
SAR: Learning Cross-Language API Mappings with Little
Knowledge

Nghi D. Q. Bui
School of Information Systems

Singapore Management University
Singapore

dqnbui.2016@phdis.smu.edu.sg

Yijun Yu
School of Computing &

Communications
The Open University

UK
y.yu@open.ac.uk

Lingxiao Jiang
School of Information Systems

Singapore Management University
Singapore

lxjiang@smu.edu.sg

ABSTRACT

To save effort, developers often translate programs from one pro-
gramming language to another, instead of implementing it from
scratch. Translating application program interfaces (APIs) used in
one language to functionally equivalent ones available in another
language is an important aspect of program translation. Existing
approaches facilitate the translation by automatically identifying
the API mappings across programming languages. However, these
approaches still require large amounts of parallel corpora, ranging
from pairs of APIs or code fragments that are functionally equiva-
lent, to similar code comments.

To minimize the need for parallel corpora, this paper aims at
an automated approach that can map APIs across languages with
much less a priori knowledge than other approaches. Our approach
is based on a realization of the notion of domain adaption, combined
with code embedding, to better align two vector spaces. Taking as
input large sets of programs, our approach first generates numeric
vector representations of the programs (including the APIs used
in each language), and it adapts generative adversarial networks
(GAN) to align the vectors in different spaces of two languages. For
better alignment, we initialize the GAN with parameters derived
fromAPImapping seeds that can be identified accurately with a sim-
ple automatic signature-based matching heuristic. Then the cross-
language API mappings can be identified via nearest-neighbors
queries in the aligned vector spaces. We have implemented the
approach (SAR, named after three main technical components,
Seeding, Adversarial training, and Refinement) in a prototype for
mapping APIs across Java and C# programs. Our evaluation on
about 2 million Java files and 1 million C# files shows that the ap-
proach can achieve 48% and 78% mapping accuracy in its top-1 and
top-10 API mapping results respectively, with only 174 automati-
cally identified seeds, which is more accurate than other approaches
using the same or much more mapping seeds.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338924

CCS CONCEPTS

· Computing methodologies → Artificial intelligence; · Soft-
ware and its engineering→ Language features.

KEYWORDS

cross-language API mapping, Generative Adversarial Network, do-
main adaptation, word embedding, vector space alignment

ACM Reference Format:

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2019. SAR: Learning Cross-
Language API Mappings with Little Knowledge. In Proceedings of the 27th

ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE ’19), August 26ś30, 2019,

Tallinn, Estonia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3338906.3338924

1 INTRODUCTION

Migrating software projects from one language to another is a com-
mon and important task in software engineering. To support the
process, various migration tools have been proposed. A fundamen-
tal challenge faced by such tools is to translate the library APIs of
one language to functionally equivalent counterparts of another. Of-
ten, much manual effort is required to define the mappings between
the respective APIs of two languages.

Several studies have addressed this API mapping problem, such
as MAM [39], StaMiner [21], DeepAM [13], and Api2Api [26].
MAM [39] and StaMiner [21] require as input a large body of par-
allel program corpora, which contain functionally equivalent code
that use APIs in both languages, in order to mine the mappings.
Thus, they rely heavily on the availability of bilingual projects
that implement the same functionality in two or more languages,
which is not easy to find for any pair of languages. Although they
rely on similar function names to reduce manual effort needed to
identify parallel data, many functions with similar names may be ac-
tually functionally different, degrading the quality of training data
and final mapping results. DeepAM [13] maps API sequences to
sequences based on the text descriptions for the sequences. Its intu-
ition is that two API sequences across languages may be mapped to
each other if their text descriptions are similar. This approach does
not need API mapping seeds, but requires many similar text descrip-
tions across programs written in different programming languages
whose availability can affect the mapping results. Api2Api [26]
uses a vector space transformation method inspired by Mikolov
et al. [17], but it still requires many API mapping seeds from an
external source (Java2CSharp [5])) to map APIs across languages.

796

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3338906.3338924
https://doi.org/10.1145/3338906.3338924
https://doi.org/10.1145/3338906.3338924

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang

In this paper, we propose an approach that can map APIs across
languages while alleviating the shortcoming of existing approaches.
We realize that the underlying goal of state-of-the-art techniques
is essentially to find a transformation that can align two different
domains (in our context, the two vector spaces for APIs in two
different languages). Api2Api [26] is also an instance of this idea to
learn an optimal transformation matrix between two vector spaces
while requiring much parallel training data. However, empirical
evidence of existing approaches suggest that collecting the training
data is an expensive process that requires either availability of
manual inspection or high-quality documentations. This has led
to the following research question we aim to answer in this paper:
"Can a model be built to minimize the need of parallel data to map

APIs across languages?".
We realize that the API mapping problem may be addressed by

techniques based on generative adversarial training [10] with the
assistance of a pre-trained model. Given large code bases in two
languages, it is likely that certain similarities between the code
bases can be exploited to discover APIs of similar functionality
across languages, without manually specifying parallel corpora.
Such knowledge of similar functionalities may not be big enough
for a complete mapping model, but it is small enough to afford
human validation. Once validated, the knowledge can be transferred
through adversarial training techniques to maximize the alignment
between the two languages which results in better API mappings.

Our approach for API mapping works in the following way: (1)
it takes in a large number of programs in two languages, and gen-
erates a vector space representing code and APIs in each language
via a word embedding technique adapted from previous studies [3,
13, 21, 26, 39]; (2) it adapts domain adaption techniques [6, 9, 10] to
transform and align the two vector spaces for the two languages,
with mainly three technical components: Seeding, Adversarial train-
ing, and Refinement; and (3) it utilizes nearest-neighbors queries
in the aligned vector spaces to identify the mapping result of each
API. We name our approach SAR, after the three main technical
components in the domain adaption step.

We have implemented the approach in a prototype tailored for
Java and C#, and evaluated and compared it with the state-of-the-art
techniques, such as StaMiner [21], DeepAM [13] and Api2Api [26].
We have evaluated the prototype on a dataset of more than 14,800
Java projects containing approximately 2.1 million files and 7,800
C# projects containing approximately 958,000 files. Our evaluation
results indicate that the approach can achieve 54% and 82% accuracy
in its top-1 and top-10 API mapping results with only 174 auto-
matically identified seeds, more accurate than other approaches
using the same or much more mapping seeds. In addition, we also
identify about 400 more API mappings between the Java and C#
SDKs than other approaches.

The main contributions of this paper are as follows:
• We propose SAR, a new approach based on domain adaption
techniques to transform and align different vector spaces across
languages with the assistance of a seeding, adversarial learning,
and refinement method. To the best of our knowledge, we are
the first to apply the adversarial training techniques for the API
mapping task.

• We adapt the adversarial training techniques in a number of ways
to improve its alignment of the vector spaces: (1) we use nearest-
neighbor queries to identify possible mapping candidates for
better alignment; (2) we use a similarity-based model selection
criteria and reduce the need of known API mappings during the
training of our model; and (3) we use the Procrustes algorithm
to find the exact solution of the mapping matrix.
• We have implemented the approach and evaluated it with a
corpus containing millions of Java and C# source files; via an
extensive empirical evaluation on different components of our
approach, we demonstrate its advantages against other API map-
ping approaches in producing more accurate mappings with
much fewer seeds that can be automatically identified.
The rest of the paper is organized as follows. Section 2 discusses

studies in the literature closely related to this paper; Section 3
presents the background about vector space mapping and adver-
sarial learning; Section 4 presents our approach in detail; Section 5
evaluates our approach to demonstrate its effectiveness and discuss
its limitations; and Section 7 concludes with possible future work.

2 RELATED WORK

This section briefly reviews related work on cross-language pro-
gram translation and relevant techniques.

Cross-Language Program Translation. For the problem of cross-
language program translation, much work has utilized various
statistical language models for tokens [23], phrases [15, 24, 25],
or APIs [4, 8, 21, 22, 28, 38, 39]. A few studies also used word
embedding for API mapping and migration (e.g., [12, 13, 26, 28, 35]),
but our work does not need large number of manually specified
parallel corpora or mapping seeds. Tools for translating code among
specific languages in practice (e.g., Java2CSharp [5]) also often
dependent on manually defined rules specific to the grammars of
individual languages, while our approach alleviates the need of
language-specific rules.

MAM [39] and StaMiner [21] rely on the availability of bilingual
projects that implement the same functionality in two or more
languages. DeepAM [13] requires many similar text descriptions
across programswritten in different programming languages whose
availability can affect the mapping results. Api2Api [26] requires
many API mapping seeds from Java2CSharp [5]) to map APIs. The
idea of our approach is most similar to Api2Api, while we combine
seed-based and unsupervised domain adaptation techniques to
reduce the need of mapping seeds.

Relevant Techniques. For the techniques used to represent, model,
learn source code, many studies exist for building various statistical
language models of code for various purposes in recent years [1].
When it comes to what models to use for code, there is still much
room for improvement. Hellendoorn et al. [14] showed that simpler
code learning models (e.g., n-gram) with caches of code locality and
hierarchy may outperform complex deep neural network models.
While other studies (e.g., [13, 15, 22]) demonstrate that more gram-
matical and semantic code features at various levels of abstraction
can be useful for more accurate models. These studies provoke us
to perform code embedding with structural information, and in
future to explore more semantic information for code embedding.

797

SAR: Learning Cross-Language API Mappings with Little Knowledge ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

However, existing studies using domain adaption techniques for
API mapping and translation still require the creation of mapping
seeds [26, 28].

To transform vector spaces, studies in NLP on sentence compari-
son and translation involve variants of bilateral models to align the
contents [33], but they require parallel corpora in two languages.
Recent progresses in domain adaption alleviate the need of paral-
lel corpora [6, 9, 10]. In an application to image learning, domain
adaptation through GAN has shown benefit to transfer the models
from other dataset as pre-training models when training on smaller
dataset [32], which provides the technical foundation for our work.

3 BACKGROUND

The goal of domain adaptation is to produce a mapping matrix
as an approximation of the similarities between vectors in the
two spaces. This section gives a brief overview of two methods
for domain adaptation: seed-based (supervised) or unsupervised.
Apart from the two input vector spaces, the seed-based method
also requires a set of seeds as the parallel training data to learn
the matrix, while unsupervised method does not: the mapping
matrix can be obtained through adversarial learning assuming that
similarity exists between the distributions of vectors in the two
spaces.

3.1 Seed-based Domain Adaptation

Given two sets of embeddings have been trained independently
on monolingual data, seed-based domain adaptation is to learn a
mapping using the seeds s.t. their translations are close in a shared
vector space. Such an idea has been explored for word translation
in NLP [17], and Api2Api [26] adapts it to learn API mappings.

Formally, given two vector spaces, X = {x1, . . . ,xn } and Y =
{y1, . . . ,ym }, containing n andm embeddings for two languages L1
andL2, and a set S of seeds of API embedding pairs {(xsi ,ysi)}si ∈{1, |S | } ,
we want to learn a linear mappingW between the source and the
target space, such thatWxsi approximates ysi . In theory,W can be
learned by solving the following objective function:

W ∗ ≜ arдmin
W ∈M ⊂Rd×d

| |WXS − YS | | (1)

where d is the dimension of the embeddings; M ⊂ Rd×d is the
space of d × d matrices of real numbers; XS ≜ {xsi } ⊂ X and
YS ≜ {ysi } ⊂ Y contain the embeddings of the APIs in the seeds,
which are matrices of size d × |S |.

Instead of approximating a solution using traditional stochastic
gradient descent method used in Api2Api [26], there exists an
analytical Procrustes problem [30] solved by Xing et al. [34], which
has a closed form solution of the mapping matrix derived from the
singular value decomposition (SVD) of YXT :

W ∗ ≜ arдminW | |WXs − Ys | | = UV
T ,with U ΣVT

= SVD (YsX
T
s) (2)

The advantage of a closed form solution is that one can get the
exact solution which is better than the approximate solution of
gradient descent, and is faster in computation.

With the mapping matrixW , one can use yx = Wx to map a
query vector x . The vector yx is the mapping, or adaptation, of x
in the target space.

3.2 Unsupervised Domain Adaptation

Adversarial learning has been successfully used for domain adap-
tation in an unsupervised manner. In particular, the Generative
Adversarial Network [10] achieves this goal by a model which com-
prises a generator and a discriminator as two inter-playing compo-
nents. A generator network that aims to learn real data distribution
and produce fake data to fool the other component, so-called the
discriminator; the discriminator network that acts as a classifier,
which aims to distinguish the generated fake data from the real
data. The two components are trained in a minimax fashion and
would converge when the generator has maximized its ability to
generate fake data so similar to the real data that the probability
for the discriminator to make a mistake would be 1

2 .
Conneau et al. [6] use this idea as a variant for the machine

translation task, which achieves significantly better results than
other baselines of machine translation, which would require no
parallel data to train the networks. The generator, in this case, is a
mapping matrixW , which can simply be seen as a set of parameters
that need to be learned, and the discriminator is a feed-forward
neural network. We want to find a matrixW as an approximation
of the mapping between the two vector spaces X and Y . In the
adversarial learning setting, we aim to optimize two parameters:
one is the discriminator’s parameters, denoted as θD , the other is
the mapping matrixW . Our goal is to find the optimal value of
two sets of parameters, which results that we have two objective
functions in the adversarial learning setting.

Discriminator objective. Given the mappingW , the discriminator
(parameterized as θD) is optimized by this objective function:

LD (θD |W) = −

n
∑

i=1

loдPθD (source = 1 |Wxi) −

m
∑

i=1

loдPθD (source = 0 |yi) (3)

where PθD
(

source = 1��
�
v
)

is the probability that a vector v origi-
nates from the source embedding space (as opposed to an embed-
ding from the target space).

Mapping objective. Given the discriminator θD , the mappingW
aims to fool the discriminator’s ability of predicting the original
domain of an embedding by minimizing this objective function:

LW (W |θD) = −

n
∑

i=1

loдPθD (source = 0 |Wxi) −

m
∑

i=1

loдPθD (source = 1 |yi) (4)

Learning Algorithm. The discriminator θD and the mappingW
are optimized iteratively to minimize LD and LW , respectively by
following the training procedure of adversarial networks proposed
by Goodfellow et al. [10]

4 OUR APPROACH

Combining the virtues of seed-based and unsupervised adversarial
methods described in the background, our domain adaptation ap-
proach can approximate two spaces of vectors with minimal parallel
corpora. Although unsupervised adversarial learning method does
not require any seed as parallel data, the distributions of vectors
(i.e., embeddings) in the two spaces may not be similar. Therefore,
it is our hypothesis that the performance could be improved by
initializing the unsupervised adversarial learning method with a

798

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang

Figure 1: Approach Overview

small set of seeds taken from the seed-based domain adaptation,
and by generating the rest of API mappings in the two steps below:

• From large code corpora in two different languages, we create two
vector spaces for APIs by adapting word embedding technique
for code. From such corpora, we derive a small set of mappings
based on a simple text similarity heuristic (see Code Embedding
in Figure 1);
• The two vector spaces, along with the mapping seeds, are trans-
formed by a mapping matrix to get aligned with each other. This
step comprises three sub-steps: Seeding, Adversarial Learning,
and Refinement (see Domain Adaptation in Figure 1).

For any given API a in the source language and its continuous
vector representation x , we can map it to the other domain space
by computing yx = Wx . Then, one can find the top-k nearest
neighbors of yx in the target vector space, using cosine similarity
as the distance metric, and finally can retrieve the list of APIs in the
target language that has the same embeddings as the top-k nearest
neighbors. The list of APIs can then be used as the mapping results
for a (see Cross-Space Near-Neighbor Query in Figure 1).

4.1 Code Embedding via Word Embedding

We first parse source code files into Abstract Syntax Trees (ASTs)
using fAST [37] for both Java and C# projects. We convert each
AST to a sequence of tokens by traversing the AST in its preorder.
Through the traversal, we can identify the API token by checking
the type of the node (e.g., function call nodes). We perform the
normalization step to enrich the code sequence with structural
information extracted from parsing, which constitutes two steps:

Filtering out unnecessary tokens: Once obtained the token
sequence, we filter out tokens that are not necessary for our task,
such as operators and primitive variable identifiers. Language key-
words and AST node types are still kept for code embedding as they
can enrich the structural information of the sequence.

Converting raw API tokens into signatures: This step re-
duces the variance of vocabulary existing in the source code. For ex-
ample, one may extract the ‘List.add’ method from the ‘java.util.List’
class, or from the ‘com.google.common.collect.List’ in an external
third-party library. Even though these two APIs have the same
class and method names, their usages and semantics are different.

Figure 2: Domain adaptation steps to align two vector spaces

To handle such cases, we propose this additional step to convert
a raw API token to its signature in qualified name format ‘Pack-
age.Class.Method’. The ‘Package’ is identified by using the ‘import’
statements (Java) or ‘using’ statements (C#).

Below shows an example of the normalization for the code token
sequence:

float f List.add List.add if List.addAll else HashMap.put return

==> float java.util.List.add java.util.List.add if java.List.addAll

else java.util.HashMap.put return

From the corpora of code sequences, we use the skip-gram
model [16] to train the embedding of tokens. Given a large cor-
pus as the training data, the tokens appearing in the same context
would usually have their embeddings close by distance in the vector
space.

4.2 Domain Adaptation

Our domain adaptation comprises three steps: seeding, adversarial
training, and refinement (hence the abbreviation SAR of our ap-
proach). Seeing SAR from outside as a black-box, it receives two
vector spaces and a set of seeds as input and generates a mapping
matrixW as output. Internally, each step of SAR is a different way
to improve the mapping matrix, which receives the matrix output
from the previous step as input and produces the improved version
of it as output. We assignW1,W2 andW3 as the output matrix for
the three steps, respectively. Figure 2 summaries the domain adap-
tation procedure. The rationale for each step is described as follows:
(1) The Seeding step to initialize a mapping matrix between the
two vectors spaces based on some prior knowledge (i.e., seeds) (2)
The Adversarial Learning step to re-use the knowledge learned
from the Seeding step as an initializer for adversarial training in
order to maximize the similarity between the two vector spaces

799

SAR: Learning Cross-Language API Mappings with Little Knowledge ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

(or two distributions); and (3) The Refinement step to make the
mapping matrix reach its optimal state.

4.2.1 Seeding. After Code Embedding, two vector spaces are ob-
tained to produce a mapping matrix that approximates the two
vector spaces by using the knowledge from mapping seeds in a
dictionary. Notice that by simple signature-based comparison to
identify APIs having the same signature name 1, one can identify
many high-quality mapping candidates to be used as the seeds
without any human effort to verify because developers often use
the same name for the same functionality even when they are in
different languages.

Having the set of seeds obtained, in addition to the two vector
spaces X and Y , the initial mapping matrix produced is W1 by
solving the Equation 1 in Section 3 (also see Seeding in Figure 2).
This seeding step can be seen as a function A, which will receive
these three inputs and produces a transforming matrixW1 such
thatW1 = A(X ,Y ,D). Internally,A solves the optimization problem
described in Section 3 given the three inputs.

4.2.2 Adversarial Learning. The quality of the matrixW1 learned in
the previous step is limited by the number of seeds one can provide,
which results in an approximation between the source and target
domains. In this case, the knowledge learned forW1 can be seen as
a pre-trained model and can be reused for the other model.

Formally, given the two original vector spaces, X = {x1, . . . ,xn }
andY = {y1, . . . ,ym }, containing n andm API embeddings obtained
from the Code Embedding step, we want to find the matrixW2 to
maximize the approximation of themapping between the two vector
spaces. We use adversarial learning to achieve this goal, which
comprises of two steps: the mapping matrixW2 and a discriminator
network as described in Section 3.2. Our goal is to find the optimal
value ofW2 and θD (discriminator parameters) We achieve this by
training the adversarial network with the objective functions as
described in Section 3.2 to findW2 and θD .

The key difference with the general adversarial setting described
Section 3.2 is that we do not initializeW2 randomly as one usually
does when training a neural network. Instead, we useW1 as a pre-
trained model to initialize for theW2 so thatW2 is initialized with
some good knowledge, even if it is small (see Adversarial Learning
in Figure 2). This step is essential to improve the performance of
the API mapping results.

Model Selection Criteria. In short, this step is for choosing the
optimal parameters for the Adversarial Learning step, although
the heuristic used is similar to the Refinement step. To train the
adversarial networks, like any other neural network architecture,
we need a validation set to select the best model for the prediction
step. The validation set is used to minimize over-fitting when train-
ing the neural network. Concretely, for each training epoch, one
needs to evaluate against the validation dataset to pick the model
that has the highest validation accuracy through training. Our goal
is to use as little parallel data as possible to build the model. In
practice, one only has a very small number of seeds inferred from
the signature-based matching, or in the worst case, one cannot infer
any seed to have data for validation. As such, it is impractical to use

1"Same signature" in our case means case-insensitive matches of the class and method
names

a parallel dataset as a validation set to train neural networks in the
adversarial learning step, i.e., involving additional prior knowledge.

To address this issue, we perform a model selection using unsu-
pervised criteria that quantify the closeness of the source and target
embedding spaces. Specifically, we consider them as a set of K most
frequent source APIs and multiply them with the mapping matrix
W to generate a target mapping for each of them. After that, we
get a set of mappings, then compute the average cosine similarity
of these mappings and use the average as a validation metric.

4.2.3 Refinement for Better Alignment. The adversarial approach
tries to align all words irrespective of their frequencies. However,
rare tokens have embeddings that are less updated in the back-
propagation step and are more likely to appear in different contexts
in each corpus, which makes them harder to align [6]. To address
this problem, we use the method proposed in [6] to infer a list of
mapping candidates using only the most frequent tokens. Moreover,
other heuristics are introduced to infer another candidate set of
mapping based on the threshold of cosine similarity, which can be
used as another synthetic dictionary that can combine with the
top-K frequency mapping candidates.

Following the step shown in [6], it is possible to build a set of
mapping candidates usingW2 just learned with adversarial training.
Assume that one can induce a combined set of mapping candidates
from different heuristics above, and the quality of the combined set
is good, then this set of candidates should be used to learn a better
mapping and, consequently, an even better set of candidates for the
next iteration. The process can repeat iteratively to obtain a hope-
fully better mapping and candidates set each iteration until some
convergence criteria are met. Formally, the refinement step receives
W2 from the previous adversarial learning step, along with the two
original embeddings X and Y to produce the nextW3 iteratively
(see Refinement in Figure 2).

Specifically, we produce the mapping candidates for refinement
based on two heuristics:

Top-K Frequency: Conneau et al. [6] shows that by taking the
top-k frequent words and their nearest neighbors in the trans-
formed vector spaces, it can provide high-quality mapping candi-
dates because the most frequently used words are likely to be the
same across languages. Therefore, we can use the top-k frequent
API names to induce the seeds for the refinement.
Cosine Similarity Threshold: Since finding API mappings in
the aligned vector space is essential to finding APIs close enough
in the vector space, all API pairs łsimilar enoughž in the vector
space aligned by Adversarial Learning can be good candidates for
the refinement step. In this work, we use the cosine similarity as
the metric to measure how similar two vectors are. We note that
not all APIs in a language can have a mapping in another language.
In the empirical case study, we show how a good threshold is
found in Section 5.3.2.

Therefore, we can infer two sets of synthetic mapping candidates
from the above heuristics. In fact, there are different ways to merge
them into one single set as they can overlap as, e.g., (1) the union
of the two sets, (2) the intersection of the two sets. In contrast to
Conneau et al. [6], we use an additional Cosine Similarity Threshold
heuristic to get a better set of mapping candidates.

800

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang

Table 1: Example of Seeds from the Signature-based Match-

ing Heuristic

Java C#

java.lang.String.equals System.String.Equals
java.util.List.remove System.Collections.Generic.List.Remove

java.util.Random.nextDouble System.Random.NextDouble

java.lang.Math.round System.Math.Round

java.io.File.Exists System.IO.File.Exists

The matrix W3 in this step is the final output of the domain
adaptation process. When it comes to the step to produce the map-
ping from the source query, the embeddings of the query will be
multiplied withW3 in order to obtain corresponding mappings in
the target language.

5 EMPIRICAL EVALUATION

Wehave conducted extensive empirical evaluations on our approach
in various settings to answer the following research questions:

RQ1 Compared to related methods, is our approach more effective
in identifying API mappings?

RQ2 How well do different combinations of refinement heuristics
improve the performance?

RQ3 What is the impact of each component in our approach on
the performance?

5.1 Dataset

We use the Java Giga corpus data described by Allamanis et al. [2].
It involves approximately 14,807 Java projects from Github and
contains approximately 2.1 millions of files. For C#, we clone the
projects on Github that have at least 1 star and collect 7,841 C#
projects with about 958,000 files. As the main advantage of our
approach, there is no need to specify which code in Java is function-
ally equivalent to which code in C#. For each function in a file, we
traverse the AST of the function to extract the API call sequences.
For Java, we get a corpus containing 6.7 million code sequences;
for C#, we get a corpus containing 5.1 million code sequences.

For evaluation, we take 860 method API mappings and 430 class
API mappings defined in Java2CSharp [5] as the ground truth for
evaluating our approach against the baselines.

5.2 Implementation

We adapt Gensim [29] in NLP to produce the embeddings of tokens
for the Java and C# corpora. We use the same settings used by
Mikolov et al. [18] during the training: stochastic gradient descent
with a default learning rate of 0.025, negative sampling with 30
samples, skip-gram with a context window of size 10, and a sub-
sampling rate of value 1e−4.

5.2.1 Evaluation Metrics. We use three metrics to measure the
performance of our approach and the baselines.

Top-k Accuracy: The top-k accuracy is defined as follow: For
a test JDK API j, SAR produces a resulting list. If the true mapping
API in C# .NET for j is in the top-k resulting list, we count it a hit.
If not, we count it a miss. Top-k accuracy is computed as the ratio
between the number of hits and the total of hits and misses for a
given ground-truth test set.

Mean Reciprocal Rank: For a test JDK API j as a query, SAR
produces a resulting list, we calculate the Reciprocal Rank (RR) of

that query. For all queries in our evaluation data, we calculate the
Mean Reciprocal Rank (MRR) of the test set. MRR is the average of
the reciprocal ranks of results for a sample of queries.

Formally, Reciprocal Rank can be defined as: RR = 1
ranki

, where

ranki refers to the rank position of the first relevant mapping for
the i-th query. And the Mean Reciprocal Rank (MRR) can be defined

asMRR = 1
|Q |

∑ |Q |
i=1 RRi , where RRi refers to the Reciprocal Rank

for the i-th query, |Q | refers to the total number of queries.
F-score: The F-score is defined as F = (2 ∗ P ∗R)/(P +R), where

Precision P = TP/(TP + FP) and Recall R = TP/(TP + FN). TP
refers to the number of true positives, which is the number of API
mappings that are in both result dataset and the ground truth set;
TN refers to the number of true negatives, which is the number
of API mappings that are neither in the returned results nor in
the ground truth set; FP refers to the number of false positives
which represents the number of result mappings that are not in the
ground truth set; FN refers to the number of false negatives, which
represents the number of mappings in the ground truth set but not
in the results.

5.2.2 Code Embedding. From the two code corpora, we scan through
all pairs of APIs in the two corpora to produce a set of seeds us-
ing the signature-based matching heuristic. We got 257 seeds for
this step. Table 1 shows examples of the seeds. Among these 257
seeds, we found that 83 seeds overlap in the 860 ground truth map-
pings. Note that for a fair comparison with the baselines (Api2Api,
DeepAM, StaMiner), we remove these 83 overlapping seeds from
the 257 seeds and we get a set of 174 seeds for the Seeding step.
Then, we apply word embedding on the corpora to get the source
embedding and target embedding. We use the embeddings, along
with the seeds as the input for the domain adaptation process.

5.2.3 Domain Adaptation. For the seeding step, we findW1 by us-
ing the Procrustes solution in Equation 2 with three inputs: source
embedding X (Java), target embedding Y (C#), and 174 mapping
seeds. This step gives us the mapping matrixW1. We implement
the adversarial learning by using PyTorch [27]. We use Momentum
Gradient Descent method [31] to search for the optimal transfor-
mation matrix2.

We use the unsupervised model selection criteria proposed in
Section 4.2.2 to select the best model by choosing the top 1000
frequent API token pairs, e.g., top-1 frequent token in the source
is aligned with top-1 frequent token in the target as the validation
set, then we extract theW2 from the model. Figure 3 shows three
different lines: (1) the discriminator accuracy, which is the accuracy
in classifying the samples from the source and target embeddings,
(2) the API mapping accuracy, which is the accuracy when using
the model to evaluate against the 1000 pairs validation set, and
(3) the average cosine similarity of all the pairs. As shown, the
criteria correlate well to the mapping accuracy. The high instability
is because of over-fitting. Thus, we only selected the model of the
best validation accuracy.

FromW2 resulting from the adversarial training, we obtain the
finalW3 by performing the refinement step on the basis of two
heuristics in Section 4.2.3. For the top-N frequency heuristics, we

2Our implementation (including source code and a docker image) can be accessed at
the public repository: https://github.com/bdqnghi/SAR_API_mapping

801

https://github.com/bdqnghi/SAR_API_mapping

SAR: Learning Cross-Language API Mappings with Little Knowledge ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

Figure 3: Unsupervised Model Selection Criteria

Table 2: API Mapping Results

Index Baselines K-folds Seeds Top-1 Top-5 Top-10
1

Random seeds: Api2Api

- 0 0.03 0.05 0.1
2 - 10 0.09 0.12 0.14
3 - 50 0.14 0.19 0.22
4 - 100 0.19 0.24 0.32
5

Random seeds: SAR

- 0 0.25 0.30 0.35
6 - 10 0.28 0.35 0.40
7 - 50 0.26 0.43 0.47
8 - 100 0.44 0.50 0.69
9

K-Fold: Api2Api

1-fold 172 0.24 0.35 0.41
10 2-folds 344 0.34 0.45 0.55
11 3-folds 516 0.37 0.51 0.67
12 4-folds 688 0.43 0.64 0.72
13

K-Fold: SAR

1-fold 172 0.36 0.39 0.48
14 2-folds 344 0.45 0.50 0.61
15 3-folds 516 0.54 0.66 0.71
16 4-folds 688 0.59 0.77 0.84

17

Signature-based: Api2Api

- 25 0.12 0.16 0.18
18 - 50 0.20 0.23 0.29
19 - 100 0.27 0.32 0.38
20 - 174 0.31 0.41 0.60
21

Signature-based: SAR

- 25 0.30 0.32 0.39
22 - 50 0.35 0.39 0.45
23 - 100 0.41 0.50 0.63
24 - 174 0.48 0.71 0.78

choose top-500 frequent tokens for the synthetic dictionary, as
suggested in [6]. For the second similarity threshold rule, we use
0.7 as the threshold as shown in Section 5.3.2, we found that this
number balances coverage and precision of API mappings well.

5.3 Evaluation

5.3.1 RQ1. Effectiveness of SAR in Mining API Mapping. The first
question we want to answer is how effective our approach in iden-
tifying API mappings from the two vector spaces. We compare SAR
with Api2Api, StaMiner, and DeepAM.

Result Summary. Index 24 in Table 2 uses 174 API mappings
automatically selected by the signature-based matching heuristic
and test against the 860 ground truth mappings. Index 16 uses 688
mappings selected randomly from the 860 ground truth set and test
against the rest. The performance of SAR in terms of top-k accuracy
is shown. As one can see in both cases, the top-1 accuracies are
above 50%, and the top-10 accuracies are above 80%.

Compare to Api2Api. The method used in Api2Api is correspond-
ing to the seeding step in our domain adaptation process, which
finds a mapping matrix by solving the Equation 1 given a large set
of seeds. We use the top-k accuracy as the evaluation metric.

Table 2 shows the top-k accuracy of our approach when com-
paring to Api2Api in various settings. First, we compare Api2Api
with SAR using the seeds coming from two different sources: the

860 mappings defined by Java2CSharp and the 174 mappings in-
ferred from the signature-based matching. Here we described the
variances as results shown in Table 2, indicating that our approach
can use much fewer number of seeds compared to Api2Api but still
achieve better results.

Select randomly: we select a subset of mappings r randomly
from 860 mappings in the ground truth, and test against the rest
860 − r mappings. Concretely, r = 0, 10, 50, and 100;

k-fold: we divide the 860 mappings into k = 1, 2, 3, 4 folds and
perform the variants of five-fold cross-validation: while k folds are
used as training data, the other 5 − k folds are used as testing data;

Select by signature: we use 174 mappings inferred by method
signature, and select randomly a varying number of them as the
training data and test against the remainingmappings in the ground
truth.

The process repeats for using different folds as the training data
for both Api2Api and we take the average accuracy are some ob-
servations from the results:

• Using the same number of seeds, either using the seeds from
Random, K-fold or Signature-based, we get significantly better
results than Api2Api for every setting.
• When using all of the 174 signature-based seeds, our approach
gets significantly better results than Api2Api: top-1 improves
17%, top-5 improves 30%, and top-10 improves 18%.

We also compare with Api2Api by using MRR as the evaluation
metric. For a JDK API in the 860 ground truth mappings, we use it
as a query for SAR to produce a resulting list, then we calculate the
RR for the first relevant mapping in the list. We do this for all of
the JDK APIs in the 860 ground truth mappings and calculate the
MRR of the test JDK APIs. We then do the same for Api2Api and
get an MRR score. The MRRs for SAR and Api2Api are 0.67 and
0.43, respectively, which indicates that when given a query, SAR
can retrieve the mapping results more accurately than Api2Api.

Compare to StaMiner and DeepAM. We follow the details de-
scribed in StaMiner and DeepAM to measure how well SAR per-
forms in mining API mappings for Class API and Method API 3. In
Java, an API element, by definition, can be a class, a method or a
field in the class; and it must belong to a package (or the names-
pace in case of C#). As such, the goal in this task is to measure
the performance the Class and Method API mapping task one by
one for each API of each package, i.e., to see which package has
the best performance for API mappings, so-called 1-to-1 mappings.
For the method API mapping, we use the 860 method ground truth
mapping described in Section 5.1 for evaluation. For the class API
mapping, we use the 430 class ground truth mapping described
in Section 5.1 for evaluation. We follow the details described in
DeepAM to choose only the APIs under the packages as shown
in Table 3, column ’Package’, so that the total number of method
API mapping left is 289 (remaining from 860 ground truth method
API mappings), and the total number of class API Mapping 283
(remaining from 430 ground truth class API mappings).

Adapting SAR for class-level API mapping is relatively easy: one
can remove the method part of a qualified API signature token so
that only the package and class parts of the token are retained in

3Note that we still use the model without the overlapping seeds

802

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang

Table 3: Accuracy of 1-1 Mapping when compares with StaMiner and MAM

Package
Class Migration Method Migration

Precision Recall F-Score Precision Recall F-score
Sta DeepA SAR Sta DeepA SAR Sta DeepA SAR Sta DeepA SAR Sta DeepA SAR Sta DeepA SAR

java.io 70.0% 80.0% 80.0% 63.6% 75.0% 75.0% 66.6% 72.7% 72.7% 70.0% 66.7% 66.7% 64.0% 87.5% 82.9% 66.9% 75.2% 74.8%
java.lang 82.5% 80.0% 82.5% 76.7% 81.3% 80.2% 79.5% 80.7% 82.6% 86.7% 83.3% 81.5% 76.5% 87.2% 78.4% 81.3% 85.4% 84.4%
java.math 50.0% 66.7% 66.7% 50.0% 66.7% 66.7% 50.0% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7%
java.net 100.0% 100.0% 100.0% 50.0% 100.0% 100.0% 66.7% 100.0% 94.5% 100.0% 100.0% 80.0% 33.3% 100.0% 66.7% 50.0% 100.0% 81.7%
java.sql 100.0% 100.0% 100.0% 50.0% 100.0% 90.0% 66.7% 100.0% 95.0% 100.0% 50.0% 70.0% 50.0% 66.7% 70.0% 66.7% 57.2% 70%
java.util 64.7% 69.6% 81.3% 71.0% 72.7% 71.0% 67.7% 71.1% 79.7% 63.0% 64.3% 64.8% 54.8% 85.7% 85.0% 58.6% 73.5% 76.9%

All 77.9% 82.7% 85.0% 60.2% 82.6% 80.5% 66.2% 81.9% 83.1% 81.1% 71.9% 71.7% 57.6% 82.3% 78.38% 65.0% 76.3% 75.5%

Table 4: Examples of newly found APIs in Java and C#
Java C#

java.io.DataInputStream.readInt System.Io.BinaryReader.ReadUInt16
java.lang.Byte.parseByte System.sbyte.Parse

java.lang.Double.longBitsToDouble System.BitConverter.Int64BitsToDouble
java.net.Datagramsocket.isConnected System.Net.Sockets.Socket.Connect

java.awt.geom.AffineTransform.inverseTransform System.Drawing.Drawing2d.Graphicspath.Transform
java.io.DataInputStream.readDouble System.Io.BinaryReader.ReadDouble

java.net.Serversocket.accept System.Net.Sockets.Socket.AcceptAsync

the code sequences. Then code embedding for the API sequence
can be derived as the embedding of the class-level API, along with
other keywords from the ASTs. We do this for both languages. To
select mapping seeds by API signatures, we first infer the mappings
from signatures at the class level, then follow a similar domain
adaptation process from APIs at the method-level.

One could not run StaMiner and DeepAM directly because they
require parallel data (aligned function body for StaMiner, and aligned
code and text description for DeepAM) for training. Therefore, we
had to compare to them by extracting the reported performance
numbers from their papers. This is also how DeepAM compared
itself to StaMiner. We use the F-score as the performance metric to
measure accuracy in this evaluation

Table 3 shows the comparison results of our mined API map-
pings with StaMiner (Sta) and DeepAM (DeepA). Columns łClass
Mapping" and łMethod Mapping" list results of comparing API
classes and methods, respectively. As one can see for the F-score,
SAR produces better results than those of DeepAM and StaMiner
at the class level. At method level, SAR produces better results
than StaMiner, and is close to DeepAM in term of F-score. Note
that while DeepAM needs to use millions of similar API sequence
descriptions and StaMiner needs to use ten of thousands of pairs of
parallel data, SAR only uses 174 pairs of mappings as a small set of
parallel data for the Seeding step.

Newly found API mappings. More interestingly, we found more
new API mappings than other studies in our actual code corpora.
For each of the API in Java, we query the top-10 nearest neighbors
in C# and manually verify the mappings. We enforce the threshold
= 0.7 as mentioned in Section 5.3.2 for this task. We found 420 new
SDK API mappings that can complement the tool Java2CSharp.
Comparing to MAM (25 new mappings), StaMiner (125 new map-
pings), Api2Api (52 new mappings), we found a sufficiently larger
number of mappings and our newly found APIs also overlap with
the APIs in these baselines. In Table 4, we show some interesting
examples of such newly found API mappings whose name do not
match exactly using traditional approaches. Our list of newly found
Java/C# APIs mappings can be accessed at our Github repository.4

5.3.2 RQ2. Effect of Different Refinement Approaches.

4https://github.com/bdqnghi/SAR_API_mapping/blob/master/new_found/new_
found_apis.csv

Table 5: Accuracy of the filteredmappings using various sim-

ilarity thresholds

Threshold
Coverage Accuracy

Top-1 Top-5 Top-1 Top-5

0.6 0.66 0.90 0.42 0.59

0.7 0.45 0.68 0.51 0.73

0.8 0.12 0.22 0.65 0.80

0.9 0.08 0.15 0.78 0.89

Effects of Cosine Similarity Threshold. In this section, we measure
the effect of different ways to combine the seeds for the refinement
step. We want to measure the effects of cosine similarity thresh-
old in order to choose a good one for the second heuristic in the
refinement step. Since the threshold is a part of the refinement, the
domain adaptation step only comprises of two steps: Seeding and
Adversarial Learning. Once the threshold is found, we use it for the
Refinement in the other experiments. Then we produce the map-
ping for each source query in the 860 ground truth mappings. For
each mapping produce, we obtain the cosine similarity between the
query and the result mapping. We choose a threshold to filter out
the mapping that has the cosine similarity lower than the threshold,
then we measure the accuracy of the filtered mappings.5

In Table 5, the column "Coverage" means the percentage of
ground truth APIs that have mappings in the candidate selection
results when choosing a specific cosine similarity threshold. The
column łAccuracył means the top-k accuracy in identifying the
mapping given a cosine similarity threshold as a condition to iden-
tify. The results show that our approach in these experiments has
higher mapping accuracy, but lower coverage with respect to the
ground truth set when the similarity threshold increases. It is, there-
fore, a trade-off to have higher accuracy in the expense of coverage.
For the other experiments that involve the cosine similarity thresh-
old in the refinement, we choose 0.7 as the threshold as this number
is balanced between the coverage and the accuracy.

Effects of Different Combinations of Refinement Heuristics. Ob-
tained 0.7 as a good threshold to identify correct mappings, we
use this number for the "Cosine Similarity Threshold " heuristic
in the Refinement step. What we measure is the impact of the two
refinement heuristics on the performance, either using only one
of them or combine them together. The domain adaptation also
comprises of Seeding and Adversarial Learning. After Adversarial
Learning, we use different combinations of refinement heuristics to
measure the effect of each heuristic. We use the 860 ground truth
mappings from Java2CSsharp as the test set.

5Note that the number of filtered mappings can be different when using different cosine
similarity threshold to filter out the mappings in the query results whose similarity is
less than the threshold. For the whole SAR approach, we do not apply the filtering for
more strict evaluation.

803

https://github.com/bdqnghi/SAR_API_mapping/blob/master/new_found/new_found_apis.csv
https://github.com/bdqnghi/SAR_API_mapping/blob/master/new_found/new_found_apis.csv

SAR: Learning Cross-Language API Mappings with Little Knowledge ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

Table 6: Different ways to combine refinement heuristics

Refine Method Top-1 Top-5 Top-10

Top-K 0.44 0.68 0.76

Cosine 0.25 0.31 0.36

Union Top-K + Cosine 0.36 0.42 0.50

Intersection Top-K + Cosine 0.48 0.71 0.78

Table 7: Ablation Study ś effects of each component

Baselines Seeds Top-1 Top-5 Top-10

Seeding+Adv
25 0.30 0.39 0.45
50 0.32 0.40 0.54
100 0.39 0.53 0.71
174 0.43 0.67 0.75

Seeding+Refine
25 0.13 0.14 0.20
50 0.18 0.23 0.29
100 0.22 0.29 0.43
174 0.30 0.40 0.49

Seeding
25 0.11 0.15 0.18
50 0.18 0.22 0.28
100 0.20 0.27 0.36
174 0.29 0.36 0.42

Refine - 0.01 0.01 0.01
Adv+Refine - 0.29 0.34 0.40

Adv - 0.25 0.30 0.35

The results in Table 6 show that taking the Intersection between
the Top-K Frequency and the Cosine Threshold heuristic results in
the best performance. This implies that the Cosine Threshold has
an effect to filter out poor Top-K Frequency synthetic seeds, thus
making the refinement better in overall.

5.3.3 RQ3: Effect of Each Component. We performed an ablation
study of domain adaptation to measure the performance of indi-
vidual components as well as their combinations (Table 7). Note
that for the Refinement component, since Section 5.3.2 shows that
using the intersection of Top-K and cosine threshold leads to better
results than union, we refer Refinement to those of łIntersection of
Top-K and Cosine" performance.

Here are some observations from the results:

• The seeding step is an important step for the domain adaptation
to works well, e.g., even with a small set of seeds (25), which
is a very small knowledge, it sets up a basis for the adversarial
learning to improve the performance significantly.
• Adversarial Learning is essential in improving the performance,
e.g., comparing Seeding+Adv against Seeding, the top-1 accuracy
is improved by 14% on average.
• Refinement alone does not achieve any good result because the
initial input matrix was completely random that cannot be refined
to anything better;
• Using the Adversarial Learning alone achieves some reasonable
results, e.g., top-1 = 25%, top-10 = 35%. Further with the Refine-
ment step, top-1 improves to 29%, top-10 becomes 40%. These
can be seen as the results of unsupervised domain adaptation
without any initial seeds.

5.4 Explainability Analysis of the Results

We performed various explainability analyses of our model in vary-
ing configurations to obtain some insights about our method. From
the results, we show that our approach performs significantly better
than Api2Api in every perspective. An interesting question one

Table 8: Effect of Refinement on Frequent vs. Rare Tokens

Baselines % Ground truth Eval size
Accuracy

Top-1 Top-5 Top-10

With Refine
Top 10% 86 0.65 0.78 0.85

Bottom 10% 86 0.32 0.35 0.47

Without Refine
Top 10% 86 0.54 0.65 0.72

Bottom 10% 86 0.30 0.34 0.45

may ask is "why does this approach perform better than Api2Api?".
Although theoretically, Adversarial Learning maximizes the sim-
ilarity between two distributions, it is still useful to explain this
phenomenon using analysis of the results.

5.4.1 Effect of Refinement on Frequent vs Rare tokens. We note
that the frequency of an API token could affect the quality of the
mapping result, i.e more frequent tokens could affect performance
more than the less frequent ones. With this assumption, the Re-
finement of the mapping matrix tries to improve the mapping by
using frequent tokens as the anchor. To measure the effect of the
refinement on the frequent tokens and rare tokens, we ranked the
860 ground truth mappings in Java2CSharp by the frequency of
the source APIs, i.e., the Java JDK APIs. Then we use our model
to produce the mapping results against the top 10%, which is a
subset of frequent tokens; and bottom 10%, which is a subset of
rare tokens. Note that to ensure a fair comparison, we use the 174
non-overlapping seeds to train the domain adaptation procedure.

The results in Table 8 show the following observations:

• Mapping accuracy decreases while increasing top-k frequent
tokens in the evaluation set, in either setting. This implies that
token frequency does affect on the mapping result;
• The refinement step can improve the result of both the frequent
tokens and rare tokens, although the impact is bigger on fre-
quent tokens, e.g., improved by 10% for top-10% , and only 2%
for bottom-10%.

5.4.2 Retrieved Results Comparison. To evaluate our approach
qualitatively, we retrieved C# API methods from sample
queries in Java SDK. Table 9 shows the resulting top-5 C# APIs
for four queries: java.util .Collection.add , java.io.File .exists

javax .swinд.Text .JTextComponent .setCaretPosition, and
java.util .concurrent .atomic .AtomicInteдer .дetAndDecrement .
They are ordered by increasing difficulty in finding a mapping.

For the first query, we can see that both Api2Api and our
approach can successfully select the correct top-1 mapping, the
other results are also related. This case can be considered as
easy for both approaches to performing well. For the second
query, both approaches can achieve a good exact mapping, but
for the other results, our approach can generalize all of the
results under the ‘System.IO .File’ class, while there are some
less related results in the top-5 produced by Api2Api, e.g.,
‘System.Web .ErrorFormatter .ResolveHttpFileName’. The third
query token ranks the 11,204th in the embedding table6. As
discussed earlier, embedding quality of rare tokens is not as
good as those of frequent tokens. Therefore, it is more diffi-
cult to find an exact mapping for such a query. Even so, our
approach can still rank a correct mapping at the third place
(‘System.Windows .Controls .RichTextBox .CaretPosition’), while

6The order of the token embedding provided by word2vec is proportional to the
frequency of the token [18]

804

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang

Table 9: Retrieved API mapping results from sample queries produced by SAR and Api2Api.

SAR Api2Api

(1) java.util.Collection.add

System.Collections.Objectmodel.Collection.Add System.Collections.Generic.List.Add

System.Collections.Generic.List.Add System.Collections.Generic.List.Get
System.Collections.ObjectModel.Collection.Clear System.Collections.Generic.List.Remove

System.Collections.Generic.List.Contains System.Collections.Objectmodel.Collection.Add

System.Collections.Generic.Dictionary.Add System.Collections.IDictionary.GetEnumerator

(2) java.io.File.exists

System.Io.File.Exists System.Io.File.Exists

System.Io.File.AppendText System.Web.Errorformatter.ResolveHttpFileName
System.Io.File.Delete System.Io.File.OpenRead

System.Io.Fileinfo.LastWriteTime System.Io.Compression.Zipfile.OpenRead
System.Io.File.GetAttributes System.Io.Compression.ZipFile.ExtractToDirectory

(3) javax.swing.Text.JtextComponent.setCaretPosition

System.Windows.Controls.RichTextBox.Clip System.Drawing.Image.GetframeCount
System.Web.Ui.Webcontrols.DataGrid.PageSize System.Media.SoundPlayer.PlaySync

System.Windows.Controls.RichTextBox.CaretPosition System.Web.Ui.Webcontrols.Calendar.WeekendDayStyle
System.Windows.Forms.ContextMenuStrip.SuspendLayout System.Configuration.Xmlutil.StrictSkipToNextElement

System.Windows.Controls.RichTextBox.CaretBrush System.Media.SoundPlayer.PlayLooping

(4) java.util.concurrent.atomic.AtomicInteger.getAndDecrement

System.Threading.Interlocked.Decrement System.Directoryservices.SearchResultCollection.GetEnumerator
System.Threading.ReaderWriterLockSlim.EnterWriteLock System.Directoryservices.SearchResultCollection.Dispose

System.Threading.Interlocked.Increment System.Runtime.Serialization.ObjectIdGenerator.HasId
System.Threading.EventWaitHandle.OpenExisting System.Collections.Generic.Queue.CopyTo

Api2Api produce totally unrelated results. For the last query, even
though there has no mapping in C# by the ground truth, the re-
trieved results are still reasonably close. The query, in this case,
is an API for an atomic operation, which is related to thread han-
dling. Our approach can generalize the result mappings to the
‘System.Threadinд’ APIs in C#, while the results from Api2Api are
totally unrelated.

This experiment shows that Adversarial Learning can maximize
the similarity between the two distributions so that similar APIs
are clustered together.

6 THREATS TO VALIDITY AND LIMITATIONS

The goal of domain adaptation is to use as little knowledge as
possible for any pair of languages. However, we only perform the
experiments on Java and C# in this paper because it is not easy to
find a good and large enough evaluation dataset for other pairs of
languages. We leave this task in the future.

While unsupervised adversarial learning method does not re-
quire any seed as parallel data, there is a risk that the distributions of
vectors (embeddings) in the two spaces are not so similar. Through
our experiments, it is confirmed that the performance could be im-
proved further by initializing the unsupervised adversarial learning
method with a small set of seeds taken from the seed-based domain
adaptation, and by generating the rest of API mappings.

Our approach can only generate single API mapping instead of
an API sequence mapping. Both Api2Api and ours share such a
limitation. In Api2Api, they use the new mappings mined from the
tool as the input for an external machine translation tool [11], to
generate the mapping for API sequences. In the future, we can also
feed the newly found mapping APIs from our tool to [11] as inputs.

We mainly use a simplified top-k accuracy metric to measure our
performance against the Api2Api. In real-world use cases, other
information retrieval based metrics, such as MAP and MRR, may

have less bias in evaluating the list of API mappings. We leave this
for the future.

7 CONCLUSION & FUTUREWORK

We have proposed a domain adaptation approach, named SAR, to
automatically transform and align the vector spaces of two different
languages and APIs used therein. Before and after the adversarial
learning step, we adapted the code embedding technique with a
seeding and a refinement method respectively. SAR can identify API
mappings across different programming languages. Our evaluation
shows that the mappings between Java and C# APIs identified by
SAR can be more accurate than other approaches with just 174
mapping seeds that can be easily identified by an automatic, simple
signature-based heuristic, and that SAR helps to identify hundreds
of more API mappings between Java and C# SDKs.

Domain adaptation methods are useful for other software en-
gineering tasks that involve two different domains targeted by
transferred learning [19, 20, 36], such as cross-language program
classification, cross-language/project bug prediction. These tasks
may benefit from the proposed approach when little curated data
is available. Other SE tasks that are challenging due to lack of data,
such as the out-of-vocabulary (OOV) problem [1, 7, 14] for learning
and modeling fast-evolving software code, may also benefit from
our domain adaptation approach, because the embeddings of OOV
words may be approximated on-the-fly by adapting the known em-
beddings of their contextual or similar words in different languages.
In the future, we will explore these variants of applications.

ACKNOWLEDGMENTS

This research is supported by the Singapore Ministry of Education
(MOE) Academic Research Fund (AcRF) Tier 1 grant from SIS at
SMU, and EPSRC and EU at the Open University. We also thank the
anonymous reviewers for their insightful comments and sugges-
tions, and thank the authors of related work for sharing data.

805

SAR: Learning Cross-Language API Mappings with Little Knowledge ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A Survey of Machine Learning for Big Code and Naturalness. ACM Computing
Surveys (CSUR) 51, 4, Article 81 (July 2018), 37 pages. https://doi.org/10.1145/
3212695

[2] Miltiadis Allamanis and Charles Sutton. 2013. Mining Source Code Repositories
at Massive Scale Using Language Modeling. In Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 207ś216.

[3] Nghi D. Q. Bui and Lingxiao Jiang. 2018. Hierarchical Learning of Cross-Language
Mappings through Distributed Vector Representations for Code. In Proceedings of
the 40th International Conference on Software Engineering: New Ideas and Emerging
Results, ICSE (NIER) 2018, Gothenburg, Sweden, May 27 - June 03, 2018. 33ś36.
https://doi.org/10.1145/3183399.3183427

[4] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Long Xiong Ong. 2019.
Mining Likely Analogical APIs across Third-Party Libraries via Large-Scale Un-
supervised API Semantics Embedding. IEEE Transactions on Software Engineering
(2019).

[5] codejuicer. 2017. Java2CSharp: a maven plugin to convert java classes to c#.
https://github.com/codejuicer/java2csharp Last commit in Sep 19, 2017.

[6] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and
Hervé Jégou. 2017. Word TranslationWithout Parallel Data. CoRR abs/1710.04087
(2017). arXiv:1710.04087 http://arxiv.org/abs/1710.04087

[7] Milan Cvitkovic, Badal Singh, and Anima Anandkumar. 2018. Deep Learning
On Code with an Unbounded Vocabulary. In Machine Learning for Programming
(ML4P) Workshop at Federated Logic Conference (FLoC).

[8] Jan Eberhardt, Samuel Steffen, Veselin Raychev, and Martin Vechev. 2019. Unsu-
pervised learning of API aliasing specifications. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation. ACM,
745ś759.

[9] Yaroslav Ganin and Victor S. Lempitsky. 2015. Unsupervised Domain Adapta-
tion by Backpropagation. In Proceedings of the 32nd International Conference on
Machine Learning (ICML). 1180ś1189. http://jmlr.org/proceedings/papers/v37/
ganin15.html

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. CoRR abs/1406.2661 (2014). arXiv:1406.2661 http://arxiv.
org/abs/1406.2661

[11] Spence Green, Daniel M. Cer, and Christopher D. Manning. 2014. Phrasal: A
Toolkit for New Directions in Statistical Machine Translation. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, WMT@ACL 2014, June
26-27, 2014, Baltimore, Maryland, USA. 114ś121. http://aclweb.org/anthology/W/
W14/W14-3311.pdf

[12] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE). 631ś642.

[13] XiaodongGu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM:
Migrate APIs with Multi-modal Sequence to Sequence Learning. In 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). 3675ś3681.

[14] Vincent J. Hellendoorn and Premkumar Devanbu. 2017. Are Deep Neural Net-
works the Best Choice for Modeling Source Code?. In 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,
763ś773. https://doi.org/10.1145/3106237.3106290

[15] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-Based
Statistical Translation of Programming Languages. In Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward! 2014). ACM, New York, NY, USA, 173ś184.
https://doi.org/10.1145/2661136.2661148

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).

[17] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013. Exploiting Similari-
ties among Languages for Machine Translation. CoRR abs/1309.4168 (2013).
arXiv:1309.4168 http://arxiv.org/abs/1309.4168

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems (NIPS). 3111ś3119.

[19] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. 2018. Heterogeneous Defect
Prediction. IEEE Transactions on Software Engineering 44, 9 (Sep. 2018), 874ś896.
https://doi.org/10.1109/TSE.2017.2720603

[20] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer Defect Learn-
ing. In Proceedings of the 2013 International Conference on Software Engineering.
382ś391.

[21] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen.
2014. Statistical learning approach for mining API usage mappings for code mi-
gration. In ACM/IEEE International Conference on Automated Software Engineering
(ASE). 457ś468.

[22] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen.
2014. Statistical learning of API mappings for language migration. In 36th Inter-
national Conference on Software Engineering - Companion (ICSE). 618ś619.

[23] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. 2013. Lexical
statistical machine translation for language migration. In Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). 651ś654.

[24] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. 2015. Divide-and-
Conquer Approach for Multi-phase Statistical Migration for Source Code (T).
In 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 585ś596.

[25] Anh Tuan Nguyen, Zhaopeng Tu, and Tien N. Nguyen. 2016. Do Contexts
Help in Phrase-Based, Statistical Source Code Migration?. In IEEE International
Conference on Software Maintenance and Evolution (ICSME). 155ś165.

[26] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen.
2017. Exploring API embedding for API usages and applications. In 39th Inter-
national Conference on Software Engineering (ICSE). 438ś449. https://doi.org/10.
1109/ICSE.2017.47

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS-W.

[28] Hung Dang Phan, Anh Tuan Nguyen, Trong Duc Nguyen, and Tien N. Nguyen.
2017. Statistical migration of API usages. In 39th International Conference on
Software Engineering - Companion Volume (ICSE). 47ś50.

[29] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45ś50. http://is.muni.cz/publication/
884893/en.

[30] Peter H. Schönemann. 1966. A generalized solution of the orthogonal procrustes
problem. Psychometrika 31, 1 (01 Mar 1966), 1ś10. https://doi.org/10.1007/
BF02289451

[31] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. 2013. On
the importance of initialization and momentum in deep learning. In Proceedings
of the 30th International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013. 1139ś1147. http://jmlr.org/proceedings/papers/v28/
sutskever13.html

[32] Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de Weijer, Abel Gonzalez-
Garcia, and Bogdan Raducanu. 2018. Transferring GANs: Generating Images
from Limited Data. In Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part VI (Lecture Notes in
Computer Science), Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss (Eds.), Vol. 11210. Springer, 220ś236. https://doi.org/10.1007/978-3-
030-01231-1_14

[33] Zhiguo Wang, Wael Hamza, and Radu Florian. 2017. Bilateral Multi-Perspective
Matching for Natural Language Sentences. In 26th International Joint Conference
on Artificial Intelligence (IJCAI). 4144ś4150.

[34] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized Word Embed-
ding and Orthogonal Transform for Bilingual Word Translation. In NAACL HLT
2015, The 2015 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Denver, Colorado, USA, May
31 - June 5, 2015. 1006ś1011. http://aclweb.org/anthology/N/N15/N15-1104.pdf

[35] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: Inference and Application
of API Migration Edits. In Proceedings of the 27th International Conference on
Program Comprehension. IEEE Press, 335ś346.

[36] S. Yan, B. Shen, W. Mo, and N. Li. 2017. Transfer Learning for Cross-Platform Soft-
ware Crowdsourcing Recommendation. In 24th Asia-Pacific Software Engineering
Conference (APSEC). 269ś278. https://doi.org/10.1109/APSEC.2017.33

[37] Yijun Yu. 2019. fAST: Flattening Abstract Syntax Trees for Efficiency. In Proceed-
ings of the 41th International Conference on Software Engineering, ICSE. 278ś279.

[38] Hao Zhong, Suresh Thummalapenta, and Tao Xie. 2013. Exposing Behavioral
Differences in Cross-Language API Mapping Relations. In Proceedings of 16th
International Conference on Fundamental Approaches to Software Engineering
(FASE), Held as Part of the European Joint Conferences on Theory and Practice of
Software (ETAPS). 130ś145.

[39] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010.
Mining API mapping for language migration. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1 (ICSE). 195ś204.

806

https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3183399.3183427
https://github.com/codejuicer/java2csharp
http://arxiv.org/abs/1710.04087
http://arxiv.org/abs/1710.04087
http://jmlr.org/proceedings/papers/v37/ganin15.html
http://jmlr.org/proceedings/papers/v37/ganin15.html
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://aclweb.org/anthology/W/W14/W14-3311.pdf
http://aclweb.org/anthology/W/W14/W14-3311.pdf
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/2661136.2661148
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1309.4168
https://doi.org/10.1109/TSE.2017.2720603
https://doi.org/10.1109/ICSE.2017.47
https://doi.org/10.1109/ICSE.2017.47
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.1007/BF02289451
https://doi.org/10.1007/BF02289451
http://jmlr.org/proceedings/papers/v28/sutskever13.html
http://jmlr.org/proceedings/papers/v28/sutskever13.html
https://doi.org/10.1007/978-3-030-01231-1_14
https://doi.org/10.1007/978-3-030-01231-1_14
http://aclweb.org/anthology/N/N15/N15-1104.pdf
https://doi.org/10.1109/APSEC.2017.33

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Seed-based Domain Adaptation
	3.2 Unsupervised Domain Adaptation

	4 Our Approach
	4.1 Code Embedding via Word Embedding
	4.2 Domain Adaptation

	5 Empirical Evaluation
	5.1 Dataset
	5.2 Implementation
	5.3 Evaluation
	5.4 Explainability Analysis of the Results

	6 Threats to Validity and Limitations
	7 Conclusion & Future Work
	References

