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ABSTRACT
Many testing and analysis techniques have been developed for in-
house use. Although they are effective at discovering defects be-
fore a program is deployed, these techniques are often limited due
to the complexity of real-world code and thus miss program faults.
It will be the users of the program who eventually experiencefail-
ures caused by the undetected faults. To take advantage of the large
number of program runs carried by the users, recent work has pro-
posed techniques to collect execution profiles from the users for
developers to perform post-deployment failure analysis. However,
in order to protect users’ privacy and to reduce run-time overhead,
such profiles are usually not detailed enough for the developers to
identify or fix the root causes of the failures.

In this paper, we propose a novel approach to utilize user execu-
tion profiles for more effective in-house testing and analysis. Our
key insight is that execution profiles for program failures can be
used to simplify a program, while preserving its erroneous behav-
ior. By simplifying a program and scaling down its complexity ac-
cording to its profiles, in-house testing and analysis techniques can
be performed more accurately and efficiently, and pragmatically
program defects that occur more often and are (arguably) more
relevant to users will be given preference during failure analysis.
Specifically, we adaptstatistical debuggingon execution profiles
to predict likely failure-related code and use a syntax-directed algo-
rithm to trim failure-irrelevant code from a program, whilepreserv-
ing its erroneous behavior as much as possible. We conductedcase
studies on a testing engine,CUTE, and a software model checker,
BLAST, to evaluate our technique. We used subject programs from
the Aristotle Analysis System and the Software-artifact Infrastruc-
ture Repository (SIR). Our empirical results show that using sim-
plified programs, CUTE and BLAST find more bugs with improved
accuracy and performance: they were able to detect20 and21 (out
of 139) more bugs respectively in about half of the time as they
took on the original test programs.
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1. INTRODUCTION
Many software defects remain undetected or unfixed even after

it goes through extensive in-house testing and analysis dueto code
complexity and the time-to-market pressure. It will be the users
of the program in the field who experience those latent bugs. One
way to allay the problem is to develop more effective testingand
analysis techniques so that fewer defects remain in deployed code.

However, no matter how sophisticated these techniques can be
made, some defects will inevitably be undetected before experi-
enced by users. For the program failures that happen in the field,
feedback from the users can be very useful for isolating and fix-
ing related bugs. Much work has proposed mechanisms to collect
program execution profiles from users so that bug localization and
failure analysis can be performed [32,33,35,49]. However,for pri-
vacy and performance concerns, the profiles are often not detailed
enough for developers to reconstruct complete scenarios that ex-
hibit the failures. Thus, the usefulness of the profiles for root-cause
analysis is usually limited, leaving an apparent gap between the
needs of the developers and the contribution of the users.

This paper aims to reduce such a gap by further leveraging ex-
ecution profiles to aid in-house testing and analysis. Our key in-
sight is that in-house techniques and profile-based techniques can
complement each other. The former are often good at constructing
failure scenarios for detailed analysis, but lacka priori knowledge
about bug locations. Thus, they usually search as many locations in
a program as possible for bugs, which hinders their effectiveness.
The latter are often good at localizing bugs, but not effective at
providing detailed failure scenarios. By combining the twokinds
of techniques, we can firstsimplify a programusing information
about possible bug locations derived from profiles, while preserv-
ing the erroneous behavior of the program, and thenapply in-house
techniques on the simplified programto construct detailed scenar-
ios for failures occurred in the field. The profile-guided program
simplification inspires new uses of profiles; more importantly, it
helps to scale down code complexity and thus in-house techniques
can be applied more effectively.

1.1 Motivating Examples
We use two code snippets to motivate our approach. They are ex-

tracted from the subject programs used in our study (cf. Section 4),
and modified for a simpler presentation. In this paper, we con-
sider two state-of-the-art tools for in-house testing and analysis: (1)



CUTE, a testing engine that combines both concrete and symbolic
execution [16,43], and (2) BLAST, a software model checker based
on predicate abstraction [21, 22]. We add explicit assertions in the
code for CUTE and BLAST to know when a failure is reached.

Example 1. Consider the followingif statement:
if ( inputr * inputc > 990 &&

inputr * inputc <= 1000 )
assert( FALSE );

The assertion may be violated if the product of the two input vari-
ables,inputr andinputc, falls within the range[991, 1000]. How-
ever, CUTE fails to construct concrete inputs that lead to the asser-
tion violation and (optimistically, but incorrectly) reports the asser-
tion is unreachable because the constraint solver in CUTE deduces
that the path constraints involve multiplications and are unsolvable.
Although BLAST’s theorem prover cannot resolve the constraints
either, it states its incapability and (conservatively, and correctly)
reports that the program may have faults.1

Imagine if we can simplify the code to the following:

if ( TRUE ) assert( FALSE );

Now both CUTE and BLAST can easily decide that the simplified
code can violate the assertion and thus has a fault. Such a simplifi-
cation is possible because from the profiles of the original code we
know that the program only fails when theif condition is true.2

Example 2. Now consider a slightly more complicated example:
if ( isalnum(input[i-1]) & /* bit operator */

isalnum(input[i+1]) ) {
...

} else if ( isalnum(input[i-1]) ||
isalnum(input[i+1]) )

assert( FALSE );

The assertion is unreachable since the C library functionisalnum
always returns0 for non-alphanumeric characters and thesame
non-zero value for alphanumeric characters. Thus, when

isalnum(input[i-1]) & isalnum(input[i+1])

is false, bothisalnum(input[i-1]) andisalnum(input[i+1])
have to be0, and then the secondif condition must be false.

Neither CUTE nor BLAST can resolve the path constraints for
this program; while CUTE (again optimistically, but correctly) re-
ports that the program is safe since it cannot construct concrete
inputs to reach the assertion, BLAST (again conservatively, but in-
correctly) reports a failure.

Suppose we can use profiles of the program to simplify it as the
following (without introducing new erroneous behavior into or re-
moving old ones from the original code):

if ( FALSE ) {
...

} else if ( FALSE )
assert( FALSE );

The assertion here is clearly unreachable. Both CUTE and BLAST
can easily decide that the code is safe.
1We note thatfailures (observable failed executions),errors (in-
valid internal states during an execution), andfaults (the program
phenomena causing errors and failures) have different meanings.
In this paper, we use assertions to turn errors into failuresand the
assertions were added according to faults. In addition, a profile
usually does not contain complete internal states, but the result of
its execution (either success or failure), so throughout this paper we
will mainly use the termfailure.
2Although in this case our approach does not directly providethe
concrete inputs that cause the assertion violation, it doesprovide
the actual path that leads to the failure. Section 4.3 discusses more
in detail how to interpret failure reports for simplified programs.
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Figure 1: Work-flow of our approach.

1.2 Our Approach
This paper presents a novel, automatic technique to simplify a

program w.r.t. a set of program execution profiles from usersin the
field. The goal is to make in-house testing and analysis more effec-
tive by scaling down code complexity and focusing on field failures
occurred most often. It integrates profiles into existing in-house
testing and analysis techniques and helps reduce the gap between
the needs of developers and the contribution of users. Conceptu-
ally, our approach is comprised of three components: (1) aprofile-
collecting infrastructurethat instruments a program before its de-
ployment and collects execution profiles from users; (2) aprofile
and program analyzerthat predicts potentially failure-related code
and reduces failure-irrelevant code from the program; and (3) any
in-house testing or analysis techniquethat can be applied to the
simplified program for bug detection.

Figure 1 shows the work-flow of our approach. First, a program
is instrumented and deployed to users; execution profiles will then
be generated in the field and sent back to a central database for
analysis upon users’ agreement. Statistical debugging is applied on
the profiles to localize the program locations that are likely failure-
related; our profile analyzer also predict branching directions that
likely lead to program failures. The details of these steps are de-
scribed in related work [24, 32] and briefly summarized in Sec-
tion 2. With the branching directions learned from the profiles,
our program analyzer removes failure-irrelevant branchesfrom the
original program, but preserves program paths that may leadto the
failures exposed in the profiles. The algorithm for simplifying pro-
grams and its failure-preserving property are described indetail in
Section 3. Then, existing in-house testing and analysis techniques
can be applied on the simplified program for further bug detection.

Two testing and analysis techniques, CUTE and BLAST, were
used to validate the effectiveness of our approach. We performed
the evaluation on subject programs from the Aristotle Analysis Sys-
tem [44] and the Software-artifact Infrastructure Repository (SIR,
[15]). Our empirical studies show that both CUTE and BLAST can
detect more bugs in simplified programs with improved accuracy
and performance: they were able to detect respectively20 and21
more bugs (out of139) for the programs, and took about half of the
time as they took on the original programs.

1.3 Paper Organization
The rest of the paper is structured as follows. Section 2 gives

necessary background on statistical debugging. Section 3 describes
details of our approach and its failure-preserving property. In Sec-
tion 4, we present our empirical evaluation based on CUTE and
BLAST to show the effectiveness of our approach. Section 5 dis-
cusses related work, and Section 6 concludes.

2. BACKGROUND
This section provides necessary background on statisticaldebug-

ging techniques that our approach is based on.



2.1 Infrastructure for Collecting Profiles
We first introduce the infrastructure for instrumenting programs

and collecting execution profiles from users in the field. Ourap-
proach uses the Cooperative Bug Isolation project (CBI [30]). CBI
lightly instruments a program with statically fixedn predicates,
and an execution of the instrumented program is recorded as an n-
dimensional vector, which is one profile, where thei-th value of the
vector counts the number of times that thei-th predicate is observed
to be true during the execution. The vector for each execution also
has a label, indicating failure or success of the execution.A key
observation from CBI and statistical debugging [24, 33, 35,48] is
that although it is practically impossible to recover complete pro-
gram states, including user specific information, fromoneprofile, a
large collection of such profiles frommanyusers can be useful for
understanding the program’s (mis)behavior.

CBI instruments the following predicates (calledbranch predi-
cates) that are related to every branching conditions in a program
and are used extensively in our profile and program analyzer3:

Given a branching conditionC, its then-branch and
else-branch correspond to two predicatesC = true
(abbr. Ct) andC = false (abbr. Cf ), respectively;
each branch is thus instrumented to count how many
times during an executionCt andCf are satisfied.

The instrumentation scheme in CBI is intended to be of little
overhead for individual user, but informative for bug detection with
profiles from many users.

2.2 Statistical Branch Prediction
Profiles from CBI have been used with different statistical meth-

ods to locate likely failure-related locations [24,32,33,35,49]. Such
locations have also been used to construct static control flow paths
to aid debugging [24, 29] and prioritization of failure reports [34].
We summarize the technique from our previous work [24] for pre-
dicting branching directions that may lead to program failures. We
will utilize the predicted branching directions in this paper to sim-
plify programs.

Given a conditionalC in a program, the basic intuition for pre-
dicting the branching direction that leads to a program failure is to
see how often the then-branch is taken (i.e., Ct is satisfied) versus
how often the else-branch is taken (i.e., Cf is satisfied) infailedex-
ecutions: if failures occur more often whenCt is satisfied, then we
may decide the then-branch should be taken to lead to failures, and
vice versa; if we cannot decide which branch is taken more often,
we simply assume both branches are possible.

The actual mechanical process is as follows. First, we assign
truth values over the range of{True, False, Unknown} for all
branch predicates. Given a branch predicatep (eitherCt or Cf ):
(1) If p is neversatisfied in anyfailure profile, let the truth value of
p beFalse; (2) If p is satisfied at least once in most (>50%) of the
failure profiles, let the truth value ofp beTrue; (3) Otherwise, let
it beUnknown.

Second, we decide the branching direction for every conditional
C based on the truth values ofCt andCf : (1) If both Ct andCf

areFalse, C is likely not executed in any failed run, and all paths
leading toC may be reduced. We say the branching direction for
C is Neither; (2) If Ct is True or Unknown andCf is False,
the else-branch ofC is likely not taken in failed runs, and we say
the direction forC is True; (3) If Ct is False andCf is True or
Unknown, the then-branch ofC is likely not taken in failed runs,
and we say the direction forC is False; (4) If both Ct andCf

are notFalse, then both branches may be taken and we say the
direction forC is Both. Table 1 illustrates the description.
3CBI also instruments other kinds of predicates, but we have not
yet utilized those predicates in this paper.

Direction Truth Value ofCt

for C True False Unknown

Truth True Both False Both
Value False True Neither True
of Cf Unknown Both False Both

Table 1: Predicting branching directions based on truth values
of branch predicates.

The two-step process for predicting branching directions may
also incorporate other information learned from the profiles. In
previous work on statistical debugging, many statistical methods,
including machine learning and clustering algorithms, have been
applied to select branch predicates that are likely failure-relevant
or close to actual bug locations, and empirical studies showed that
the top-selected predicates are indeed useful for revealing actual
bugs. Thus, it is reasonable to assignTrue to all branch predicates
that are identified as failure-relevant during the first step[24].

Also, the process can be more conservative (i.e., to preserve more
branches by assigningTrue or Unknown to more branch predicates
in our context) or more aggressive (i.e., to reduce more branches by
assigningFalse to more branch predicates even when the probabil-
ity of the correctness of the assignment is low). An aggressive pro-
cess may help to simplify a program more substantially and further
improve the performance of subsequently applied testing and anal-
ysis techniques, with possibly more false negatives. On theother
hand, simplified programs that are based on a conservative process
may preserve all erroneous behavior in the original programs and
more faults may be detected. Section 3.3 will give detailed account
of the failure-preserving property of the above process, and Sec-
tion 4 will present empirical data to show its effectiveness.

3. APPROACH DETAILS
This section presents our approach for profile-guided program

simplification in detail.

3.1 Branch Reduction
The objective of our program simplification is to reduce as many

branches as possible to be sequential, while preserving paths that
may lead to program failures that have been exposed by some pro-
file. The branch reduction is based on the branching directions
learned from the profiles, as summarized in Section 2.2.

Algorithm 1 describes a simple syntax-directed method to reduce
branches based on the branching directions. Given an abstract syn-
tax tree of a program, the algorithm visits everyif statement and
modifies it according to its direction: (1) if the direction is Nei-
ther, which means theif statement wasneverreached in failed
runs, and thus we can reduce all code following theif; (2) if the
direction isTrue, which means failures likely happen when the
then-branch is taken, and thus we can reduce the else-branch; and
(3) it is similar for theFalse case.

Intuitively, the algorithm only removes failure-irrelevant branches.
As long as the branching directions are failure-preserving(cf. Sec-
tion 3.3), there must be a path in the simplified program that still
leads to failures, and the faults in the original program canstill be
detected by in-house testing and analysis techniques.

3.2 Branch Validation
On the other hand, although the paths leading to failures arepre-

served during branch reduction, the semantics of the simplified pro-
gram can be different from the original. Program inputs thatdo not
cause failures may also fall on the failure paths since thereare now
fewer conditionals on the paths. Thus, subsequent testing and anal-
ysis may report more (false) failures than before.

Example 3. Consider the following code snippet:



Algorithm 1 REDUCE

Input: P : C program withn conditionals
D = 〈d1, . . . , dn〉: directions for the conditionals

Output: P ′: P with certain branches reduced
for all node in P ’s AST do

if node == IF(pi, st, sf) then
if di == Neither then

node← CALL(exit(0));
else if di == True then

node← IF(TRUE, st, sf)
else if di == False then

node← IF(FALSE, st, sf)
end if

end if
end for

void f(struct list * p) {
if ( p != NULL ) {
p->next = ...
assert ( .../* failure condition */ );

}
}

Branch reduction may simplify it to the following:

void f(struct list * p) {
if ( TRUE ) {
p->next = ...
assert ( .../* failure condition */ );

}
}

Then, if the applied in-house technique, such as CUTE, needsto
execute the code, the code may segmentation faults ifp is NULL.

Example 4. Similarly, branch reduction may cause infinite loops
in the simplified program before its failure points. Consider the
following code for illustration:

if ( input[i]==32 )
input[i] = 0;

done = FALSE;
while ( ! done ) {
if ( input[i]==36 )

input[i] = 32;
else

done = TRUE;
}
assert( input[i]!=32 );

if ( input[i]==32 )
input[i] = 0;

done = FALSE;
while ( ! done ) {
if ( TRUE )

input[i] = 32;
else

done = TRUE;
}
assert( input[i]!=32 );

The assertion in the code on the left may be violated only whenthe
then-branch of the secondif condition (input[i]==36) is taken.
Suppose a set of branching directions helps to reduce the code on
the left to the code on the right.4 An infinite loop which is not
possible in the original code appears in the simplified code.Such
code may affect different testing and analysis techniques in differ-
ent ways: (1) techniques relying on concrete executions, such as
CUTE, will fail to terminate; and (2) techniques relying on static
code analysis, such as BLAST, may decide the assertion is unreach-
able because of the infinite loop (and thus lead to a false negative),
or decideinput[i] is always32 if the loop finishes and simply
report an assertion violation.

4Since both of the then-branch and the else-branch of thisif have
to be taken infailed executions, the predicted branching directions
used here are not failure-preserving,i.e., not preserving the erro-
neous behavior of the code (cf. Section 3.3 for formal definitions).

Therefore, it will be beneficial to avoid unexpected resultsif we
can enforce the validity of the reduced branches in simplified pro-
grams. For example, ensuringp!=NULL in Example 3 is always
true when the then-branch is taken would avoid unnecessary seg-
mentation faults for CUTE. To achieve this in general, we cansim-
ply restore certain branch conditions back into the programto avoid
invalid branching. However, it is obvious that such retrogression
would compromise the aforementioned benefits of our approach.

Instead, our approach addsassume predicatesinto simplified
programs. Assume predicates are commonly used to representcon-
ditions that must hold before the code following it can be executed
correctly. Their functionality is thus similar to that of function pre-
conditions, and we use assume predicates (or justassume’s) in this
paper as guards for branches.

Example 5. As an example, consider the following code:

assume( p != NULL );
if ( TRUE ) {
p->next = ...

}

The assume(p!=NULL) ensures thatp!=NULL must hold before
p->next can be accessed.

Many techniques can utilizeassume’s. Symbolic execution [13,
16, 43, 45, 46] is one: Given a path leading to anassume, the code
along the path can be symbolically executed; then path constraints,
including the assume predicate, may be collected to help decide the
conditions under which the code following theassume can be exe-
cuted. Model checking [5,21,40,45] is another: Program states that
do not satisfy theassume can be pruned so that state exploration
may be performed more efficiently.

Our approach does not stipulate how to interpretassume’s. As
long as the subsequent testing or analysis technique can recognize
assume predicates, it is free for the technique to interpretassume’s
in ways that best fit the technique. For example, CUTE inherently
uses a combination of concrete and symbolic execution to system-
atically explore as many paths in a program as possible, and it is
natural for CUTE to terminate a concrete execution if the execu-
tion violates anassume and to generate new inputs that satisfy the
assume to continue. For BLAST, the assume predicates provide
easy hints to construct and refine abstract program states toexplore.
For other testing and analysis techniques, additional efforts may be
required to enforce the assume predicates in order to enforce the
validity of the reduced branches and take full advantage of the ben-
efits of our approach. For example, a testing technique basedon
pure concrete execution may need to incorporate a symbolic exe-
cution engine to do so.

On the other hand, it may have little impact even if we do not
enforce the branch validity because it may only cause few false
positives and subsequent in-house testing and analysis mayenjoy
more performance gain (cf. Section 4 for empirical data).

The algorithm for adding assume predicates is essentially the
same as Algorithm 1 except for the extraassume’s before every
conditional (a laExample 5). We omit it here due to space con-
straints. We implemented both algorithms with CIL [39].

3.3 Failure-Preservation
When a program is simplified, it is naturally to require its possi-

ble erroneous behavior to be maintained so that subsequent testing
or analysis can still detect its defects. In the following, we define
such a property as failure-preservation in terms of failurepaths.

Definition 3.1 (Program Prediction). Given a programP con-
taining a set of conditionalsC, a predictionD for P is a function
that defines the branching direction for each conditional inC, i.e.,

∀c ∈ C,∃d ∈ {Neither, True, False, Both}, such thatD(c) = d.



Definition 3.2 (Failure Preservation). Given a predictionD for
a programP that contains a set ofasserts A, REDUCE(P , D)
is failure-preservingfor P , if ∀a ∈ A, the existence of a feasi-
ble path inP violatinga implies the existence of a feasible path in
REDUCE(P , D) violatinga. We say thatD is anfailure-preserving
predictionw.r.t. all assertions inP .

Definition 3.1 requires a program prediction to provide a direc-
tion for every conditional in the program. The actual prediction
used in our paper is provided by the two-step process summarized
in Section 2.2.

Definition 3.2 is so strong that it leaves open the question of
how to construct a failure-preservingD. Since our approach targets
program faults that cause field failures that are exhibited in profiles,
we focus on a weaker definition of failure-preservation thatreflects
our insight that we can use profiles to constructD.

Definition 3.3 (Failure Preservation w.r.t. Profiles). Given a set
of profilesF of a programP containing a set ofasserts A and a
predictionD for P , REDUCE(P , D) is failure-preserving forP
w.r.t. F , if ∀a ∈ A, the existence of a failure profile inF ex-
hibiting a violation ofa implies the existence of a feasible path
in REDUCE(P , D) violating a. We sayD is anfailure-preserving
predictionw.r.t. F .

The number of profiles inF can be arbitrary. The smaller the
number is, the fewer faults the original program may have,5 and
the more branches may be reduced.

The question now is to derive a failure-preservingD from pro-
files F . Trivially, if a D preserves all branches that have appeared
in any failure profile at least once, it must have preserved the failure
paths taken by the failed executions that generate the profiles, and
theD is failure-preserving.

In general, we can still easily construct a failure-preserving D
with the help ofpivot branches.

Definition 3.4 (Assertion Pivot Branch). A branch b, either a
then- or else-branch, is apivot branchfor an assertiona in P , if
b must be taken beforea is violated.

Intuitively, pivot branches are the branches we must keep when
simplifying a program, while non-pivot branches may be reduced
at our choice. In the following, we describe a way to construct a
correlative prediction w.r.t. a particular assertion inP :

Given a set of pivot branchesB for an assertiona in P and a set
of profilesF , we (1) identify a subset offailure profilesF ′ ⊆ F
such that∀f ∈ F ′, everyb ∈ B is taken inf ; (2) assignTrue
to the branch predicates that correspond to someb ∈ B or some
other branch that is taken at least once inF ′; (3) assignFalse to
the branch predicates that correspond to any other branch; then (4)
decide all branching directions a la the second step in Section 2.2.

Such correlative predictions obviously preserve at least one path
(if any) that leads to the violation of the particular assertion a since
all branches taken in executions that violatea are preserved. Also,
the more pivot branches exist for the same assertion, the smaller F ′

may be, and the more branches may be reduced, and the simpler
the reduced code may be.

The definition of pivot branches and correlative predictions can
be extended to a program containing a set of assertions, evenwhen
we do not know to which assertion each pivot branch corresponds.

Definition 3.5 (Program Pivot Branch). A branchb is a pivot
branchfor P if it must be taken beforesomeassertion inP is vio-
lated.
5It may also be the case that the code containing faults is lessfre-
quently executed.

The construction of correlative predictions based on program
pivot branches follows similarly: Given a set of program pivot
branchesB for P and a set of profilesF , we (1) identify a sub-
set offailure profilesF ′ ⊆ F such that∀f ∈ F ′, someb ∈ B is
taken inf ; (2) assignTrue to the branch predicates that correspond
to someb ∈ B or some branch that is taken at least once inF ′; and
(3) assignFalse to the branch predicates that correspond to any
other branch. The more assertions inP , the largerF ′ is, and the
less branches may be reduced accordingly.

We devote the above discussion to correlative predictions be-
cause we easily have the following theorem that says a correlative
prediction for a program is failure-preserving:

Theorem 3.6 (Correlation=⇒ Failure-Preservation). Given a
set of program pivot branchesB for P with a set of assertionsA
and a set of profilesF , the correlative predictionD constructed
above is failure-preserving w.r.t.F if ∀a ∈ A, the existence of a
failure profile inF exhibiting a violation ofa implies the existence
of a pivot branch ofa in B.

The advantage of correlation against Definition 3.3 is that it is
easily verifiable w.r.t.F (recall that CBI-based profiles record the
number of times when each branch is taken,cf. Section 2.1). It is
also a sufficient condition for a program prediction to be failure-
preserving, although it is not necessary.

What is adjustable during the construction of correlative predic-
tions is the number of profiles. As an extreme case, if there is
no failure profile, there will be no need for pivot branches, and
all branch predicates may be assignedFalse, which means an in-
house testing or analysis technique should finish quickly and find
no fault in the simplified programs. This is reasonable sinceit is
unnecessary to test or analyze a program if it never fails in the
field. Although the number of failure profiles does not affectthe
failure-preserving property of a correlative prediction,it may affect
whether the program fault can be detected or not by particular in-
house techniques. Section 4.2 will show empirical results and an
example (Example 9) for this kind of situations.

3.4 Looking for Pivot Branches
Now, the problem of failure-preserving program simplification

becomes searching for pivot branches. However, Definition 3.4
or Theorem 3.6 does not imply the existence or uniqueness of a
pivot branch for an assertion; the concept of dominators in control
flow graphs [2] is not helpful since it does not take program fail-
ures into account; static analysis techniques, such as Postmortem
Symbolic Execution [38], may only have limited uses since they
could only discover pivot branches for program failures of simple,
clearly-defined characteristics (e.g., NULL-pointer dereferences).

In this paper, identifying pivot branches becomes easy whenwe
utilize statistical debugging [24,32,33,35,49]. Others’and our own
experience [24] showed that the top-ranked program predicates or-
dered by statistical methods are often good indicators of bugs; the
branch predicates among them are thus very likely to the branches
that must be taken to exhibit the failures. Thus, we simply select
the branches that are identified by statistical debugging asfailure
indicators as pivot branches. Then, by following the construction
of correlative predictions, a prediction forP is easily made to be
failure-preserving w.r.t. a set of profiles, under the assumption that
statistical debugging provides us accurate pivot branches.

As an additional note, an assertion may not have a single pivot
branch; it may be violated, for example, wheneitherone branchor
another is taken. This paper does not define a full treatment for such
cases since the statistical debugging techniques applied in the paper
only identify individual branches as failure indicators. Arumuga
Nainar et al. [3] have proposed to use compound Boolean pred-
icates (e.g., with logic disjunction), instead of individual atomic



predicates, as failure indicators; our correlative predictions can be
easily extended to incorporate such information. For example, if
Nainaret al.’s technique indicatesb1 ∧ b2 is a failure indicator, we
can useboth b1 and b2 as pivot branches for thesameassertion.
As another case, if Nainaret al.’s technique indicatesb1 ∨ b2 is a
failure indicator, we can useeitherb1 or b2 as a pivot branch to per-
form program prediction and simplification separately (andget two
simplified programs, each of which is still failure-preserving); as a
more conservative alternative, we can treatbothb1 andb2 as pivot
branches, just as the case forb1∧b2, to perform program prediction
and simplification. The correlative prediction based on such a treat-
ment remains failure-preserving, although fewer branchesmay be
reduced. As a third alternative, we can viewb1 andb2 separately as
pivot branches for twovirtually differentassertions; then it is just
like the situations where a program contains two bugs (Section 4.3
discusses more about multiple bugs in one program).

4. EMPIRICAL EVALUATION
In this section, we present our empirical studies to evaluate the

effectiveness of our approach for improving the accuracy and per-
formance of two testing and analysis techniques, CUTE and BLAST.

4.1 Experimental Setup
The platform for all our experiments in the paper is a Linux ma-

chine with a 2.4GHz Intel Xeon processor and 2GB of RAM.

4.1.1 Subject Programs
We use the HR variants of the Siemens Test Suite [23] from the

Aristotle Analysis System [44], which are also contained inthe
Software-artifact Infrastructure Repository (SIR [15]).The suite
contains132 versions of seven programs. Each program has thou-
sands of test cases and from zero to hundreds of failed runs. Some
statistics on the source code can be found in Graveset al.’s study
[17].

SIR is intended to be “a repository of software-related artifact
meant to support rigorous controlled experimentation.” Itcontains
several small to medium sized programs with seeded faults and test
suites. One of them is GZIP, of about6000 lines of code, with about
200 test cases. It contains tens of seeded faults in five versionsof
GZIP, but many of them do not actually exhibit erroneous behavior
on any of the test cases on our platform. In our study, we only used
seven seeded faults in one version that have failures.

4.1.2 Branch Prediction
We performed statistical debugging for our subject programs so

that we can get pivot branches for each program. First, we in-
strumented each program with CBI [30], then executed the instru-
mented program with its test suites and collected all execution pro-
files. Second, we applied machine learning and clustering algo-
rithms (a la [24]) to identify failure-related branches andrank them
depending how likely they are failure-related. In this paper, we use
top-5 branches (if any) as pivot branches for each program.

4.1.3 Testing and Analysis Tools
This section presents a brief introduction to CUTE and BLAST,

the testing and analysis tools used in our empirical evaluation.
CUTE [43] and its related work DART [16] are a form of dy-

namic analysis that attempts to systematically execute allfeasible
program paths for bug detection. It combines symbolic execution
with concrete execution to generate new inputs that may direct the
next execution along a different program path: The symbolicexe-
cution is performed along a concrete execution to collect path con-
straints; whenever it meets a non-linear constraint (and thus diffi-
cult to resolve), it uses concrete values from the concrete execution
to simplify the constraint; when an execution finishes, one of the

path constraints is negated and the solution for all the constraints
(if any) becomes the inputs for next execution.

BLAST [21, 22] is a software model checker for C programs.
Given a program and an assertion, BLAST statically proves that
either the assertion can not be violated or the program has anexe-
cution trace that leads to the violation of the assertion. Itperforms
reachability analysis on abstract program states to check whether
a given assertion can be violated or not. If a spurious path (called
counterexample) to the assertion violation is found, additional pred-
icates can be discovered to refine the abstract model of the program.
The process is repeated, by tracking an increasing number ofpredi-
cates, until either a genuine failure trace is found, or the abstraction
is precise enough to prove the absence of failure traces.

4.1.4 Subject Program Modification
To accommodate CUTE and BLAST, we inserted explicit asser-

tions into every subject program. The assertions are mostlyadded
in a straightforward way according to the seeded faults (of course,
CUTE and BLAST use different syntax for the assertions).

For example, if a seeded fault changes a simple assignment from
“index += incr;” to “ index = incr;,” we add an assertion
“assert( index==0 );” before the assignment since the faulty
program will execute in the same way as the original program only
whenindex is 0. As another example, if a seeded fault changes
a branching condition in anif statement from “if ( c1 ) {...}
else {...}” to “ if ( c2 ) {...} else {...},” we add an assertion in
each of the branches to check the original condition:

if ( c2 ) { assert( c1 ); ... }
else { assert( ! c1 ); ... }

Also, since CUTE requires explicit annotations for input vari-
ables, we identified all input variables manually. We also limited
the numbers or sizes of all the inputs if they were too large orstati-
cally unbounded; otherwise, CUTE may run for quite a long period
of time. For example, one programREPLACEin the Siemens Suite
reads from the standard input (stdin), we used a character buffer
to simulatestdin and limited the length of the buffer to be4; for
GZIP, its command line may list arbitrary file names, but we lim-
ited the number of file names to be1 and the name must be selected
from one of the file names which are included in the test cases.
Also, since the particular version of CUTE we used does not sup-
port constraints involving floating point numbers, we used random
numbers whenever a program requires a floating point input.

For BLAST, we also have to remove certain assume predicates in
simplified programs even when we actually enable branch valida-
tion. This is because the particular implementation of BLAST does
not handle assume predicates that involve complicated expressions
(e.g., pointer arithmetic).

4.2 Evaluation
As mentioned in Section 1, the goal of our approach is to enhance

existing in-house testing and analysis techniques so that more faults
that are originally difficult to detect can be detected more easily.
Therefore, how many faults are detected and how faster the testing
and analysis techniques are the measurements we used to evaluate
our approach. Due to the page limit, we only show summarized
results with sample interesting cases.

4.2.1 More Faults Detected
Our base line for comparison is the number of faults detectedby

CUTE or BLAST in original programs. Then, CUTE and BLAST
are applied to simplified programs with or without branch vali-
dation based on all or one failure profiles. The columns “# of
Faults Found in” in Table 2 show the number of faults detected
by CUTE under the different situations.P represents original pro-



Prgm Name Total # of # of Reduced Conds in Total # # of Faults Found in # of Iterations Taken by CUTE for
Conditionals P

bv

s
Ps P

bv

s1 of Faults P P
bv

s
Ps P

bv

s1 P P
bv

s
Ps P

bv

s1

PRINT_TOKENS 231 46 46 107 7 1 1 1 0 4418 2426 4414 7
PRINT_TOKENS2 809 41 41 497 10 9 9 9 6 156 151 149 23
REPLACE 2683 881 881 26 32 27 27 31 (18) 26 1892290 707160 152500 100309
SCHEDULE 262 104 104 139 9 8 8 9 (3) 8 137675 126196 215 80507
SCHEDULE2 371 123 123 178 10 6 6 7 (1) 6 786918 331868 235388 159275
TCAS 1348 926 926 1237 41 27 28 41 23 674 205 73 69
TOT_INFO 1011 296 296 606 23 4 4 6 4 88195 25981 283764 72
GZIP 5237 3629 3635 3839 7 7 (4) 5 7 (3) 4 14 915 367 1299

Total 11952 6046 6052 6629 139 89 (4) 88 111 (25) 77 2910340 1194902 676870 341561
Relative Improvements: 0 -1 22 -12 0.0% 58.9% 76.7% 88.3%

Table 2: Result summary for CUTE-based experiments.P means original programs,P bv

s
means simplified programs with branch validation, Ps means simplified

programs without branch validation, and P
bv

s1 means simplified programs with branch validation based on one failure profile.

grams;P bv
s represents simplified programs with branch validation;

Ps represents simplified programs without branch validation;and
P bv

s1 represents simplified programs with branch validation based
on at most one failure profile. Numbers in parentheses (if any) are
the numbers of cases where CUTE reported failures that are not
caused by the original faults; all other reported failures are due to
the original faults. The false failures are mainly segmentation faults
that are introduced by branch reduction without validation; others
(mostly for GZIP) are because we killed CUTE whenever one exe-
cution of a program (an iteration of CUTE) reached our two-hour
time limit.

On average, CUTE can detect more faults (i.e., reach the viola-
tion of more assertions) in simplified programs. Here we present
interesting cases, in addition to the sample code in Section1, to
show why CUTE can do so.

Example 6. The following example uses an input variable as an
array index:

int longNumArray[] = { 13, 25, 48, ...,
/* a very long list of numbers */...,
255, ... };

if ( longNumArray[ input ]==255 ) {
......
assert( FALSE );

}

Although CUTE can represent the path constraint that leads to the
assertion correctly ((*(longNumArray+input)==255)), it is not
able to search for the index of255 in longNumArray to generate
the concreteinput that causes the assertion violation. Here is the
simplified code:

int longNumArray[] = { 13, 25, 48, ...,
/* a very long list of numbers */...,
255, ... };

if ( TRUE ) {
// assume( longNumArray[ input ]==255 );

......
assert( FALSE );

}

Without performing branch validation (i.e., ignoring the assume
predicate), CUTE can easily identify the path leading to thefailure
and tell us the corresponding path in the original code and failure-
related constraints. Although in this case, it still does not tell what
the actual input causes the failure path, presenting the path with
the failure constraints to human developers can save them some
time on code searching and help them to focus on the most diffi-
cult constraints and construct actual failure-inducing inputs more
efficiently. Similar issues exist when code contains calls to library
functions where path constraints are not traced by CUTE.

This example also shows one particular reason for the fact that
for simplified programs with branch validation (P bv

s ) CUTE and

Prgm Name # of Faults Found in # of Iterations Taken for
P P

[bv]
s

P P
[bv]
s

PRINT_TOKENS 1 1 4418 4414
PRINT_TOKENS2 9 9 156 149
REPLACE 27 28 1892290 731954
SCHEDULE 8 8 137675 126200
SCHEDULE2 6 6 786918 301581
TCAS 27 41 674 73
TOT_INFO 4 6 88195 283764
GZIP 7−4 6 14 865

Total 85 105 2910340 1449000
Relative Improvements: 20 50.2%

Table 3: Result summary for combined use ofPs and P
bv

s
for CUTE-based

experiments.P [bv]
s

meansPs with conditional uses ofP bv

s
.

BLAST often detect only a few more faults than they do for the
original programs: it is because the assume predicates may be no
easier than the original branching conditions to track or resolve.

Also, the version of CUTE we used ignores any constraint in-
volving floating point numbers, but our approach is able to com-
plement such an implementation limitation. For example,

Example 7. For example:

if ( (float)input >= 1.0 )
assert( FALSE );

if ( TRUE )
assert( FALSE );

Table 2 also shows that CUTE reported25 failures for simpli-
fied programs without branch validation (Ps) that were not caused
by the actual faults in the original programs:22 of them were seg-
mentation faults caused by branch reduction without validation; 3
others from GZIP exceeded our two-hour time limit during one of
its executions. On the other hand, CUTE did not report false pos-
itives for P bv

s . It is thus a practical strategy to useP bv
s only to

confirm the failure reports fromPs when they appear suspicious.
The actual strategy we used is to apply CUTE onPs first, and

apply CUTE onP bv
s only when an iteration ofPs takes more than

two hours or segmentation faults. Such a combined use ofPs with
P bv

s (denoted asP [bv]
s ) helps maintain most of the benefits ofPs

and reduce false positives. The columns “# of Faults Found in”
in Table 3 show the numbers of failures reported by CUTE based
on P

[bv]
s . In this way, CUTE detected20 more faults than in the

original programs.
It is also interesting to notice that CUTE does not report false

failures in simplified programs with branch validation based on
only one failure profile (P bv

s1 ) either, but it missed quite a few faults
that can be detected in the original programs. This is an expected
effect of the adjustable parameter in our approach—the number of
available failure profiles (cf. Section 3.3). We explain this effect
with an interesting example at the end of this subsection, after we
discuss the effectiveness of our approach on BLAST.

The columns “# of Faults Found in” in Table 4 show the num-



Prgm Total # of Reduced Conds Total # of Faults Found # of TP+RA Queries Taken by BLAST
Name # of in # of in for

Conds P
bv

s
Ps P

bv

s1 Faults P P
bv

s
Ps P

bv

s1 P P
bv

s
Ps P

bv

s1

PRINT_TOKENS 231 46 46 107 7 6/1 7 7 6/1 0 5695 0 4186 0 4147 0 3273
PRINT_TOKENS2 809 41 41 497 10 10 10 10 10 14424226 1481178 14336580 1476504 14309606 1474237 8292060 647250
REPLACE 2683 881 881 1333 32 2/30 17/15 18/13 18/13 0 662 0 211 0 265 0 265
SCHEDULE 262 64 104 93 9 4/1 4/1 7/1 4/1 136238 11896 0 2601 0 2428 0 2410
SCHEDULE2 371 123 123 178 10 6/1 6/1 6/1 5/2 39638 13799 30326 8047 29100 7447 65486 7172
TCAS 1348 926 926 1237 41 41 41 41 38/2 0 111514 0 13723 0 13734 0 9194
TOT_INFO 1011 296 296 606 23 19/2 20/1 20/1 18/3 0 39429 0 29461 0 28693 0 22881
GZIP 5237 0 3635 0 7 7 0 7 0 0 11164 0 0 0 4452 0 0

Total 11952 2377 6052 4051 139 95/35 105/18 116/16 99/22 14600102 1675337 14366906 1534733 14338706 1535403 8357546 692445
Relative Improvements: 10/17 21/19 4/13 1.6% 8.4% 1.8% 8.4% 42.8% 58.7%

Table 4: Result summary for BLAST-based experiments. The columns “#of TP+RA Queries for” are the number of queries made by BLAST to theorem provers (TP)

and control-flow automaton reachability analysis (RA) respectively.

ber of faults detected by BLAST (i.e., the number of assertions for
which BLAST can discover a path that leads to its violation) un-
der different program settings. Numbers following “/” (if any) are
the number of program versions for which BLAST can not decide
its correctness. The data shows that our approach helps BLAST
to discover21 more faults in simplified programs and reduces the
number of undecided cases by19. Even with branch validation
enabled (i.e., more complicated predicates for BLAST to handle),
BLAST detected10 more faults with17 fewer undecided cases.6

In addition, our approach also helped to validate the correctness of
one program which is the source ofExample 2 in Section 1.1.

How could BLAST, a sound model checker, miss faults in orig-
inal programs? That is because BLAST makes unsound assump-
tions for real programs. For example, if a function in a program has
no explicit definition, BLAST would assume the function is free of
side-effects except for the assignments through return values.

Example 8. scanf in the following code reads an integer from
the standard input and changes the value ofinput. The assertion
will be violated if input is not zero. However, BLAST would
unfortunately report that the code on the left side is alwayssafe.

input = 0;
scanf("%d", &input);
if ( input!=0 ) {

......

......
assert( FALSE );

}

input = 0;
scanf("%d", &input);
if ( TRUE ) {

//assume( input!=0 );

......
assert( FALSE );

}

Our approach may transform the code from the left to the right, then
BLAST can easily discover a failure trace in the simplified code,
and theassume can help human developers to actually understand
the failure scenario.

Similar to CUTE, BLAST also missed some faults when it is ap-
plied to simplified programs with branch validation based ononly
one failure profile (P bv

s1 ). This is the effect of different numbers of
failure profiles. Although all ofP bv

s , Ps, andP bv
s1 are constructed

to be failure-preserving, they only preserve failure pathsthat have
occurred in the failure profiles used to construct them.I.e., given
a different set of failure profiles,P bv

s , Ps, andP bv
s1 may preserve

different paths that lead to failures. Constraints along certain fail-
ure paths may be much more difficult than others to resolve, and
thus CUTE or BLAST may not be able to identify the failure path
if P bv

s1 preserves only the paths that are difficult to resolve.

Example 9. The following example illustrates such a situation:

6We did not run BLAST on GZIP with branch validation enabled
since thousands of assume predicates are syntactically toocompli-
cated for the version of BLAST to handle, and we did not imple-
ment an automated predicate simplification for BLAST.

1 error = 0; y = 0;
2 if ( cond ) {
3 if ( x==255 )
4 error = 1;
5 else ...
6 } else {
7 while ( i<count ) {
8 library_func(&y);
9 if ( y==255 )

10 error = 1;
11 else ...
12 i++;
13 }
14 }
15 assert( error==0 );

error = 0; y = 0;
if ( FALSE ) {

exit(0);

} else {
while ( i<count ) {

library_func(&y);
if ( y==255 )

error = 1;
else ...
i++;

}
}
assert( error==0 );

The code on the left has two possible failure paths: one is through
Line4, and the other is through Line10. Suppose we only have one
failure profile that went through Line10, then the simplified code
may look like the right side: the condition at Line2 is reduced
to FALSE, theif at Line 3 is removed since it does not occur in
the failure profile, and thewhile loop is remained since all of the
branches in the loop may have appeared at least once in the failure
profile. Thus, due to the same reason asExample 8, BLAST and
CUTE may fail to report the failure even in the simplified code.

4.2.2 Make CUTE and BLAST Faster
Another benefit of our approach is that programs are simplified

and CUTE and BLAST can run more efficiently. The last four
columns in both Table 2 and 4 show the performance gains.

We measure the performance of CUTE in terms of the number of
iterations it takes to reach the violation of assertions. Each iteration
is a concrete execution of a program, and we assume each iteration
takes about the same of time. Overall, our approach reduced the
iteration numbers taken by CUTE by more than50%, for bothPs

andP
[bv]
s (cf. the last rows in Table 2 and 3). In general, the more

branches are predicted to beFalse, the more performance gains
we may get, although the actual speedup may depend on the com-
plexity of the original programs.

For BLAST, we use the numbers of queries to theorem provers
and reachability analysis made by BLAST to measure its perfor-
mance. Similar to CUTE, the more branches are predicted to be
False, the more reduction in the number of queries. For exam-
ple, we were only able to reduce about5% of the conditionals in
PRINT_TOKENS2 to constructPs, and the corresponding reduction
in the number of queries is less than1%. For programs that we can
reduce more than30% of the conditionals, such asREPLACEand
SCHEDULE, BLAST detected more faults in the simplified versions
than the original versions, and we saw more than50% reduction in
the number of queries.



4.3 Discussions

Interpretation of Failure Reports. When CUTE or BLAST re-
ports a failure path, we can treat the path as a path in the original
program although it is just a path in the simplified program due to
the reduced conditions. We can do so because we know the reduced
conditions must have been satisfied somewhere in the field during
users’ executions and we have high confidence that the reported
path is also feasible in the original program. The reported path can
become a real failure path in the original program when the reduced
conditions along the path are satisfied. If the reduced conditions
can be resolved by a constraint solver, the real failure pathcan be
constructed automatically; If the conditions are difficultto reason
or resolve, manual efforts may still be required to help construct
concrete scenarios that correspond to the failure path.

Effects of Branch Validation. As shown before, branch valida-
tion with simplified programs may help suppress false failure re-
ports. Also, it may help speed up subsequent testing and analysis.

Example 10. Suppose the following code on the left may violate
the assertion only wheninput is within the range of[99900, 99998]:

if ( input > 99899 &&
input < 99999 ) {

......

......
for (i=0; i<input; i++)
sum += foo(i);

assert( sum!=0 );
}

if ( TRUE ) {
//assume( input>99899

// && input < 99999 );

......
for (i=0; i<input; i++)
sum += foo(i);

assert( sum!=0 );
}

Then, CUTE may only need3 iterations to generate an input that
leads to the assertion violation. However, if there is noassume in
the simplified code on the right side, CUTE may take tens of thou-
sands of iterations, depending on its actual path search strategies,
to explore many different (out-of-range) values forinput.

On the other hand, as the numbers in Table 2 and 4 suggest, sim-
plified programs with branch validation (P bv

s ) may often be slower
than simplified programs without branch validation (Ps), and more
importantly, miss certain bugs that may be detected inPs since the
validation may involve complicated predicates.

According to our empirical study (cf. Table 3), it is practical to
useP

[bv]
s to reduce false positives. To further take advantage of the

possible speedup of assume predicates, we may choose to enable
assume predicates that are “simple enough” only. It will be inter-
esting to investigate what theoptimal assume predicatesthat help
to detect the most faults and offer the greatest speedup are.

Effects of User Profiles. Profiles from users are essential for the
effectiveness of our approach. As mentioned in Section 3.3 and 4.2.1,
fewer failure profiles may lead to fewer detectable faults, and thus
it is desirable to have as many failure profiles as possible.

Also, each single profile may be sampled before being sent back
to developers in order to further reduce run-time overhead for users
and protect their privacy. Such profiles may contain even less infor-
mation about each execution. Our approach is still applicable for
such profiles, although it will require larger number of profiles to
predict branching directions and select pivot branches accurately.
Previous work on statistical debugging [32,33] suggested that tens
to hundreds of sampled failure profiles are often enough for identi-
fying good failure indicators. Consequently, as long as thenumber
of profiles is large enough, branches that need to be taken in failed
executions will eventually occur in the same failure profiles with
one of the failure indicators, and the correlative predictions will
still be able to select right branches to simplify.

How long it takes to collect so many failure profiles for a pro-
gram depends on how often users use the program, the frequency
with which a failure occurs in an execution, and the samplingrate.
One thing for certain is that, our approach pragmatically focuses
one’s attention more on those failures experienced more by users,
and thus helps prioritize debugging efforts accordingly.

Existence of Multiple Bugs. Our approach is still applicable when
there are more than one bugs in a program, as long as statistical de-
bugging is still able to choose accurate pivot branches for us, and
such techniques do exist [26,33,49].

On the other hand, our approach could improve the accuracy and
performance of in-house techniques further if we could reduce a
program further. It would be ideal that a set of profiles used to sim-
plify a program only contains failure profiles that are generated by
the same bug so that we can reduce a program specifically for one
bug. Thus, it will be interesting to investigate how failuretriage
techniques [7, 8, 14, 20, 34, 36, 41] that separate profiles caused by
different bugs from each other can actually help improve theeffec-
tiveness of our approach.

Accuracy of Statistically Selected Pivot Branches. The more
pivot branches, the simpler a program can be reduced and the bet-
ter for in-house testing and analysis techniques. However,the pivot
branches we used may not be actual pivot branches; they were from
statistical debugging: Due to various reasons, statistical debugging
may rank the most failure-related predicate lower than others; If
the failure-related predicate is not included as a pivot branch, the
corresponding failure profile subsets may be different; This may
have negative effects on bug detection. Thus, in order to be failure-
preserving, it is usually better to include more predicatesas pivot
branches when applying our approach. When we know the accu-
racy of the statistically selected pivot branches is low, wecan use
fewer pivot branches and repeatedly apply our approach withdif-
ferent sets of pivot branches, so that we can utilize the improved
performance provided by further simplified programs to testand
analyze different aspects of the original programs for defects.

Aggressive Predictions. We could make the process for predict-
ing branching directions summarized in Section 2.2 more aggres-
sive. For example, in the first step, we could let the truth value of
a branch predicatep to beFalse as long asp is not satisfied in
most(>50%) failure profiles; then more branched may be reduced
to facilitate subsequently applied testing and analysis techniques.
However, if a more aggressive prediction is not failure-preserving,
it may cause other (unexpected) side-effects besides missing bugs.
For example,Example 4 in Section 3.2 showed that the particular
branch reduction caused an infinite loop in the code; testingtech-
niques, such as CUTE, will be bound to fail. Whether there exist
balance points that make the best of both conservative and aggres-
sive predictions is also an interesting topic for future investigation.

Also, as mentioned in Section 3.3, correlation is sufficientbut
not necessary for a prediction to be failure-preserving. Wecould
certainly relax the conditions in the definition of correlation by ex-
ploring other hidden information in execution profiles. It will be
interesting future work to consider a more accurate but still easily
verifiable alternative for correlation so that programs maybe sim-
plified further. Such considerations may provide insights about the
necessary information for deriving accurate predictions and in re-
turn guide profile-collecting infrastructures to select better program
predicates for instrumentation.

Still Missing Bugs. Note that the bug finding capability of our
approach will be up to the extend of program simplification and the
capability of existing testing and analysis tools. Our approach is
not a direct testing or debugging approach in the sense that itself



does not locate or fix program faults; it replies on other tools to
look for bugs. However, the potential of our approach is to signif-
icantly narrow down possible bug locations based on large amount
of execution profiles from users and help other techniques tofocus
on the failures occurred most often and to find more faults.

Many seeded faults in our study were not detected by CUTE or
BLAST, even in the simplified programs. Some of them are due to
implementation limitations in CUTE and BLAST (such as limited
support for floating point numbers or function pointers); others are
due to path constraints that are inherently difficult to solve (such
as multi-variable non-linear operations and side effects caused by
external function calls). These situations may all be circumvented
by our technique if enough profiles could be collected to helpsim-
plify the program significantly so that unsupported constraints can
be reduced.

There are also several program faults that only cause failures
when their input sizes are significantly large. Even though our tech-
nique helped to simplify the programs, CUTE and BLAST were
still unable to detect the faults because they exhausted thecomput-
ing resources we could tolerate. We view all such cases as oppor-
tunities for future profile-guided program simplification.It would
be interesting research directions to explore what kinds ofprogram
simplifications would be more effective for such cases, and what
kinds of information profiles could include to further ease the tasks
of program simplification and bug localization.

5. RELATED WORK
In this section, we discuss additional related work, including par-

tial evaluation, program slicing, and their relationship with our ap-
proach. At a high-level, all these studies share the similaridea with
this paper: a program may be simplified in certain ways so thatit
may consequently be better for certain applications.

Partial Evaluation. This area has an extensive literature. It con-
cerns how to specialize a program by fixing one or more of its in-
puts to some particular values. The specialization is oftenaccom-
plished by detecting code fragments depending exclusivelyon spe-
cialized variables and by symbolically pre-computing these frag-
ments. The specialized program will run faster because of reduced
computation during execution. It has many applications, such as
optimization and generation of program generators [12,27].

Technically, specialized programs generated by partial evalua-
tion take fewer inputs than original programs. However, simpli-
fied programs generated by our approach usually take the same
number of inputs. More importantly, partial evaluation is usually
semantically-equivalent (w.r.t. specialized inputs) program trans-
formations. This is fundamentally different from our approach:
our program reduction is not required to be semantic-preserving,
but simply error-preserving.

Program Slicing. This is a technique for simplifying programs
w.r.t. certain semantics of interest for code analyzers. The process
of slicing deletes many parts of a program that have no effecton
the selected semantics. For example, given a variable at a program
point, all program statements that do not affect or are not affected
by the variable may be reduced. It also has many applications,
such as testing and debugging, program differencing, and program
comprehension and maintenance [6]. For example, Bates and Hor-
witz use control slices to select test cases according to certain test
data adequacy criteria [4]. Also, Groceet al. slice a program to a
much smaller one that can produce events consistent with a given
(partial) trace of (failure-indicating) events so that further failure
analysis may be carried out on the sliced program [18]. Dynamic
slicing is also introduced for debugging [28]; Agrawalet al. rely
on the differences between slices of failed and successful runs to

identify code segments that may contain bugs [1]. Guptaet al.use
the intersection of forward and backward dynamic slices to reduce
the sizes of code for further debugging [19].

These techniques often require existing test cases or instrumen-
tation infrastructures that can collect slices from users.If they need
existing test cases, they are more appropriate for in-housetesting
and debugging, while our approach aims for failures that mainly
happen in the field. If they collect slices, it may impose additional
burden on users since the slices often contain more detailedinfor-
mation about an actual execution and compromise users’ privacy.
Also, slicing often preserves the semantic of interest in a program,
while our approach only preserves error paths.

Bug Localization. When a failure occurs, it is useful to automat-
ically locate failure indicators based on profiles to predict possi-
ble bug locations so that the subsequent debugging process may be
more focused and easier. Many studies have used different statis-
tical methods to identify different kinds of failure indicators, such
as program states, execution counts of statements, branches, func-
tions, and event transitions [9,25,42]. The main difference between
our approach and these bug localization techniques is that our ap-
proach helps connect in-house techniques with the large number
of execution profiles from users so that in-house development may
benefit more easily from users in the field, while other bug local-
ization techniques have not yet provided such a connection.

Besides these static techniques that work on source code, there
are also dynamic approaches that can locate program defectsthrough
actual executions. Delta debugging may be classified in thiscate-
gory since it locates both failure-related program states and cause
transitions [11, 47] based on a given failed execution; it thus re-
quires concrete failure-inducing inputs and is more appropriate for
in-house debugging. Similar to CUTE, EXE [10] combines sym-
bolic execution and concrete execution and forks executions at con-
ditionals, aiming to cover as many program paths as possibleand
look for bugs on different paths. With a similar goal to EXE,
PathExpander [37] addresses the path coverage problem in dynamic
bug detection by executing both taken and non-taken branches trans-
parently; it also utilizes hardware extensions to achieve low over-
head for the parallelizable executions. Except for their dynamic
nature, These techniques are different from ours in that we aim to
scale down programs while they aim to increase path coverage.

Connecting In-house and the Field. There are also other studies
that aim to bring the benefits of profiles into in-house development
from different aspects.

Liblit et al. propose a family of analyses to build time lines of
possible program actions that lead to failures based on information
collected from users, such as failure points, stack traces and event
logs [31]. Manevichet al. use postmortem symbolic evaluation to
produce a set of execution traces along which the program maybe
driven to onegivenfailure point [38]. Lalet al.construct a shortest
control flow path that contains the maximum number of failure-
related predicates selected by statistical debugging [29]. These
techniques often need to analyze all code in original programs and
resolve complicated constraints, while our approach can comple-
ment them well since we aim to simplify programs and may help
those techniques to relatively scale up.

6. CONCLUSIONS
In this paper, we have presented a novel technique to utilize

lightweight execution profiles from users to make existing in-house
testing and analysis techniques more effective. We use information
from statistical debugging to simplify a program, preserving the
original program’s erroneous behavior w.r.t. user execution profiles.
This way, more bugs in the original program may be discoveredin



less time. We performed case studies with two testing and analysis
techniques, CUTE and BLAST, on several subject programs. Our
empirical results have shown that using the simplified programs,
both CUTE and BLAST have been able to find20 and21 more
bugs respectively in about half of the original time. Our approach
significantly reduces the gap between the needs of developers for
detailed failure scenarios and the needs of users for lightweight ex-
ecution profiling. We believe profile-guided program simplification
is a promising direction towards realizing automated debugging.
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