Network Structure of Social Coding in GitHub

Ferdian Thung1, Tegawendé F. Bissyandé2, David Lo1, and Lingxiao Jiang1
1Singapore Management University, Singapore
2Laboratoire Bordelais de Recherche en Informatique, France
\{ferdianthung,davidlo,lxjiang\}@smu.edu.sg, bissyand@labri.fr

Abstract—Social coding enables a different experience of software development as the activities and interests of one developer are easily advertised to other developers. Developers can thus track the activities relevant to various projects in one umbrella site. Such a major change in collaborative software development makes an investigation of networking on social coding sites valuable. Furthermore, project hosting platforms promoting this development paradigm have been thriving, among which GitHub has arguably gained the most momentum.

In this paper, we contribute to the body of knowledge on social coding by investigating the network structure of social coding in GitHub. We collect 100,000 projects and 30,000 developers from GitHub, construct developer-developer and project-project relationship graphs, and compute various characteristics of the graphs. We then identify influential developers and projects on this subnetwork of GitHub by using PageRank. Understanding how developers and projects are actually related to each other on a social coding site is the first step towards building tool supports to aid social programmers in performing their tasks more efficiently.

I. INTRODUCTION

Recently, developers have witnessed the emergence of platforms for social coding, such as GitHub1 and Altassian BitBuket2. These platforms offer unique experiences to developers: they can broadcast their activities and/or listen to the activities of others; they can also investigate and leverage activities occurring in a variety of projects in one umbrella site.

The current momentum of social coding sites provides an opportunity for research on the impact of programmer networking in software projects. Recently, Dabbish et al. have investigated, through a series of interviews, the impact of transparency in GitHub 3. Such studies are important as they help us to better understand the phenomenon of social coding. A good understanding of the characteristics of GitHub can indeed help researchers and practitioners to gain more of the insights that are needed to design better tools for supporting social coders. Furthermore, a thorough understanding of developer behaviors on GitHub will yield new ways for inciting more collaborations among developers.

In this study, we investigate GitHub, which is arguably the largest social coding site, containing more than 3 million repositories. We aim to extend the limited body of knowledge about social coding by constructing the network structure of projects and developers on GitHub and analyzing various characteristics of these networks. We intend to answer the following research questions:

- RQ1 How strong are the relationships among projects?
- RQ2 How strong are the relationships among the developers?
- RQ3 Which projects are the most influential?
- RQ4 Which developers are the most influential?

The remainder of this paper is structured as follows. In Section II, we present preliminary information on GitHub. In Section III, we introduce the various network statistics that we use as well as the PageRank algorithm. In Section IV, we present our research questions and their answers. We discuss related work in Section V. We conclude with future work in Section VI.

II. GITHUB: A SOCIAL CODING SITE

GitHub is a social coding site that uses Git3 as its distributed revision control and source code management system. It implements a social network where developers are enabled to broadcast their activities to others who are interested and have subscribed to them. GitHub currently hosts over three million projects maintained by over one million registered developers. A given developer can participate in multiple projects and each project may have more than one developer. The GitHub social coding site is a developer-friendly environment integrating many functionalities, including wiki, issue tracking, and code review.

Within GitHub, there are pages for developers and pages for projects. An example of a GitHub page4 related to the user kemitche (Keith Mitchell). This page includes information on kemitché’s repositories (i.e., projects) and his recent public activities, such as committing code to a repository, opening an issue report, etc., which are seldom easily visible in other development environments. The page also shows several statistics that are often used on social networking sites, such as the number of other developers following him, the number of projects he is watching, etc. Such transparency is an interesting feature of GitHub and other social coding sites.

1 http://github.com \quad 2 https://bitbucket.org \quad 3 http://git-scm.com/ \quad 4 https://github.com/kemitche
III. METHODOLOGY

In this section we describe our methodology for constructing a sample network from GitHub. We also introduce the statistics and the PageRank algorithm that we use for analyzing the network.

A. Network Construction

We construct two kinds of networks from GitHub data: a project-project network, and a developer-developer network. The project-project network is a graph of projects. This graph represents a network in which each node is a project, and where two nodes are connected if the corresponding projects have at least one common developer. We furthermore associate a weight to each edge of the graph; this weight corresponds to the number of developers that work together on both projects.

To construct this project-project network, a trivial solution is to check one project with every other project and look for the number of common developers. However this would be costly. To alleviate this computation issue, we perform the steps described in Algorithm 1. For each project, we first get the developers that work for it, we then find all the projects that the developers work for. This set of projects is typically of a small size. We then just compare the input project with all projects in the set.

Algorithm 1 Selecting Efficiently

```plaintext
Input: Projects // set of projects
Network ← ∅ // Project-project network
foreach project P_a in Projects do
    Developers ← listDevelopersInvolved(P_a)
    foreach developer D_a in Developers do
        smallSetProjects ← listProjects(D_a)
        foreach project P_b in smallSetProjects do
            link ← countCommonDevelopers(P_a, P_b)
            Network ← {Network, link}
    return Network
```

In a developer-developer network, each node represents a given developer in our dataset. The corresponding graph contains an edge between two vertices when the corresponding developers work together in at least one common project. Thus the developer-developer network is built based on collaborations among developers, where collaboration is simply defined as working together towards the same goal or purpose, i.e., completing a software project. Similarly to the project-project graph, we associate a weight to each edge taking into account the number of projects where the two relevant developers work together. To build the developer-developer network, we proceed with the same methodology as for the project-project network.

B. Network Statistics

Various statistics can be computed to characterize a network. In this study, we primarily use a common metric, node degree, which, for a given node, considers the number of distinct nodes that are directly connected to it. We also rely on other common measurements, namely the network diameter and the average shortest path. The diameter of a network is the longest shortest path between all pairs of nodes in a network, while the average shortest path is the average of all shortest paths.

To estimate the diameter and the average shortest path, we randomly sampled 1000 nodes from the graph and calculate shortest paths for all possible pairings of the 1000 nodes following [9].

C. PageRank

Introduced by Brin and Page, the PageRank algorithm for weighting web pages importance based on their links has gained popularity driven by its use in the Google search engine [3]. PageRank works in many iterations. In the initial iteration, the algorithm assigns the same PageRank score to all web pages. Then subsequent iterations update these scores: the score of a page \(p \) is distributed to the pages that \(p \) links to; each linked page receives \(\frac{1}{|L_p|} \) of the score, where \(L_p \) is the set of pages that \(p \) links to. The PageRank score of a web page \(p \) at iteration \(i \) can be computed by the following equation:

\[
PR(p, i) = \frac{1 - r}{T} + r \sum_{q \in K_p} \frac{PR(q, i - 1)}{|L_q|}
\]

In this equation, \(r \) represents the probability that a web surfer would continue to surf (a.k.a. the damping factor), \(T \) is the number of web pages in the database of the search engine, \(K_p \) is the set of web pages that link to \(p \), and \(L_q \) is the set of web pages that \(q \) links to.

IV. EMPIRICAL EVALUATION

We describe our dataset and experiment results that answer the research questions presented in Section II.

A. Dataset

There are more than one million people hosting about 3 million private and public projects in GitHub. We analyze the first 100,000 projects that are returned by GitHub API. This set of projects appears to vary randomly. We again randomly sample 30,000 developers from the developers of the 100,000 projects.

B. Project-Project Relationship

To answer the first research question, we proceed in two steps: first, we compute the number of edges in the project-project graph. We have found 1,161,522 edges, meaning that 1,161,522 pairs of projects share at least one common developer. Second, we compute the degree of each node, i.e., the number of edges incident to this node in the project-project network. Figure 1 shows the degree distribution of the nodes in the project-project network.
across the 100,000 projects of our dataset. We find that the degree distribution follows a long tail distribution \cite{1}.

Finally, we measure the diameter of the largest connected component and the average shortest path between sampled project nodes. By following \cite{9} and \cite{7}, the shortest part between two nodes is computed by ignoring the weights of the edges in the graph. The length of a path between two nodes is simply the length of the series of nodes between the two nodes. The diameter is 9 and the average shortest path, 3.7. These numbers are lower than the findings reported for many real networks \cite{7}, implying that project networks are actually more interconnected than human networks. Project networks, as defined in Section \[III\] indeed, only require one common developer to establish a connection between two projects.

\begin{center}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{project_degree_distribution.png}
\caption{Project Degree Distribution: y-axis shows the number of projects having given edge degrees.}
\end{figure}
\end{center}

\begin{center}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{developer_degree_distribution.png}
\caption{Developer Degree Distribution: y-axis corresponds to the number of developers having a given degree.}
\end{figure}
\end{center}

\begin{center}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{project_degree_distribution.png}
\caption{Project Degree Distribution: y-axis shows the number of projects having given edge degrees.}
\end{figure}
\end{center}

\begin{center}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{developer_degree_distribution.png}
\caption{Developer Degree Distribution: y-axis corresponds to the number of developers having a given degree.}
\end{figure}
\end{center}

C. Developer-developer Relationship

To answer the second research question, we proceed with the same steps as in the first question. The number of edges computed in the developer-developer network is 23,678,445, revealing that many pairs of developers share at least one common project. Note that this number is significantly larger than the number of edges in the project-project graph.

Figure 2 illustrates the degree distribution in the developer-developer network. This distribution does not form a long tail, as some projects involve an excessively large number of developers. Thus, each developer in such projects will share a connection with all other developers in the same project, resulting in both a high degree and a high frequency. Nonetheless, we still notice that, overall, some developers share a project with many other developers while the majority of developers share projects with a few developers.

The diameter of the largest connected component is 5 and the average shortest path is 2.47. We compare these values to findings in studies on two networks, namely Facebook and Sourceforge. In their study on the Sourceforge project hosting platform, Surian et al. have shown that the average shortest-path among project developers is 6.55 \cite{9}, following the popular assumption of “six-degree-of-separation” \cite{11}.

\begin{center}
Project networks are more interconnected than human networks.
\end{center}

\begin{center}
Social coding enables substantially more collaborations among developers.
\end{center}

D. Influential Projects

To identify influential projects, we run the PageRank algorithm described in Section \[III\] on the project-project network. Since a collaboration relation is bidirectional and standard PageRank works on directional graph, we convert every undirected edge in our network into two unidirectional edges. Asides from its established effectiveness in measuring the importance of network nodes, as implemented in the Google search engine, PageRank is also known to be faster than many other importance score algorithms, including Betweenness centrality \cite{6}. This property is indeed essential since the computation for thousands of nodes can be time consuming.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Project url & PageRank \\
\hline
https://github.com/mxc/l/homebrew & 0.0009862 \\
https://github.com/rails/rails & 0.0006378 \\
https://github.com/lifo/docrails & 0.0006370 \\
https://github.com/joyent/node & 0.0002161 \\
https://github.com/rubinius/rubinius & 0.0001678 \\
\hline
\end{tabular}
\caption{Table I}
\end{table}

\begin{center}
Top 5 Most Influential Projects
\end{center}

We detail in Table I the top-5 PageRank scores that the algorithm has produced after it was run for each project in the network. These influential projects provide libraries, programmer utilities and scripts and language implementations. The top-1 project is homebrew entitled “the missing package
manager for OS X”, which provides a package installer of UNIX tools for Mac users. This project has 7233 developers. It shares one or more developers with many other projects such as rails, docrails, homebrew-php, rvm, etc.

E. Influential Developers

To identify the influential developers, we run the PageRank algorithm in the developer-developer network. The algorithm returns a score for every developer. The top-5 developers in terms of their scores are shown in Table II.

<table>
<thead>
<tr>
<th>Developer</th>
<th>PageRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joshua Peek</td>
<td>0.00009536</td>
</tr>
<tr>
<td>Aman Gupta</td>
<td>0.00008860</td>
</tr>
<tr>
<td>Steve Richert</td>
<td>0.00008850</td>
</tr>
<tr>
<td>Michael Klishin</td>
<td>0.00008170</td>
</tr>
<tr>
<td>Josh Kalderimis</td>
<td>0.00008163</td>
</tr>
</tbody>
</table>

Table II

| Top 5 Most Influential Developers |

The top-1 developer is Joshua Peek. This developer, who is part of the core team of rails, the second influential project, works on 81 projects in collaboration with many others including Aman Gupta from the top-5 influential developers and others such as Sam Stephenson, Aaron Patterson, Mislav Marohnic, etc.

F. Threats to Validity

In this preliminary study, we only study a sample of projects and developers in GitHub. In the future, we plan to mitigate this threat further by including more projects and developers. Another threat to validity is that we consider two developers to be linked as long as they are involved in the same project. Another threat is that we consider two developers to be linked as long as they are involved in the same project.

There are various ways that the networks could be built and various metrics could be used. In this preliminary study, we just focus on two different networks and several metrics. In the future, we would investigate other ways to build networks and other metrics.

V. RELATED WORK

There have been a number of studies that analyze network structure. Surian et al. investigate the network structure of SourceForge [9]. Other studies analyze the relationships between social media and software development. For example, Bougie et al. and Tian et al. analyze the use of microblogs and Twitter in software development [2], [10]. Treude et al. investigate how developers use StackOverflow [12].

VI. CONCLUSION AND FUTURE WORK

We have performed an empirical study on a popular social coding site: GitHub. In this study, we extract information about 100,000 projects from GitHub and analyze both the project-project network and the developer-developer network. Our evaluation results show that distribution graphs in the project-project network generally follows a power law or long tail phenomenon while the developer-developer network generally does not. Nevertheless, we have shown that social coding indeed improves collaboration among developers; this conclusion can be inferred from the small value of the average shortest path in the largest community of developers.

In this work, we have measured some properties of the network structure of social coding in GitHub. In the future, we plan to develop a recommendation system to choose suitable developers to work together for particular projects in GitHub. We could then re-measure the properties after our recommendation system is applied to a subset of the developer and project population and investigate if there is a significance change in the properties of the sub-network. Information of most influential projects and developers could also be of interest to recruiters. We would investigate possibility of recommending suitable candidates to different recruiters following the work by Capiluppi et al. and Singer et al. in [4], [8]. We also plan to investigate the difference between followers network in GitHub with our developer-developer network. Another interesting future work is to perform a longitudinal study to investigate how the GitHub network structure evolves over time. We also plan to consider more fine-grained levels of granularity to define a collaboration relation (e.g., how much code two developers contribute to the same method/file/package/project, etc.). We would like to quantify the degree of collaboration between two developers.”

REFERENCES