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Summary

Mining specifications from logs of execution traces has attracted

much research effort in recent years since the mined specifications,

either program invariants, temporal rules, association patterns, or various

behavioral models, may be used to improve program documentation,

comprehension, and verification. At the same time, a major challenge

faced by most specification mining algorithms is related to their scalability,

specifically when dealing with many large execution traces.
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To address this challenge, we present a general, distributed speci-

fication mining algorithm that can parallelize and distribute repetitive

specification mining tasks across multiple computers to achieve speedup

proportional to the number of machines used. This general algorithm

is designed based on our observation that most specification mining

algorithms are data and memory intensive while computationally repet-

itive. To validate the general algorithm, we instantiate it with five

existing sequential specification mining algorithms (CLIPPER, Daikon,

k-tails, LM, and Perracotta) on a particular distributed computing

model—MapReduce and one of its implementations Hadoop, to create

five parallelized specification mining algorithms, and demonstrate the

much improved scalability of the algorithms over many large traces

ranging from 41MB to 157GB collected from seven DaCapo benchmark

programs. Our evaluation shows that our parallelized Perracotta running

on four machines (using up to eight CPU cores in total) speeds up

the original sequential one by 3 to 18 times; The other four sequential

algorithms are unable to complete analyzing the large traces, while our

parallelized versions can complete and gain performance improvement

by utilizing more machines and cores. We believe that our general,

distributed algorithm fits many specification mining algorithms well, and

can be instantiated with them to gain much performance and scalability

improvements.

Keywords: Dynamic Analysis, Execution Profiles, Hadoop, MapReduce,

Parallelization, Scalability, Specification Mining
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Methods:

• Specification Mining Algorithms

1. Frequent Pattern-Based Specification Miner

2. Value-Based Invariant Miner

3. Finite-State Machine Specification Miner

4. Live Sequence Chart Miner

5. Temporal Rule Miner

• Distributed Computing Models

1. Message-Passing

2. MapReduce

3. Hadoop

1 Introduction

Specification mining is a family of program analysis techniques that extract

likely specifications from code or execution traces. Specifications refer to certain

patterns or properties that should hold in a program. They can take various

forms, such as temporal rules about the order of certain method calls, and

invariants that constrain method parameters and return values. The extracted

specifications can provide much information about program properties which are

not explicitly documented, and can be used to improve program documentation,

comprehension, and verification tasks (Lo et al. 2011a).
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An important challenge for many specification mining algorithms relates

to their scalability since they need to take many potentially large program

behavioral profiles as input to search for common patterns. A common way

used to collect behavioral profiles is to execute a subject program with many

test cases. In order to exercise the many behaviors of a large program, many

test cases would need to be run. Also, the resultant execution traces are likely

to be huge. The size of a code base, the number of test cases, the sizes

of generated traces are all hurdles to the scalability of existing specification

mining algorithms. For example, our evaluation on four existing specification

mining algorithms, (1) CLIPPER (Lo et al. 2007a), a recurring pattern mining

algorithm, (2) Daikon (Ernst et al. 2007), a value-based invariant mining

algorithm, (3) k-tails (Kumar et al. 2011; Lorenzoli et al. 2008), a finite-state

machine inference algorithm, and (4) LM (Lo et al. 2007b), a sequence diagram

mining algorithm, shows that they fail to analyze the large traces ranging from

41MB to 157GB generated from seven DaCaPo benchmark programs (Blackburn

et al. 2006). A fifth algorithm, Perracotta (Yang et al. 2006), a temporal rule

mining algorithm, takes hours to analyze the traces before producing some

specifications. In order to analyze many large traces from a large code base,

existing specification mining algorithms need to be made much more scalable.

We observe that most specification mining algorithms are data intensive on

one hand but computationally relatively repetitive on the other hand, and many

repetitive tasks in those algorithms can be executed concurrently. Even though

tasks in different algorithms may require various synchronization, the needed
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synchronization can be minimized with careful arrangements of the tasks to

facilitate speedup when the algorithms are distributed onto multiple computers.

This is the main insight that drives this chapter to address the scalability issue of

many existing specification mining algorithms. Similar observations and ideas

have been proposed to parallelize various algorithms in scientific computing,

software engineering, data mining, and many other domains (e.g., (Dyer et al.

2013; Ene et al. 2011; MPIF 2012; Miliaraki et al. 2013; Shang et al. 2010)).

However, as far as we know, there is little prior study on parallelization of

various kinds of specification mining algorithms.

To help address the challenge of making various existing specification mining

algorithms more scalable,1 we propose a general specification mining algorithm

that can perform repetitive specification mining tasks across multiple computers

based on a general distributed computing model. The general algorithm is

designed in such a way that itself abstracts away specific algorithmic details but

captures the essences of many existing specification mining algorithms that mine

specifications from program execution traces. We present this algorithm in the

context of a message-passing based distributed computing model, in particular

MapReduce. An algorithm designer can transform a sequential specification

mining algorithm to a distributed one by following the guided steps in our

algorithm and instantiating it with concrete algorithm-specific details.
1Note that it is not our goal to improve the accuracy of existing specification mining

algorithms in inferring correct specifications. Rather, our goal is to improve their scalability.

When evaluating the accuracy of the parallelized algorithms, we only need to compare it

against their sequential versions, instead of human developers’ ground truth.
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To evaluate our general algorithm, we instantiate it with five existing

sequential specification mining algorithms on top of a popular distributed

computing model—MapReduce (MR) (Dean et al. 2004) and one of its open-

source implementations—Hadoop (ASF 2013), and evaluate the scalability of

the distributed versions of these algorithms. In particular, we show how

we follow the guidance of our general algorithm, and use a common input-

trace splitting scheme and several algorithm-specific techniques to divide and

conquer five specification mining algorithms, (1) CLIPPER (Lo et al. 2007a),

(2) Daikon (Ernst et al. 2007), (3) k-tails (Kumar et al. 2011; Lorenzoli et

al. 2008), (4) LM (Lo et al. 2007b), and (5) Perracotta (Yang et al. 2006),

and transform them into distributed ones. Note that the five algorithms

produce different kinds of specifications expressed in different target languages,

such as frequent patterns, value invariants, finite-state machines, sequence

diagrams, and temporal rules. We evaluate the distributed algorithms on seven

Java programs from the DaCapo benchmark (Blackburn et al. 2006) whose

traces range from 41MB to 157GB. The results are encouraging. Perracotta’s

distributed version implemented within MapReduce (PerracottaMR) running on

four machines (using up to eight CPU cores in total) can speed up the original

version by 3 to 18 times. The four other original algorithms are unable to analyze

the large traces, while their distributed versions (CLIPPERMR, DaikonMR, k-

tailsMR, and LMMR) can complete within hours, and gain more performance

improvement when more machines are employed.

Our main finding is that many specification mining algorithms fit distributed
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computing models well as they are comprised of many repetitive computational

tasks dealing with data that may be split into partitions with limited overlap-

ping. Our general algorithm also captures the essence of many specification

mining algorithms well and can be used to help transform sequential algorithms

into distributed ones to gain much performance and scalability improvements

by implementing them within the MapReduce framework and executing them

on clusters of computers. We believe our findings are applicable to many

other specification mining algorithms, especially those that mine specifications

expressed in one of the five target languages that we have investigated.

The contributions of this chapter are as follows:

1. Similar to many prior studies on parallelization of other algorithms in

various domains, we observe that many specification mining algorithms can

be fit into a distributed programming model, and much performance and

scalability gains can be achieved by parallelizing them within a distributed

computing framework, such as MapReduce.

2. We present a general distributed specification mining algorithm that

abstracts away particular algorithmic details and represents the essences

of many existing specification mining algorithms.

3. We propose an input-trace splitting scheme and several algorithm-specific

techniques to instantiate the general algorithm with five existing sequential

specification mining algorithms to create five distributed algorithms.

4. We perform an empirical evaluation with seven Java programs from the
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DaCapo benchmark and show that the five distributed algorithms perform

significantly faster than the original algorithms on many large traces.

This chapter is organized as follows. Section 2 provides a brief introduction

to the five specification mining approaches and the distributed computing model

we use in our work. Section 3 presents the main technical contribution of the

chapter, that is, the general distributed specification mining algorithm and

its instantiations with the five existing algorithms. Our implementation and

empirical evaluation are described in Section 4. Section 5 discusses related

work. Section 6 concludes with future work.

2 Background

In this section, we first briefly introduce each of the five mining algorithms that

we parallelize. Then, we introduce the distributed computing model used in

this chapter—the message-passing model and MapReduce.

2.1 Specification Mining Algorithms

Based on the format of the specifications that a specification mining algorithm

produces (Lo et al. 2011a), many algorithms can be grouped into ones that

produce (1) frequent patterns, (2) value-based invariants, (3) finite-state

machines, (4) sequence diagrams, and (5) temporal rules. We briefly describe

these families of algorithms in the following.

We present sample outputs of the five kinds specification mining algorithms
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in Figure 1, which can be mined from various kinds of program execution traces.

Sequence Diagram

Automata

Temporal Rules

Frequent Patterns

Program 
Execution 
Traces

Invariants

Figure 1: Sample Outputs of Specification Mining Algorithms

2.1.1 Mining Frequent Patterns

Discovering patterns that appear many times in large input datasets is a well-

known problem in data mining (Han et al. 2006). Many algorithms, such

as frequent itemset mining, sequential pattern mining, and graph pattern

mining, aim to capture frequent patterns. A number of algorithms specific

to software engineering tasks have been proposed. For example, interaction

pattern mining (El-Ramly et al. 2002) analyzes traces of system-user interactions

to discover frequently recurring activities and uses them as parts of functional

requirements for re-engineering. Iterative pattern mining (CLIPPER) (Lo et al.

2007a) takes in a set of execution profiles containing methods invoked during the
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executions and then identifies methods that often need to be invoked together

or in a particular order as usage specifications for the methods.

2.1.2 Mining Value-Based Invariants

A value-based invariant captures the relation (e.g., x==y) among program

variables that should be satisfied at a program point (e.g., when a method

returns). Daikon is the pioneer and most well-known work extracting value-

based invariants (Ernst et al. 2007). It has many invariant templates, such as

Equality (e.g., x==y), IntGreaterThan (e.g., iVal1>=iVal2), IntArraySorted

(e.g., isSorted(iArray1)), etc. Based on a set of input execution traces,

Daikon matches the traces to the templates at various program points of

interests (e.g., method entries and exits). Instances of the invariant templates

satisfied by all (or most) of the input traces are outputted.

Value-based invariants generated by Daikon can be used independently, or be

used in conjunction with other kinds of specifications, e.g., to enrich finite-state

machines (Lorenzoli et al. 2008) or sequence diagrams (Lo et al. 2010).

2.1.3 Mining Finite-State Machines

Many of these algorithms extend or make use of techniques from the grammar

inference community (Ammons et al. 2002; Biermann et al. 1972; Lorenzoli et al.

2008). One of these algorithms, k-tails (Biermann et al. 1972), builds a prefix

tree acceptor from a set of execution traces that capture input-output behaviors;

the nodes of the prefix tree acceptor are then merged based on some evaluation
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criteria, e.g., the similarity of the subsequent k-paths whose lengths are at most

k, to form finite-state machines, which are then used as specifications of program

behaviors.

2.1.4 Mining Sequence Diagrams

Sequence diagrams are a visual formalism to specify the ordering of events

among components in a system. Different algorithms exist for mining various

kinds of sequence diagrams, such as UML sequence diagrams (Briand et

al. 2006), message sequence charts (Sousa et al. 2007), message sequence

graphs (Kumar et al. 2011), live sequence charts (LSCs) (Damm et al. 2001;

Harel et al. 2008; Lo et al. 2007b), etc. Such visual diagrams can help

maintainers of a program to better understand how various components in the

program interact with each other.

2.1.5 Mining Temporal Rules

Temporal rules can be expressed in various formats, such as association

rules (Livshits et al. 2005; Yang et al. 2006), temporal logics (Lo et al. 2008b;

Wasylkowski et al. 2011), “Whenever x1, . . . , xn occur, y1, . . . , ym also occur”,

etc. Such rules help to make it clearer which operations should or should not

occur in certain orders so that maintainers of the program may make changes

accordingly. Most temporal rule mining algorithms evaluate the validity of a

rule based on the likelihood that the xs are followed by the ys, and the number

of times x followed by y in the execution traces. They mainly differ in the
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semantics of the mined rules, the allowable values of n and m, and the metrics

used to evaluate rule validity. For example, Perracotta extracts association rules

of short length (n and m being 1) (Yang et al. 2006); Others extract temporal

rules of longer lengths (Lo et al. 2008b).

2.2 Distributed Computing

Similar to many prior studies on parallelization of other algorithms in various

domains, we observe that many specification mining algorithms can be broken

into computational tasks that are repetitively applied to various parts of

input data, and thus fit well to a distributed computing model. This section

summarizes the concepts we need.

2.2.1 Message-Passing Model

We focus on distributed algorithms in the message-passing model where

multiple processes on multiple computing nodes have their own local memory

and communicate with each other by message passing, although our general

algorithm may be adapted to other distributed computing models as well.

The processes share information by sending/receiving (or dispatching/collect-

ing) data to/from each other. The processes most likely run the same programs,

and the whole system should work correctly regardless of the messaging relations

among the processes or the structure of the network. A popular standard

and message-passing system is Message Passing Interface (MPI) defined in

MPIF (2012). Such models themselves do not impose particular restrictions
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on the mechanism for messaging, and thus gives programmers much flexibility

in algorithm/system designs. However, this also means that programmers need

to deal with actual sending/receiving of messages, failure recovery, managing

running processes, etc.

2.2.2 MapReduce

MapReduce is a simplified distributed computing model for processing large

data in a cluster of computers (Dean et al. 2004), reducing programmers’ burden

of dealing with actual sending/receiving of messages and various system issues

so that programmers may focus more on the algorithmic issues. It can be

implemented on top of a message-passing system, such as MPI (Ho et al. 2010).

In this chapter, we base our implementation on Hadoop (ASF 2013), a free and

open-source implementation of MapReduce.

The model splits the problem at hand into smaller sub-problems as

requested, distributes these sub-problems among the computers in the cluster,

and collects and combines the results that are passed back. Besides the splitting

function, the key to use the MapReduce framework is to define two functions: (1)

map, which takes one input key/value pair (Kip, Vip), and generates zero or more

intermediate key/value pairs (list(Kint, Vint)), and (2) reduce, which composes

all intermediate values associated with the same key into a final output. The

splitting function, customizable to split input data differently, partitions the

whole input dataset into small pieces, and transforms each piece into a set of

key/value pairs.
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Table 1: Map and Reduce Operations

Operation Input Output

map (Kip,Vip) list(Kint,Vint)

reduce (Kint,list(Vint)) Opart

MapReduce works by automatically applying the map function on each of

the key/value pairs from the splitting function to produce an intermediate set of

key/value pairs. It then automatically groups all intermediate values associated

with the same key together; the reduce function is then applied to each group

to result in a partial output Opart; all partial outputs are concatenated to form

the final output. The inputs and outputs of the map and reduce functions are

illustrated in Table 1. The following sections use the same symbols to represent

the inputs and outputs of the functions as well.

3 Distributed Specification Mining

We now present the main contribution of this chapter: a general distributed

specification mining algorithm and redefinitions of five concrete algorithms in

the MapReduce model.

3.1 Principles

We first present our general principles and algorithm on parallelizing specifica-

tion mining algorithms.
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3.1.1 Abstracting Specification Mining Algorithms

Even though many specification mining algorithms are not initially designed

to be distributed, we can divide-and-conquer by exploiting the parallelism

in various parts of the algorithms based on our observation that many

computational tasks in the algorithms are repetitively applied to various parts

of input data. Fig. 2 illustrates the design idea of our general, distributed

specification algorithm.

Figure 2: Overview of Our Distributed Specification Mining Algorithm

The key is to extract such tasks from existing algorithms that are repetitively

applied to different parts of the input traces so that the input traces can be

split and dispatched to and processed at different computing nodes. We note

that many algorithms contain local mining tasks that can be done completely

on a small part of the input data without the need of other parts. For some

algorithms, however, there are still global mining tasks that need to operate on
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all data and we need to ensure those tasks can run scalably. Fortunately, we

note that the mining algorithms rely on various “statistics” that measure the

likelihood of a candidate specification to be valid. It is rarely necessary for the

mining algorithms to really operate on all data at once in memory. Thus, we

may also split the data (either the input traces or intermediate results from

other tasks) needed by the global mining tasks so that they operate on smaller

data and become more parallelizable and scalable; or, we can replace the global

mining tasks with certain local ones plus certain specification compositions since

many specifications are compositional. Multiple iterations of local and global

mining tasks may be interweaved to find specifications minded by the normal

sequential algorithms.

The general steps of our approach for parallelizing a given specification

mining algorithm that takes a set of execution traces as input are as follows:

(1) Extract “local” operations in the algorithm that can be done in a separate

trunk of the traces. The boundaries of trace trunks can be defined based

on the operations and be algorithm-specific.

(2) Extract “global” operations in the algorithm that may need to be done with

all data and decide how the data needed by the global operations may be

split and/or replace the global operations with local ones.

(3) Split the input traces into trunks accordingly, and dispatch them to different

computing nodes for either local or global operations.

(4) Collect results from different computing nodes, and compose them to
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produce final specification outputs.

To produce efficient distributed versions of the sequential specification min-

ing algorithms, one needs to ensure that the extracted local/global operations

can be independent and executed concurrently with little or no synchronization.

The steps described here are generic, although many details (what the local and

global operations are, how to split data, how to dispatch/collect, how to compose

results, etc.) are algorithm-specific, which are further explained in Section 3.2.

3.1.2 Distributed Specification Mining With MapReduce

MapReduce simplifies the general distributed computing model by providing

automated mechanisms for setting up a “master” process that manages work

allocated to “worker” processes, dispatching work to a worker, collecting results

from a worker, recovering from failures, utilizing data locality, etc. We further

describe our general specification mining steps in the context of MapReduce as

follows:

(1) Define an appropriate map function that corresponds to a local mining

task. Each instance of the map function runs in parallel with respect to

other instances; it takes one trace trunk Vip as input to produce a set

of intermediate specification mining results (intermediate key/value pairs,

list(Kint,Vint), in MapReduce’s terminology). The map function must be

designed in such a way that the operation on Vip is independent on other

trace trunks.

(2) Define an appropriate reduce function that corresponds to a global mining
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task or a composition operation that combines results (i.e., the intermediate

key/value pairs, list(Kint,Vint)) from local mining tasks. We note that many

algorithms rarely need global mining tasks and the composition operations

may be as simple as concatenation or filtering or recursive applications of

some local mining tasks (see algorithm-specific steps in Section 3.2).

(3) Define an appropriate record reader that splits input traces into trunks

suitable for the map function. For example, if the map function from a

mining algorithm deals with invariants within a method, a trace may be

split at method entry and exit points. Each trace trunk can be identified

by a trace identifier Kip and its content Vip.

(4) Let the MapReduce framework automatically handles the actual trace

splitting, dispatching, and result collection.

We note that the above general steps provide guidance to make it easier

to transform sequential specification mining algorithms into distributed ones,

although strategies and techniques used to identify the local/global tasks in

various algorithms might be different from each other, and there can be multiple

ways to define the local/global operations, split the data, etc. for a given

algorithm.

In the following, we describe our concrete instantiations of the general

algorithm on five specification mining algorithms: (1) CLIPPER (Lo et al.

2007a), a recurring pattern mining algorithm, (2) Daikon (Ernst et al. 2007), a

value-based invariant mining algorithm, (3) k-tails (Kumar et al. 2011; Lorenzoli
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et al. 2008), a finite-state machine inference algorithm, and (4) LM (Lo et al.

2007b), a sequence diagram mining algorithm, and (5) Perracotta (Yang et al.

2006), a temporal rule mining algorithm. We believe our findings can be easily

adapted to other specification mining algorithms, especially those that mine

specifications in languages similar to one of the five algorithms.

3.2 Algorithm-Specific Parallelization

3.2.1 Iterative Pattern Mining with MapReduce

We illustrate how to instantiate our general algorithm with CLIPPER, an

iterative pattern mining algorithm (Lo et al. 2007a), to create the distributed

version CLIPPERMR.

CLIPPER, similar to many frequent pattern/sequence mining algorithms,

explores the search space of all possible patterns. It starts with small patterns

and then grows these patterns to larger ones. Pattern growth is performed

repeatedly; each iteration grows a pattern by one unit. The iterations follow the

depth-first search procedure. During the traversal of search space, every pattern

that is frequent (i.e., appearing many times in the data set) is outputted. There

have been studies on parallelization of frequent sequence mining algorithms,

such as Miliaraki et al. (2013). Their work uses MapReduce too, but our data

sources and the subject algorithms are specific to specification mining, which

requires different parallelization strategies and techniques. The semantics of

the sequential patterns mined by their approaches is also different from that of

iterative patterns mined by CLIPPER. Their approach relies on w-equivalency
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Algorithm 1 Generic Algorithm of Frequent Pattern Mining
1: Procedure MinePatterns:

2: Let SMALL = Small frequent patterns

3: for all s in SMALL do

4: TraverseSSpace(s)

5: end for

6:

7: Procedure TraverseSSpace(Pattern s):

8: Output s

9: Let NEXT= GrowPattern(s)

10: for all n in NEXT do

11: TraverseSSpace(n)

12: end for

13:

14: Procedure GrowPattern(Pattern s):

15: Let BIGGER = s++e , where e is a growth unit and ++ is a grow operation

16: for all s’ in BIGGER do

17: if s’ is frequent then

18: Output s’

19: end if

20: end for

property which may hold only for their sequential patterns.

A piece of pseudocode for CLIPPER, as well as many frequent pattern

mining algorithms, is shown in Algorithm 1. Intuitively, checking if a pattern

is frequent or not could potentially be a parallelizable task. Unfortunately, it
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is not straightforward to break the pattern mining problem into independent

tasks. On one hand, as we grow a pattern one unit at a time, if the pattern

is not frequent, the longer pattern is not frequent either. In other words, some

tasks can be omitted after the evaluation of other tasks and thus dependant on

others. On the other hand, without the strategy of omitting longer patterns, the

number of tasks grows exponentially with respect to the length of the traces.

Fortunately, we identify a common operation that is shared by these tasks,

namely pattern growth (i.e., procedure GrowPattern in Algorithm 1). As pattern

growth is performed many times, it is the critical operation that the mining

algorithm spends much resource on. Thus, rather than trying to parallelize the

whole pattern mining algorithm, we parallelize the pattern growth procedure.

The pattern growth procedure considers a pattern P and tries to extend it

to patterns P++e where e is a growth unit and ++ is a growth operation (e.g.,

appending an event to an iterative pattern—from 〈m1〉 to 〈m1,m2〉).

For an iterative pattern P and trace T , we store the indices pointing to the

various instances of the pattern in T . When we try to grow the pattern P to

each pattern P ′ ∈ {P++e}, we can update these indices to point to instances of

the pattern P ′. From the instances of P ′, we could then know if P ′ is frequent

and thus should be in the output. Thus, we break this operation of checking all

P ′ ∈ {P++e} into parallelizable tasks, each of which is in the following format:

check if one pattern P ′ is frequent.

We realize GrowPattern(Pattern P) by instantiating the map and reduce

functions in our general algorithm as follows. The map function works in
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(a) (b) (c)

Kip Trace identifier Trace identifier Trace identifier

Vip (Trace content, Indices) Trace content Trace content

Kint Next pattern: 
P’ = P ++ e

Method signature Event Group: Gx

MAP

P’ = P ++ e

Vint (Id , Indices)
Id = Trace identifier
Indices = Indices for P’ 

(Metadata, Entries, 
Exits)

Sub-trace with 
events in Gx

Opart P ’, if sup(P’) ≥ min_sup
Nothing, otherwise

Daikon
invariants

Finite-state machine

REDUCE

Figure 3: MapReduce inputs (Kip, Vip), intermediate key/value pairs (Kint,

Vint), and outputs (Opart) for GrowPattern(Pattern P) of CLIPPER (Column

(a)), Daikon (Column (b)), and k-tails (Column (c))

parallel on each trace and updates the indices pointing to instances of P to

indices of instances of P ′ ∈ {P++e}. It creates an intermediate key/value pair

(Kint/Vint) where the key corresponds to a P ′ and the value corresponds to the

indices pointing to instances of P ′ in the trace. MapReduce groups all indices

corresponding to a P ′. Each intermediate key Kint and all of its corresponding

intermediate values form a task that is sent to the reduce function. The reduce

function computes the support of a pattern P ′ and outputs it if the support

is more than the minimum support threshold min_sup (i.e., if P ′ is frequent).

22



We list the inputs (Kip, Vip), intermediate key/value pairs (Kint, Vint), and

outputs (Opart) in the Column (a) in Fig. 3 for CLIPPERMR.

Given a large execution trace, the pattern growth operation can be performed

in parallel. Each trace is processed in parallel by multiple instances of the map

function. Also, the process to check if a pattern P ′ is frequent or not could be

done in parallel by multiple instances of the reduce function.

Note that we only parallelize the GrowPattern operation, and thus each

MapReduce procedure in our implementation only performs one unit of pattern

growth operation (i.e., P → P++e). Since many software properties are short

and may be specified with only a few operation units (e.g., rules used in Static

Driver Verifier (Microsoft)), we restrict the size of the patterns mined to be at

most 3 to limit the experimental costs.

Example: Given two traces trace1 = 〈a, b, c〉 and trace2 = 〈a, b〉, we want

to mine patterns with support values above min_sup = 2 using CLIPPERMR.

In the first iteration, CLIPPERMR mines patterns of length 1. We have two

instances of the map function map1 and map2 that take as input trace1 and

trace2, respectively. Then map1 creates the following intermediate key/value

pairs: {Kint = 〈a〉, Vint = (trace1, {1})}, {Kint = 〈b〉, Vint = (trace1, {2})},

and {Kint = 〈c〉, Vint = (trace1, {3})}. Map function map2 produces {Kint =

〈a〉, Vint = (trace2, {1})}, and {Kint = 〈b〉, Vint = (trace2, {2})}. We have three

instances of the reduce function: reduce1, reduce2, and reduce3. reduce1 takes

pairs with the key 〈a〉 and checks whether the number of instances is larger than

min_sup. Similarly, reduce2 and reduce3 collects pairs with the keys 〈b〉 and
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〈c〉, respectively. The reduce functions output patterns 〈a〉 and 〈b〉 because they

satisfy the threshold min_sup. In the next iteration, CLIPPERMR mines

patterns of length 2. The map functions generate the following intermediate

key/value pairs: {Kint = 〈a, b〉, Vint = (trace1, {1})}, {Kint = 〈a, c〉, Vint =

(trace1, {1})}, {Kint = 〈b, c〉, Vint = (trace1, {2})}, and {Kint = 〈a, b〉, Vint =

(trace2, {1})}. The reduce functions group the instances based on the key

values and find that pattern 〈a, b〉 satisfies the min_sup threshold. Finally,

CLIPPERMR would return the following frequent patterns: 〈a〉, 〈b〉, and 〈a, b〉.

3.2.2 Value-Based Invariants Mining with MapReduce

We parallelize Daikon into a distributed version DaikonMR by instantiating our

general algorithm in MapReduce.

Similar to Daikon, DaikonMR takes as input a set of execution traces and

outputs invariants for each method that hold for all execution traces. We

parallelize Daikon by splitting the input traces: Rather than feeding the whole

set of traces to one instance of Daikon, we process the traces for each method

separately, and in parallel—the trace logs for each method are fed into one

instance of Daikon. This allows us to instantiate our general algorithm for

Daikon relatively easily without the need for synchronization because the traces

of different methods are independent from one another for inferring method-level

invariants.

In DaikonMR, the map function processes a set of traces and outputs

〈method signature, (metadata, entries, and exits)〉 pairs. The latter part of each
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pair contains method metadata (e.g., the number of parameters a method

has, the types of the parameters, etc.), and parts of the execution traces

corresponding to the states of the various variables when entries and exits

of the methods are executed. The reduce function runs an instance of

Daikon on (metadata, entries, and exits) of the same method and outputs

〈method signature,method invariants〉 pair. We illustrate the inputs, interme-

diate key/value pairs, and outputs for DaikonMR in MapReduce’s terminology

in the Column (b) in Fig. 3.

Many instances of Daikon are executed in parallel, each of which runs on a

rather small input. Thus, each instance of Daikon requires much less memory

and is able to quickly produce a subset of the results.

3.2.3 Finite-State Machine Mining with MapReduce

Many finite-state machine mining algorithms are variants of the k-tails algorith-

m (Biermann et al. 1972). The algorithms investigate a set of execution traces

and produce a single finite-state machine. However, this finite-state machine

may be too large and difficult to comprehend. Many studies propose methods

to split the traces and learn a finite-state machine for each sub-trace whose ideas

can be instantiated in MapReduce with our general algorithm, and we name it

as k-tailsMR.

Consider a mapping function: EVENTS→GROUP, where EVENTS is the

set of events (i.e., method calls) in the execution traces, and GROUP is a group

identifier. Events in the same group are related. Many notions of relatedness
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may be defined (c.f., (Pradel et al. 2009)). In this chapter we consider one such

notion: a group of events is composed of invocations of methods appearing in

the same class.

The map function slices each trace into a set of sub-traces based on the group

membership of each event. MapReduce collects the sub-traces belonging to the

same group. The reduce function produces one finite-state machine for a group

of sub-traces by invoking an instance of the k-tails algorithm. We illustrate the

inputs, intermediate key/value pairs, and outputs for k-tailsMR in the Column

(c) in Fig. 3.

The slicing could be done in parallel for separate execution traces. In

addition, the learning of multiple finite-state machines could be done in parallel.

3.2.4 Sequence Diagram Mining with MapReduce

We illustrate how to transform the LM algorithm (Lo et al. 2007b) that mines

live sequence charts (LSC) (Damm et al. 2001; Harel et al. 2008) into LMMR.

An LSC contains two parts: pre-chart and main-chart. The semantics of

LSC dictates that whenever the pre-chart is observed, eventually the main-chart

would also be observed. The goal of the mining task is to find all LSCs that

appear frequently (i.e., the support of the LSC is more thanmin_sup), and that

the proportion of pre-chart being followed by main-chart in the execution traces

is greater than a certain min_conf threshold. LSCs obeying these criteria are

considered significant.

The LSC mining algorithm works in two steps:
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(a) (b)

Kip True Trace identifier

Vip Frequent charts:{C1,C2, …, Cn} Trace content

Kint Support Rule: m1() -> m2()

V Pattern (p ,p)

MAP

Vint Pattern (pAL ,p)
pAL = # Satisfying Partition
p    = # Partition

Opart {L=LSC(pre,pre++main),
where:
L is significant, pre in list(Vint),
pre++main in list(Vint)}

m1() -> m2(), if (pAL/p) ≥ T
Nothing, otherwise

REDUCE

Figure 4: MapReduce inputs (Kip, Vip), intermediate key/value pairs (Kint,

Vint), and outputs (Opart) for LM (Column (a)), and Perracotta (Column (b))

(1) Mine frequent charts;

(2) Compose frequent charts into significant LSCs.

For the first step, we employ the same strategy as described in Section 3.2.1.

For the second step, we consider the special case of min_conf=100% (i.e., mining

of LSCs that are always observed in the execution traces—the pre-chart is always

eventually followed by the main-chart).

In LSC mining, Lo and Maoz define positive witnesses of a chart C, denoted

by pos(C), as the number of trace segments that obey chart C (Lo et al. 2008a).
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They also define weak negative witnesses of C, denoted by w_neg(C), as the

number of trace segments that do not obey C due to end of trace being reached.

The support of an LSC L= pre→main is simply the number of positive witnesses

of pre++main. The confidence of an LSC L is given by:

conf (L) = |pos(pre++main)|+|w_neg(pre++main)|
|pos(pre)|

We first note that LSCs with 100% confidence must be composed of pre-

chart and main-chart where |pos(pre++main)| + |w_neg(pre++main)| equals

|pos(pre)|. We could break the task of constructing all significant LSCs to sub-

tasks: find all significant LSCs of a particular support value.

We name the MapReduce version of LM as LMMR. For LMMR, we use

the following map and reduce functions. The map function works on the set

of patterns and simply group pattern C, where either pos(C) + w_neg(C) or

pos(C) has a particular value into a bucket. If a pattern C has different pos(C)+

w_neg(C) and pos(C) values, it is put into two buckets. The reduce function

constructs significant LSCs by composing two patterns in each bucket. We list

the involved inputs, intermediate key/value pairs, and outputs in the Column

(a) in Fig. 4.

The composition of charts into LSCs is done in parallel for separate buckets.

If the significant LSCs have many different support values, the speed up in the

second stage of LSC mining due to the parallelization could be substantial.

Finally, note that LMMR applies MapReduce framework twice, sequentially

composed in a pipeline. The first application computes the frequent charts using
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the solution presented in Section 3.2.1. The output of this application is used as

an input for the second application described above. We note that composition

of instances of MapReduce in a pipeline is also common (e.g., (Chambers et al.

2010)).

3.2.5 Temporal Rule Mining with MapReduce

We illustrate how to re-implement basic Perracotta (Yang et al. 2006), by using

our general algorithm and MapReduce. Perracotta proposes several extensions

and variants to the main algorithm, e.g., chaining, etc. We consider only the

basic Perracotta, which computes alternating properties. We call the resultant

algorithm PerracottaMR.

For n unique methods in the execution traces, Perracotta checks n2 possible

temporal specifications of the format: “Whenever method m1 is executed,

eventually method m2 is executed” (denoted as m1 → m2), to see if the

specification is strongly observed in the execution traces. A measure known

as satisfaction rate is defined based on the proportion of partitions in the traces

that satisfy m+
1 m

+
2 (i.e., p) that also satisfy the temporal rule m1 → m2 (i.e.,

pAL). It is often the case that n is large and Perracotta would take a lot

of memory to process the traces together. We break the original task into

small subtasks by splitting each long trace into smaller sub-traces of size k each

and process them independently—by default we set k to be 300,000 events for

PerracottaMR. As k is relatively large, by the principle of locality (i.e., related

events appear close together; c.f., (Gabel et al. 2010)), there will be no or little
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loss in the mined specifications.

Following our general algorithm, we define the followingmap and reduce func-

tions. The map function is applied to each execution subtrace independently.

For each execution subtrace, the map function computes for each potential rule

mi → mj two numbers: the number of partitions in the subtrace (i.e., p) and the

number of partitions in the subtrace that satisfy the rule (i.e., pAL). The method

pair is the intermediate key, while the two numbers p and pAL are the value in

the intermediate key/value pair (Kint and Vint). MapReduce groups the counts

for the same rule together. The reduce function simply sums up the p and pAL

for the separate execution sub-traces and computes a satisfaction rate for the

corresponding rule. Rules that satisfy a user-defined threshold of satisfaction

rate (i.e., S), are provided as output. By default, the satisfaction rate is 0.8.

We list the involved inputs, intermediate key/value pairs, and outputs in the

Column (b) in Fig. 4.

Notice that the sub-traces can now be processed in parallel using multiple

runs of the map and reduce functions on potentially different machines. Also,

the computation and checking of the satisfaction rate could be done in parallel.

No synchronization is needed among different sub-traces.

4 Implementation & Empirical Evaluation

We have implemented the algorithms described in the previous sections in

Hadoop (ASF 2013), one of the most popular MapReduce implementations.
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We describe our datasets, experimental settings, research questions, and

experimental results in the following.

4.1 Dataset & Experimental Settings

We use seven programs, avrora, batik, fop, luindex, lusearch, xalan, and tomcat,

from the DaCapo benchmark (Blackburn et al. 2006) as our subjects. We

also have implemented a Java instrumentation tool to collect all methods that

get executed (referred to as trace databases later) for the experiments with

CLIPPER, k-tails, LM, and Perracotta; we use Chicory, a part of Daikon,

to collect the traces for Daikon. The sizes for Daikon traces for these seven

programs range from 18GB to 157GB, while the sizes of the trace databases

range from 41MB to 533MB. The experiments are run on four Acer M680G

machines, each having an Intel Core i5 4-core CPU, 4GB of memory, and 2TB

of hard disk, installed with the operating system Ubuntu version 12.04. One of

the machines is used as the master; three others are slaves. We also configure

Hadoop (version 2.0.0-alpha) to use up to three cores for distributed map and

reduce tasks on each slave machine to reduce the effects of potential resource

contentions. We set the maximum memory of each map/reduce task to 1,200

MB and leave the other settings to their default values (e.g., the Hadoop file

system’s replication factor). Before running the MR versions of the specification

mining algorithms, we also copy all traces from the usual ext4 file system under

Ubuntu into the Hadoop file system as a one-time cost. To reduce experimental

bias, we run each experiment with each version of the various specification
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mining algorithms two times and report the averages across the two runs.

4.2 Research Questions & Results

Our study aims to answer the following research questions:

RQ1 Could existing specification mining algorithms scale to process large

execution traces?

RQ2 Could MapReduce be used to improve the scalability of existing specifica-

tion mining algorithms?

RQ3 How much more scalable our mining algorithms would be when we increase

the number of processing cores?

We discuss the answers to the above research questions for each of the five

specification mining algorithms.

4.2.1 Mining Frequent Patterns

To answer RQ1, we run the original version of CLIPPER on the traces. This

version mines patterns recursively and needs to load the complete trace database

into memory. Thus even for the smallest trace database with size of 41MB (from

batik), original CLIPPER is unable to run.

To answer RQ2, we examine the performance of CLIPPERMR with up

to eight parallel map and reduce tasks. CLIPPERMR(8) (that is, with eight

parallel map and reduce tasks) outputs the invariants for all traces from the

seven programs within 1493 minutes. This shows CLIPPERMR improves the

scalability of the original CLIPPER.
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Figure 5: Performance Improvements for CLIPPER

To answer RQ3, we compare the time cost for CLIPPERMR as we increase

the number of parallel tasks (see Fig. 5). We find that the performance improves

as we increase the number of parallel tasks. By increasing the number of parallel

MapReduce tasks from one to four, we gain a speed up in range of 1.4 to 3.2

times. By increasing the number of parallel MapReduce tasks from one to eight,

we gain a speed up in range of 1.7 to 4.6 times. The reason why CLIPPERMR

cannot speed up as much as parallelized versions of the other mining algorithms

(see below) is that it needs to process a lot of I/O operations across different

nodes in Hadoop system.

4.2.2 Mining Value-Based Invariants

To answer RQ1, we run the original Daikon on the traces. Since the traces from

the seven programs are all larger than 18GB, the original Daikon runs out of

memory before outputting any invariant.

To answer RQ2, we examine the performance of the original Daikon with
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that of DaikonMR with up to eight parallel map and reduce tasks. DaikonMR(8)

outputs the invariants for all traces from seven programs within 2374 minutes,

and we are only unable to infer the invariants of less than 5% of the methods

(since we terminate a Daikon instance if it takes more than 600 seconds to

complete). Obviously, DaikonMR improves the scalability of the original Daikon.

To answer RQ3, we compare the time cost for DaikonMR as we increase the

number of parallel tasks (see Fig. 6). We find that the performance improves

when we increase the number of parallel tasks. By increasing the number of

parallel MapReduce tasks from one to four, we gain a speed up in range of 2.7

to 3 times. By increasing the number of parallel MapReduce tasks from one to

eight, we gain a speed up in range of 4.2 to 5.4 times. We notice that the rate of

speed up decreases as we increase the number of parallel tasks from 4 to 8. This

is so as there are more resource contentions between the mappers and reducers

as the number of parallel tasks are increased in our small four-machine cluster

with limited memory.

4.2.3 Mining Finite-State Machines

To answer RQ1 and RQ2, we compare the performance of the original k-

tails with that of k-tailsMR(8). The original k-tails ran out of memory before

outputting any finite-state machines. On the other hand, k-tailsMR(8) is able

to output finite-state machines for all programs in 40 minutes. Similar to

DaikonMR, we also employ a timeout and terminate an instance of k-tails

construction process run in one reducer if it does not complete within 120
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Figure 6: Performance Improvements for Daikon

seconds. We find that we are unable to run k-tails to completion for only 5% of

the classes. Obviously, k-tailsMR improves the scalability of the original k-tails.

To answer RQ3, we compare the time cost for k-tailsMR as we increase the

number of parallel tasks (see Fig. 7). We find that the performance improves as

we increase the number of parallel tasks. By increasing the number of parallel

MapReduce tasks from one to four, we gain a speed up in range of 2 to 3.7 times.

By increasing the number of parallel MapReduce tasks from one to eight, we

gain a speed up in range of 2.3 to 5.6 times.

4.2.4 Mining Sequence Diagrams

To answer RQ1 and RQ2, we compare the performance of the original LM with

that of LMMR(8). Original LM is unable to run because of memory problems,

while LMMR is able to get the sequence diagrams (since LMMR is based on

CLIPPERMR). LMMR(8) can output the invariants for all traces from the seven

programs within 1508 minutes. This shows LMMR can improve the scalability
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Figure 7: Performance Improvements for k-tails
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Figure 8: Performance Improvements for LM

of original LM.

To answer RQ3, we compare the time cost for LMMR as we increase the

number of parallel tasks (see Fig. 8). We find that the performance improves as

we increase the number of parallel tasks. By increasing the number of parallel

MapReduce tasks from one to four, we gain a speed up in range of 1.4 to 3 times.

By increasing the number of parallel MapReduce tasks from one to eight, we
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gain a speed up in range of 1.7 to 4.6 times. The performance improvement of

LMMR over LM is similar with that of CLIPPERMR over CLIPPER. This is

reasonable as the first of the two steps of LMMR is based on CLIPPERMR (see

Section 3.2.4), and the second step for composing frequent charts into significant

LSCs takes little time with respect to the time spent in the first step.

4.2.5 Mining Temporal Rules

To answer RQ1, we mine temporal rules with the original Perracotta, which

was able to mine the temporal rules from all of the traces. Perracotta’s memory

cost is quadratic to the number of unique events in the traces. In our study,

the unique events are the methods that get invoked when program is run. The

number of unique events is not so big, which is no more than 3000.

To answer RQ2, we compare the performance of the original Perracotta

with that of PerracottaMR and present the results in Figure 9. We see

that PerracottaMR(8) achieves speed up in range of 3.5 to 18.2. Note that

PerracottaMR(8) may achieve more than 8 times speed up than Perracotta. This

can be related to the fact that Perracotta is a memory-intensive algorithm (with

a space complexity O(n2) and a time complexity O(nL), where n is the number of

unique events in the traces and L is the total length of all traces). Its sequential

version needs to load all traces into memory sequentially, while the parallelized

version may load many split smaller traces into memory simultaneously even

when there is only one core available for map/reduce tasks. At the same

time, the accuracy of PerracottaMR is 100% with respect to Perracotta: when
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Figure 9: Original versus Parallelized Perracotta

we compare the output of PerracottaMR with that of Perracotta, there is no

temporal rule that is missed.

To answer RQ3, we compare the time cost for PerracottaMR as we increase

the number of parallel tasks (see Fig. 10). We find that the performance

improves as we increase the number of parallel tasks. By increasing the number

of parallel MapReduce tasks from one to four, we gain speed up in range of 1.6

to 3.8 times. By increasing the number of parallel map reduce tasks from one to

eight, we gain speed up in range of 4.1 to 7 times. Figure 10 also shows that the

rate of speed up decreases as we increase the number of parallel tasks from 4 to

8. This is so as there are more resource contentions between the mappers and

reducers as the number of parallel tasks are increased in our small four-machine

cluster.
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Figure 10: Performance Improvements for Perracotta

4.3 Threats to Validity and Current Limitations

In this work, we have considered five families of specification mining algorithms:

those mining frequent patterns, value-based invariants, finite-state machines,

sequence diagrams, and temporal rules. For each family, we have considered

one algorithm. There are other specification mining algorithms that we do

not consider in this study, e.g., those that analyze program code rather than

execution traces (Li et al. 2005; Nguyen et al. 2009; Shoham et al. 2007;

Wasylkowski et al. 2011; Weimer et al. 2005). It is not clear if our approach can

be easily extended to all other specification mining algorithms. In this study,

we modify and adapt the algorithms to follow a divide-and-conquer strategy; it

is not clear if all specification mining algorithms can be modified to follow this

strategy. In the future, we would like to investigate even more algorithms and

algorithm families and show how they can be modified to follow appropriate

divide-and-conquer strategies to leverage the power of MapReduce.
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We have evaluated our approach on seven programs from the DaCapo

benchmark (Blackburn et al. 2006). This benchmark has been used extensively

in many past studies, e.g., (Bond et al. 2010; Chen et al. 2007). Still, these

programs might not be representative of all open-source and industrial software

systems. We plan to reduce this threat to validity further by investigating more

programs in addition to those in the DaCapo benchmark in the future. Also,

we have experimented with a cluster of four machines running eight cores. In

the future, we plan to extend our experiment with even more machines and

more cores. However, even with four machines, we have shown how the power

of MapReduce could be tapped to scale various specification mining algorithms.

One limitation is imposed by the implementation of MapReduce that we

use, i.e., Hadoop. One of the most important issues for a distributed platform

is locality, as network bandwidth is the bottleneck when processing a large

amount of data. To solve this problem, Hadoop attempts to replicate the

data across the nodes and to always locate the nearest replica of the data.

However, a substantial proportion of the time may still be spent on data

transmission, typically for algorithms which involve heavy data transmission

load. Our experiments use the default Hadoop file system replication factor 3

(i.e., each block of data is replicated to 3 machines) to minimize the transmission

overheads during computation. The speedup factor of the parallelized versions

of the specification mining algorithms may be affected if more machines are

used or the replication factor is changed. In the future, we plan to perform

a more comprehensive investigation of the effect of data transmission load,
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identify factors that may significantly affect the performance of distributed

specification mining algorithms, and design improved algorithms that can reduce

such overheads further.

5 Related Work

We now discuss closely related studies on specification mining, uses of MapRe-

duce in software engineering, and parallelizing data mining algorithms in

general. This section is by no means a complete list of related work.

5.1 Specification Mining and Its Applications

Mined specifications can help developers to understand legacy systems (Yang

et al. 2006), to detect potential bugs (Wasylkowski et al. 2011). They can also be

used as input for model checkers and for the purpose of program verification (Li

et al. 2010) or be converted into test cases (Dallmeier et al. 2010).

Some families of specification mining algorithms have been described in

Section 2. Here we describe other related recent work. Beschastnikh et

al. (2011) mines three kinds of temporal invariants from system logs and

merges them into a state-based behavioral model. Wu et al. (2011) proposes

an approach that mines specifications from a variety of API data including

information from API client programs, library source code, and comments. Lo

et al. (2011b) uses three concepts, equivalence classes among LSCs, isomorphic

embeddings, and delta-discriminative similarity measures, to mine a succinct

set of LSCs and improve the readability of mining results. Alrajeh et al. (2012)
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presents a semi-automated approach that detects vacuously satisfiable scenarios

leveraging a model checker and generates new scenarios to avoid the vacuity

using machine learning (inductive logic programming). Kumar et al. (2011)

presents a framework for mining message sequence graphs that can represent

concurrent behaviors of a distributed system. Zhong et al. (2009) infers API

specifications from documentations expressed in English. Lee et al. (2011)

implements a tool jMiner to mine parametric specifications by using a concept of

trace slicing. The proposed approach first slices independent interactions from

program traces. The independent interactions are then fed into to a variant of

the k-tails algorithm to produce a probabilistic finite-state machine. Wei et al.

(2011) builds on top of Daikon to infer contracts for Eiffel programs.

All five specification mining algorithms that we study in this chapter

(CLIPPER, Daikon, k-tails, LM, and Perracotta) analyze program execution

traces. Other approaches to specification mining use program code as input

(e.g., (Li et al. 2005; Nguyen et al. 2009; Shoham et al. 2007; Wasylkowski et

al. 2011; Weimer et al. 2005)). A technique called DySy, mines invariants,

similar to those generated by Daikon, by performing symbolic execution to

reduce the number of test cases needed to mine the invariants and improve the

quality of the mined invariants (Csallner et al. 2008). There are also algorithms

that mine specifications in forms different from the five families described in

Section 2, e.g, algebraic specifications (Henkel et al. 2008) and separation logic

invariants (Magill et al. 2006). In the future, it would be interesting to examine

how one can apply our general algorithm and MapReduce to the above diverse
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mining algorithms.

Some recent studies propose to better understand, extend, and compare

existing specification mining algorithms. An approach called InvariMint,

allows users to construct a model inference algorithm by using a declarative

specification (Beschastnikh et al. 2013). They show that their approach could

help users understand, extend, and compare algorithms that mine specifications

in the form of finite-state machines. Different from their work, we propose an

approach to adapt existing algorithms to the MapReduce framework and make

them more scalable and efficient.

A comprehensive survey of past studies on specification mining is available

from a recent journal paper (Robillard et al. 2013) and a book on specification

mining (Lo et al. 2011a).

5.2 MapReduce in Software Engineering

Shang et al. (2009, 2010) have presented experience reports on scaling tools for

mining software repositories (MSR) using MapReduce. They investigate several

case studies to analyze the potential of the MapReduce platform to scale up

MSR tools, including (1) J-REX, which mines a CVS repository for calculating

changes of software metrics over the history of a software project, (2) CC-Finder,

which is a token-based clone detection tool designed to extract code clones from

systems developed in several programming languages, and (3) JACK, which is

a log analyzer that uses data mining techniques to process system execution

logs and automatically identify problems in load tests. Specification mining
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approaches are not covered in these studies. Recently, Dyer et al. (2013) propose

a language and an infrastructure called Boa to ease the analysis of software

repositories. Users can specify queries in a domain specific language and these

queries can be processed by Boa’s processing engine which uses the MapReduce

distributed computing model.

Different from these studies, we specifically focus on specification mining

algorithms and investigate the potential of using MapReduce to make them

more scalable.

5.3 Parallel Data Mining Algorithms

Kang et al. (2011) uses MapReduce to propagate beliefs on a sparse billion-

node graph. Liu et al. (2009) uses MapReduce to parallelize an algorithm

inferring document relevance for web search. Ene et al. (2011) speeds up general

clustering algorithms by using MapReduce. Miliaraki et al. (2013) recently

proposes a parallelization of a frequent sequence mining algorithm that can run

on MapReduce. Their approach relies on w-equivalency property that holds only

for sequential patterns, and the semantics of the sequential patterns mined by

their approach is different from that of iterative patterns mined by CLIPPER

(which is the closest algorithm, considered in this chapter, to the frequent

sequence mining algorithm). Although our approach employs MapReduce too,

our data sources and the subject algorithms are specific to specification mining,

which requires different parallelization strategies and techniques.
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6 Conclusion and Future Work

In this chapter, we address the challenge of making specification mining

algorithms scalable. We have presented a general algorithm design that

helps to transform sequential specification mining algorithms into distributed

ones based on the observation that many specification mining algorithms are

data-intensive but computationally repetitive. In particular, we have shown

how five different kinds of algorithms, CLIPPER, Daikon, k-tails, LM, and

Perracotta, can be parallelized by following our general algorithm and leveraging

a popular distributed computing framework MapReduce. We have evaluated the

distributed versions of these algorithms with seven programs from the DaCapo

benchmark and find that the distributed versions can significantly improve the

scalability of the original algorithms for every trace dataset of sizes ranging

from 41MB to 157GB. The distributed Perracotta running on four machines

(using up to eight CPU cores in total) speeds up the original version by 3 to 18

times. The original CLIPPER, Daikon, k-tails, and LM are unable to handle

the large traces, while our distributed versions can complete in hours and much

performance improvements can be gained by utilizing more machines.

We consider the following for future work. First, our distributed algorithms

are not necessarily optimal; we plan to investigate whether defining the map

and reduce functions differently and/or splitting input data differently would

improve the scalability of these algorithms. For example, Daikon has more

than one hundred invariant templates that are checked against traces when it

looks for actual invariants. Checking each kind of template is independent from
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others, and thus could be parallelized as a map function as well. Second, our

distributed algorithms are only evaluated with gigabyte traces in a four-machine

cluster with many default settings; we would like to evaluate them with terabyte

traces in a commercial cluster and see how performance improves when the

number of processors increases and various cluster system settings are used.

Third, we consider the application of our general algorithm and MapReduce to

additional kinds of specification mining algorithms not covered in this chapter,

e.g., algorithms leveraging other information besides traces (e.g., text, software

repository). Fourth, some variants of the algorithms we have investigated may

also deserve special attention, e.g., the variants of LSC mining triggers and

effects (Lo et al. 2008a), or the combination of scenario-based and value-based

invariants (Lo et al. 2010).
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