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Program Execution Profiles

A profile is a set of information about an execution, 
either succeeded or failed
Profiles from users are more interesting

Random testing with unlimited resources privacy, security, overhead
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Profile-Collecting Infrastructure

To reduce users' concern

The Cooperative Bug Isolation Project

Low-overhead
Sparse information
Statistical analysis on profiles from many users for 
bug Isolation

Low costs on profile triage at the developers' side

Lack of many details that developers desire
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Bridge the Information Gap

An insight: Many in-house development tools, 
as already used by developers for testing and 
debugging, can provide the desired information, 
if the program is simple enoughif the program is "simple" enough
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Bridge the Information Gap

Our realization: profile-guided program simplification

Profile-Collecting 
Infrastructure

Profile Analyzer

and

Program Simplifier
Execution 
Profiles

In-house Testing & Analysis

Program
Instrumentation
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Bridge the Information Gap

A question: why not use in-house techniques on the 
original programs directly

In-house Testing & Analysis
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Testing & Analysis - Incapabilities

Dynamic techniques, e.g., random testing
Incomplete coverage false negatives

Static techniques, e.g., BLAST
Undecidable problems false positives

Also, implementation limitations

Developers are used as an expensive remedy:
Manual filtering
Manual annotations/specifications
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Example of Incapability

Failure occurs when (I*J) is within the 
range of [991, 1000]
I = 0;
J = 1;
...... 
I = library_func(J);
J = library_func(I);
if ( I * J > 990 &&

I * J <= 1000 )
assert( FALSE );

Library functions are not 
easy to track/control

Non-linear multi-variable 
constraints are difficult to solve
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Example Revisited: Benefit of 
Program Simplification

Failure occurs when (I*J) is within the 
range of [991, 1000]
I = 0;
J = 1;
...... 
I = library_func(J);
J = library_func(I);
if ( I * J > 990 &&

I * J <= 1000 )
assert( FALSE );

I = 0;
J = 1;
...... 
I = library_func(J);
J = library_func(I);

if ( TRUE )
assert( FALSE );

simplification

This is possible based on statistical analysis 
on large amount of execution profiles
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Approach Overview

Profile-Collecting 
Infrastructure Profile Analyzer and Program Simplifier

Program Reduction

Statistical Debugging

Execution 
Profiles Branch Prediction Error-Related

Code Locations

In-house Testing and Analysis

Simplified ProgramsProgram
Instrumentation

Profile Analyzer

and

Program Simplifier

Fully automatable and focus naturally on
failures experienced more often by users



11

Approach Overview

Profile-Collecting 
Infrastructure Profile Analyzer and Program Simplifier

Program Reduction

Statistical Debugging

Execution 
Profiles Branch Prediction Error-Related

Code Locations

In-house Testing and Analysis

Simplified Programs with 
Failure Paths PreservedProgram

Instrumentation
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Profile-Collecting Infrastructure

For each program execution, CBI collects:
Outcome: exit status of the execution
List of predicate counters: e.g., the numbers of 
times branching conditions are observed to be true

Reference: http://www.cs.wisc.edu/~liblit/#bug-isolation

(p11, …, pn1, label1), 

(p1i, …, pni, labeli),

……

(p1m, …, pnm, labelm)
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Statistical Debugging

A black-box view
(p11, …, pn1, label1)

(p1i, …, pni, labeli)

(p1m, …, pnm, labelm)

Statistical
Debugging
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Bug Predictors: 
the most 
failure-related 
code fragments

……
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Branch Prediction

For each conditional C, suppose its then branch be Ct
and its else branch be Cf.
Assign a truth value for every Ci, e.g.,

True for bug predictors
False for Ci never taken in failed executions
Unknown for Ci taken in failed and succeeded executions

Decide branching directions
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Branch Reduction

For each conditional IF(Bp, Bt, Bf) and its 
prediction P, if

P==Neither, replace it with exit(0)
P==True, replace it with IF(TRUE, Bt, Bf)
P==False, replace it with IF(FALSE, Bt, Bf)
P==Both, keep it
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Almost Ready

For dynamic testing & analysis tools, the 
simplified code may exhibit additional failures

Infinite loops may also be possible

if ( p != NULL )
{

p->next = ...
......
state = ...
assert ( state != 0 );

}

if ( TRUE )
{

p->next = ...
......
state = ...
assert ( state != 0 );

}

Segfault
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Branch Validation – Assumes

Require supports of testing or analysis tools
May still be faster than on original programs, 
but better not to add it arbitrarily

if ( TRUE )
{

assume ( p != NULL );
p->next = ...
......
state = ...
assert ( state != 0 );

}

if ( p != NULL )
{

p->next = ...
......
state = ...
assert ( state != 0 );

}
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Ready for Empirical Evaluation

The current branch validation strategy: 
none or all

Simplify code with no assume first
If segfaults, add in all assumes and apply 
back-end tools again
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Experimental Setup

Subject programs
Siemens Test Suite from the Aristotle Analysis System
Gzip from the Software-artifact Infrastructure Repository (SIR)

CBI profiling and statistical bug localization [ASE 2007]

Testing & analysis tools
CUTE, a testing engine that combines both concrete and 
symbolic execution, [PLDI 2005, FSE 2005]
BLAST, a software model checker based on predicate 
abstraction, [POPL 2002, SPIN 2003]
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Results on CUTE
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Extra Bugs Detected: Examples

Complement Implementation Limitations

if ( (float)input >= 1.0 )
{

......
assert( FALSE );

}

if ( TRUE )
{

......
assert( FALSE );

}
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Extra Bugs Detected: Examples

Simplify Path Constraints

int longNumArray[] = { 13, 25, 48,
..., /* a lot of numbers */...,
255, ... };

if ( longNumArray[ input ]==255 )
{

......
assert( FALSE );

}

*(longNumArray + input) == 255

int longNumArray[] = { 13, 25, 48,
..., /* a lot of numbers */...,
255, ... };

if ( TRUE )
{

......
assert( FALSE );

}
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Results on CUTE
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May Be Slower Without Assumes

Assertions may not be violated with invalid
inputs

if ( input > 99899 &&
input < 99999 ) {

......
for (i=0; i<input; i++)

sum += foo(i);
assert ( sum != 0 );

}

if ( TRUE ) {
//assume (input > 99899 && input < 99999);

......
for (i=0; i<input; i++)

sum += foo(i);
assert ( sum != 0 );

}

Suppose (sum==0) iff input is in 
the range of [99900, 99998]

When CUTE is applied: three iterations vs. tens of thousands of iterations
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Results on BLAST
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Discussion

Not a direct testing or debugging tool itself

Need different interpretation of bug reports

May not be faster

Replies on the accuracy of statistical debugging

Evaluation for larger-scale programs

I = 0;
J = 1;
...... 
I = library_func(J);
J = library_func(I);

if ( TRUE )
assert( FALSE );

+Error 
Trace

I * J > 990 &&
I * J <= 1000

Reduced Path 
Constraints
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Discussion

Not a direct testing or debugging tool itself

Need different interpretation of bug reports

May not be faster without selective assumes

Reply on the accuracy of statistical debugging

Evaluation for larger-scale programs
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Take-away Message

Profile-Guided Program Simplification:
a way to combine many benefits of two existing research areas 
and help bridge the information gap between what developers 
desire and what users may provide.

Profile-
Collecting 

Infrastructure

Profile Analyzer
&

Program Simplifier

In-house
Testing &
Analysis
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Thank you!

Questions?
jiangl@cs.ucdavis.edu


