
Profile-Guided Program Simplification for
Effective Testing and Analysis

Lingxiao Jiang Zhendong Su

2

Program Execution Profiles

A profile is a set of information about an execution,
either succeeded or failed
Profiles from users are more interesting

Random testing with unlimited resources privacy, security, overhead

3

Profile-Collecting Infrastructure

To reduce users' concern

The Cooperative Bug Isolation Project

Low-overhead
Sparse information
Statistical analysis on profiles from many users for
bug Isolation

Low costs on profile triage at the developers' side

Lack of many details that developers desire

4

Bridge the Information Gap

An insight: Many in-house development tools,
as already used by developers for testing and
debugging, can provide the desired information,
if the program is simple enoughif the program is "simple" enough

5

Bridge the Information Gap

Our realization: profile-guided program simplification

Profile-Collecting
Infrastructure

Profile Analyzer

and

Program Simplifier
Execution
Profiles

In-house Testing & Analysis

Program
Instrumentation

6

Bridge the Information Gap

A question: why not use in-house techniques on the
original programs directly

In-house Testing & Analysis

7

Testing & Analysis - Incapabilities

Dynamic techniques, e.g., random testing
Incomplete coverage false negatives

Static techniques, e.g., BLAST
Undecidable problems false positives

Also, implementation limitations

Developers are used as an expensive remedy:
Manual filtering
Manual annotations/specifications

8

Example of Incapability

Failure occurs when (I*J) is within the
range of [991, 1000]
I = 0;
J = 1;
......
I = library_func(J);
J = library_func(I);
if (I * J > 990 &&

I * J <= 1000)
assert(FALSE);

Library functions are not
easy to track/control

Non-linear multi-variable
constraints are difficult to solve

9

Example Revisited: Benefit of
Program Simplification

Failure occurs when (I*J) is within the
range of [991, 1000]
I = 0;
J = 1;
......
I = library_func(J);
J = library_func(I);
if (I * J > 990 &&

I * J <= 1000)
assert(FALSE);

I = 0;
J = 1;
......
I = library_func(J);
J = library_func(I);

if (TRUE)
assert(FALSE);

simplification

This is possible based on statistical analysis
on large amount of execution profiles

10

Approach Overview

Profile-Collecting
Infrastructure Profile Analyzer and Program Simplifier

Program Reduction

Statistical Debugging

Execution
Profiles Branch Prediction Error-Related

Code Locations

In-house Testing and Analysis

Simplified ProgramsProgram
Instrumentation

Profile Analyzer

and

Program Simplifier

Fully automatable and focus naturally on
failures experienced more often by users

11

Approach Overview

Profile-Collecting
Infrastructure Profile Analyzer and Program Simplifier

Program Reduction

Statistical Debugging

Execution
Profiles Branch Prediction Error-Related

Code Locations

In-house Testing and Analysis

Simplified Programs with
Failure Paths PreservedProgram

Instrumentation

12

Profile-Collecting Infrastructure

For each program execution, CBI collects:
Outcome: exit status of the execution
List of predicate counters: e.g., the numbers of
times branching conditions are observed to be true

Reference: http://www.cs.wisc.edu/~liblit/#bug-isolation

(p11, …, pn1, label1),

(p1i, …, pni, labeli),

……

(p1m, …, pnm, labelm)

13

Statistical Debugging

A black-box view
(p11, …, pn1, label1)

(p1i, …, pni, labeli)

(p1m, …, pnm, labelm)

Statistical
Debugging

1

j

k

i

i

i

p

p

p

Bug Predictors:
the most
failure-related
code fragments

……

14

Branch Prediction

For each conditional C, suppose its then branch be Ct
and its else branch be Cf.
Assign a truth value for every Ci, e.g.,

True for bug predictors
False for Ci never taken in failed executions
Unknown for Ci taken in failed and succeeded executions

Decide branching directions

15

Branch Reduction

For each conditional IF(Bp, Bt, Bf) and its
prediction P, if

P==Neither, replace it with exit(0)
P==True, replace it with IF(TRUE, Bt, Bf)
P==False, replace it with IF(FALSE, Bt, Bf)
P==Both, keep it

16

Almost Ready

For dynamic testing & analysis tools, the
simplified code may exhibit additional failures

Infinite loops may also be possible

if (p != NULL)
{

p->next = ...
......
state = ...
assert (state != 0);

}

if (TRUE)
{

p->next = ...
......
state = ...
assert (state != 0);

}

Segfault

17

Branch Validation – Assumes

Require supports of testing or analysis tools
May still be faster than on original programs,
but better not to add it arbitrarily

if (TRUE)
{

assume (p != NULL);
p->next = ...
......
state = ...
assert (state != 0);

}

if (p != NULL)
{

p->next = ...
......
state = ...
assert (state != 0);

}

18

Ready for Empirical Evaluation

The current branch validation strategy:
none or all

Simplify code with no assume first
If segfaults, add in all assumes and apply
back-end tools again

19

Experimental Setup

Subject programs
Siemens Test Suite from the Aristotle Analysis System
Gzip from the Software-artifact Infrastructure Repository (SIR)

CBI profiling and statistical bug localization [ASE 2007]

Testing & analysis tools
CUTE, a testing engine that combines both concrete and
symbolic execution, [PLDI 2005, FSE 2005]
BLAST, a software model checker based on predicate
abstraction, [POPL 2002, SPIN 2003]

20

Results on CUTE

21

Extra Bugs Detected: Examples

Complement Implementation Limitations

if ((float)input >= 1.0)
{

......
assert(FALSE);

}

if (TRUE)
{

......
assert(FALSE);

}

22

Extra Bugs Detected: Examples

Simplify Path Constraints

int longNumArray[] = { 13, 25, 48,
..., /* a lot of numbers */...,
255, ... };

if (longNumArray[input]==255)
{

......
assert(FALSE);

}

*(longNumArray + input) == 255

int longNumArray[] = { 13, 25, 48,
..., /* a lot of numbers */...,
255, ... };

if (TRUE)
{

......
assert(FALSE);

}

23

Results on CUTE

24

May Be Slower Without Assumes

Assertions may not be violated with invalid
inputs

if (input > 99899 &&
input < 99999) {

......
for (i=0; i<input; i++)

sum += foo(i);
assert (sum != 0);

}

if (TRUE) {
//assume (input > 99899 && input < 99999);

......
for (i=0; i<input; i++)

sum += foo(i);
assert (sum != 0);

}

Suppose (sum==0) iff input is in
the range of [99900, 99998]

When CUTE is applied: three iterations vs. tens of thousands of iterations

25

Results on BLAST

26

Discussion

Not a direct testing or debugging tool itself

Need different interpretation of bug reports

May not be faster

Replies on the accuracy of statistical debugging

Evaluation for larger-scale programs

I = 0;
J = 1;
......
I = library_func(J);
J = library_func(I);

if (TRUE)
assert(FALSE);

+Error
Trace

I * J > 990 &&
I * J <= 1000

Reduced Path
Constraints

27

Discussion

Not a direct testing or debugging tool itself

Need different interpretation of bug reports

May not be faster without selective assumes

Reply on the accuracy of statistical debugging

Evaluation for larger-scale programs

28

Take-away Message

Profile-Guided Program Simplification:
a way to combine many benefits of two existing research areas
and help bridge the information gap between what developers
desire and what users may provide.

Profile-
Collecting

Infrastructure

Profile Analyzer
&

Program Simplifier

In-house
Testing &
Analysis

29

Thank you!

Questions?
jiangl@cs.ucdavis.edu

