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ABSTRACT

Many testing and analysis techniques have been developéa-fo
house use. Although they are effective at discovering defee-
fore a program is deployed, these techniques are oftenglihttie
to the complexity of real-world code and thus miss prograuaitéa
It will be the users of the program who eventually experiefadle
ures caused by the undetected faults. To take advantage lafrtfe
number of program runs carried by the users, recent work fas p
posed techniques to collect execution profiles from thesuar
developers to perform post-deployment failure analysiswever,
in order to protect users’ privacy and to reduce run-timerioead,
such profiles are usually not detailed enough for the deesfofm
identify or fix the root causes of the failures.

In this paper, we propose a novel approach to utilize userexe
tion profiles for more effective in-house testing and analy®ur
key insight is that execution profiles for program failures de
used to simplify a program, while preserving its erroneoebdy-
ior. By simplifying a program and scaling down its complgxtc-
cording to its profiles, in-house testing and analysis teples can
be performed more accurately and efficiently, and pragrabyic
program defects that occur more often and are (arguablyemor
relevant to users will be given preference during failuralgsis.
Specifically, we adapstatistical debuggingn execution profiles
to predict likely failure-related code and use a syntaedied algo-
rithm to trim failure-irrelevant code from a program, whjeeserv-
ing its erroneous behavior as much as possible. We conduate
studies on a testing enginEUJTE, and a software model checker,
BLAST to evaluate our technique. We used subject programs from
the Aristotle Analysis System and the Software-artifadtastruc-
ture Repository (SIR). Our empirical results show that gssim-
plified programs, CUTE and BLAST find more bugs with improved
accuracy and performance: they were able to d&@eind21 (out
of 139) more bugs respectively in about half of the time as they
took on the original test programs.
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1. INTRODUCTION

Many software defects remain undetected or unfixed even afte
it goes through extensive in-house testing and analysisaloede
complexity and the time-to-market pressure. It will be trsens
of the program in the field who experience those latent buge O
way to allay the problem is to develop more effective testingl
analysis techniques so that fewer defects remain in deglogde.

However, no matter how sophisticated these techniques €an b
made, some defects will inevitably be undetected beforemxp
enced by users. For the program failures that happen in thk fie
feedback from the users can be very useful for isolating axd fi
ing related bugs. Much work has proposed mechanisms toctolle
program execution profiles from users so that bug locabrasind
failure analysis can be performed [32, 33, 35, 49]. Howeeepri-
vacy and performance concerns, the profiles are often natleet
enough for developers to reconstruct complete scenargtsett
hibit the failures. Thus, the usefulness of the profiles émt+cause
analysis is usually limited, leaving an apparent gap betibe
needs of the developers and the contribution of the users.

This paper aims to reduce such a gap by further leveraging ex-
ecution profiles to aid in-house testing and analysis. Owrike
sight is that in-house techniques and profile-based teakrigan
complement each other. The former are often good at coristguc
failure scenarios for detailed analysis, but lacfriori knowledge
about bug locations. Thus, they usually search as manyidosan
a program as possible for bugs, which hinders their effentgs.
The latter are often good at localizing bugs, but not efiectt
providing detailed failure scenarios. By combining the tkhinds
of techniques, we can firsimplify a programusing information
about possible bug locations derived from profiles, whilesgrv-
ing the erroneous behavior of the program, and tgply in-house
techniques on the simplified progratim construct detailed scenar-
ios for failures occurred in the field The profile-guided program
simplification inspires new uses of profiles; more imporgrit
helps to scale down code complexity and thus in-house tqubai
can be applied more effectively.

1.1 Motivating Examples

We use two code snippets to motivate our approach. They are ex
tracted from the subject programs used in our studlySection 4),
and modified for a simpler presentation. In this paper, we- con
sider two state-of-the-art tools for in-house testing amalysis: (1)



CUTE, a testing engine that combines both concrete and dienbo
execution [16,43], and (2) BLAST, a software model checlasdul
on predicate abstraction [21,22]. We add explicit assestio the
code for CUTE and BLAST to know when a failure is reached.

Example 1. Consider the following.f statement:
if ( inputr * inputc > 990 &&
inputr * inputc <= 1000 )
assert( FALSE );

The assertion may be violated if the product of the two in@t-v
ables,inputr andinputc, falls within the rang€991, 1000]. How-
ever, CUTE fails to construct concrete inputs that lead ¢oatbser-
tion violation and ¢ptimistically, butincorrectly) reports the asser-
tion is unreachable because the constraint solver in CUTHaEs
that the path constraints involve multiplications and arsalvable.
Although BLAST’s theorem prover cannot resolve the coristsa
either, it states its incapability anddnservativelyand correctly)
reports that the program may have fadits.
Imagine if we can simplify the code to the following:

if ( TRUE ) assert( FALSE );

Now both CUTE and BLAST can easily decide that the simplified
code can violate the assertion and thus has a fault. Suchgdifsim
cation is possible because from the profiles of the origindecwe
know that the program only fails when thé condition is true?

Example 2. Now consider a slightly more complicated example:
if ( isalnum(input[i-1]) & /* bit operator */
isalnum(input[i+1]) ) {

} else if ( isalnum(input[i-1]) ||
isalnum(input [i+1]) )
assert( FALSE );

The assertion is unreachable since the C library functieslnum
always returnd for non-alphanumeric characters and teme
non-zero value for alphanumeric characters. Thus, when

isalnum(input[i-1]) & isalnum(input [i+1])

is false, bothisalnum (input [1-1]) andisalnum (input [i+1])
have to beo, and then the seconid condition must be false.

Neither CUTE nor BLAST can resolve the path constraints for
this program; while CUTE (again optimistically, but cortigg re-
ports that the program is safe since it cannot construct retec
inputs to reach the assertion, BLAST (again conservativalyin-
correctly) reports a failure.

Suppose we can use profiles of the program to simplify it as the
following (without introducing new erroneous behaviordrdr re-
moving old ones from the original code):

if ( FALSE ) {

} else if ( FALSE )
assert( FALSE );

The assertion here is clearly unreachable. Both CUTE andBLA
can easily decide that the code is safe.

1We note thaffailures (observable failed executionsdrrors (in-

valid internal states during an execution), dadlts (the program
phenomena causing errors and failures) have different imgsn
In this paper, we use assertions to turn errors into failares$ the
assertions were added according to faults. In addition,odiler
usually does not contain complete internal states, butebeltr of
its execution (either success or failure), so throughastghper we
will mainly use the ternfailure.

2Although in this case our approach does not directly provite
concrete inputs that cause the assertion violation, it goesgide
the actual path that leads to the failure. Section 4.3 dsssumore
in detail how to interpret failure reports for simplified gm@ams.
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Figure 1: Work-flow of our approach.

1.2 Our Approach

This paper presents a novel, automatic technique to siynalif
program w.r.t. a set of program execution profiles from ugethe
field. The goal is to make in-house testing and analysis nitee-e
tive by scaling down code complexity and focusing on fieltUfais
occurred most often. It integrates profiles into existinghouse
testing and analysis techniques and helps reduce the gapdret
the needs of developers and the contribution of users. @dmce
ally, our approach is comprised of three components: (@péle-
collecting infrastructurethat instruments a program before its de-
ployment and collects execution profiles from users; (dydfile
and program analyzethat predicts potentially failure-related code
and reduces failure-irrelevant code from the program; &)dafly
in-house testing or analysis technigtleat can be applied to the
simplified program for bug detection.

Figure 1 shows the work-flow of our approach. First, a program
is instrumented and deployed to users; execution profilégivein
be generated in the field and sent back to a central database fo
analysis upon users’ agreement. Statistical debuggingpiseal on
the profiles to localize the program locations that are ikellure-
related; our profile analyzer also predict branching dicew that
likely lead to program failures. The details of these stapsde-
scribed in related work [24, 32] and briefly summarized in-Sec
tion 2. With the branching directions learned from the pedil
our program analyzer removes failure-irrelevant brandras the
original program, but preserves program paths that maytie#ue
failures exposed in the profiles. The algorithm for simpitity pro-
grams and its failure-preserving property are describetktail in
Section 3. Then, existing in-house testing and analyshniqoes
can be applied on the simplified program for further bug dedac

Two testing and analysis techniques, CUTE and BLAST, were
used to validate the effectiveness of our approach. We paed
the evaluation on subject programs from the Aristotle Ase\Bys-
tem [44] and the Software-artifact Infrastructure Reposit(SIR,
[15]). Our empirical studies show that both CUTE and BLAST ca
detect more bugs in simplified programs with improved accyra
and performance: they were able to detect respecti@lgnd 21
more bugs (out of 39) for the programs, and took about half of the
time as they took on the original programs.

1.3 Paper Organization

The rest of the paper is structured as follows. Section 2sgive
necessary background on statistical debugging. Secties&itbes
details of our approach and its failure-preserving propdrt Sec-
tion 4, we present our empirical evaluation based on CUTE and
BLAST to show the effectiveness of our approach. Sectionsb di
cusses related work, and Section 6 concludes.

2. BACKGROUND

This section provides necessary background on statistéalg-
ging techniques that our approach is based on.



2.1 Infrastructure for Collecting Profiles

We first introduce the infrastructure for instrumenting gnams
and collecting execution profiles from users in the field. @pr
proach uses the Cooperative Bug Isolation project (CBI)[30BI
lightly instruments a program with statically fixed predicates,
and an execution of the instrumented program is recorded as a
dimensional vector, which is one profile, where ikt value of the
vector counts the number of times that ik predicate is observed
to be true during the execution. The vector for each exeouiso
has a label, indicating failure or success of the executisrkey
observation from CBI and statistical debugging [24, 3348),is
that although it is practically impossible to recover coatplpro-
gram states, including user specific information, froneprofile, a
large collection of such profiles fromanyusers can be useful for
understanding the program’s (mis)behavior.

CBI instruments the following predicates (callbchnch predi-
categ that are related to every branching conditions in a program
and are used extensively in our profile and program analyzer

Given a branching conditiod, its then-branch and
else-branch correspond to two predicatés= true
(abbr. Cy) andC' = false (abbr. C), respectively;
each branch is thus instrumented to count how many
times during an executiofi; andC’ are satisfied.

The instrumentation scheme in CBI is intended to be of little
overhead for individual user, but informative for bug deime with
profiles from many users.

2.2 Statistical Branch Prediction

Profiles from CBI have been used with different statisticetim
ods to locate likely failure-related locations [24,32 3349]. Such
locations have also been used to construct static contrelfaihs
to aid debugging [24, 29] and prioritization of failure retso[34].
We summarize the technique from our previous work [24] fa-pr
dicting branching directions that may lead to program faitu We
will utilize the predicted branching directions in this gayo sim-
plify programs.

Given a conditional” in a program, the basic intuition for pre-
dicting the branching direction that leads to a programufailis to
see how often the then-branch is taker.(C: is satisfied) versus
how often the else-branch is takere( C; is satisfied) irfailed ex-
ecutions: if failures occur more often whéh is satisfied, then we
may decide the then-branch should be taken to lead to failarel
vice versa; if we cannot decide which branch is taken morenoft
we simply assume both branches are possible.

The actual mechanical process is as follows. First, we assig
truth values over the range ¢ffrue, False, Unknown} for all
branch predicates. Given a branch predigateither C; or Cy):

(1) If p is neversatisfied in anyailure profile, let the truth value of

p beFalse; (2) If p is satisfied at least once in most (>50%) of the
failure profiles, let the truth value qgf be True; (3) Otherwise, let

it be Unknown.

Second, we decide the branching direction for every coorai
C' based on the truth values 6f andCy: (1) If both C; andC/
areFalse, C' is likely not executed in any failed run, and all paths
leading toC' may be reduced. We say the branching direction for
C' is Neither; (2) If C; is True or Unknown and CY is False,
the else-branch of’ is likely not taken in failed runs, and we say
the direction forC' is True; (3) If C; is False andC'y is True or
Unknown, the then-branch of’ is likely not taken in failed runs,
and we say the direction fat' is False; (4) If both C: and C}
are notFalse, then both branches may be taken and we say the
direction forC' is Both. Table 1 illustrates the description.

3CBI also instruments other kinds of predicates, but we hate n
yet utilized those predicates in this paper.

Direction Truth Value ofC}
for C True False Unknown
Truth True Both False Both
Value False True | Neither True
of C'¢ Unknown | Both | False Both

Table 1: Predicting branching directions based on truth valies
of branch predicates.

The two-step process for predicting branching directiorsy m
also incorporate other information learned from the prefildn
previous work on statistical debugging, many statisticathmds,
including machine learning and clustering algorithms, enaeen
applied to select branch predicates that are likely faihetevant
or close to actual bug locations, and empirical studies skiativat
the top-selected predicates are indeed useful for rexgalatual
bugs. Thus, it is reasonable to assityue to all branch predicates
that are identified as failure-relevant during the first §&4.

Also, the process can be more conservative, (o preserve more
branches by assigningrue or Unknown to more branch predicates
in our context) or more aggressivies(, to reduce more branches by
assigningFalse to more branch predicates even when the probabil-
ity of the correctness of the assignment is low). An aggvessio-
cess may help to simplify a program more substantially arthéu
improve the performance of subsequently applied testingpaal-
ysis techniques, with possibly more false negatives. Orother
hand, simplified programs that are based on a conservaicegs
may preserve all erroneous behavior in the original programd
more faults may be detected. Section 3.3 will give detaitmbant
of the failure-preserving property of the above process @ac-
tion 4 will present empirical data to show its effectiveness

3. APPROACH DETAILS

This section presents our approach for profile-guided @nogr
simplification in detail.

3.1 Branch Reduction

The objective of our program simplification is to reduce asiyna
branches as possible to be sequential, while preservirits phaat
may lead to program failures that have been exposed by same pr
file. The branch reduction is based on the branching direstio
learned from the profiles, as summarized in Section 2.2.

Algorithm 1 describes a simple syntax-directed method doce
branches based on the branching directions. Given an absyia
tax tree of a program, the algorithm visits eveirf statement and
modifies it according to its direction: (1) if the directiosNei-
ther, which means thef statement wageverreached in failed
runs, and thus we can reduce all code following tlie (2) if the
direction isTrue, which means failures likely happen when the
then-branch is taken, and thus we can reduce the else-hrangh
(3) it is similar for theFalse case.

Intuitively, the algorithm only removes failure-irreleviebranches.
As long as the branching directions are failure-preseryaigSec-
tion 3.3), there must be a path in the simplified program thilit s
leads to failures, and the faults in the original program s@hbe
detected by in-house testing and analysis techniques.

3.2 Branch Validation

On the other hand, although the paths leading to failureprare
served during branch reduction, the semantics of the siieglpro-
gram can be different from the original. Program inputs tf@ahot
cause failures may also fall on the failure paths since tasgaow
fewer conditionals on the paths. Thus, subsequent testiciguaal-
ysis may report more (false) failures than before.

Example 3. Consider the following code snippet:



Algorithm 1 REDUCE

Input: P: C program withn conditionals
D = (du,...,dn): directions for the conditionals
Output: P’: P with certain branches reduced
for all nodein P's AST do
if node ==IF(p;, s¢, sy) then
if d; ==Neither then
node <« CALL(exit (0));
else if d; == True then
node < IF(TRUE, s, sy)
else if d; ==False then
node <« IF (FALSE, s;, Sf)
end if
end if
end for

void f(struct list * p) {
if ( p != NULL ) {
p~—>next = ...
assert ( .../* failure condition */ );
}
}

Branch reduction may simplify it to the following:

void f(struct list * p) {
if ( TRUE ) {
p—>next = ...
assert ( .../* failure condition */ );
}
}

Then, if the applied in-house technique, such as CUTE, n&eds
execute the code, the code may segmentation fautisifiULL.

Example 4. Similarly, branch reduction may cause infinite loops
in the simplified program before its failure points. Consitlee
following code for illustration:

if ( input[i]==32 )
input [i] = 0;

done = FALSE;

while ( ! done ) {

if ( input[i]==32 )
input[i] = 0;

done = FALSE;

while ( ! done ) {

if ( input[i]==36 ) if ( TRUE )
input[i] = 32; input [i] = 32;
else else
done = TRUE; done = TRUE;
} }

assert( input[i]!=32 ); assert( input[i]!=32 );
The assertion in the code on the left may be violated only vthen
then-branch of the seconid condition Gnput [i]==36) is taken.
Suppose a set of branching directions helps to reduce the @od
the left to the code on the right.An infinite loop which is not
possible in the original code appears in the simplified cdslech
code may affect different testing and analysis techniqoeliffer-
ent ways: (1) techniques relying on concrete executionsh sis
CUTE, will fail to terminate; and (2) techniques relying otatsc
code analysis, such as BLAST, may decide the assertionésaanyf
able because of the infinite loop (and thus lead to a falsetinega
or decideinput [i] is always32 if the loop finishes and simply
report an assertion violation.

“Since both of the then-branch and the else-branch ofithtsave

to be taken irfailed executions, the predicted branching directions
used here are not failure-preservingg.,, not preserving the erro-
neous behavior of the codef(Section 3.3 for formal definitions).

Therefore, it will be beneficial to avoid unexpected resiilige
can enforce the validity of the reduced branches in simplifieo-
grams. For example, ensurind =NULL in Example 3is always
true when the then-branch is taken would avoid unnecessary s
mentation faults for CUTE. To achieve this in general, we siam
ply restore certain branch conditions back into the progi@avoid
invalid branching. However, it is obvious that such retexgion
would compromise the aforementioned benefits of our apjroac

Instead, our approach addssume predicatemto simplified
programs. Assume predicates are commonly used to represent
ditions that must hold before the code following it can becexed
correctly. Their functionality is thus similar to that ofifation pre-
conditions, and we use assume predicates (oriisime’s) in this
paper as guards for branches.

Example 5. As an example, consider the following code:

assume( p != NULL );
if ( TRUE ) {
p->next = ...

}

The assume (p!=NULL) ensures thap!=NULL must hold before
p->next can be accessed.

Many techniques can utilizessume’s. Symbolic execution [13,
16, 43,45, 46] is one: Given a path leading toa@Bume, the code
along the path can be symbolically executed; then path @nt,
including the assume predicate, may be collected to heliped¢ae
conditions under which the code following thesume can be exe-
cuted. Model checking [5,21,40,45] is another: Progrartesténat
do not satisfy theassume can be pruned so that state exploration
may be performed more efficiently.

Our approach does not stipulate how to interpretume’s. As
long as the subsequent testing or analysis technique cagniee
assume predicates, it is free for the technique to integpretime’s
in ways that best fit the technique. For example, CUTE inh@ren
uses a combination of concrete and symbolic execution teisys
atically explore as many paths in a program as possible, taisd i
natural for CUTE to terminate a concrete execution if thecexe
tion violates amassume and to generate new inputs that satisfy the
assume to continue. For BLAST, the assume predicates provide
easy hints to construct and refine abstract program stagegptore.
For other testing and analysis techniques, additionattsffoay be
required to enforce the assume predicates in order to enfbwe
validity of the reduced branches and take full advantagheben-
efits of our approach. For example, a testing technique based
pure concrete execution may need to incorporate a symbxdic e
cution engine to do so.

On the other hand, it may have little impact even if we do not
enforce the branch validity because it may only cause fegefal
positives and subsequent in-house testing and analysisenjay
more performance gaire{, Section 4 for empirical data).

The algorithm for adding assume predicates is essentiadly t
same as Algorithm 1 except for the extiasume’s before every
conditional (a laExample 5. We omit it here due to space con-
straints. We implemented both algorithms with CIL [39].

3.3 Failure-Preservation

When a program is simplified, it is naturally to require itspo
ble erroneous behavior to be maintained so that subsecpsimtg
or analysis can still detect its defects. In the followings define
such a property as failure-preservation in terms of faipaéhs.

Definition 3.1 (Program Prediction). Given a programP con-
taining a set of conditional€’, a predictionD for P is a function
that defines the branching direction for each conditiondl'ji.e.,

Ve € C,3d € {Neither, True, False, Both}, such thatD(c) = d.



Definition 3.2 (Failure Preservation). Given a predictiorD for

a programP that contains a set afsserts A, REDUCE(P, D)

is failure-preservingfor P, if Va € A, the existence of a feasi-
ble path inP violating a implies the existence of a feasible path in
REDUCE(P, D) violatinga. We say thaD is anfailure-preserving
predictionw.r.t. all assertions iP.

Definition 3.1 requires a program prediction to provide aedir
tion for every conditional in the program. The actual préidic
used in our paper is provided by the two-step process surmethri
in Section 2.2.

Definition 3.2 is so strong that it leaves open the question of
how to construct a failure-preservirig. Since our approach targets
program faults that cause field failures that are exhibitgurofiles,
we focus on a weaker definition of failure-preservation teflects
our insight that we can use profiles to constriict

Definition 3.3  (Failure Preservation w.r.t. Profiles). Given a set
of profiles F' of a programP containing a set odsserts A and a
prediction D for P, REDUCE(P, D) is failure-preserving forP
w.rt. F, if Ya € A, the existence of a failure profile i’ ex-
hibiting a violation ofa implies the existence of a feasible path
in REDUCE(P, D) violating a. We sayD is anfailure-preserving
predictionw.r.t. F.

The number of profiles irF’ can be arbitrary. The smaller the
number is, the fewer faults the original program may haesd
the more branches may be reduced.

The question now is to derive a failure-preservibgfrom pro-
files F'. Trivially, if a D preserves all branches that have appeared
in any failure profile at least once, it must have preservedafiure
paths taken by the failed executions that generate the gspfind
the D is failure-preserving.

In general, we can still easily construct a failure-presegvD
with the help ofpivot branches

Definition 3.4  (Assertion Pivot Branch). A branchb, either a
then- or else-branch, is givot branchfor an assertior in P, if
b must be taken beforeis violated.

Intuitively, pivot branches are the branches we must keeprwh
simplifying a program, while non-pivot branches may be =l
at our choice. In the following, we describe a way to congtauc
correlative prediction w.r.t. a particular assertion iR:

Given a set of pivot branchds for an assertiom in P and a set
of profiles F', we (1) identify a subset dhilure profiles F/ C F
such thatvf € F’, everyb € B is taken inf; (2) assignTrue
to the branch predicates that correspond to sénae B or some
other branch that is taken at least oncefif (3) assigrFalse to
the branch predicates that correspond to any other braheh; (%)
decide all branching directions a la the second step in @eeti2.

Such correlative predictions obviously preserve at leastmath
(if any) that leads to the violation of the particular as®ert: since
all branches taken in executions that violatare preserved. Also,
the more pivot branches exist for the same assertion, thibesni&

The construction of correlative predictions based on mogr
pivot branches follows similarly: Given a set of program giiv
branchesB for P and a set of profileg”, we (1) identify a sub-
set offailure profiles /" C F such thatvf € F’, someb € B is
taken inf; (2) assigrrrue to the branch predicates that correspond
to someb € B or some branch that is taken at least onc&’inand
(3) assignFalse to the branch predicates that correspond to any
other branch. The more assertionsfn the largerF” is, and the
less branches may be reduced accordingly.

We devote the above discussion to correlative predictias b
cause we easily have the following theorem that says a edirel
prediction for a program is failure-preserving:

Theorem 3.6 (Correlation = Failure-Preservation). Given a
set of program pivot brancheB for P with a set of assertiona
and a set of profiled”, the correlative predictiorD constructed
above is failure-preserving w.r.E if Va € A, the existence of a
failure profile in F exhibiting a violation ofz implies the existence
of a pivot branch ofi in B.

The advantage of correlation against Definition 3.3 is thi i
easily verifiable w.r.tF' (recall that CBI-based profiles record the
number of times when each branch is takefnSection 2.1). Itis
also a sufficient condition for a program prediction to beufis-
preserving, although it is not necessary.

What is adjustable during the construction of correlativedic-
tions is the number of profiles. As an extreme case, if there is
no failure profile, there will be no need for pivot brancheada
all branch predicates may be assigedse, which means an in-
house testing or analysis technique should finish quickty fard
no fault in the simplified programs. This is reasonable sihig
unnecessary to test or analyze a program if it never failshen t
field. Although the number of failure profiles does not afftw
failure-preserving property of a correlative predictidrmay affect
whether the program fault can be detected or not by particoia
house techniques. Section 4.2 will show empirical resuits @n
example Example 9 for this kind of situations.

3.4 Looking for Pivot Branches

Now, the problem of failure-preserving program simplifioat
becomes searching for pivot branches. However, Definitign 3
or Theorem 3.6 does not imply the existence or uniqueness of a
pivot branch for an assertion; the concept of dominatoroimtrol
flow graphs [2] is not helpful since it does not take prograii fa
ures into account; static analysis techniques, such asnBdsim
Symbolic Execution [38], may only have limited uses sinoeyth
could only discover pivot branches for program failuresioige,
clearly-defined characteristics.), NULL-pointer dereferences).

In this paper, identifying pivot branches becomes easy wieen
utilize statistical debugging [24,32,33,35,49]. Othensd our own
experience [24] showed that the top-ranked program pressaar-
dered by statistical methods are often good indicators gépthe
branch predicates among them are thus very likely to thedbies
that must be taken to exhibit the failures. Thus, we simplgcie
the branches that are identified by statistical debugginfpiage

may be, and the more branches may be reduced, and the simplefpgicators as pivot branches. Then, by following the cargton

the reduced code may be.

The definition of pivot branches and correlative predicti@an
be extended to a program containing a set of assertions vaven
we do not know to which assertion each pivot branch corredgon

Definition 3.5 (Program Pivot Branch). A branchb is a pivot
branchfor P if it must be taken beforeomeassertion inP is vio-
lated.

5It may also be the case that the code containing faults isfiess
quently executed.

of correlative predictions, a prediction fd@? is easily made to be
failure-preserving w.r.t. a set of profiles, under the agstion that
statistical debugging provides us accurate pivot branches

As an additional note, an assertion may not have a singlé pivo
branch; it may be violated, for example, wheitherone branclor
another is taken. This paper does not define a full treatnoestich
cases since the statistical debugging techniques appliéé paper
only identify individual branches as failure indicators. Arumuga
Nainar et al. [3] have proposed to use compound Boolean pred-
icates €.g, with logic disjunction), instead of individual atomic



predicates, as failure indicators; our correlative predits can be
easily extended to incorporate such information. For exeip
Nainaret al’s technique indicates; A bs is a failure indicator, we
can useboth b; and b, as pivot branches for theameassertion.
As another case, if Nainat al’s technique indicates; V bs is a
failure indicator, we can usgtherb, or b2 as a pivot branch to per-
form program prediction and simplification separately (gatitwo
simplified programs, each of which is still failure-presan); as a
more conservative alternative, we can treath b, andb, as pivot
branches, just as the case bei\ b2, to perform program prediction
and simplification. The correlative prediction based orhsatreat-
ment remains failure-preserving, although fewer branchag be
reduced. As a third alternative, we can viewandb, separately as
pivot branches for twwirtually differentassertions; then it is just
like the situations where a program contains two bugs (Sei3
discusses more about multiple bugs in one program).

4. EMPIRICAL EVALUATION

In this section, we present our empirical studies to evalta¢
effectiveness of our approach for improving the accuraay per-
formance of two testing and analysis techniques, CUTE and$IL

4.1 Experimental Setup

The platform for all our experiments in the paper is a Linuxma
chine with a 2.4GHz Intel Xeon processor and 2GB of RAM.

4.1.1 Subject Programs

We use the HR variants of the Siemens Test Suite [23] from the
Aristotle Analysis System [44], which are also containecthie
Software-artifact Infrastructure Repository (SIR [15]yhe suite
contains132 versions of seven programs. Each program has thou-
sands of test cases and from zero to hundreds of failed rume S
statistics on the source code can be found in Grated’s study
[17].

SIR is intended to be “a repository of software-relatedfacti
meant to support rigorous controlled experimentation¢aditains
several small to medium sized programs with seeded fautt$ezmt
suites. One of them is Bp, of about6000 lines of code, with about
200 test cases. It contains tens of seeded faults in five versibns
Gzip, but many of them do not actually exhibit erroneous behavior
on any of the test cases on our platform. In our study, we osédu
seven seeded faults in one version that have failures.

4.1.2 Branch Prediction

We performed statistical debugging for our subject program
that we can get pivot branches for each program. First, we in-
strumented each program with CBI [30], then executed thielins
mented program with its test suites and collected all execydro-
files. Second, we applied machine learning and clusterigg-al
rithms (a la [24]) to identify failure-related branches aadk them
depending how likely they are failure-related. In this papes use
top-5 branches (if any) as pivot branches for each program.

4.1.3 Testing and Analysis Tools

This section presents a brief introduction to CUTE and BLAST
the testing and analysis tools used in our empirical evalnat

CUTE [43] and its related work DART [16] are a form of dy-
namic analysis that attempts to systematically executizadible
program paths for bug detection. It combines symbolic etiecu
with concrete execution to generate new inputs that maygtihe
next execution along a different program path: The symbmlie-
cution is performed along a concrete execution to colleti pan-
straints; whenever it meets a non-linear constraint (and thffi-
cult to resolve), it uses concrete values from the concretelgion
to simplify the constraint; when an execution finishes, ohthe

path constraints is negated and the solution for all the tcainss
(if any) becomes the inputs for next execution.

BLAST [21, 22] is a software model checker for C programs.
Given a program and an assertion, BLAST statically proves th
either the assertion can not be violated or the program hasen
cution trace that leads to the violation of the assertiopelforms
reachability analysis on abstract program states to chdeithver
a given assertion can be violated or not. If a spurious pathe@
counterexample) to the assertion violation is found, aolaiét pred-
icates can be discovered to refine the abstract model of tyggon.
The process is repeated, by tracking an increasing numhmedf-
cates, until either a genuine failure trace is found, or th&raction
is precise enough to prove the absence of failure traces.

4.1.4 Subject Program Modification

To accommodate CUTE and BLAST, we inserted explicit asser-
tions into every subject program. The assertions are masitied
in a straightforward way according to the seeded faults ¢oirse,
CUTE and BLAST use different syntax for the assertions).

For example, if a seeded fault changes a simple assignnoent fr
“index += incr;” to “index = incr;,” we add an assertion
“assert( index==0 ) ;" before the assignment since the faulty
program will execute in the same way as the original prograty o
whenindex is 0. As another example, if a seeded fault changes
a branching condition in anf statement fromif ( c1 ) {...}
else{..}'to“ if ( c2 ) {..} else{..},” we add an assertion in
each of the branches to check the original condition:

if ( c2 ) { assert( cl ); ... }
else { assert( ! c1 ); ... }

Also, since CUTE requires explicit annotations for inputiva
ables, we identified all input variables manually. We alsoitied
the numbers or sizes of all the inputs if they were too largetati-
cally unbounded; otherwise, CUTE may run for quite a londqzer
of time. For example, one prograREPLACEIN the Siemens Suite
reads from the standard inputtdin), we used a character buffer
to simulatestdin and limited the length of the buffer to ke for
GziIp, its command line may list arbitrary file names, but we lim-
ited the number of file names to heand the name must be selected
from one of the file names which are included in the test cases.
Also, since the particular version of CUTE we used does npt su
port constraints involving floating point numbers, we usaadom
numbers whenever a program requires a floating point input.

For BLAST, we also have to remove certain assume predicates i
simplified programs even when we actually enable brancll&ali
tion. This is because the particular implementation of BIA®es
not handle assume predicates that involve complicatedesgjums
(e.g, pointer arithmetic).

4.2 Evaluation

As mentioned in Section 1, the goal of our approach is to ecdan
existing in-house testing and analysis techniques so tbed faults
that are originally difficult to detect can be detected maasilg.
Therefore, how many faults are detected and how faster stiege
and analysis techniques are the measurements we useduateval
our approach. Due to the page limit, we only show summarized
results with sample interesting cases.

4.2.1 More Faults Detected

Our base line for comparison is the number of faults detelyed
CUTE or BLAST in original programs. Then, CUTE and BLAST
are applied to simplified programs with or without branchi-val
dation based on all or one failure profiles. The columns “# of
Faults Found in” in Table 2 show the number of faults detected
by CUTE under the different situation® represents original pro-



Prgm Name Total # of | # of Reduced Conds i Total # # of Faults Found in # of Iterations Taken by CUTE for
” Conditionals | P | P, P;’;Jrl of Faults P | P | p, | Py p| pP*¥| P Py
PRINT_TOKENS 231 46 46 107 7 1 1 1 0 4418 2426 4414 7
PRINT_TOKENS2 809 41 41 497 10 9 9 9 6 156 151 149 23
REPLACE 2683 881 881 26 32 27 27 31 (18) 26 || 1892290 | 707160 | 152500 | 100309
SCHEDULE 262 104 104 139 9 8 8 9 (3) 8 137675| 126196 215 80507
SCHEDULE2 371 123 123 178 10 6 6 7(1) 6 786918 331868 | 235388 159275
TCAS 1348 926 926 | 1237 41 27 28 41 23 674 205 73 69
TOT_INFO 1011 296 296 606 23 4 4 6 4 88195 25981 [ 283764 72
Gzip 5237 | 3629 | 3635 [ 3839 7 7 (4) 5 7(3) 4 14 915 367 1299
[ Total [ 11952 | 6046 | 6052 | 6629 || 130 [ 89(4) | 88 | 111(25)[ 77 || 2910340 1194902 ] 676870 | 3415641|
| Relative Improvements: | 0] 17 22| -12 ]| 0.0% ]| 589%]| 76.7% | 88.3%

Table 2: Result summary for CUTE-based experiments. P means original programs,PSb“ means simplified programs with branch validation, P; means simplified

programs without branch validation, and Pflv means simplified programs with branch

grams; P represents simplified programs with branch validation;
Ps represents simplified programs without branch validatiemd
P represents simplified programs with branch validation Hase
on at most one failure profile. Numbers in parentheses (if any
the numbers of cases where CUTE reported failures that dre no
caused by the original faults; all other reported failures due to
the original faults. The false failures are mainly segmeéaiefaults
that are introduced by branch reduction without validatiotihers
(mostly for GzIP) are because we killed CUTE whenever one exe-
cution of a program (an iteration of CUTE) reached our twexkho
time limit.

On average, CUTE can detect more fauits.(reach the viola-
tion of more assertions) in simplified programs. Here we gmés
interesting cases, in addition to the sample code in Sedtido
show why CUTE can do so.

Example 6. The following example uses an input variable as an
array index:

int longNumArray[] = { 13, 25, 48,
/* a very long list of numbers */ ey
255, .

if ( longNumArray[ input ]==255 ) {
assert( FALSE );

}

Although CUTE can represent the path constraint that leadset
assertion correctly (¢ (LongNumArray+input)==255)), it is not
able to search for the index @65 in longNumArray to generate
the concreteinput that causes the assertion violation. Here is the
simplified code:

int longNumArray([] = { 13, 25, 48,
/* a very long list of numbers */ ey
255, .k

if ( TRUE ) {

// assume( longNumArray[ input ]==255 );
assert( FALSE );

}

Without performing branch validation.€., ignoring the assume
predicate), CUTE can easily identify the path leading tofttilere
and tell us the corresponding path in the original code aitdréa
related constraints. Although in this case, it still doesteth what
the actual input causes the failure path, presenting the \ih
the failure constraints to human developers can save thene so
time on code searching and help them to focus on the most diffi-
cult constraints and construct actual failure-inducinguits more
efficiently. Similar issues exist when code contains callsbrary
functions where path constraints are not traced by CUTE.

This example also shows one particular reason for the fatt th
for simplified programs with branch validatiod®!?) CUTE and

validation based on oa failure profile.

Prgm Name # of Faults Found in|| # of Iterations Taken for|
p | pP P plbvl

PRINT_TOKENS 1 1 4418 4414
PRINT_TOKENS2 9 9 156 149
REPLACE 27 28 [| 1892290 731954
SCHEDULE 8 8 137675 126200
SCHEDULE2 6 6 786918 301581
TCAS 27 41 674 73
TOT_INFO 4 6 88195 283764
Gzip -4 6 14 865

[ Total 85 | 105 || 2910340] 1449000 |

[ Relative Improvements: 20 ] 50.2% |

Table 3: Result summary for combined use ofPs and Pf” for CUTE-based
experiments. P[**] means P, with conditional uses of P2".

BLAST often detect only a few more faults than they do for the
original programs: it is because the assume predicates maypb
easier than the original branching conditions to track ephee.

Also, the version of CUTE we used ignores any constraint in-
volving floating point numbers, but our approach is able tmeo
plement such an implementation limitation. For example,

Example 7. For example:

if ( (float)input >= 1.0 )
assert( FALSE );

if ( TRUE )
assert( FALSE );

Table 2 also shows that CUTE report2d failures for simpli-
fied programs without branch validatio#y) that were not caused
by the actual faults in the original progran of them were seg-
mentation faults caused by branch reduction without véibda 3
others from GIp exceeded our two-hour time limit during one of
its executions. On the other hand, CUTE did not report fatse p
itives for PV, It is thus a practical strategy to ug&’’ only to
confirm the failure reports fron®s when they appear suspicious.

The actual strategy we used is to apply CUTE Rnfirst, and
apply CUTE onP?’ only when an iteration of’, takes more than
two hours or segmentation faults. Such a combined ug® efith

PP (denoted asP!*!) helps maintain most of the benefits Bf
and reduce false positives. The columns “# of Faults Fouhd in
in Table 3 show the numbers of failures reported by CUTE based

on PS“’”]. In this way, CUTE detectedd more faults than in the
original programs.

It is also interesting to notice that CUTE does not reporsdal
failures in simplified programs with branch validation bésmn
only one failure profile P%) either, but it missed quite a few faults
that can be detected in the original programs. This is anagde
effect of the adjustable parameter in our approach—the eunmwb
available failure profilesdf. Section 3.3). We explain this effect
with an interesting example at the end of this subsectider afe
discuss the effectiveness of our approach on BLAST.

The columns “# of Faults Found in” in Table 4 show the num-



Prgm Total [ # of Reduced Cond$ Total # of Faults Found # of TP+RA Queries Taken by BLAST
Name # of in # of in for

Conds| P*| P,| PP ||Fauts)| P| P*| pP.| PV P | PV | P, Py
PRINT_TOKENS 231 46| 46 107 7 6/1 7 7 6/1 05695 04186 0| 4147 03273
PRINT_TOKENSZ2 809| 41| 41 497 10 10 10 10 10| 14424226 1481178| 14336580 1476504 1430960 1474237 8292060 647250
REPLACE 2683| 881| 881| 1333 32| 2/30] 17715 18/13[18/13 0662 0211 0] 265 0] 265
SCHEDULE 262 64| 104 93 9 4/1 4/1 711 41 136238[ 11896 02601 02428 02410
SCHEDULE2 371 123| 123 178 10 6/1 6/1 6/1 52 39638| 13799 30326| 8047 29100| 7447 65486| 7172
TCAS 1348] 926| 926] 1237 41 41 41 41] 3872 0[111514 013723 013734 09194
TOT_INFO 1011] 296] 296] 606 23| 19/2] 20/1] 20/1] 18/3 039429 029461 028693 022881
GzIp 5237 0] 3635 0 7 7 0 7 0 011164 0[]0 0| 4452 0[]0
[Total [ 11952] 2377[6052] 4051]] 139] 95/35] 105/18] 116/16] 99/22][ 1460010 1675337] 14366904 1534733 1433870¢ 1535403 8357546] 692445

| Relative Improvements: I

| T0/7] 21719] 4713]

| | 16%[84% | 18%|84% | 42.8%|58.7% |

Table 4: Result summary for BLAST-based experiments. The columns “#f TP+RA Queries for” are the number of queries made by BLAST b theorem provers (TP)

and control-flow automaton reachability analysis (RA) resgctively.

ber of faults detected by BLAST.€., the number of assertions for

. - . g g 1 error = 0; y = 0; error = 0; y = 0;
which BLAST can discover a path that leads to its violation) u » if ( cond ) { if ( FALSE ) {
der different program settings. Numbers following “/” (ifi@) are s if ( x==255 ) exit (0);
the number of program versions for which BLAST can not decide error = 1;
its correctness. The data shows that our approach helps BLAS else ...
to discover21 more faults in simplified programs and reduces the | 3 o150 { } else {
number of undecided cases 9. Even with branch validation . while ( i<count ) { while ( i<count ) {
enabled ite, more complicated predicates for BLAST to handle), library_func(&y); library_func(&y) ;
BLAST detectedl0 more faults with17 fewer undecided casés. . if ( y=;255 ) if ( Y=;255 )
In addition, our approach also helped to validate the ctmess of " error = 1; error = 1;
one program which is the source Bkample 2in Section 1.1. u else ... else ...
How could BLAST, a sound model checker, miss faults in orig- , it it
inal programs? That is because BLAST makes unsound assump-,, } }
tions for real programs. For example, if a function in a peogrhas w ¥ }

no explicit definition, BLAST would assume the function isdrof
side-effects except for the assignments through retunregal

Example 8. scanf in the following code reads an integer from
the standard input and changes the valuémfut. The assertion
will be violated if input is not zero. However, BLAST would
unfortunately report that the code on the left side is alwsafs.

input = 0;
scanf ("%d", &input);
if ( input!=0 ) {

input = 0;

scanf ("%d", &input);

if ( TRUE ) {
//assume ( input!=0 );
assert( FALSE );

} }

assert( FALSE );

Our approach may transform the code from the left to the ritylen
BLAST can easily discover a failure trace in the simplifiediep
and theassume can help human developers to actually understand
the failure scenario.

Similar to CUTE, BLAST also missed some faults when itis ap-
plied to simplified programs with branch validation basedoty
one failure profile P%). This is the effect of different numbers of
failure profiles. Although all ofP?, P,, and P¥’ are constructed
to be failure-preserving, they only preserve failure pdtreg have
occurred in the failure profiles used to construct thdm., given
a different set of failure profllest”’, P,, and PY may preserve
different paths that lead to failures. Constraints alongade fail-
ure paths may be much more difficult than others to resolvd, an
thus CUTE or BLAST may not be able to identify the failure path
if PbY preserves only the paths that are difficult to resolve.

Example 9. The following example illustrates such a situation:

SWe did not run BLAST on GIP with branch validation enabled
since thousands of assume predicates are syntacticalbotopli-
cated for the version of BLAST to handle, and we did not imple-
ment an automated predicate simplification for BLAST.

15 assert( error==0 ); assert( error==0 );

The code on the left has two possible failure paths: one @utjir
Line 4, and the other is through Link. Suppose we only have one
failure profile that went through Lin&0, then the simplified code
may look like the right side: the condition at Liris reduced
to FALSE, theif at Line 3 is removed since it does not occur in
the failure profile, and thehile loop is remained since all of the
branches in the loop may have appeared at least once in bheefai
profile. Thus, due to the same reasorEaxample 8 BLAST and
CUTE may fail to report the failure even in the simplified code

4.2.2 Make CUTE and BLAST Faster

Another benefit of our approach is that programs are simglifie
and CUTE and BLAST can run more efficiently. The last four
columns in both Table 2 and 4 show the performance gains.

We measure the performance of CUTE in terms of the number of
iterations it takes to reach the violation of assertionst&geration
is a concrete execution of a program, and we assume eactidtera
takes about the same of time. Overall, our approach redueed t
iteration numbers taken by CUTE by more thz0¥%, for both P,

and P""! (cf. the last rows in Table 2 and 3). In general, the more
branches are predicted to Balse, the more performance gains
we may get, although the actual speedup may depend on the com-
plexity of the original programs.

For BLAST, we use the numbers of queries to theorem provers
and reachability analysis made by BLAST to measure its perfo
mance. Similar to CUTE, the more branches are predicted to be
False, the more reduction in the number of queries. For exam-
ple, we were only able to reduce abdi¥ of the conditionals in
PRINT_TOKENS2 to constructPs, and the corresponding reduction
in the number of queries is less th&¥. For programs that we can
reduce more thag0% of the conditionals, such asEPLACE and
SCHEDULE, BLAST detected more faults in the simplified versions
than the original versions, and we saw more thag reduction in
the number of queries.



4.3 Discussions

Interpretation of Failure Reports. When CUTE or BLAST re-
ports a failure path, we can treat the path as a path in thénafig
program although it is just a path in the simplified prograne t
the reduced conditions. We can do so because we know thesgduc
conditions must have been satisfied somewhere in the fieldglur
users’ executions and we have high confidence that the export
path is also feasible in the original program. The reportaith jgan
become areal failure path in the original program when tdeced
conditions along the path are satisfied. If the reduced tomngi
can be resolved by a constraint solver, the real failure pathbe
constructed automatically; If the conditions are difficidtreason
or resolve, manual efforts may still be required to help tamts
concrete scenarios that correspond to the failure path.

Effects of Branch Validation. As shown before, branch valida-
tion with simplified programs may help suppress false failte-
ports. Also, it may help speed up subsequent testing angisasal

Example 10. Suppose the following code on the left may violate
the assertion only whetmput is within the range 0f99900, 99998]:

if ( input > 99899 &&
input < 99999 ) {

if ( TRUE ) {
//assume( input>99899
// & input < 99999 );
for (i=0; i<input; i++)
sum += foo(i);
assert( sum!=0 );

for (i=0; i<input; i++)
sum += foo(i);
assert( sum!=0 );

} }

Then, CUTE may only need iterations to generate an input that
leads to the assertion violation. However, if there isasgume in
the simplified code on the right side, CUTE may take tens afitho
sands of iterations, depending on its actual path searategtes,
to explore many different (out-of-range) values f@put.

On the other hand, as the numbers in Table 2 and 4 suggest, sim-

plified programs with branch validatiod¢”) may often be slower
than simplified programs without branch validatidn )}, and more
importantly, miss certain bugs that may be detecteB;isince the
validation may involve complicated predicates.

According to our empirical studyct. Table 3), it is practical to

How long it takes to collect so many failure profiles for a pro-
gram depends on how often users use the program, the freguenc
with which a failure occurs in an execution, and the samplaig.

One thing for certain is that, our approach pragmaticallguies
one’s attention more on those failures experienced moresbysy
and thus helps prioritize debugging efforts accordingly.

Existence of Multiple Bugs. Our approach is still applicable when
there are more than one bugs in a program, as long as statiiic
bugging is still able to choose accurate pivot branches $oiand
such techniques do exist [26, 33, 49].

On the other hand, our approach could improve the accuraty an
performance of in-house techniques further if we could ceda
program further. It would be ideal that a set of profiles usesin-
plify a program only contains failure profiles that are gexted by
the same bug so that we can reduce a program specifically ér on
bug. Thus, it will be interesting to investigate how failureage
techniques [7, 8, 14, 20, 34, 36, 41] that separate profilasezhby
different bugs from each other can actually help improveetffiec-
tiveness of our approach.

Accuracy of Statistically Selected Pivot Branches. The more
pivot branches, the simpler a program can be reduced ancethe b
ter for in-house testing and analysis techniques. Howdvempivot
branches we used may not be actual pivot branches; they reene f
statistical debugging: Due to various reasons, statisgdiglaugging
may rank the most failure-related predicate lower than rsthk
the failure-related predicate is not included as a pivohbna the
corresponding failure profile subsets may be different;sThiay
have negative effects on bug detection. Thus, in order taibheé-
preserving, it is usually better to include more predicatepivot
branches when applying our approach. When we know the accu-
racy of the statistically selected pivot branches is low,caa use
fewer pivot branches and repeatedly apply our approach davith
ferent sets of pivot branches, so that we can utilize the gzt
performance provided by further simplified programs to tsd
analyze different aspects of the original programs for ciisfe

Aggressive Predictions. We could make the process for predict-
ing branching directions summarized in Section 2.2 moreesyg
sive. For example, in the first step, we could let the trutlugaif

a branch predicatp to beFalse as long a is not satisfied in
most(>50%) failure profiles; then more branched may be reduced

usePls[b”] to reduce false positives. To further take advantage of the to facilitate subsequently applied testing and analysibrigues.
possible speedup of assume predicates, we may choose tie enab However, if a more aggressive prediction is not failuresgreing,

assume predicates that are “simple enough” only. It will fiter:
esting to investigate what thaptimal assume predicatékat help
to detect the most faults and offer the greatest speedup are.

Effects of User Profiles. Profiles from users are essential for the
effectiveness of our approach. As mentioned in Sectionf&d3la2.1,
fewer failure profiles may lead to fewer detectable faults] thus

it is desirable to have as many failure profiles as possible.

Also, each single profile may be sampled before being sefkt bac
to developers in order to further reduce run-time overhead$ers
and protect their privacy. Such profiles may contain evesilgfor-
mation about each execution. Our approach is still applécédr
such profiles, although it will require larger number of piedito
predict branching directions and select pivot branchesirately.
Previous work on statistical debugging [32, 33] suggedtetitens
to hundreds of sampled failure profiles are often enoughdenti-
fying good failure indicators. Consequently, as long asiin@ber
of profiles is large enough, branches that need to be takeailé@uf
executions will eventually occur in the same failure prafilgith
one of the failure indicators, and the correlative preditsi will
still be able to select right branches to simplify.

it may cause other (unexpected) side-effects besidesngibsigs.
For exampleExample 4in Section 3.2 showed that the particular
branch reduction caused an infinite loop in the code; tesénb-
niques, such as CUTE, will be bound to fail. Whether theretexi
balance points that make the best of both conservative agreésg
sive predictions is also an interesting topic for futurecistigation.

Also, as mentioned in Section 3.3, correlation is sufficiemt
not necessary for a prediction to be failure-preserving. ddeld
certainly relax the conditions in the definition of corrétat by ex-
ploring other hidden information in execution profiles. lilvibe
interesting future work to consider a more accurate butesisily
verifiable alternative for correlation so that programs rbaysim-
plified further. Such considerations may provide insigttsia the
necessary information for deriving accurate predictiond i re-
turn guide profile-collecting infrastructures to seledtéeprogram
predicates for instrumentation.

Still Missing Bugs. Note that the bug finding capability of our
approach will be up to the extend of program simplificatiod tre
capability of existing testing and analysis tools. Our aggh is
not a direct testing or debugging approach in the sensetdslf i



does not locate or fix program faults; it replies on other sl
look for bugs. However, the potential of our approach is gmit

icantly narrow down possible bug locations based on largeusin
of execution profiles from users and help other techniquésdos
on the failures occurred most often and to find more faults.

identify code segments that may contain bugs [1]. Gept. use
the intersection of forward and backward dynamic slicesthice
the sizes of code for further debugging [19].

These techniques often require existing test cases ouinsti-
tation infrastructures that can collect slices from usHithey need

Many seeded faults in our study were not detected by CUTE or existing test cases, they are more appropriate for in-htesteng
BLAST, even in the simplified programs. Some of them are due to and debugging, while our approach aims for failures thamigai

implementation limitations in CUTE and BLAST (such as liedt
support for floating point numbers or function pointershests are
due to path constraints that are inherently difficult to seo{such
as multi-variable non-linear operations and side effeatsed by
external function calls). These situations may all be e¢ireented
by our technique if enough profiles could be collected to Isaip-

plify the program significantly so that unsupported coriatsacan
be reduced.

There are also several program faults that only cause éslur
when their input sizes are significantly large. Even thoughtech-
nique helped to simplify the programs, CUTE and BLAST were
still unable to detect the faults because they exhaustechtingut-
ing resources we could tolerate. We view all such cases asropp
tunities for future profile-guided program simplificatiott.would
be interesting research directions to explore what kinggogram
simplifications would be more effective for such cases, ahdtw
kinds of information profiles could include to further eale tasks
of program simplification and bug localization.

5. RELATED WORK

In this section, we discuss additional related work, intigcar-
tial evaluation, program slicing, and their relationshiphaour ap-
proach. At a high-level, all these studies share the sindka with
this paper: a program may be simplified in certain ways soithat
may consequently be better for certain applications.

Partial Evaluation. This area has an extensive literature. It con-
cerns how to specialize a program by fixing one or more of is in
puts to some particular values. The specialization is odissom-
plished by detecting code fragments depending exclusielype-
cialized variables and by symbolically pre-computing thésg-
ments. The specialized program will run faster becausecdfaed
computation during execution. It has many applicationgshsas
optimization and generation of program generators [12, 27]
Technically, specialized programs generated by partialuey
tion take fewer inputs than original programs. However, @im

fied programs generated by our approach usually take the sam

number of inputs. More importantly, partial evaluation sually
semantically-equivalent (w.r.t. specialized inputs)gseon trans-
formations. This is fundamentally different from our apach:
our program reduction is not required to be semantic-pvasgr
but simply error-preserving.

Program Slicing. This is a technique for simplifying programs
w.r.t. certain semantics of interest for code analyzers piocess
of slicing deletes many parts of a program that have no effact
the selected semantics. For example, given a variable atgagm
point, all program statements that do not affect or are rfeceéd

e

happen in the field. If they collect slices, it may impose &ddal
burden on users since the slices often contain more detaifled
mation about an actual execution and compromise usersagyiv
Also, slicing often preserves the semantic of interest incgy@am,
while our approach only preserves error paths.

Bug Localization. When a failure occurs, it is useful to automat-
ically locate failure indicators based on profiles to pregiossi-
ble bug locations so that the subsequent debugging procasben
more focused and easier. Many studies have used differaig-st
tical methods to identify different kinds of failure indioas, such
as program states, execution counts of statements, bisrfcime-
tions, and event transitions [9,25,42]. The main differsbetween
our approach and these bug localization techniques is thaam
proach helps connect in-house techniques with the largebaum
of execution profiles from users so that in-house developmery
benefit more easily from users in the field, while other bugloc
ization techniques have not yet provided such a connection.
Besides these static techniques that work on source coele th
are also dynamic approaches that can locate program défentgh
actual executions. Delta debugging may be classified incttis-
gory since it locates both failure-related program statet @ause
transitions [11, 47] based on a given failed execution; istie-
quires concrete failure-inducing inputs and is more appatg for
in-house debugging. Similar to CUTE, EXE [10] combines sym-
bolic execution and concrete execution and forks execsi@bcon-
ditionals, aiming to cover as many program paths as posaifue
look for bugs on different paths. With a similar goal to EXE,
PathExpander [37] addresses the path coverage problemamdy
bug detection by executing both taken and non-taken brartciues-
parently; it also utilizes hardware extensions to achieve dver-
head for the parallelizable executions. Except for thematyic
nature, These techniques are different from ours in thatimet@
scale down programs while they aim to increase path coverage

Connecting In-house and the Field. There are also other studies
that aim to bring the benefits of profiles into in-house depaient
from different aspects.

Liblit et al. propose a family of analyses to build time lines of
possible program actions that lead to failures based omrirdtion
collected from users, such as failure points, stack trandseaent
logs [31]. Manevichet al. use postmortem symbolic evaluation to
produce a set of execution traces along which the programbeay
driven to onggivenfailure point [38]. Lalet al.construct a shortest
control flow path that contains the maximum number of faHure
related predicates selected by statistical debugging. [Z®jese
techniques often need to analyze all code in original progrand
resolve complicated constraints, while our approach canpbe-
ment them well since we aim to simplify programs and may help

by the variable may be reduced. It also has many applications those techniques to relatively scale up.

such as testing and debugging, program differencing, angram
comprehension and maintenance [6]. For example, Bates anrd H
witz use control slices to select test cases according taindest
data adequacy criteria [4]. Also, Groegal. slice a program to a
much smaller one that can produce events consistent withea gi
(partial) trace of (failure-indicating) events so thatthar failure
analysis may be carried out on the sliced program [18]. Dyinam
slicing is also introduced for debugging [28]; Agravetial. rely
on the differences between slices of failed and successfid to

6. CONCLUSIONS

In this paper, we have presented a novel technique to utilize
lightweight execution profiles from users to make existimgnouse
testing and analysis techniques more effective. We usenvgton
from statistical debugging to simplify a program, presegvihe
original program’s erroneous behavior w.r.t. user exexufirofiles.
This way, more bugs in the original program may be discovéred



less time. We performed case studies with two testing anlysisa

techniques, CUTE and BLAST, on several subject programs. Ou

empirical results have shown that using the simplified o,
both CUTE and BLAST have been able to fid@d and 21 more
bugs respectively in about half of the original time. Our @geh
significantly reduces the gap between the needs of devaldper
detailed failure scenarios and the needs of users for ligigtut ex-
ecution profiling. We believe profile-guided program sirfipéition
is a promising direction towards realizing automated dejinag
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