark and 5%-29.2% in the noisy benchmark.
Demo: https://4ek5.short.gy/RecipeGen
Tool: https://huggingface.co/spaces/imamnurby/RecipeGen
GitHub: https://github.com/imamnurby/RecipeGen
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• Software and its engineering→ Search-based software en-
gineering; • Information systems → Retrieval models and
ranking; •Computingmethodologies→Machine translation.
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1 INTRODUCTION
Trigger Action Programs (simply TAPs) are event-driven rules used
to automate smart devices and online services. The rules are typi-
cally written in the form of "IF a trigger is satisfied, then execute
an action". The trigger and action correspond to API calls provided
by service providers. TAPs have been applied in various use cases,
such as home automation [16, 20], business [12, 17], and data man-
agement [2–4]. In this work, we are interested in generating TAPs
automatically using natural language descriptions.
Description from a User
Saves any photo tagged with me in it on fb to Dropbox
TAP
Trigger : Facebook.You_Are_Tagged_In_Photo()
Action : Dropbox.Add_File_From_Url(URL, Name, Path)

Figure 1: A simplified TAP and its description.

Figure 1 shows an example of a TAP. To compose a TAP, users
usually specify a trigger and an action sequentially. For each trig-
ger and action, the user needs to select three components, i.e., a
channel, a function, and a set of fields. A channel is an entity that
provides services. A function is an API that represents a particular
service. For instance, in Figure 1, the trigger channel is "Facebook"
and the trigger function is "You_Are_Tagged_In_Photo". Fields are
additional parameters needed to control how a function works. A
field is composed of a field name and a field value. Fields can be
either requisite or optional. In Figure 1, the action function has
several field names, i.e., "URL", "Name", and "Path". The field values
correspond to the actual values given by users.

Writing TAPs can be challenging due to the enormous search
space when choosing trigger and action components. To exem-
plify, in IFTTT, there are 408 distinct channels resulting in 468,930
possible combinations of trigger and action functions in 2017 [16].
The number of channels becomes 1,386 in 2021 [11], causing such
possible combinations to increase further. Hence, there is a need
for a tool that can help end-users to generate TAPs from such an
enormous search space.

Such a fact motivates a number of researchers to propose ap-
proaches to generate TAPs using natural language descriptions. The
existing approaches adopt classification-based techniques to gener-
ate TAPs [1, 13, 18]. These approaches employ a number of distinct
classifiers to predict each trigger and action component individu-
ally as illustrated in Figure 2 (a). Consequently, such approaches
cannot perform well on ambiguous descriptions because it cannot
leverage the implicit relationship between each predicted compo-
nent. We address this drawback in our recent work by proposing
RecipeGen [23].

https://4ek5.short.gy/RecipeGen
https://huggingface.co/spaces/imamnurby/RecipeGen
https://github.com/imamnurby/RecipeGen
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Figure 2: (a) A classification model predicts each component
in isolation given a description, while (b) RecipeGen consid-
ers both the prior predicted components and the description
when generating a prediction.

RecipeGen leverages Transformer seq2seq architecture [21] to
translate a description to a sequence of trigger and action com-
ponents. As illustrated in Figure 2 (b), RecipeGen considers the
prior predicted components as additional information besides the
description to generate a TAP component. This mechanism allows
RecipeGen to leverage the implicit relationship between each pre-
dicted component. Moreover, RecipeGen adapts autoencoding pre-
trained models to warm-start the encoder in the seq2seq model to
boost the generation performance.

Although the aforementioned works demonstrate great poten-
tial, they only serve as a prototype to illustrate the viability of
a research idea rather than to help users compose TAPs in the
real world. Novice users may face difficulties using existing tools
because they often still need to set up the tools and their environ-
ments. Moreover, existing tools also force users to interact through
a command-line interface. The lack of an easy-to-use tool to help
users compose TAPs motivates us to improve our original tool and
propose RecipeGen++. First, we add a graphical user interface in
RecipeGen++ to interact with end-users and additional modules to
prepare the input and output (see Figure 4). Second, we add the
Interactive generation mode in RecipeGen++ besides the existing
One-Click mode. The Interactive mode guides users to compose
TAPs step by step, resulting in users having more flexibility when
composing such TAPs. Third, we add the Functionality Discovery
mode to let users discover more functionalities by generating TAPs
at the channel level. This mode is motivated by Corno et. al. [7]
who found that: users may not realize that a more suitable function
exists for their use case as generating TAPs at the function level
often yield results that do not capture such a function.

We have evaluated RecipeGen++ on real-world datasets in each
mode. Our results demonstrate that RecipeGen++ can yield better
performance against the baseline by 2.2%-16.2% in the gold-standard
benchmark and 5%-29.2% in the noisy benchmark. Our work makes
the following contributions:
• We propose RecipeGen++, the first usable tool that leverages
the Transformer seq2seq architecture to generate TAPs using
functionality descriptions. RecipeGen++ frames the problem as a
sequence learning problem and leverages a pre-trained model to
warm-start the encoder.

Figure 3: User Interface of RecipeGen++.

• We deploy RecipeGen++ such that the community can use our
tool1 directly, without additional setup or installation steps. More-
over, we also release the codebase2 to train the model and repli-
cate the results.
The rest of this paper is organized as follows. Section 2 explains

the usage of our tool. Section 3 explains the technical details of
RecipeGen++. Section 4 describes the evaluation setting and presents
the results. Section 5 discusses related works. Finally, Section 6
concludes our work.

2 TOOL USAGE
RecipeGen++ has three working modes, i.e., Interactive, One-Click,
and Functionality Discovery. First, users who want to have more
flexibility when composing TAPs can use the Interactive mode.
This mode guides the users using a step-by-step wizard. Users can
select a component (e.g., trigger channel) from a set of predicted
TAP components at each step, then use the selected component as
feedback to the model to guide the next TAP component prediction
(e.g., trigger function). In contrast, users who prefer to see the TAP
candidates quickly for a given description can leverage the One-
Clickmode. This mode allows users to generate all TAP components
using a one-click button press. Users who are not sure yet which
channels or functions to use can explore the available channels
and functions through the Functionality Discovery mode. This
mode enables users to find relevant channels based on the given
description and allows them to inspect their functions exhaustively.

Figure 3 shows the user interface of RecipeGen++. Users can
describe the intended TAP in the Functionality Description text
box and tune the number of TAP candidates using the Beam Width
slider. Afterward, users can generate TAP candidates by pressing the
Generate TAPs button. The generated candidates are shown in the
table at the bottom. Note that the table can be scrolled horizontally.
The TAP candidates are ordered based on the probability prediction;
a result with a high ranking is more relevant according to the model
than those that are lower.

3 RECIPEGEN++
This section explains the workflow of RecipeGen++ that consists
of two stages: training and deployment. Figure 4 shows the mod-
ules involved in each stage. In the training stage, the Initializer

1https://huggingface.co/spaces/imamnurby/RecipeGen
2https://github.com/imamnurby/RecipeGen
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Figure 4: The workflow of RecipeGen++ consists of two stages:
Training and Deployment. The modules involved in the for-
mer and latter stages are indicated by (a) and (b), respectively.

receives a configuration file as the input to instantiate the model.
Subsequently, Trainer takes the model as the input and trains it
to translate descriptions to TAPs. In the Deployment stage, the
Frontend receives inputs from users and displays outputs from the
model to users. Moreover, Backend modules have a role to perform
preprocessing to user inputs, generate TAP candidates, and perform
postprocessing to model outputs.

3.1 Training
First, we explain the general training pipeline that involves Initial-
izer and Trainer. Second, we explain the technique to augment the
training data to train a model for the Interactive mode.

3.1.1 Training Pipeline. Given a configuration file, Initializer in-
stantiates the model using the Transformer seq2seq architecture.
Subsequently, Initializer warm-starts the model encoder weights
using a pre-trained model. The reason is that: a pre-trained model
has been trained using a huge amount of data from English cor-
pora, and TAP descriptions have a similar nature to such data (see
Figure 1). Consequently, the learning burden can be reduced if the
encoder can have such knowledge at the beginning of its training.
Then, the Trainer trains the model to translate functionality de-
scriptions to TAPs. The Trainer input is ⟨description, TAP⟩ pairs.
First, some special tokens are inserted into the descriptions and
TAPs. Second, a tokenizer converts the descriptions and TAPs into
a sequence of subword tokens. For example, "<s> Saves any photo
to dropbox </s>" is tokenized into "<s>", "Save","any", "photo", "to",
"drop", "box", "</s>". The motivation for tokenizing both descrip-
tions and TAPs to subword level is to let the model exploit the
subword similarity between the descriptions and TAPs. Third, the
tokenizer converts each subword token to the corresponding token
ids 𝑥1, 𝑥2, ..., 𝑥𝑛 . Fourth, the encoder transforms it into a sequence of
context vectors 𝑐1, 𝑐2, ..., 𝑐𝑛 . Finally, the decoder takes these context
vectors and the sequence of token ids from TAPs 𝑦1, 𝑦2, ..., 𝑦𝑛 as the
input to generate the predictions 𝑝2, 𝑝3, ..., 𝑝𝑛−1.

3.1.2 Data Augmentation for Interactive Model. The idea of the
Interactive model is to predict TAP components in several steps,
where each step corresponds to one TAP component prediction. To
train the model to generate TAPs in such a way, the descriptions
in the training instances should contain information about which
component to generate and components that have been selected by
users. Hence, we apply Algorithm 1 to augment the original training

Algorithm 1: Generating training instances for interactive
generation
Input :description: a description of a TAP

components: an ordered-list of TAP components
prefixes: a dictionary that maps a TAP component
to a prefix

Output :outputs: a list of training instances
1 outputs = [];
2 n_components = getLength(components);
3 for idx in range(n_components) do
4 target_component = components[idx];
5 feedback = convertToStr(components[:idx]);
6 prefix = prefixes.get(target_component);
7 final_description = prefix + description + feedback;
8 outputs.append((final_description, target_component))
9 end for

pairs with such information. Algorithm 1 converts descriptions in
the original pairs to prefix + description + feedback (line 7), where
prefix is used to indicate which component to generate and feedback
corresponds to synthetic user feedback. The feedback is obtained
by concatenating the TAP components before the current target
component (line 5).

3.2 Deployment
The deployment stage involves a Graphical User Interface (GUI)
module and a number of Backend modules. The input of the de-
ployment stage is a description and the output is a ranked list of
TAP candidates.

3.2.1 Graphical User Interface (GUI). The GUI module allows users
to interact with RecipeGen++ easily: users can provide functionality
descriptions through a text box, generate predictions using a button,
and inspect the generated predictions through a graphical interface.

3.2.2 Backend Modules. The Backend consists of several modules.
The Preprocessor transforms the description into a sequence of
token ids. The Trained Model then takes these token ids as the
input to generate the TAP candidates. The Postprocessor processes
the TAP candidates by removing the special tokens and converting
them into a compatible representation for the GUI module. As we
mentioned previously, the model generates the prediction at the
subword level. Consequently, the model may generate invalid TAP
components because a set of predicted subwords does not form a
valid component (e.g., non-existent channel or function). Hence,
the Prediction Filter verifies each generated component to avoid
such a case. If the Prediction Filter finds invalid components, then
such components will be discarded.

4 EVALUATION AND RESULTS
4.1 Experimental Setting
4.1.1 Models. We train RecipeGen++ and leverage RoBERTa [14]
to warm-start the encoder. For the baseline, we use LAM [13] which
is the best classification-based approach for TAP generation. We



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Imam Nur Bani Yusuf, Diyanah Binte Abdul Jamal, Lingxiao Jiang, David Lo

do not specifically compare with RecipeGen [23] because it is the
same as RecipeGen++ that works in One-Click mode.

4.1.2 Datasets. We use the IFTTT datasets from Quirk et. al. [18]
and Mi et. al. [16] to train and evaluate each model. Each instance
in the datasets is a ⟨description, TAP⟩ pair, where each TAP is a
sequence of a trigger channel, trigger function, action channel,
and action function. There are two test sets: Gold and Noisy. Both
test sets are human-annotated. The annotation process is done by
labeling each description with the TAP implementation. The Gold
set contains the instances with at least three annotator agreements.
The instances with less than three agreements belong to the Noisy
set.

4.1.3 Scenario. We evaluate each model in three different settings:
One-Click, Interactive, and Functionality Discovery. We leverage
the original pairs from the test sets in the One-Click setting. We
omit the function components from the original TAPs in the Func-
tionality Discovery setting. We apply Algorithm 1 to convert the
original pairs to ⟨prefix + description + feedback, component⟩ pairs
in the Interactive setting.

4.1.4 Metrics. We leverage Mean Reciprocal Rank (MRR) as the
evaluation metrics [9, 15, 19, 22]. MRR@k is computed using Equa-
tion 1:

𝑀𝑅𝑅@𝑘 =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(1)

where rank𝑖 indicates the first rank of the first hit or relevant result.
The value of 1

𝑟𝑎𝑛𝑘𝑖
is 0 if the ground truth is not in the top-K

returned TAPs. MRR indicates the average number of predictions
that a user needs to investigate to find the correct one.

Table 1: MRR@3 results on Gold and Noisy set at different
setting.

Setting Model MRR@3
Gold Noisy

Functionality Discovery RecipeGen++ 0.990 0.846
LAM 0.891 0.672

One-Click RecipeGen++ 0.967 0.752
LAM 0.805 0.460

Interactive RecipeGen++ 0.987 0.930
LAM 0.965 0.880

4.2 Results
Table 1 shows the MRR@3 results on the Gold and Noisy sets in
three different settings. First, RecipeGen++ outperforms LAM by
9.9% and 17.5% on Gold and Noisy sets in the Functionality Dis-
covery setting. Such results indicate that RecipeGen++ can have
high accuracy in finding the relevant channels using the given de-
scription. The improvements become 16.2% and 29.2%, respectively,
when the models generate channels along with functions in the
One-Click setting. Such results indicate that RecipeGen++ can rank
TAPs with relevant functions better than LAM. Moreover, the im-
provements on the Gold and Noisy sets in the Interactive setting
are 2.2% and 5%, respectively. The improvements are smaller than
the other two settings because the target TAPs consist of only one

component, making the prediction easier. However, the significant
improvement on the Noisy set against other modes may indicate
that user feedback can be useful in resolving ambiguous descrip-
tions. Overall, our results in Table 1 demonstrate that RecipeGen++
can outperform LAM in all evaluation settings.

5 RELATEDWORK
Several approaches have been proposed to help users compose
TAPs. Quirk et al. [18] trained classifiers using linguistic features
such as word n-grams. Beltalgy et al. [1] improved the previous
approach by combining a logistic regression classifier with a Multi-
Layer Perceptron (MLP). Both approaches [1, 18] still ignore the
description’s semantics because they treat the description as bag-of-
words. This limitation is addressed by LAM [13] using LSTM-based
classifiers. However, LAM still performs poorly when the descrip-
tion is ambiguous due to formulating the problem as classification.
RecipeGen++, which is our proposed approach, addresses this limi-
tation by framing the problem as sequence learning. Some studies
to generate TAPs interactively have also been carried out. Huang
et al. [10] introduced a framework called InstructableCrowd that
allows users to compose TAPs by having a conversation with crowd-
workers via a smartphone app. Chaurasia et al. [5] automate the
previous approach by replacing the crowd-workers with a conver-
sational agent built using LAM. Although it can scale better, the
conversational agent still has the same drawback as LAM because
it leverages LAM as the core. Recently, Corno et. al. also developed
several approaches to recommend TAPs [6–8]. However, these
approaches require additional information such as usage history,
user preference, and semantic graph representation. In contrast,
RecipeGen++ only requires users to input functionality descriptions
to generate TAPs.

6 CONCLUSION AND FUTUREWORK
This work presents RecipeGen++, a tool to help users compose TAPs
using functionality descriptions of the intended TAPs. RecipeGen++
frames the problem as sequence learning to allow themodel to lever-
age the implicit relationship between each predicted component.
Moreover, RecipeGen++ also warm-starts the encoder using a pre-
trained model to boost the generation performance. RecipeGen++
can assist users in three different working modes: Interactive, One-
Click, and Functionality Discovery. Our evaluation results show
that RecipeGen++ can outperform the baseline with significant mar-
gins in all working modes.

In the future, we plan to extend our tool to generate field values
instead of only field names. Generating field values can be challeng-
ing as the description may not contain the necessary information to
fill in the field values. Moreover, we also plan to adapt RecipeGen++
to generate a TAP with multiple triggers and actions.
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