
Semantic Patches for Java Program
Transformation
Hong Jin Kang
School of Information Systems, Singapore Management University, Singapore

Ferdian Thung
School of Information Systems, Singapore Management University, Singapore

Julia Lawall
Sorbonne Université/Inria/LIP6, France

Gilles Muller
Sorbonne Université/Inria/LIP6, France

Lingxiao Jiang
School of Information Systems, Singapore Management University, Singapore

David Lo
School of Information Systems, Singapore Management University, Singapore

Abstract
Developing software often requires code changes that are widespread and applied to multiple locations.
There are tools for Java that allow developers to specify patterns for program matching and source-
to-source transformation. However, to our knowledge, none allows for transforming code based on
its control-flow context. We prototype Coccinelle4J, an extension to Coccinelle, which is a program
transformation tool designed for widespread changes in C code, in order to work on Java source
code. We adapt Coccinelle to be able to apply scripts written in the Semantic Patch Language
(SmPL), a language provided by Coccinelle, to Java source files. As a case study, we demonstrate
the utility of Coccinelle4J with the task of API migration. We show 6 semantic patches to migrate
from deprecated Android API methods on several open source Android projects. We describe how
SmPL can be used to express several API migrations and justify several of our design decisions.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases Program transformation, Java

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.13

Category Experience Report

Supplement Material Coccinelle4J can be found at https://github.com/kanghj/coccinelle/tree/java

Funding This research was supported by the Singapore National Research Foundation (award
number: NRF2016-NRF-ANR003) and the ANR ITrans project.

1 Introduction

Over ten years ago, Coccinelle was introduced to the systems and Linux kernel developer
communities as a tool for automating large-scale changes in C software [23]. Coccinelle
particularly targeted so-called collateral evolutions, in which a change to a library interface
triggers the need for changes in all of the clients of that interface. A goal in the development
of Coccinelle was that it should be able to be used directly by Linux kernel developers,
based on their existing experience with the source code. Accordingly, Coccinelle provides
a language, the Semantic Patch Language (SmPL), for expressing transformations using a
generalization of the familiar patch syntax. Like a traditional patch, a Coccinelle semantic
patch consists of fragments of C source code, in which lines to remove are annotated with -

© Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Liangxiao Jiang, and David Lo;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 13; pp. 13:1–13:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Semantic Patches for Java Program Transformation

and lines to add are annotated with +. Connections between code fragments that should
be executed within the same control-flow path are expressed using “...” and arbitrary
subterms are expressed using metavariables, raising the level of abstraction so as to allow a
single semantic patch to update complex library usages across a code base. This user-friendly
transformation specification notation, which does not require users to know about typical
program manipulation internals such as abstract-syntax trees and control-flow graphs, has
led to Coccinelle’s wide adoption by Linux kernel developers, with over 6000 commits to
the Linux kernel mentioning use of Coccinelle [14]. Coccinelle is also regularly used by
developers of other C software, such as the Windows emulator Wine1 and the Internet of
Things operating system Zephyr.2

Software developers who learn about Coccinelle regularly ask whether such a tool exists
for languages other than C.3 To begin to explore the applicability of the Coccinelle approach
to specifying transformations to software written in other languages, we have extended the
implementation of Coccinelle to support matching and transformation of Java code. Java is
currently the most popular programming language according to the TIOBE index.4 The
problem of library changes and library migration has also been documented for Java software
[29]. While tools have been developed to automate transformations of Java code [20, 25, 28],
none strikes the same balance of closeness to the source language and ease of reasoning
about control flow, as provided by Coccinelle. Still, Java offers features that are not found
in C, such as exceptions and subtyping. Thus, we believe that Java is an interesting target
for understanding the generalizability of the Coccinelle approach, and that an extension of
Coccinelle to Java can have a significant practical impact.

Our research goal is to explore what can be done for Java programs with the Coccinelle
approach, i.e. transformation rules expressed in a patch-like notation and other features
from Coccinelle. This experience paper documents our design decisions for Coccinelle4J, our
extension of Coccinelle to handle Java code. We present the challenges we have encountered
in the design of Coccinelle4J and the initial implementation. The design has been guided
by a study of the changes found in the development history of five well-known open-source
Java projects. Through a case study where we transform deprecated API call sites to use
replacement API methods, we evaluate Coccinelle4J in terms of its expressiveness and its
suitability for use on Java projects.

This paper makes the following contributions:
We show that the approach of program transformation of Coccinelle, previously only
used for C programs, generalizes to Java programs.
We document the design decisions made to extend Coccinelle to work with Java.
In the context of migrating APIs, we use Coccinelle4J and show that control-flow
information is useful for Java program transformation.

The rest of this paper is organized as follows. Section 2 briefly introduces Coccinelle.
Section 3 presents our extensions to support Java. Section 4 looks at a case study involving
migrating APIs in open source Java projects. Section 5 discusses related work. Finally, we
present our conclusions and discuss possible future directions of this work in Section 6.

1 https://wiki.winehq.org/Static_Analysis#Coccinelle
2 https://docs.zephyrproject.org/latest/application/coccinelle.html
3 https://twitter.com/josh_triplett/status/994753065478582272
4 https://www.tiobe.com/tiobe-index/, visited January 2019

https://wiki.winehq.org/Static_Analysis#Coccinelle
https://docs.zephyrproject.org/latest/application/coccinelle.html
https://www.tiobe.com/tiobe-index/

H. J. Kang et al. 13:3

Control-
flow Graph CTL-VW

Source Code SmPL

Model checking
algorithm

Matched
Code AST

Modified
Code AST

Modified
Source Code

Parsed Parsed

Transformed

Pretty-printed

Figure 1 The process of transforming programs for a single rule

2 Background

Coccinelle is a program transformation tool with the objective of specifying operating system
collateral evolutions [19], code modifications required due to changes in interfaces of the
operating system kernel or driver support libraries. Similar to widespread changes, such an
evolution may involve code that is present in many locations within a software project. It was
found that, to automate such changes, it is often necessary to take into account control-flow
information, as collateral evolutions may involve error-handling code after invoking functions,
or adding arguments based on context [3]. Much of the design of Coccinelle has been
based on pragmatism, trading off correctness for ease of use and expressiveness. Coccinelle
works on the control-flow graph and Abstract Syntax Tree (AST) for program matching
and transformation, and therefore matches on program elements regardless of variations in
formatting.

Coccinelle’s engine is designed based on model checking. Building on an earlier work by
Lacey and De Moor [12] on using Computational Tree Logic (CTL) to reason about compiler
optimizations, Brunel et al. [3] propose CTL-VW as a foundation for program matching
on control-flow graphs in Coccinelle. CTL-VW extends CTL, by adding predicates over
metavariables that can be existentially qualified over program elements, as well as by adding
witnesses, which record variable bindings and track locations to be transformed.

As input, Coccinelle accepts source code and a semantic patch describing the program
transformation. The source code is parsed, producing an intraprocedural control-flow graph
for each function, while the semantic patch language is converted into a CTL-VW formula.
For each function definition or other top-level declaration in the source code, the CTL-VW
formula is matched against the control-flow graph using a model-checking algorithm. This
process is summarized in Figure 1.

Semantic patches are specified in SmPL, which has a declarative syntax resembling
patches produced by the familiar diff command. A semantic patch describes code that is
removed and added, with any relevant surrounding code given as context. ’-’ and ’+’ are
used to mark lines containing code to be removed and added, respectively. This syntax
follows a WYSIWYG approach and is familiar to developers using revision control software.
Listing 1 shows a simplified version of a semantic patch checked into the mainline Linux

ECOOP 2019

13:4 Semantic Patches for Java Program Transformation

kernel repository. This semantic patch removes declarations of variables that are assigned a
constant value and immediately returned. It makes use of some notation unique to Coccinelle
that we will explain further below.

Listing 1 Example of a rule that removes variables that only exist to return a constant
1 @@
2 type T;
3 constant C;
4 identifier ret;
5 @@
6 - T ret = C;
7 ... when != ret
8 when strict
9 return

10 - ret
11 + C
12 ;

We briefly describe semantic patches and SmPL, using Listing 1 as an example. A rule
in a semantic patch has two parts: the declaration of metavariables (lines 2-4), followed by
the specification of the intended transformation over the declared metavariables (lines 6-12).
Although our example contains only a single rule, a semantic patch can consist of multiple
rules. Rules after the first one can refer to metavariables matched by prior rules.

Coccinelle offers abstractions to reason about paths. The “...” operator in SmPL
represents an arbitrary sequence. In the context of Listing 1, the operator represents any
sequence of statements over any control flow path. The when keyword restricts matches of
“...”. In Listing 1, the use of when != ret means that there should be no occurrences of
ret in the matched control-flow path, and the use of when strict means that this property
applies to all control-flow paths starting from the declaration, including those that abort
with an error value. Without when strict, all paths must be matched except those that end
with an error abort. A further option is when exists, which is satisfied whenever a single
path meets the specified criteria on any other when constraints. By default, a control-flow
path matched with “...” may not contain code that matches the patterns preceding or
following the “...”, here the declaration of ret and the return of its value, thus matching
the shortest path between these points. This constraint can be lifted using when any. One
caveat is that Coccinelle does not account for the run-time values when computing paths,
and thus over-approximates the set of paths that can be taken.

As we do not modify the semantics of SmPL, we do not discuss SmPL in further detail.
A more complete treatment of SmPL is given by Padioleau et al. [24].

3 Extending Coccinelle to Java

In this section, we document our experience and design decisions made during the development
of Coccinelle4J. Our first observation is that much of the syntax of Java is also found in
C. For example, both languages contain if statements, assignments, function/method calls,
etc. And even some differences in the syntax, such as the ability to declare a variable in
the header of a for loop, amount to only minor variations. Thus, we can use much of the
implementation of Coccinelle unchanged and provide a transformation language that has a
similar look and feel.

H. J. Kang et al. 13:5

Table 1 Number of commits for each type of change

Type of change Number of commits
Addition of new methods or modification of method signatures 43
Modification of multiple methods’ implementation 33
Changes that are non-functional 23
Modification of imports 14
Changes related to sub-typing or inheritance 9
Modification of annotations 8

Still, Java is a different language than C, and notably offers an object-oriented program-
ming paradigm, rather than a simple imperative one, as found in C. To identify the language
features that are most relevant to widespread changes in Java code, we performed an analysis
based on commits in the past year of five common Java libraries: Gson,5 Apache Commons
IO6 and Commons Lang,7 Mockito,8 and Selenium.9 Out of the 1179 commits to these
projects, we found 130 containing a widespread change, i.e., a change that is both semantically
and syntactically similar made in multiple locations. Depending on the widespread change
present in the commit, we manually categorized these commits as shown in Table 1. We use
the frequency of each category of change to motivate and prioritize the necessary features of
Coccinelle that we port to Coccinelle4J. In particular, we notice that the features of class
hierarchy and annotations are changed least frequently, so these features are not offered in
the current design of Coccinelle4J.

Guided by this analysis, we have developed Coccinelle4J in three phases. As a first
milestone for our work, we target the constructs found in Middleweight Java [1]. Middleweight
Java is a minimal imperative fragment for Java, designed for the study of the Java type
system. In contrast to other formal models of Java, Middleweight Java programs are valid
executable Java programs, thus representing a useful first step for our work. Still, most real
Java programs involve constructs that go beyond the very limited syntax of Middleweight
Java. With ad-hoc testing on some real projects, we identified the need for handling control-
flow with exceptions in the context of try-catch, and the need to introduce Java-specific
isomorphisms, Coccinelle meta-rules that make it possible to match semantically equivalent
code with concise patterns. These features were added in the second phase. Finally, our
third phase introduces the ability to reason to a limited degree about subtyping. Across the
three phases, we added or modified a total of 3084 lines of code.

Much like the original design of Coccinelle, we focus on pragmatism and provide most
features on a best-effort basis, without proving correctness. Like Coccinelle, Coccinelle4J
does not crash or throw any errors when it encounters code that it cannot parse or transform.
Instead, it recovers from any errors and ignores the parts of the code that it cannot handle.

3.1 Phase 1: Middleweight Java
Middleweight Java is a minimal but valid subset of Java that still retains features of Java such
as field assignments, null pointers, and constructor methods. The syntax of Middleweight

5 https://github.com/google/gson
6 https://gitbox.apache.org/repos/asf?p=commons-io.git
7 https://gitbox.apache.org/repos/asf?p=commons-lang.git
8 https://github.com/mockito/mockito
9 https://github.com/SeleniumHQ/selenium

ECOOP 2019

https://github.com/google/gson
https://gitbox.apache.org/repos/asf?p=commons-io.git
https://gitbox.apache.org/repos/asf?p=commons-lang.git
https://github.com/mockito/mockito
https://github.com/SeleniumHQ/selenium

13:6 Semantic Patches for Java Program Transformation

Java programs is as follows:

Program
p ::= cd1...cdn; s̄

Class definition
cd ::= class C extends C {

fd1...fdk

cnd

md1...mdn

}

Field definition
fd ::= Cf ;

Constructor definition
cnd ::= C(C1x1, ..., Cjxj) {

super(e1, ..., ek); s1...sn

}

Method definition
md ::= τ m(C1x1, ..., Cnxn) {s1...sk}

Return type
τ ::= C | void

Expression
e ::=x Variable

| null Null
| e.f Field access
| (C)e Cast
| pe Promotable expression

Promotable Expression
pe :: = e.m(e1, ..., ek) Method invocation

| new C(e1, ...ek) Object creation

Statement
s :: = ; No-op

| pe; Promoted expression
| if (e==e) s1...sk else s(k+1)...sn Conditional
| e.f=e; Field assignment
| C x; Local variable declaration
| x=e; Variable assignment
| return e; Return
| {s1...sn} Block

Middleweight Java is imperative and does not add any new control flow structure as

H. J. Kang et al. 13:7

compared to C. We thus map each AST element in Middleweight Java to an AST element
in C. When compared to C, the three main additions of Middleweight Java are method
invocation, object creation and constructor declarations. We map method invocations and
object creations to function calls, and constructor declarations to function declarations. Class
definitions are ignored as Coccinelle4J only allows matching and transformations of functions.

While we try to support the syntax of Java, we follow the goals of Coccinelle to decide the
scope of our analysis on the source code [14]. One of Coccinelle’s goals is to keep performance
acceptable when used by developers on their development laptops. Thus, we always favor
decisions keeping Coccinelle4J fast.

When the source code references an identifier, we do not attempt to resolve its type
information that is not immediately obvious from the file getting parsed, such as the interfaces
implemented by its class or its class hierarchy. We note that our choice contrasts with the
design of some popular Java code-manipulation tools. For example, both Spoon [25] and
Soot [27] provide an option for the user to pass the tool a classpath, allowing developers to
specify where third-party library method and types can be found. Our choice is motivated
by the statistics of widespread change in Table 1, where changes related to modifications in
sub-typing or inheritance only comprise 6% of commits making widespread changes. When
these transformations are required, a more appropriate tool such as Spoon can be used
instead, as Coccinelle4J is complementary to it. We further discuss this decision and other
implications of only allowing a limited form sub-typing and inheritance in Phase 3 (Section
3.3), the performance of Coccinelle4J in Section 4, and a brief comparison to Spoon in Section
4.8.

3.2 Phase 2: Control-flow with Exceptions and Java-specific
Isomorphisms

Our second phase of the development of Coccinelle4J adds exceptions in the context of
try-catch, to allow Coccinelle4J to parse and process a wider range of Java programs. To
further improve the usability of Coccinelle4J, we add Java-specific isomorphisms, allowing
some kinds of Java pattern code to match related syntactic variants.

3.2.1 Control-flow with exceptions

Middleweight Java does not allow code to throw exceptions, other than ClassCastException
and NullPointerException, and does not provide syntax for try and catch. While this
may be convenient for analysis, exceptions are used heavily in real-world Java programs.
For example, about 25% of the Java classes in the source code of the five Java libraries
previously discussed in Section 3 contain exception handling code. To allow Coccinelle4J
to be more useful in practice, we add support for handling exceptions in the context of
try-catch. Coccinelle4J does not deal with code throwing exceptions out of a method as it
only performs intraprocedural analysis.

Given the code snippet in Listing 2, adapted from the code found in the NextCloud
Android project,10 we construct the control flow graph for the try statement as shown in
Figure 2. As Coccinelle4J ignores the signatures of invoked methods from project dependencies
and even within the same project, it does not know if any of the methods or constructors will

10 https://github.com/nextcloud/android

ECOOP 2019

https://github.com/nextcloud/android

13:8 Semantic Patches for Java Program Transformation

try

OwnCloudAccount
ocAccount = ...

client = ...catch

Log_OC.e

} (catch)

end try

userId = ...

Figure 2 Control flow graph of try-catch

throw an exception. It thus over-approximates the set of paths that can be taken, adding
edges between all the nodes in the try block and the start of the catch block.

Listing 2 Code snippet from the NextCloud Android project, modified for conciseness
1 public RemoteTrashbinRepository (Context context) {
2 AccountManager accountManager = AccountManager .get(context);
3 Account account = AccountUtils . getCurrentOwnCloudAccount (
4 context);
5 try {
6 OwnCloudAccount ocAccount = new OwnCloudAccount (account ,
7 context);
8 client = OwnCloudClientManagerFactory . getDefaultSingleton ()
9 . getClientFor (ocAccount , context);

10 } catch (Exception e) {
11 Log_OC .e(TAG , e. getMessage ());
12 }
13 userId = accountManager . getUserData (account ,
14 com. owncloud . android .lib. common . accounts . AccountUtils .
15 Constants . KEY_USER_ID);
16 }

There are some ramifications of performing the control flow analysis in this way. For
example, consider the following code snippet (Listing 3) and semantic patch (Listing 4), where
thisWontThrow will never throw an ExceptionA. The control-flow graph created by Coccinelle4J
has a path where reachedHere is reached. As the match succeeds, the Coccinelle adds the

H. J. Kang et al. 13:9

new invocation of log.info. However, in reality, the code in the catch (ExceptionA e) block
is unreachable.

Listing 3 Hypothetical code where thisWontThrow() will not throw an exception
1 ObjectA A = new ObjectA ();
2 try {
3 A. thisWontThrow ();
4 reachedEnd = true;
5 } catch (ExceptionA e) {
6 A. reachedHere ();
7 }

Listing 4 Semantic patch adding a log message after A.reachedHere
1 @@
2 @@
3 A. thisWontThrow ();
4 ... when exists
5 A. reachedHere ();
6 + log.info (" reached end of catch block ");

In practice, we do not expect this to be common in real projects or be surprising to a
user of Coccinelle4J. If ExceptionA is a checked exception, the Java compiler reports an error
if the exception is never thrown in the try statement. For unchecked exceptions, as method
signatures do not contain information about them, having the method signatures of the
invocations in the try block will not help us prevent over-approximating the set of possible
paths.

3.2.2 Isomorphisms
The fact that SmPL expresses patterns in terms of source code makes it easy to learn, but
risks tying the specification to the coding style habits of a given developer. To address this
issue, Coccinelle’s engine handles isomorphisms during matching. Isomorphisms describe
semantically equivalent code fragments that are used to expand SmPL rules, allowing
syntactically different source code with the same semantics to be matched. For example, it
allows i++ (postfix increment) to be successfully matched against queries for i=i+1.

In Coccinelle4J, we disable Coccinelle isomorphism rules that are not relevant for Java
(for example, pointer-related isomorphisms), and add Java-specific rules such as considering
A.equals(B) to be semantically identical to B.equals(A).

One particular difficulty we face in Java is that fully qualified names are considered by
Coccinelle4J to be different from non-fully qualified ones even when referring to the same
enumeration or method. This results in long patches specifying the same name multiple
times using different qualifiers. To resolve this issue, we add a preprocessor to generate
isomorphisms based on how names are qualified in a project. For example, when the rules
in Listing 5 are enabled, users can specify "sqrt" in SmPL to match Math.sqrt or java.lang.
Math.sqrt in the Java source code. This allows for more concise semantic patches. From our
analysis of the 5 Java libraries previously discussed at the start of Section 3, less than 10% of
method names and enumeration names were not unique when considering all of the projects
together. Therefore, in many contexts, users do not need to distinguish between invocations
of these different types of methods as there is often little risk in matching undesired function
invocations of the same name.

ECOOP 2019

13:10 Semantic Patches for Java Program Transformation

Listing 5 Generated isomorphism rules, named java_lang_Math_sqrt and Math_sqrt, conflating
qualified names and non-qualified names

1 Expression
2 @java_lang_Math_sqrt@
3 @@
4 sqrt => java.lang.Math.sqrt
5

6 Expression
7 @Math_sqrt@
8 @@
9 sqrt => Math.sqrt

Isomorphisms can be disabled on an individual basis within each rule by specifying
disable <isomorphism name> beside the rule name or by passing a command line option to
Coccinelle4J. The isomorphisms generated for matching fully qualified names are named
"<package name>_<class name>_<identifier>" with the "." in the package name replaced by
"_". As such, the rules in Listing 5 can be disabled by specifying disable java_lang_Math_sqrt
and disable Math_sqrt. New isomorphisms can also be added by users.

3.3 Phase 3: Matching programs with sub-typing
Java projects often make use of sub-typing. Developers writing semantic patches may expect
that a variable can be matched based on both its declared interface and the type specified
in its constructor. Therefore, we permit a limited form of matching on variable types.
Coccinelle4J annotates a variable using both its declared interface and its constructor. As a
simple example, the metavariable x, declared with ArrayList<Integer> in the patch in Listing
6 can bind to the variable numbers in the statements in Listing 7. Coccinelle originally would
only match if x was declared with List<Integer> in the semantic patch.

Listing 6 Semantic patch matching identifiers of type ArrayList<Integer>
1 @@
2 ArrayList <Integer > x;
3 identifier f;
4 @@
5 * f(x)

Listing 7 Statements with a List<Integer> variable
1 List <Integer > numbers = new ArrayList <Integer >();
2 doSomething (numbers);

Coccinelle4J’s support for subtyping builds on Coccinelle’s support for typedef. In C,
typedef allows developers to introduce synonyms for types. For example, typedef short s16;
introduces a new type alias s16 for the type short. During program matching, developers
may expect that writing short in SmPL matches expressions of type s16 in the source code.

Coccinelle already resolves type information related to typedefs during program matching.
When parsing C programs, Coccinelle tracks type information for each typedef and annotates
each program element in the C source code with the types that it can be matched on.
Whenever an element declared as a typedef is reached, Coccinelle tries to resolve the type
information from the relevant typedef declaration. In Coccinelle4J, we reuse this mechanism
to deal with sub-typing in Java, maintaining a list of types that each program element can
be matched on.

H. J. Kang et al. 13:11

One limitation is that we only match interfaces to object instances of their sub-types
if the variables were explicitly declared with their interface. For example, numbers in
Listing 7 implements multiple interfaces including List<Integer> and Iterable<Integer>. In
Coccinelle4J, we only match numbers on the explicitly declared types List<Integer> and
ArrayList<Integer>. Information such as the inheritance path of the identifier’s class is also
ignored; numbers inherits AbstractList<Integer>, AbstractCollection<Integer>, and Object,
but Coccinelle4J will not match them. As a result of this decision, in Listing 8, patterns
specifying Deque<UserInfoDetailsItem> will not match any statement in the Listing even
though LinkedLists satisfy the Deque interface, since it is not declared as a Deque here.

Listing 8 Code snippet modified from NextCloud Android. This code snippet
matches List<UserInfoDetailsItem> or LinkedList<UserInfoDetailsItem>, but not Deque<
UserInfoDetailsItem>

1 List < UserInfoDetailsItem > result = new LinkedList <>();
2 addToListIfNeeded (result , R. drawable .ic_phone , userInfo . getPhone (),
3 R. string . user_info_phone);
4 return result ;

In practice, allowing a semantic patch specifying an interface/parent class to match
on all uses of sub-types/child classes may result in many unwanted results. Classes may
implement multiple interfaces, and when given a particular context, it is improbable that
every implemented interface is relevant. In many situations where matching an interface or
parent class is intended, specifying the interface or its methods will suffice. In most cases,
matching on explicit declarations is sufficient, since it is idiomatic in Java to “Refer to objects
by their interfaces” [2]. For example, numbers is declared with its interface List<Integer> in
Listing 7 and result is declared with List<UserInfoDetailsItem> in Listing 8.

We verified this idiom empirically. In the Java libraries we studied, 75% of method
parameters and local variable declarations were declared with an interface, whenever such an
interface (excluding low-level interfaces from java.lang and java.io) existed. In cases where
variables are not declared with their interfaces and we wish to detect them, specifying the
methods on the interface can be attempted next. For example, the Cloneable interface is
implemented by numerous classes. If the user intends to find parts of programs where objects
are cloned, it is sufficient to specify the invocation of the clone() method in the semantic
patch.

Another reason for this decision is that resolving the type of every identifier will incur
a performance penalty, and we would like to avoid the cost of trying to resolve project
dependencies or having to fetch type information from third-party libraries. Coccinelle4J is
designed to be used by developers for rapid prototyping, one rule at a time, so that users
can receive feedback from the tool quickly. Thus, one of our goals is to keep Coccinelle4J
lightweight.

4 Case Study: Migrating APIs

Android applications may have many dependencies on third-party libraries or frameworks,
and keeping up with changes in those dependencies may introduce a significant maintenance
burden. Due to security or performance issues, libraries or frameworks deprecate API
methods and these methods are eventually removed [16]. It is therefore important to upgrade
the uses of deprecated methods to their more modern alternatives. McDonnell et al. studied
the impact of API evolution of Android on developer adoption [17], and they found that it
takes time for developers to catch up with new API versions. They also observed that API

ECOOP 2019

13:12 Semantic Patches for Java Program Transformation

updates are more probable to lead to defects than other changes. We note that this shows
the importance of providing developers with a faster and more reliable way of updating API
usage.

We show examples of deprecated Android API methods with typical migration pathways,
and show possible semantic patches for these migrations. Using these examples, we show
that typical migrations can be written concisely in SmPL. We order these examples in
approximately increasing order of complexity. In Section 4.1, 4.2, and 4.3, we show basic
features of Coccinelle4J to replace method invocations, arguments to them, and their method
receivers. In Section 4.4, we describe a case requiring a change in logic due to a different
return type of the replacement API, and in Section 4.5, we distinguish between the different
ways the deprecated API can be used based on its context. In Section 4.6, we replace the
parameters of a method overriding a deprecated method from its parent class. Finally, we
discuss an example where we encounter some false positives during program matching due to
the limitations described earlier.

As some method invocations may have numerous call sites across a project, migration
of these API methods is a form of widespread change. We show that the use of semantic
patches may reduce developer effort. This also serves as a short guide on specifying program
transformations in SmPL, and we show how context information may be useful. While
performing the migrations, there are two questions that we wish to answer:

Is SmPL expressive enough to perform widespread changes in Java projects?
How much development effort can a developer potentially save by the use of semantic
patches?

4.1 Removing sticky broadcasts
We use SmPL to demonstrate two related trivial migrations of replacing invocations of a
deprecated method while keeping the same arguments, and removing the invocations of
another method.

The use of sticky broadcasts was discouraged in the release of Android API level 21
due to problems such as the lack of security, therefore the methods sendStickyBroadcast(
Intent) and removeStickyBroadcast(Intent) were deprecated. The official API reference11
recommends sendBroadcast(Intent) to replace sendStickyBroadcast(Intent), while usage of
removeStickyBroadcast(Intent) should be removed. It was suggested that the developer
should also provide some mechanism for other applications to fetch the data in the sticky
broadcasts. Providing this latter mechanism is highly dependent on the Android application,
and requires knowledge of what the broadcast receivers expect of the broadcast. However,
replacing and removing these method calls can be expressed in SmPL.

Listings 9 and 10 illustrate the use of these API methods in the NextCloud Android
project, while Listing 11 shows a semantic patch that handles this migration. The call site of
removeStickyBroadcast is an example motivating that migration of function invocations on
exceptional control flow may be required, as removeStickyBroadcast may be included in a
finally block to ensure that it always executes. In this patch, we use the ’|’ operator, i.e., the
sequential disjunction operator of SmPL, to remove invocations of removeStickyBroadcast.
The ’|’ operator allows matching and transformation using any of the terms delimited by ’|’
within the parenthesis. Earlier matches take precedence over later ones, for a given node

11 https://developer.android.com/reference/android/content/Context.html#
sendStickyBroadcast(android.content.Intent)

https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(android.content.Intent)

H. J. Kang et al. 13:13

in the control-flow graph. In this case, the rule matches on either sendStickyBroadcast or
removeStickyBroadcast. This allows for the succinct expression of multiple matching code
that have similar contexts.

Listing 9 Example call site of sendStickyBroadcast in the NextCloud Android project
1 private void sendBroadcastUploadsAdded () {
2 Intent start = new Intent (getUploadsAddedMessage ());
3 // nothing else needed right now
4 start. setPackage (getPackageName ());
5 sendStickyBroadcast (start);
6 }

Listing 10 Example call site of removeStickyBroadcast in the NextCloud Android project
1 try {
2 ... // omitted for brevity
3 removeStickyBroadcast (intent);
4 Log_OC .d(TAG , " Setting progress visibility to " + mSyncInProgress);
5 } catch (RuntimeException e) {
6 // comments omitted for brevity
7 removeStickyBroadcast (intent);
8 DataHolderUtil . getInstance (). delete (
9 intent . getStringExtra (FileSyncAdapter . EXTRA_RESULT));

10 }

Listing 11 Semantic patch for migrating from sendStickyBroadcast
1 @@
2 Intent intent ;
3 @@
4 (
5 - sendStickyBroadcast (intent);
6 + sendBroadcast (intent);
7 |
8 - removeStickyBroadcast (intent);
9)

4.2 setTextSize → setTextZoom
Li et al. have inferred a collection of mappings from deprecated Android API methods
to their replacement methods [16]. A typical migration in this collection requires modify-
ing both method names and method arguments, either by adding or removing arguments,
or by changing the arguments’ type. One such transformation was required when WebSettings.
setTextSize(WebSettings.TextSize) was deprecated and replaced by WebSettings.setTextZoom
(int). This involves transforming both the method name and the method arguments. Listing
12 shows part of the patch on the Lucid-Browser project12 and Listing 13 then shows a
semantic patch producing it. The semantic patch modifies both the method’s name and its
arguments in a single rule.

Listing 12 Part of a patch replacing invocations of setTextSize in the Lucid-Browser project
1 if (Properties . webpageProp . fontSize ==0)

12 https://github.com/powerpoint45/Lucid-Browser

ECOOP 2019

https://github.com/powerpoint45/Lucid-Browser

13:14 Semantic Patches for Java Program Transformation

2 - this. getSettings (). setTextSize (WebSettings . TextSize . SMALLEST);
3 + this. getSettings (). setTextZoom (50);
4 if (Properties . webpageProp . fontSize ==1)
5 - this. getSettings (). setTextSize (WebSettings . TextSize . SMALLER);
6 + this. getSettings (). setTextZoom (75);
7 if (Properties . webpageProp . fontSize ==2)
8 - this. getSettings (). setTextSize (WebSettings . TextSize . NORMAL);
9 + this. getSettings (). setTextZoom (100);

10 if (Properties . webpageProp . fontSize ==3)
11 - this. getSettings (). setTextSize (WebSettings . TextSize . LARGER);
12 + this. getSettings (). setTextZoom (150);
13 if (Properties . webpageProp . fontSize ==4)
14 - this. getSettings (). setTextSize (WebSettings . TextSize . LARGEST);
15 + this. getSettings (). setTextZoom (200);

Listing 13 Semantic patch replacing usage of setTextSize
1 @@
2 expression E;
3 @@
4 (
5 - E. setTextSize (LARGEST);
6 + E. setTextZoom (200);
7 |
8 - E. setTextSize (LARGER);
9 + E. setTextZoom (150);

10 |
11 - E. setTextSize (NORMAL);
12 + E. setTextZoom (100);
13 |
14 - E. setTextSize (SMALLER);
15 + E. setTextZoom (75);
16 |
17 - E. setTextSize (SMALLEST);
18 + E. setTextZoom (50);
19)

This example illustrates the usefulness of the isomorphisms conflating fully qualified and
non-fully qualified class names. While in most projects, WebSettings.TextSize.LARGEST is
often qualified with WebSettings.TextSize, some projects, such as K-9 Mail,13 use the shorter
TextSize.LARGEST. Listings 14 and 15 show the isomorphism rules generated for LARGEST.

Listing 14 Isomorphism rule for expanding LARGEST for Lucid Project
1 Expression
2 @ WebSettings_TextSize_LARGEST @
3 @@
4 LARGEST => WebSettings . TextSize . LARGEST

Listing 15 Isomorphism rule for expanding LARGEST for K-9 Mail
1 Expression
2 @ TextSize_LARGEST @
3 @@
4 LARGEST => TextSize . LARGEST

13 https://github.com/k9mail/k-9/commit/f8695f9a61c8a411a09ccee8c8bf739149f0f17e

https://github.com/k9mail/k-9/commit/f8695f9a61c8a411a09ccee8c8bf739149f0f17e

H. J. Kang et al. 13:15

4.3 Resources.getColor → ContextCompat.getColor
Another migration pathway is changing the method receiver. We use the deprecation of
Resources.getColor(int) as an example. One approach to replace this deprecated method
is to use the static method ContextCompat.getColor(Context, int), which was specifically
introduced to help migrate from the deprecated method. A commit making such a change
can be found in the Kickstarter Android project.14 A patch, similar to that commit, that
can be applied on Kickstarter Android is in Listing 16 and the semantic patch producing
this patch is in Listing 17.

Listing 16 Part of a patch replacing getColor from Kickstarter Android
1 return new NotificationCompat . Builder (context)
2 . setSmallIcon (R. drawable . ic_kickstarter_k)
3 - . setColor (context . getResources (). getColor (R.color.green))
4 + . setColor (ContextCompat . getColor (context , R.color.green))
5 . setContentText (text)
6 . setContentTitle (title)
7 . setStyle (new NotificationCompat . BigTextStyle (). bigText (text))
8 . setAutoCancel (true);

Listing 17 Semantic patch replacing uses of getColor
1 @@
2 Context ctx;
3 expression E;
4 @@
5 - ctx. getResources (). getColor (E)
6 + ContextCompat . getColor (ctx , E)

4.4 AudioManager.shouldVibrate(int) →
AudioManager.getRingerMode()

In some cases, migration requires more changes than just replacing the deprecated method
with another and requires additional logic to be added by the developer. For example, the
migration pathway for AudioManager.shouldVibrate was to replace it with a comparison of
the ringer mode retrieved from AudioManager.getRingerMode. This deprecation required an
application to maintain its own policy for allowing vibration of the phone based on the
phone’s current ringer mode. Support for both older and newer Android versions may
be kept by using the deprecated method only on earlier Android versions, while using the
replacement method on later Android versions. An example showing the result of the required
transformation can be found in the Signal Android application15 shown in Listing 18. Listing
19 shows a semantic patch that adds a new function that dispatches a call to the right
method after checking the Android version, and replaces the deprecated method invocation
with this method. A default policy of allowing vibration on non-silent modes is assumed in
this patch, but developers can modify the semantic patch to customize the vibrate policy for
their own applications appropriately.

14 https://github.com/kickstarter/android-oss/commit/053b0a32731bd9a4e9dd42c297565f87145a964b
15 https://github.com/signalapp/Signal-Android/blob/f9adb4e4554a44fd65b77320e34bf4bccf7924ce/

src/org/thoughtcrime/securesms/webrtc/audio/IncomingRinger.java

ECOOP 2019

https://github.com/kickstarter/android-oss/commit/053b0a32731bd9a4e9dd42c297565f87145a964b
https://github.com/signalapp/Signal-Android/blob/f9adb4e4554a44fd65b77320e34bf4bccf7924ce/src/org/thoughtcrime/securesms/webrtc/audio/IncomingRinger.java
https://github.com/signalapp/Signal-Android/blob/f9adb4e4554a44fd65b77320e34bf4bccf7924ce/src/org/thoughtcrime/securesms/webrtc/audio/IncomingRinger.java

13:16 Semantic Patches for Java Program Transformation

Listing 18 Example code invoking the deprecated method from Signal Android
1 private boolean shouldVibrate (Context context , MediaPlayer player ,
2 int ringerMode , boolean vibrate) {
3 if (player == null) {
4 return true;
5 }
6

7 if (Build. VERSION . SDK_INT >= Build. VERSION_CODES . JELLY_BEAN) {
8 return shouldVibrateNew (context , ringerMode , vibrate);
9 } else {

10 return shouldVibrateOld (context , vibrate);
11 }
12 }
13

14 @TargetApi (Build. VERSION_CODES . HONEYCOMB)
15 private boolean shouldVibrateNew (Context context ,
16 int ringerMode , boolean vibrate) {
17 Vibrator vibrator = (Vibrator) context . getSystemService (
18 Context . VIBRATOR_SERVICE);
19

20 if (vibrator == null || ! vibrator . hasVibrator ()) {
21 return false;
22 }
23

24 if (vibrate) {
25 return ringerMode != AudioManager . RINGER_MODE_SILENT ;
26 } else {
27 return ringerMode == AudioManager . RINGER_MODE_VIBRATE ;
28 }
29 }
30

31 private boolean shouldVibrateOld (Context context , boolean vibrate) {
32 AudioManager audioManager = ServiceUtil . getAudioManager (context);
33 return vibrate &&
34 audioManager . shouldVibrate (AudioManager . VIBRATE_TYPE_RINGER);
35 }

Listing 19 Semantic Patch replacing uses of shouldVibrate
1 @@
2 identifier am , f, ctx;
3 expression vibrate_type ;
4 @@
5 + boolean shouldVibrate (AudioManager am , Context ctx , int vibrateType) {
6 + if (Build. VERSION . SDK_INT >= Build. VERSION_CODES . JELLY_BEAN) {
7 + Vibrator vibrator = (Vibrator) ctx. getSystemService (
8 + Context . VIBRATOR_SERVICE);
9 + if (vibrator == null || ! vibrator . hasVibrator ()) {

10 + return false;
11 + }
12 + return am. getRingerMode () != AudioManager . RINGER_MODE_SILENT ;
13 + } else {
14 + return audioManager . shouldVibrate (vibrateType);
15 + }
16 + }
17 f(... , Context ctx , ...) {
18 ...
19 - am. shouldVibrate (vibrate_type)
20 + shouldVibrate (am , ctx , vibrate_type)
21 ...
22 }

H. J. Kang et al. 13:17

4.5 Display.getHeight() and Display.getWidth() →
Display.getSize(Point)

Deprecated methods can be used in different ways, and migration requires consideration of
how they were used. For example, in the release of Android API Level 15, Display.getHeight
and Display.getWidth were deprecated in favor of constructing a Point object, initializing
it using Display.getSize(Point), before obtaining the height and width using Point.y and
Point.x. Listings 20 and 21 show two examples of code (from the Materialistic for Hacker
News application16 and the Glide library17) managing the deprecation. Both examples check
for the currently installed Android version, and invoke the deprecated method only on earlier
versions of Android where the method has not been deprecated.

These two examples show the need to distinguish between code requiring a Point object
instance, and code requiring just the height of a display. In Listing 21, a Point object is
already constructed and only the way it is initialized requires modification. In Listing 20,
however, only the height of the display is required. Listing 22 shows a simplified semantic
patch that consists of two rules to fix the two variants of this deprecation. The tokens <...
and ...> form a variant of “...” indicating that matching display.getHeight() within the
path is optional and can occur multiple times. In this case, we use <... ...> to specify
that we wish to transform all of its occurrences. The use of ... when != Point(...) in rule2
omits matches where a Point object has already been created in the control flow context, in
order to distinguish between the two cases. Listing 23 shows one example patch produced by
Coccinelle4J that is semantically similar to a commit fixing the deprecation in the Android
framework itself.18

Listing 20 Example from Materialistic of correct usage of the deprecated method, getHeight,
after checking for the device’s Android version

1 if (Build. VERSION . SDK_INT >= Build. VERSION_CODES . HONEYCOMB_MR2) {
2 displayDimens = new Point ();
3 display . getSize (displayDimens);
4 } else {
5 displayDimens = new Point(display . getWidth (), display . getHeight ());
6 }
7 ... // omitted for brevity

Listing 21 Example from Glide of correct usage of the deprecated method, getHeight, after
checking for the device’s Android version

1 ... // omitted for brevity
2 if (Build. VERSION . SDK_INT >= Build. VERSION_CODES . HONEYCOMB_MR2) {
3 Point point = new Point ();
4 display . getSize (point);
5 return point.y;
6 } else {
7 return display . getHeight ();
8 }

Listing 22 Simplified version of a semantic patch to migrate invocations of getWidth and
getHeight. The use of != Point(...) prevents rule2 from erroneously matching code transformed for
the first case.

16 https://github.com/hidroh/materialistic/commit/baaf9eeb28f09b8d0d875107687a595a2f377f79
17 https://github.com/bumptech/glide/commit/827fc08222eb61595ab0d5fdebeea0033e9e8382
18 https://github.com/aosp-mirror/platform_frameworks_base/commit/

ac8dea12c17aa047e03a358110aeb60401d36aa2#diff-40287e2f0fc8c327021400d034442324

ECOOP 2019

https://github.com/hidroh/materialistic/commit/baaf9eeb28f09b8d0d875107687a595a2f377f79
https://github.com/bumptech/glide/commit/827fc08222eb61595ab0d5fdebeea0033e9e8382
https://github.com/aosp-mirror/platform_frameworks_base/commit/ac8dea12c17aa047e03a358110aeb60401d36aa2#diff-40287e2f0fc8c327021400d034442324
https://github.com/aosp-mirror/platform_frameworks_base/commit/ac8dea12c17aa047e03a358110aeb60401d36aa2#diff-40287e2f0fc8c327021400d034442324

13:18 Semantic Patches for Java Program Transformation

1 @ rule1@
2 Display display ;
3 identifier p;
4 type T;
5 @@
6 (
7 - p = new Point(display . getWidth (),
8 - display . getHeight ());
9 + p = new Point ();

10 + display . getSize (p);
11 |
12 - T p = new Point(display . getWidth (),
13 - display . getHeight ());
14 + T p = new Point ();
15 + display . getSize (p);
16)
17 // ‘<...’ indicates that all occurrences should be replaced
18 <...
19 (
20 - display . getHeight ()
21 + p.y
22 |
23 - display . getWidth ()
24 + p.x
25)
26 ...>
27

28 @ rule2@
29 identifier display , f;
30 expression E;
31 @@
32 f(...) {
33 ...
34 Display display = E;
35 + Point p = new Point ();
36 + display . getSize (p);
37 // ‘when ’ omits matches where a Point object has already been created
38 <... when != Point (...)
39 (
40 - display . getHeight ()
41 + p.y
42 |
43 - display . getWidth ()
44 + p.x
45)
46 ...>
47 }

Listing 23 Example patch created by Coccinelle4J using the semantic patch above, semantically
equivalent to a commit fixing this deprecation in the Android framework

1 public static void dragQuarterScreenDown (
2 InstrumentationTestCase test , Activity activity) {
3 Display display = activity . getWindowManager (). getDefaultDisplay ();
4 - int screenHeight = display . getHeight ();
5 - int screenWidth = display . getWidth ();
6 + Point p = new Point ();
7 + display . getSize (p);
8 + int screenHeight = p.y;
9 + int screenWidth = p.x;

H. J. Kang et al. 13:19

4.6 WebChromeClient.onConsoleMessage(String, int, String) →
WebChromeClient.onConsoleMessage(ConsoleMessage)

We show how method signatures of classes extending other classes with deprecated methods
can be transformed using SmPL. Developers can override onConsoleMessage(String, int,
String) of WebChromeClient, which was deprecated in favour of an overloaded method with
a different set of parameters onConsoleMessage(ConsoleMessage). Listing 24 shows example
code from the MGit project19 overriding this method, and Listing 25 shows a semantic patch
changing the parameters of onConsoleMessage(String, int, String). The use of <... and
...> specifies that all occurrences of p1, p2, and p3 should be transformed.

Listing 24 An example replacement site of onConsoleMessage from MGit
1 mFileContent . setWebChromeClient (new WebChromeClient () {
2 @Override
3 public void onConsoleMessage (String message , int lineNumber ,
4 String sourceID) {
5 Log.d(" MyApplication ", message + " -- From line " + lineNumber
6 + " of " + sourceID);
7 }
8 ... // other overridden methods
9 })

Listing 25 Semantic patch updating method signatures of onConsoleMessage
1 @@
2 identifier p1 , p2 , p3;
3 @@
4 - onConsoleMessage (String p1 , int p2 , String p3) {
5 + onConsoleMessage (ConsoleMessage cs) {
6 <...
7 (
8 - p1
9 + cs. message ()

10 |
11 - p2
12 + cs. lineNumber ()
13 |
14 - p3
15 + cs. sourceId ()
16)
17 ...>
18 }

4.7 Resources.getDrawable(int) → Resources.getDrawable(int,
Theme)

In Phase 3 of developing Coccinelle4J, we made some trade-offs that introduced the limitations
discussed in Section 3. While we do not run into problems writing the majority of the patches,
some patches would have benefited from Coccinelle4J having the ability to resolve types, one
of the features deliberately omitted to keep Coccinelle4J fast. In the release of Android API
level 22, Resources.getDrawable(int) was deprecated in favour of getDrawable(int, Theme),
the same method overloaded with an additional Theme parameter. After inspecting calls to
getDrawable in a project, a developer may write a semantic patch to find these calls and
transform them using the simple patch in Listing 26.

19 https://github.com/maks/MGit

ECOOP 2019

https://github.com/maks/MGit

13:20 Semantic Patches for Java Program Transformation

Listing 26 Semantic patch updating invocations to getDrawable
1 @@
2 expression E;
3 expression p;
4 @@
5 - E. getDrawable (p)
6 + E. getDrawable (p, getContext (). getTheme ())

While all the locations that should be transformed are correctly transformed, this also
results in several false positives, as illustrated by the patch in Listing 27, based on code from
the NextCloud Android project. As the semantic patch does not assert that the metavariable
E is of type Resources, Coccinelle4J updates a getDrawable invocation on a TypedArray instead
of Resources. This results in code that does not compile as TypedArray does not have a
method with a getDrawable(int, Theme) signature.

Listing 27 Example patch created by Coccinelle4J for the above semantic patch to replace
getDrawable

1 public SimpleListItemDividerDecoration (Context context) {
2 super(context , DividerItemDecoration . VERTICAL);
3 final TypedArray styledAttributes =
4 context . obtainStyledAttributes (ATTRS);
5 - divider = styledAttributes . getDrawable (0);
6 + divider = styledAttributes . getDrawable (0,
7 + getContext (). getTheme ());
8 leftPadding = Math.round (72 *
9 (context . getResources (). getDisplayMetrics ().xdpi /

10 DisplayMetrics . DENSITY_DEFAULT));
11 styledAttributes . recycle ();
12 }

On the other hand, if one does specify the need for a Resource, as illustrated in Listing
28, then Coccinelle4J misses locations where a Resource variable is not explicitly declared.
For example, a Resource may be produced from an invocation as part of a larger expression,
as in getResources().getDrawable(R.drawable.ic_activity_light_grey). The metavariable
Resources R will not match the invocation of getResources. In cases like this, developers
may be surprised that there is no way to write a rule in SmPL with a metavariable binding
to the invocation of getResources based on its return type.

Listing 28 Semantic patch updating invocations to getDrawable
1 @@
2 Resources R;
3 expression p;
4 @@
5 - R. getDrawable (p)
6 + R. getDrawable (p, getContext (). getTheme ())

4.8 Evaluation
Using the case of performing changes to multiple locations, we evaluate Coccinelle4J based
on how much it helped development efficiency, the ease of specifying patches, and the speed
at which it applied patches to projects. We also report limitations we experienced with
Coccinelle4J.

We use development efficiency metrics that were previously used to evaluate Coccinelle
for backporting device drivers [26]. Table 2 shows the ratio of the number of source-code
insertions and deletions that Coccinelle4J generates, the number of lines in the semantic

H. J. Kang et al. 13:21

Table 2 Summary of the patches generated by Coccinelle4J in our case study

Patch Semantic patch size Lines generated Ratio Files changed
sendStickyBroadcast 9 19 2.11 5
setTextSize 19 10 0.53 1
getColor 6 16 2.67 4
shouldVibrate 35 17 0.49 1
getHeight 44 3 0.07 1
onConsoleMessage 18 14 0.78 2

patch, excluding whitespace, and the number of files changed by Coccinelle4J. Comparing
these quantities indicates the amount of savings from the use of semantic patches. We use
the patches updating the uses of sendStickyBroadcast on the NextCloud Android project
(Section 4.1),20 setTextSize on the Lucid-Browser (Section 4.2), getColor on the Kickstarter
Android project (Section 4.3), shouldVibrate on Signal (Section 4.4), getHeight on Glide
(Section 4.5), and onConsoleMessage on the MGit project (Section 4.6). In total, these projects
contain 311755 lines of code and 2030 source files.

The development effort saved of using Coccinelle4J increases in proportion with the
number of replacement sites. For changes that have to be made at multiple locations,
Coccinelle4J will save more effort. In our examples, as there were only a few uses of
shouldVibrate, getHeight, and onConsoleMessage in MGit, Signal, and Glide, the number of
lines of code in the semantic patch is greater than the number of lines of code of the actual
change. However, the amount of code changed is an incomplete measure of the development
effort saved, as Coccinelle4J also helps in locating the files requiring modification, as well
as in identifying the correct locations in each file. Furthermore, as these are methods of
the Android API, they will be commonly used by many projects, and each patch will have
numerous matches when considering all Android repositories.

In all our examples, the semantic patches to update the call sites of the deprecated
methods are concise. The semantic patches are declarative and describe what code will be
changed after their application to the source code.

We briefly compare the expressiveness of SmPL to Spoon [25]. With Spoon, there are
currently no abstractions over control-flow constraints. Transformations in Spoon are less
declarative compared to SmPL. Using the example of onConsoleMessage (Listing 25) discussed
earlier in Section 4.6, where we change its parameters, Listing 29 shows part of a processor
written in Spoon. As compared to the semantic patch, the Spoon processor is imperative and
requires reasoning about Spoon’s meta-model, whereas SmPL takes a WYSIWYG approach.

Listing 29 Replacing parameters of onConsoleMessage using Spoon
1 // ...
2 // Code for selecting the onConsoleMessage method omited
3 public void process (CtMethod method) {
4 List < CtParameter > params = method . getParameters ();
5 while (! params . isEmpty ()) {
6 CtParameter param = params .get (0);
7 param. delete ();
8 params . remove (param);

20 https://github.com/nextcloud/android

ECOOP 2019

https://github.com/nextcloud/android

13:22 Semantic Patches for Java Program Transformation

9 }
10 CtParameter < ConsoleMessage > newParam = getFactory ().Core ()
11 . createParameter ();
12 newParam . setSimpleName (" consoleMessage ");
13 newParam . setType (getFactory ().Type ()
14 . createReference (ConsoleMessage .class));
15 method . addParameter (newParam);
16 // ...
17 }
18 // ...

Listing 30 Replacing parameters of onConsoleMessage using SmPL
1 @@
2 identifier p1 , p2 , p3;
3 @@
4 - onConsoleMessage (String p1 , int p2 , String p3) {
5 + onConsoleMessage (ConsoleMessage consoleMessage) {
6 ...
7 }

We further elaborate on other convenience features Coccinelle4J provides. While Spoon
has templates for transformation, developers have to specify template parameters and write
logic in Spoon processors to extract or construct the corresponding arguments. Using the
example discussed in Section 4.2 about replacing setTextSize with setTextZoom, we define a
Spoon template in Listing 31. This template has two parameters, an expression returning a
WebSettings that setTextSize is invoked on, and a literal that is passed as an argument to
setTextSize. A Spoon processor (Listing 32) has to select these meta-model elements from
the matching statement, and pass them as arguments to the template to generate a new state-
ment, before replacing the original statement invoking setTextSize. The corresponding patch
in SmPL was given previously in Section 4.2. In contrast to Spoon, a user of Coccinelle4J
does not need to think about these low-level details, as Coccinelle4J binds metavariables to
subterms while matching code and automatically applies them during transformation.

Listing 31 Spoon template for producing statements using setTextZoom
1 public class ReplaceTemplate extends StatementTemplate {
2 public ReplaceTemplate (CtExpression < WebSettings > _settings ,
3 CtLiteral <Integer > _value) {
4 this. _settings = _settings ;
5 this. _value = _value ;
6 }
7

8 @Parameter
9 CtExpression < WebSettings > _settings ;

10

11 @Parameter
12 CtLiteral <Integer > _value ;
13

14 @Override
15 public void statement () {
16 _settings .S(). setTextZoom (_value .S());
17 }
18 }

H. J. Kang et al. 13:23

Listing 32 Spoon processor using the Spoon template replacing invocations of setTextSize
1 public class SetTextzoomProcessor
2 extends AbstractProcessor < CtStatement > {
3 ... // other details omitted for brevity
4 @Override
5 public void process (CtStatement stmt) {
6 ... // omitted code to select the expressions :
7 // 1. oldValue refers to the argument of setTextSize
8 // 2. settingsExpression refers to the expression
9 // returning the WebSettings that setTextSize is invoked on.

10 if (oldValue . getVariable (). getSimpleName (). equals (" SMALLEST ")
) {

11 value. setValue (50);
12 } else if (oldValue . getVariable (). getSimpleName ()
13 . equals (" SMALLER ")) {
14 value. setValue (75);
15 } else if (...) {
16 ...
17 }
18 ... // more code to set a correct value for the template
19

20 ReplaceTemplate template = new ReplaceTemplate (
21 settingsExpression , value);
22 CtStatement newstmt = template .apply(stmt. getParent (
23 new TypeFilter <>(CtType .class)));
24 stmt. replace (newstmt);
25 }
26

27 }

We also briefly compare Coccinelle4J to Refaster [31], a tool to refactor code by writing
templates of code before and after its transformation. While both SmPL and Refaster tem-
plates allow developers to declaratively refine transformation rules, the design of Coccinelle4J
allows reasoning on control-flow paths and fundamentally differs from Refaster. The practical
advantages are:

Constraints can be specified on control-flow paths and matching is supported within
arbitrary control-flow paths (including around loops), see Listing 1,
Metavariables can have different values in different control-flow paths, while being forced
to have consistent values within a control-flow path,
Coccinelle4J interleaves addition or removal of code in the same rule. This makes it easy
to position code changes in a long series of code elements, see Listing 22.

It may not be easy to add these advantages, which are inherent in Coccinelle4J, to
Refaster. Additionally, Refaster lacks several features of Coccinelle4J, such as:

inheritance of metavariables between rules,
interaction with scripting languages (OCaml or Python).

Performance-wise, Coccinelle4J runs quickly. Our experiments were performed on a 2017
Macbook Pro with 2.3 GHz Intel Core i5, 8 GB 2133 MHz LPDDR3, likely similar to an
average developer’s working laptop. We report the time required for Coccinelle4J to perform
each transformation. We also report the time required to build the project, but exclude the
time for downloading the project dependencies in the first build. We consider this time to be

ECOOP 2019

13:24 Semantic Patches for Java Program Transformation

Table 3 Time to apply semantic patch compared to time to build the project (rounded to the
nearest second)

Patch Project Time to apply patch Time to build project
sendStickyBroadcast NextCloud 3s 46s
setTextSize Lucid-Browser 1s 21s
getColor Kickstarter 1s 1 min 6s
shouldVibrate Signal 1s 1 min 54s
getHeight Glide 0s 33s
onConsoleMessage MGit 0s 57s

an upper bound on the time that project developers will wait for a tool to complete running.
The results are given in Table 3.

In each case, the time to apply a semantic patch on an entire project is nearly negligible,
even when there are multiple transformation sites, and it is only a small fraction of the time
required to build the project. As such, we conclude that other than the time required to
write a semantic patch, usage of the tool will not affect a developer’s time negatively.

A limitation of Coccinelle4J is that users may write patches that gives false negatives
while matching programs. When writing a semantic patch, it is often the case that one
starts with a simple semantic patch that misses more complex cases. We believe that this
limitation is circumvented as semantic patches are concise and developers can quickly refine
a semantic patch after inspecting the output produced by Coccinelle4J. The time to apply
the updated semantic patch to a project is also negligible. This short feedback loop allows
for a fast iterative development process and facilitates exploratory programming, much like
working with a read-eval-print loop (REPL). We find this aspect of development lacking in
other program transformation tools.

On the other hand, Coccinelle4J inherits some limitations of Coccinelle. One painful
aspect of working with Coccinelle4J is it does not always report errors when parsing SMPL
in a user-friendly way. This limitation is inherent in yacc-like parsers. While Coccinelle
reports the position and identifier in the semantic patch where the error was detected, it may
not be immediately clear to a new user of Coccinelle what the error is or how to correct it.
Editing semantic patches may be difficult due to the current lack of support in tools familiar
to Java developers. For example, while Coccinelle provides some support for Vim and Emacs,
there is lack of support for other popular text editors or IDEs that Java developers may
be more familiar with. Without basic support that developers may be accustomed to, such
as syntax highlighting or code completion, developers may make mistakes that are hard to
notice. However, this limitation is circumvented by the ease of adding support for SmPL in
text editors, due to the reuse of Java syntax as the code matching language. Providing such
support may be a next step to improve the ergonomics of writing SmPL.

Since Coccinelle4J does not guarantee correctness, there is the danger that it may generate
semantically incorrect patches (false positives). We believe that this risk is mitigated by two
factors. Firstly, most incorrect patches will be caught by the Java compiler. As Coccinelle4J
is targeted at changing code in multiple locations, we expect most patches produced by
Coccinelle4J to fall into categories of widespread changes, which researchers have categorized
for Java projects [30]. Code changes in most of these categories will result in compiler errors
if mistakes are made. The iterative process of refining patches also allows mistakes to be
detected and identified quickly. Developers can fix incorrect changes manually or revert them
with revision control tools. Secondly, in large Java projects where widespread changes are

H. J. Kang et al. 13:25

most relevant, there are strict code review processes where errors will be caught by more
experienced project maintainers. As such, despite not having the guarantee of producing
correct patches, the use of Coccinelle4J will not negatively impact the software development
process.

5 Related Work

5.1 Program matching and transformation for Java

There are several existing tools for Java program transformation. Refaster [31] and Spoon
[25], already considered in the previous section, are designed to be easy for developers to use.
Like Coccinelle4J, they work on the AST and match elements independent of white-space
and formatting. However, unlike Coccinelle4J, neither Spoon nor Refaster takes control flow
into account when matching code and does not allow for the specification of constraints
over control-flow paths. More generally, there is no equivalent to the “...” abstraction in
SmPL that abstracts over an arbitrary sequence of code. On the other hand, Spoon allows
rules to reason about more precise type information. As such, our work on Coccinelle4J is
complementary to the work on Spoon.

Stratego [28], Rascal [10], and TXL [6] are other tools for program transformation that
can work on Java. However, these tools requires developers to invest time to learn syntax
and formalisms that do not resemble Java.

Soot [27] is a framework for Java program optimization and also offers program analysis
tools. Although it provides tools that can compute control flow graphs, it does not provide
any program transformation tool that acts on these results.

Another class of Java transformation tools operate on bytecode, unlike Coccinelle4J which
works on Java source code. JMangler [11], ASM [4] and Javassist[5] are examples of tools
providing APIs for bytecode manipulation, that can be used for tasks like creating new class
definitions derived from other classes.

5.2 Migration of APIs

There are several approaches to automated API usage updates. For example, Henkel and
Diwan [8] presented a tool to capture API refactoring actions when a developer updates the
API usage. LibSync [21] recommends potential edit operations for adapting code based on
clients that have already migrated from an API. Semdiff [7] recommends calls to a framework
based on how the framework adapted to its own changes. HiMa [18] performs pairwise
comparisons in the evolutionary history of a project to construct framework-evolution rules.

Several works also propose program transformation languages to describe rules for mapping
APIs calls to alternative APIs. Nita and Notkin describe Twinning [22], a rule-based language
that allows developers to specify mappings of blocks of API invocations to sequences of
alternative API invocations. SWIN [15] extends Twinning, including adding type safety of
transformations. The type safety of SWIN is proved on Featherweight Java [9], a minimal
core calculus similar to Middleweight Java.

The approaches above do not allow for context-sensitive many-to-many mappings. Many-
to-many mappings refer to the transformation of a sequence of statements using an old API
to a new sequence of statements using a replacement API. Wang et al. [29] highlight the
difficulty of API migrations when these mappings are required. They show the need to
account for control-flow as the statements requiring transformation may take multiple forms.

ECOOP 2019

13:26 Semantic Patches for Java Program Transformation

They propose guided-normalisation and a language PATL for transforming Java programs
between different APIs. The semantics of PATL are formalised on Middleweight Java.

Their work differs from ours as their focus is transforming programs between two APIs,
a single task where program transformation is useful, while our work targets the more
general task of program transformation itself. We use migrations of deprecated APIs
as an example only to demonstrate the utility of our program transformation tool. While
transforming programs between APIs often focuses on short sequences of function invocations,
Coccinelle4J can express constraints and transformations of the code over a longer range,
including involving information collected from multiple field and method declarations. There
is also no equivalent of the “...” operator in PATL.

An experience report about the use of automated API migration techniques suggests
that the difficulty of API migrations lies in the change of API parameter types, rather
than selecting an alternative API [13]. This is motivation for our work, as we support the
transformation of code and arguments to methods based on the code context. Semantic
patches allow argument values to be determined based on code context, including specifying
constraints over paths, the use of multiple rules, and information collected from multiple
fields and method declarations.

6 Conclusion and Future Work

While SmPL has been shown to be useful for program transformation on C code, its use has
not been explored in the context of Java projects. Semantic patches have the benefit of being
declarative, are relatively easy to specify, and are unique in how they allow the expression
of control-flow patterns. To introduce a tool with these features into the Java ecosystem,
we have developed Coccinelle4J, a prototype extending Coccinelle, to support some Java
language features. We document our implementation and the design decisions made. Finally,
we look at several cases of updating call sites of deprecated Android API in six projects to
show the utility of Coccinelle4J. Based on this case study, we discuss its suitability for use in
Java projects.

As future work, we hope to evaluate the use of semantic patches and Coccinelle4J for
other uses, such as to fix common bugs. From our preliminary work on migrating deprecated
Android API, a further extension may be to create a public dataset of reliable semantic
patches that developers can apply to their Android projects.

References

1 Gavin M Bierman, MJ Parkinson, and AM Pitts. MJ: An imperative core calculus for Java
and Java with effects. Technical report, University of Cambridge, Computer Laboratory, 2003.

2 Joshua Bloch. Effective Java. Addison-Wesley Professional, 2008.
3 Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia L Lawall, and Gilles Muller. A

foundation for flow-based program matching: Using temporal logic and model checking. In
POPL, pages 114–126. ACM, 2009.

4 Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to
implement adaptable systems. Adaptable and extensible component systems, 30(19), 2002.

5 Shigeru Chiba. Javassist-a reflection-based programming wizard for Java. In Proceedings of
OOPSLA’98 Workshop on Reflective Programming in C++ and Java, page 174. ACM, 1998.

6 James R Cordy. The TXL source transformation language. Science of Computer Programming,
61(3):190–210, 2006.

H. J. Kang et al. 13:27

7 Barthelemy Dagenais and Martin P Robillard. SemDiff: Analysis and recommendation support
for API evolution. In Proceedings of the 31st International Conference on Software Engineering,
pages 599–602. IEEE Computer Society, 2009.

8 Johannes Henkel and Amer Diwan. Catchup! capturing and replaying refactorings to support
API evolution. In 27th International Conference on Software Engineering, pages 274–283.
IEEE, 2005.

9 Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):396–450, 2001.

10 Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. Rascal: A domain specific language for
source code analysis and manipulation. In 2009 Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 168–177. IEEE, 2009.

11 Günter Kniesel, Pascal Costanza, and Michael Austermann. JMangler-a framework for
load-time transformation of Java class files. In SCAM, pages 100–110. IEEE, 2001.

12 David Lacey and Oege de Moor. Imperative program transformation by rewriting. In Reinhard
Wilhelm, editor, Compiler Construction, pages 52–68, 2001.

13 Maxime Lamothe and Weiyi Shang. Exploring the use of automated API migrating techniques
in practice: An experience report on Android. In 15th International Conference on Mining
Software Repositories, 2018, 2018.

14 Julia Lawall and Gilles Muller. Coccinelle: 10 years of automated evolution in the Linux
kernel. In USENIX Annual Technical Conference, pages 601–614, 2018.

15 Jun Li, Chenglong Wang, Yingfei Xiong, and Zhenjiang Hu. Swin: Towards type-safe Java
program adaptation between APIs. In Proceedings of the 2015 Workshop on Partial Evaluation
and Program Manipulation, pages 91–102. ACM, 2015.

16 Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. Characterising
deprecated Android APIs. In Proceedings of the 15th International Conference on Mining
Software Repositories, pages 254–264. ACM, 2018.

17 Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of API stability
and adoption in the Android ecosystem. In Software Maintenance (ICSM), 2013 29th IEEE
International Conference on, pages 70–79. IEEE, 2013.

18 Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. A history-based matching approach
to identification of framework evolution. In Proceedings of the 34th International Conference
on Software Engineering, pages 353–363. IEEE Press, 2012.

19 Gilles Muller, Yoann Padioleau, Julia L Lawall, and René Rydhof Hansen. Semantic patches
considered helpful. ACM SIGOPS Operating Systems Review, 40(3):90–92, 2006.

20 Beevi S Nadera, D Chitraprasad, and Vinod SS Chandra. The varying faces of a program
transformation systems. ACM Inroads, 3(1):49–55, 2012.

21 Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr, Anh Tuan Nguyen, Miryung Kim,
and Tien N Nguyen. A graph-based approach to API usage adaptation. In OOPSLA, pages
302–321. ACM, 2010.

22 Marius Nita and David Notkin. Using twinning to adapt programs to alternative APIs. In
2010 ACM/IEEE 32nd International Conference on Software Engineering,, volume 1, pages
205–214. IEEE, 2010.

23 Yoann Padioleau, Julia L. Lawall, René Rydhof Hansen, and Gilles Muller. Documenting and
automating collateral evolutions in Linux device drivers. In EuroSys, pages 247–260, 2008.

24 Yoann Padioleau, Julia L Lawall, and Gilles Muller. SmPL: A domain-specific language
for specifying collateral evolutions in Linux device drivers. Electronic Notes in Theoretical
Computer Science, 166:47–62, 2007.

25 Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Seinturier.
Spoon: A library for implementing analyses and transformations of Java source code. Software:
Practice and Experience, 46(9):1155–1179, 2016.

ECOOP 2019

13:28 Semantic Patches for Java Program Transformation

26 Luis R Rodriguez and Julia Lawall. Increasing automation in the backporting of Linux drivers
using Coccinelle. In Dependable Computing Conference (EDCC), 2015 Eleventh European,
pages 132–143. IEEE, 2015.

27 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research (CASCON 1999),
page 13, 1999.

28 Eelco Visser. Stratego: A language for program transformation based on rewriting strategies
system description of Stratego 0.5. In International Conference on Rewriting Techniques and
Applications, pages 357–361. Springer, 2001.

29 Chenglong Wang, Jiajun Jiang, Jun Li, Yingfei Xiong, Xiangyu Luo, Lu Zhang, and Zhenjiang
Hu. Transforming programs between APIs with many-to-many mappings. In 30th European
Conference on Object-Oriented Programming, 2016.

30 Shaowei Wang, David Lo, and Xingxiao Jiang. Understanding widespread changes: A
taxonomic study. In Software Maintenance and Reengineering (CSMR), 2013 17th European
Conference on, pages 5–14. IEEE, 2013.

31 Louis Wasserman. Scalable, example-based refactorings with Refaster. In Proceedings of the
2013 ACM Workshop on Refactoring Tools, pages 25–28. ACM, 2013.

	Introduction
	Background
	Extending Coccinelle to Java
	Phase 1: Middleweight Java
	Phase 2: Control-flow with Exceptions and Java-specific Isomorphisms
	Control-flow with exceptions
	Isomorphisms

	Phase 3: Matching programs with sub-typing

	Case Study: Migrating APIs
	Removing sticky broadcasts
	setTextSize setTextZoom
	Resources.getColor ContextCompat.getColor
	AudioManager.shouldVibrate(int) AudioManager.getRingerMode()
	Display.getHeight() and Display.getWidth() Display.getSize(Point)
	WebChromeClient.onConsoleMessage(String, int, String) WebChromeClient.onConsoleMessage(ConsoleMessage)
	Resources.getDrawable(int) Resources.getDrawable(int, Theme)
	Evaluation

	Related Work
	Program matching and transformation for Java
	Migration of APIs

	Conclusion and Future Work

