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Abstract Fault localization is useful for reducing debugging effort. Such tech-
niques require test cases with oracles, which can determine whether a program
behaves correctly for every test input. Although most fault localization tech-
niques can localize faults relatively accurately even with a small number of
test cases, choosing the right test cases and creating oracles for them are not
easy. Test oracle creation is expensive because it can take much manual la-
beling effort (i.e., effort needed to decide whether the test cases pass or fail).
Given a number of test cases to be executed, it is challenging to minimize the
number of test cases requiring manual labeling and in the meantime achieve
good fault localization accuracy.
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To address this challenge, this paper presents a novel test case selection
strategy based on Diversity Mazimization Speedup (DMs). DMS orders a set
of unlabeled test cases in a way that maximizes the effectiveness of a fault
localization technique. Developers are only expected to label a much smaller
number of test cases along this ordering to achieve good fault localization
results. We evaluate the performance of DMS on 2 different types of programs,
single-fault and multi-fault programs. Our experiments with 411 faults from
the Software-artifact Infrastructure Repository show (1) that DwMs can help
existing fault localization techniques to achieve comparable accuracy with on
average 67% and 6% fewer labeled test cases than previously best test case
prioritization techniques for single-fault and multi-fault programs, and (2) that
given a labeling budget (i.e., a fixed number of labeled test cases), DMS can
help existing fault localization techniques reduce their debugging cost (in terms
of the amount of code needed to be inspected to locate faults). We conduct
hypothesis test and show that the saving of the debugging cost we achieve for
the real C programs are statistically significant.

Keywords Fault Localization - Test Case Prioritization

1 Introduction

Software testing and debugging activities are often labor-intensive, account-
ing for 30% to 90% of labor spent for a project (Beizer, 1990). Establishing
sufficient testing and debugging infrastructure can help reduce software errors
that cost the US economy 59.5 billion dollars (0.6% of 2002’s GDP) (National
Institute of Standards and Technology (NIST), 2002). Many automated test-
ing and debugging techniques have been proposed to reduce the high cost in
such activities.

Spectrum-based fault localization (e.g. Jones et al, 2002; Abreu et al, 2009;
Campos et al, 2013) is an automated debugging technique that can narrow
down the possible locations of software faults and help save developers’ debug-
ging time. Many spectrum-based fault localization techniques take as input a
set of executions with labels (i.e., indicating whether an execution passes or
fails), compare between failed and passed executions, and statistically locate
faulty program entities. Such techniques require each execution to be labeled
as a failure or a success, which often needs human interpretation of an execu-
tion result and may not be easy to determine when a failure is not as obvious
as a program crash or invalid output formats. Labeling all executions or test
cases as passing or failing for a program may require much manual effort and
is often tedious, and thus, the effectiveness of existing spectrum-based fault
localization techniques may be potentially hampered due to the unavailability
of labeled test cases.

With test case generation techniques (Godefroid et al, 2005; Sen et al,
2005), we may be less concerned with lacking test cases. However, we still
face the same problem of lacking test oracles that can determine whether a
program behaves correctly for an input. Note that many software failures do
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not have obvious symptoms, such as crashes or violation of predefined speci-
fications; they may simply produce a wrong number or display a widget in an
inappropriate place, and they still need a human to decide whether the results
are good or not, which could be a laborious and error-prone activity. Recently,
Artzi et al (2010) propose a directed test case generation approach for fault
localization. They however only handle two kinds of errors in web applications
that automated test oracles can be constructed: program crashes and invalid
HTML documents. Campos et al (2013) use probability concepts to generate
new test cases that could minimize the entropy of fault localization results. Al-
though their approach reduces the diagnosis costs of fault localization results,
it does not directly aim to minimize the number of test cases generated that
may require manual labelling. In general programs, constructing automated
test oracles is much more complicated and still requires much manual effort.
The key research question for this paper is as follows:

How can we minimize the number of test cases requiring human labeling
while achieving comparable fault localization effectiveness as when all test
cases are labeled, for both single-fault and multi-fault programs?

In this paper, we propose the concept of diversity mazimization speedup
(Dms) and an associated test case prioritization strategy to minimize the hu-
man effort needed to label test cases while maintaining the effectiveness of
existing spectrum-based fault localization techniques. The concept is based
on our observation that when given a sufficient number of suitable test cases,
an effective fault localization technique would assign a unique suspiciousness
score to most program elements (e.g., a function, a statement, a branch, or
a predicate), and high scores to faulty elements and low scores to non-faulty
ones. We thus design DMS to speedup the changing process of the suspicious-
ness scores generated by a fault localization technique by using as few test
cases as possible.

This concept can be applied to both single-fault and multi-fault programs
to reduce human effort required for labelling test cases. On the other hand, the
amount of reduction achieved by the concept can be different for single-fault
and multi-fault scenarios. We present detailed evaluation and comparison in
Section 5. When we describe the intuition of this concept and the algorithmic
details for realizing the concept, we do not explicitly distinguish these two
scenarios from each other.

1.1 Running Example

Figure 1(a) and 1(b) illustrate how our concept helps reduce the number of
test cases while maintaining the effectiveness of fault localization techniques.

There are 11 statements sy, ..., 11 in the program in Figure 1(a) (adapted
from previous papers (Gonzélez-Sanchez et al, 2011b; Jiang et al, 2011)), where
s7 is faulty. Suppose the program has 12 test cases ti,...,t12. A dot for a
statement under a test case means the corresponding statement is executed (or
hit) in the corresponding test case. The collection of such dots (or represented
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Test case Suspiciousness Metrics
Statement
c1fe2|e3|ea)es|e6|e7f e8] ea)e t14| Nef (Nep | Nuf[Nup| Ochiai Tarantula | Jaccard
main () { sl
int let, dig, c; s2
o(lofofo|jojo/ofo(fo|oje o] 3 9 0 0 0.500 0.500 0.250
let = dig = 0; s3
while (c=getchar ()) { s4
if('A'<=c && 'Z'>=c) s5 o(of(o/o (o oo olo|o o 3 8 0 1 0.522 0.529 0.273
let += 1; s6 oo of(eojeof 2 6 1 3 0.408 0.500 0.222
else if('a'<=c && 'z'>c) /*FAULT*/ s7 [|[e]|e oo 3 . . 3 4 0 5 0.655 0.692 0.429
let += 1; s8 ofe ofe . 2 3 1 6 0.516 0.667 0.333
else if('0'<=c && '9'>=c) s9 ofe [ . . . 2 4 1 5 0.471 0.600 0.286
dig += 1; s10 [[e| e . . . 2 3 1 6 0.516 0.667 0.333
printf ("%$d %d\n",let,dig);} sil |[e|e|(e|e|efe /e /e (oo e e 3 9 0 0 0.500 0.500 0.250
pass/fail P|F|P|F|P|P|P|P|F|P|P|P
(a) Fault Localization with All Test Cases
Group(s) of the same score Selected Program Spectra Normalized Ochiai Scores
(the groups are ordered according to their suspiciousness) | Test Case [s1 2 53 s4 55 6 57 8 59 51052 p/f| 51 s2 53 54 S5 S6 s7 58 59 510 sll
{51,52,53,54,55,56,57,58,59,510,511} t2 (777111111 1 I|F[00909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909
{s5,56,57,58,59,510},{s1,52,53,54,511} t8 (111100000 0 [|P|00742 0.0742 0.0742 0.0742 0.1049 0.1049 0.1049 0.1049 0.1049 0.1049 0.0742
{57,58,59,510},{s5,56},{s1,52,53,54,511} té 1111110000 [|P|00696 0.069 0.0696 0.0696 0.0852 0.0852 0.1205 0.1205 0.1205 0.1205 0.0696
{s7,58},{s5,56},{s1,52,53,54,59,510,511} td 1111111100 1|F[00824 0.0824 0.0824 0.0824 0.0951 0.0951 0.1165 0.1165 0.0824 0.0824 0.0824
{s7},{55},{s8,59,510},{s1,52,53,54,511},{s6} t9 |7 771710101 1 1|F|00875 00875 0.0875 0.0875 0.0978 0.0753 0.1129 0.0922 0.0922 0.0922 0.0875

(b) Evolution of Suspiciousness Scores with Test Cases Selected by our approach

Fig. 1 Running Example

as sequences of 1 and 0 as shown in Figure 1(b)) are called program spectra.
With the spectra for all of the test cases and their pass/fail information, fault
localization techniques may calculate various suspiciousness scores for each
of the statements and rank them differently. In this case, three well-known
techniques, Ochiai (Abreu et al, 2009), Tarantula (Jones and Harrold, 2005),
and Jaccard (Abreu et al, 2009) all rank s; as the most suspicious statement
(the last three columus in the highlighted row for s; in Figure 1(a)). However,
the fault localization techniques can in fact achieve the same effectiveness
(i.e., ranking sy as the top suspicious one) with much fewer test cases when
our concept is applied.

Use Ochiai as an example. First, we select an initial small number of test
cases (t2 in the example). After a programmer labels the execution result of o,
Ochiai can already assign a suspiciousness score to each statement, although
the ranks are not accurate (as in the last 11 columns of the row for t5 in
Figure 1(b)). Then, our approach calculates the potential rank changes that
may be caused if a new test case is used by Ochiai, and selects the next test case
with the maximal change potential (tg in our case) for manual labeling. With
a label for tg, Ochiai updates the suspiciousness scores for the statements (as
in the last 11 columns of the row for tg). Repeating such a process three more
times, test cases tg, t4 and tg are added, and Ochiai can already rank s; as
the most suspicious statement. Thus, our approach helps Ochiai to effectively
locate the fault in this case with only five test cases, instead of 12. Section 3
and 4 present more details about our approach.
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1.2 Contributions

We have evaluated our approach on five real C programs and seven Siemens
test programs from the Software-artifact Infrastructure Repository (SIR (Do
et al, 2005)). In total, we analyze 411 faults. 254 of them are in single-fault
versions from these 12 programs, while the other 157 faults are in 173 versions
of 8 of these programs. The results demonstrate that our approach outperforms
existing test case selection methods for fault localization.

1. Given a target fault localization accuracy, our approach can significant-
ly reduce the number of test cases needed to achieve it. In particular,
we compare with several state-of-the-art test case prioritization strate-
gies, including coverage-based (e.g., STMT-TOTAL (Rothermel et al, 2001;
Elbaum et al, 2002), ART (Jiang et al, 2009)), fault-exposing potential
based (Rothermel et al, 2001), and diagnostic prioritization (Gonzalez-
Sanchez et al, 2011a,b; Jiang et al, 2011), and our approach achieves, on
average, test case reduction rates from 10% to 96% for single-fault pro-
grams, and 6% to 67% for multi-fault programs.

2. Given a maximum number of test cases that a programmer can manually
label (i.e., given a fixed number of test cases to be used for fault localization
or a testing budget), DMS can improve the accuracy of fault localization
and thus helps reduce the amount of code programmers need to investigate
to locate faults and reduce testing and debugging cost. In comparison with
other test case selection techniques, we show, with Wilcoxon signed-rank
test (Wilcoxon, 1943) at 95% confidence level, that the cost saving achieved
by DwMS is statistically significant on real-life programs.

1.3 Paper Outline

The rest of this paper is organized as follows: Section 2 describes fault localiza-
tion and test case prioritization techniques that we use in our study. Section 3
formally introduces the problem we address. Section 4 presents our approach
in detail. Section 5 presents our empirical evaluation. Section 6 describes more
related works. Finally, Section 7 concludes with future work.

2 Preliminaries

In this section, we summarize relevant materials on software fault localization
and test case prioritization that we use in our empirical evaluation.

2.1 Fault Localization

Spectrum-based fault localization aims to locate faults by analyzing program
spectra of passed and failed executions. A program spectra often consists of in-
formation about whether a program element (e.g., a function, a statement, or
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a predicate) is hit in an execution. Program spectra between passed and failed
executions are used to compute the suspiciousness score for every element. All
elements are then sorted in descending order according to their suspicious-
ness for developers to investigate. Empirical studies (e.g. Nainar et al, 2007;
Jones and Harrold, 2005) show that such techniques can be effective in guid-
ing developers to locate faults. Parnin and Orso (2011) conduct a user study
and show that by using a fault localization tool, developers can complete a
task significantly faster than without the tool on simpler code. However, fault
localization may be much less useful for inexperienced developers.

The key for a spectrum-based fault localization technique is the formula
used to calculate suspiciousness. Table 1 lists the formulae of three well-known
techniques: Tarantula (Jones and Harrold, 2005), Ochiai (Abreu et al, 2009),
and Jaccard (Abreu et al, 2009). Given a program element s, N.s(s) is the
number of failed executions that execute s; N,,(s) numerates passed execu-
tions that do not hit s; by the same token, N,¢(s) counts failed executions
that do not hit s and N, (s) counts passed executions that ezecute s.

Table 1 Spectrum-based fault localization

Name Formula
Nef(s)
Nes(s)+Npys(s)
Tarantula O) N Nep(3)
Neg(s)+Npg(s) ' Nep(s)+Nnp(s)
N
Ochiai HO
\/(Nef(s) + an(s)) : (Nef(s) + Nep(s))
N
Jaccard £(5)

Nef(s) + an(s) + Nep(S)

Example. Each column for ¢; in Figure 1(a) is a spectrum. The columns N,
Nep, Nys, and Ny, can thus be calculated from the spectra. The suspiciousness
scores of Tarantula, Ochiai, and Jaccard for each statement are then calculated

based on the formulae in Table 1.

2.2 Test Case Prioritization

Rothermel et al (2001) define the problem of test case prioritization as follows:

Definition 1 (Test Case Prioritization) Given (1) T, a set of test cases,
(2) PT, the set of permutations of T, and (3) f, a function mapping PT
to real numbers, the problem is to find a permutation p € PT such that:

vp' € PT.f(p) > f(p').

In this definition, PT represents the set of all possible orderings of T; f is
an award function indicating the value for each ordering. The higher the value,
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the better it is. For easier implementation, award functions in the literature
are often defined as a priority function mapping test cases to real numbers,
and then the optimal permutation is simply to sort the test cases in descending
order according to their values. The key for a test case prioritization technique
to be effective is to design a priority function that assigns appropriate priority
to the test cases under given situations. The following subsections highlight
some test case prioritization techniques that we compare with our approach.

2.2.1 Coverage Based Prioritization

StMT-TOTAL (Rothermel et al, 2001) is a test case prioritization strategy
that assigns higher priorities to a test case that executes more statements
in a program. STMT-ADDTL (Rothermel et al, 2001) extends STMT-TOTAL
by selecting next test case that covers more statements that have not been
covered by previously selected test cases. Adaptive Random Test Prioritiza-
tion (ART) (Jiang et al, 2009) starts by randomly selecting a set of test cases
that achieves maximal coverage, and then sort the unlabeled test cases based
on their Jaccard distances to previous selected test cases. Among its several
variants, ART-MIN was shown to be the best test case prioritization strate-
gy (Jiang et al, 2009). However, recent study (Arcuri and Briand, 2011) shows
that ART may not be effective when the failure rate is low and the high distance
calculations cost might overshadow the reduction on test execution times.

2.2.2 Fault-Ezxposing Potential Based Prioritization

FeEpP-ADDTL (Rothermel et al, 2001) aims to sort test cases so that the rate
of failure detection of the prioritized test cases can be maximized. To reduce
the need for test oracles, the rate of failure detection is approximated by the
fault-exposing potential (FEP) of a test case, which is in turn estimated based
on program mutation analysis (Hamlet, 1977): each program element s, is
mutated many times and the test case ¢; is executed on each mutant; the FEP
of t; for s; (FEP;;) is calculated as the ratio of mutants of s; detected by t;
over the total number of mutants of s;; then, the FEP of ¢; (FEP;) is the sum
of the FEP of ¢; for all elements (; FEP;;).

2.2.8 Diagnostic Prioritization

Jiang et al (2011) investigate the effects of previous test case prioritization
techniques on fault localization and find that coverage-based techniques may
be insufficient since the prioritized test cases may not be useful in supporting
effective fault localization. Gonzéalez-Sanchez et al (2011b) use the concept of
diagnostic distribution that represents the probability of a program element
to be faulty, which is then estimated by Bayesian inference based on previ-
ous selected test cases, and in their tool named SEQUOIA, sort test cases so
that the information entropy of the diagnostic distribution can be minimized.
Soon after, Gonzélez-Sanchez et al (2011a) propose another strategy called
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Ambiguity Group Reduction to sort test cases. In their tool named RAPTOR,
program elements having the same spectrum record are considered to be in the
same ambiguity group (AG), and RAPTOR aims to select next test case that
would maximize the number of ambiguity groups while trying to minimize the
deviation on the sizes of the ambiguity groups.

2.2.4 Practical Usage

To use the above mentioned test case prioritization techniques in practice, a
program needs to be instrumented first and executed with test cases to collect
the program spectra (execution traces) of the test cases. Then, developers can
apply one of the test case prioritization techniques to select top-n ranked test
cases, and manually judge whether each of the test cases passes or fails. Based
on these selected test cases and their corresponding labels (passed or failed), a
fault localization technique (e.g. Nainar et al, 2007; Jones and Harrold, 2005)
can then be applied to locate faults. Our test case prioritization technique in
this paper can also be applied in the same fashion as the above mentioned test
case prioritization techniques.

3 Problem Definition

In this section we show a motivating example and formally introduce our ap-
proach: Diversity Mazimization Speedup (DMs). DMS employs trend analysis
to give priorities to test cases that can quickly increase the diversity of suspi-
ciousness scores generated by fault localization techniques for various program
elements. In the subsections, we illustrate its intuition and formally define it
as a variant of test case prioritization.

3.1 Running Example Revisited

We use the running example (Figure 1(a)) to explain the intuitions for DMs.
With sufficient test cases, an effective fault localization technique is more likely
to assign high suspiciousness scores to faulty program elements while assign-
ing low scores to non-faulty elements, and each element should be assigned a
unique rank according to their suspiciousness scores to facilitate further inves-
tigation (such as the scores shown in the last three columns in Figure 1(a)).
With fewer test cases, a fault localization technique may not be able to
achieve an effective ranking. Figure 2 shows the evolution trend of the ranks
of the running example’s program statements based on their Ochiai (Abreu
et al, 2009) scores as test cases are added one by one. The test cases are added
by RAPTOR which is the existing best approach in the literature (Gonzélez-
Sanchez et al, 2011a) for selecting test cases for fault localization. In this figure,
the horizontal axis represents the number of iterations to select test cases. In
each iteration, one test case is picked from the unlabeled test case pool Ty.
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Fig. 2 Motivating Example

The vertical axis is the rank of a statement sorted based on suspiciousness.’

Each line in the figure depicts the evolution of the suspiciousness rank for one
specific statement. For example, s; (the faulty statement) is ranked 11" in
the first iteration, and 6" in the second iteration.

This figure shows that the ranks of different statements may evolve in
different ways as more test cases are added. Specifically, some statements keep
rising in general (e.g., s7); some others oscillate back and forth (e.g., sg).
Ideally, we should only use test cases that could enable a fault localization
technique to assign elements the scores close to the final score when all test
cases are used. Comparing to the changes of s7, the oscillation of sg is less
important as its final rank is the same as its initial rank. Thus, when we
add test cases, we should look for test cases that could offer more changing
opportunities to “promising” elements like s7 (with clear trend) instead of sg so
that the ranks (for both s; and sg) may quickly approach their final position.

The following questions prompted us to define DMS:

1. Can we analyze the change trend of every program element and identi-
fy “promising” elements with high change potentials (i.e., elements whose
ranks are likely to change much in a stable way)?

2. For program elements having high change potentials, can we select ap-
propriate test cases to speed up their rank-changing process so that these
elements can reach their final ranks faster (i.e., with fewer test cases)?

1 Program elements with the same suspiciousness score are assigned the same low rank since
developers are expected to investigate all of the elements having the same score if they are ever
going to investigate one. For example, if statements s, s2, s3 have the highest suspiciousness
score, then the ranks of the 3 statements are all 3.
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3.2 Formal Definition of DMS

Definition 2 (Diversity Maximization Speedup) Given (1) T, a set of
test cases, (2) PT, the set of permutations of T, and (3) k, a positive integer,
we use p¥ to represent a permutation p € PT truncated at length k, and PT*
to represent all such truncated permutations (i.e., PT* = {p¥|p € PT}).

Then, with f, a function mapping PT* to real numbers, the problem of
DMS is to find a permutation p € PT such that: Vp¥ € PT*. f(p*) > f(p¥),
for the given k.

In Definition 2, f is an award function indicating the value of an ordering
in PT*, which in our case, would be the effectiveness of a fault localization
technique based on k labeled test cases. The number k£ can be used as a
labeling budget, indicating the number of test cases developers are willing to
label for fault localization. Thus, the goal for DMS is to quickly maximize the
effectiveness of fault localization techniques with at most k labeled test cases.

4 Approach Details

In this section we answer the two questions raised in Section 3.1 to conceptu-
alize Dwms.

4.1 Identify High Change-potential Elements

In order to evaluate the change potential of program elements, we first repre-
sent program element’s rank changes as time series data points. We then fit
the points to a linear model using regression analysis. The regression coeffi-
cient of the model and the error (i.e., discrepancy between the model and the
real points) are used as proxy to identify program elements with high change
potentials. More details are described as follows.

Representative Time Series Construction. We capture changes in the ranks of
a program element as a series of trend units:

1. When the rank of the program element decreases, its current trend unit is
[+].

2. When the rank of the program element increases, its current trend unit is
[-1.

3. If the element’s rank stays the same, its current trend unit is [0].

For example, the ranks of statement sg in different iterations and its corre-
sponding trend units are listed in Table 2. This series of trend units is further
converted to a series of points < z;,y; >, where x; represents the iteration
number, and y; represents cumulated changes in program ranks at iteration
i. We set yg as 0. When the trend in iteration 4 is [+], y; = y;—1 + 1. If the
i-th trend is [-], y; = yi—1 — 1, otherwise, if the trend does not change([0])
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Table 2 Evolution Trend of sg.

Iteration (z;) 1 2 3 4 5 6 7

Rank 11 6 4 2 3 11 5
Trend (7°) +1 [+ [+ [-1 [ [+
Yi 0 1 2 3 2 1 2

then y; = y;—1. We refer to this series of points as the evolution trend of the
corresponding program element.

Linear Model Construction. Then we use linear regression analysis (Graybill
and Tyer, 1994) to model the trend of each program element. Each trend is
modeled as a linear equation:

Yi =Pz + Bo+ € (1)

Change Potential Computation. In order to speed up the overall evolution
process, our approach needs to select next test case that keeps elements with
monotonic trends (high change-potential trends) evolving their rankings. In
other words, we do not care about changing elements’ ranking with unstable
trends. In order to identify those high change-potential elements, we need a
metric to evaluate and compare trends of different elements. Here we define
the change potential of a program element d with the trend 75 as follows:
|81

Wr. = og, +1 2)
Bl is estimated by least squares and &3, is the error of estimating 8; (Graybill
and Iyer, 1994). In this metric, the numerator is the absolute value of the trend
slope and the denominator considers the fitness of the regression model which
represents the deviation of the actual value from the regression model. When
the context is clear, we also use Wy or Wy to represent the change potential
of a trend or a program element.
Rationale of Equation 2: We want to evolve the ranks of statements in a
fast, monotonic way. In linear models, a fast changing monotonic trend should
have a larger slope B as well as a smaller deviation €; from the linear model.
Using this metric in Equation 2 that uses the estimated slope in the numerator
and the estimated deviation in the denominator, we may isolate trends that
evolve in faster and more stable (less oscillation) ways. Table 3 shows a few
sample trends and their change potentials according to Equation 2.

4.2 Speed up the Rank Change Process

After evaluating the program elements according to their change potentials,
Dwms will try to speed up the evolution trend of the program elements based
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Table 3 Trend examples and their potentials

T 51 0, W

+1  [+] 1 0 1
[+] [-1 0 0.577 0
[+] [0] 0.5 0.289 0.388
[o] [0] 0 0 0

on the change potential (W7 ). First, program elements with the same suspi-
ciousness scores are grouped together, they are termed as suspicious groups
in this paper.? These suspicious groups are then assigned change-potential s-
cores based on the change potentials of their constituent program elements.
When new test cases are added, based on the actual program elements that
get executed, some groups can be broken into two. When this happens, the
diversity of the suspiciousness scores increases in most cases. The goal of DMS
is to select a new test case that breaks a group into two sub-groups where the
overall change potentials are maximized.

We calculate the potential of a group g by summing up the potential of all
program elements d that belongs to g.

Wy => Wr, (3)

deg

where Wr, is the change potential of the program element d based on the
labelled execution trace profiles.
Rationale of Equation 3: A group with high change-potential elements
should be given a higher priority to break. We want to diversify the rankings
of elements in the suspicious group that has a high change-potential score. To
identify those high change-potential groups, we measure the sum of change-
potential scores of its member elements as in Equation 3.

The overall change-potential score of all suspicious groups (G) is calculated
as follows:

Ha= Y W, (4)

g:€G

To evaluate an unlabeled trace t, DMS calculates the difference between the
overall change-potential score of the current groups G (H¢g) and the overall
change-potential score of all groups when ¢ is added to the pool of labeled test
cases (G < t). Since we want to stabilize the ranks of all program elements
as quickly as possible with as fewer test cases as possible, we heuristically

2 We call such groups as suspicious groups since we simply want to state the fact that
every group may contain potentially suspicious elements. Some other studies (e.g. Gonzélez-
Sanchez et al, 2011a) call them ambiguity groups as that term may emphasize more on the
fact that the elements in the groups have the same but ambiguous suspiciousness scores.



Diversity Maximization Speedup for Fault Localization 13

choose the test case that can maximize the difference and thus the reduction
of change potentials as the next one for labeling.

argmax {He — H(ger) } (5)

teTu

The new groups (G < t) and their change potential H(g.¢) can be esti-

mated based on t’s spectrum (i.e., the set of program elements hit by t) even
when the pass/fail label for ¢ is unknown. Given an existing suspicious group,
if a newly added test case t only covers a subset of the group elements, this
group may be broken into two: one contains the elements hit by ¢, and the
other contains the elements uncovered by ¢t. Then, each subgroup inherits a
portion of the original group’s change potential proportional to its size. For
example, suppose a group ¢ in Hg contains 2 elements, whose potentials are
0.4 and 0.6 respectively, and a new test case ¢t breaks g into g; and g5, each of
which contains 1 element; then, the change potentials W, and W,, are both
% x (0.4 4 0.6) = 0.5.
Rationale of Equation 4 and 5: A test case that breaks more groups with
higher change potentials should be given a higher priority. Equation 4 measures
the overall change potential score of all suspicious groups and its square form
manifests the diversity of element ranks. As an example, suppose there are
two groups ¢; and g2. Group g; has two high change-potential elements with
change-potential score 0.3 and 0.4. Group go has two low change-potential
elements with change-potential score 0.1 and 0.2. According to Equation 4,
He = (0.3+0.4)2+ (0.140.2)% = 0.58. After choosing a test case that breaks
g1 only and does not change the change-potential score of any element, then
according to Equation 5, the new change potential would be 0.32+0.42+(0.1+
0.2)% = 0.34. However, if we choose another test case that breaks go only and
does not change the change-potential score of any element, the new change
potential would be (0.3 4+ 0.4)% + 0.12 + 0.22 = 0.54. As a result, the test case
that breaks the high change-potential group (i.e., g1) leads to a larger decrease
of the overall change potential and thus will be given a higher priority to be
selected.

Note that DMs does not intentionally increase suspiciousness scores of
promising statements that could lead to confirmation bias. DMS might make
an initially promising statement become less suspicious if the statement is
covered in the next selected trace and the trace is labeled as pass, or it is not
covered in the next selected trace and the trace is labeled as fail.

4.3 Overall Approach

Before prioritization, all test cases will be executed on instrumented program
versions and the corresponding traces would be collected. Our approach (pseu-
docode in Algorithm 1) takes in a set of unlabeled traces Ty, and the labelling
budget k (i.e., the maximum number of traces to be manually labeled), and
outputs k selected traces for manual analysis. One failed trace (¢p in Line 1)
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Algorithm 1 Diversity Maximization Speedup

Procedure DiversityMaximizationSpeedup
Input:
k - Maximum number of traces to be selected
w - Switching threshold
Ty - Unlabeled trace set, where |Ty| > k
to - Initial failed trace
Output:
k selected test cases prioritized
Method:
1: Timp < {< to, fail >}
2: //Bootstraping with another prioritization technique P
3: while |Tymp| < k and |Timp| < w do
4: Select ¢t by P
5: ¢ +manual_label(¢)
6: TtmpFTtmpU{<tvc>}§TL{<*TM\{t}
7:  Vd € D, calculate suspicious score fr,,, (d)
8: Vd € D, update trend Ty based on fr,,, (d)
9: end while
10: Ts < Timp
11: //Speedup
12: while |Ts| < k do
13: Vd € D, calculate Wy, by Equation 2
14: Select t by Equation 5
15: ¢ +manual_label(t)
16: Ttmp(—TtmpU{ <t,c> }; Tu(—Tu\{t}
17:  Vd € D, calculate suspicious score fr,,, . (d)
18:  Vd € D, update Ty based on fr,,,, (d)
19: Ts < Ts UTimp

20: if div(Ttmp) cease growing then
21: Timp < {< to, fail >}

22: Vd € D, clear Ty

23: end if

24: end while
25: return Ts

is also used as an input because a developer usually starts debugging only
when at least one test fails,® and fault localization techniques rarely produce
meaningful results if all spectra consists of only passed executions.

To collect indicative trends for analyzing and speedup, at Lines 3-9 we first
collect w traces by one generic prioritization technique P and record evolution
trend 7y for each program element d. This step is desirable since it helps
bootstrap the trend analysis in our solution. At Lines 12-24, we perform the
second stage which speeds up the change process based on existing trends. Note
that after selecting each test case t in this stage, we will update the trend for
all elements. fr represents a fault localization technique (e.g.,Ochiai), built
based on the set of test cases T. fr(d) returns the suspicious score for the
program element d.

3 If there is more than one test that fails, DMS randomly selects one of them to begin
with.
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In the pseudocode, manual label(t) asks a user to check the correctness
of the outcome from the test case ¢. Procedure div(T") counts the number
of unique suspicious scores (diversity) generated by fr, which is defined as
follows:

daiv(T) = | | J{fr(@)} (6)
deD

The diversity of small programs may reach the maximum after selecting a
small number of test cases. To avoid random selection after that happens, the
pseudo-code at Lines 20-23 resets the set T%,,, based on which the suspicious-
ness scores of all program elements are calculated. With this step, DMS can
continually choose test cases from 7Tj; that maximally diversify suspicious s-
cores calculated based on T},,,. Repeating the diversity selection process may
help to confirm the previously selected test cases and make the final result

more robust.

4.4 Example

We describe step by step how DMS minimizes the number of test cases need-
ed by Ochiai to locate the fault in the running example in Figure 1(a) and
Figure 1(b).

Since the example code snippet is quite small, there is no need to use a
large number of initial test cases to bootstrap our trend analysis. We set w = 1
and thus only use one test case (in addition to tg) for bootstrapping. In this
example and our evaluation in Section 5, we use RAPTOR, one of the previously
best techniques, in the bootstrapping process for better comparison.

Initially, users execute the program and expose a failure (¢ in this example)
in which all statements are covered. Thus all statements get equal non-zero
suspiciousness and constitute one suspicious group g (cf. either Figure 1(b)
and Table 4). All non-zero suspicious groups compose a group set G = {g}.
RAPTOR would then choose tg since tg has the maximum ambiguity reduction
values, and present it to developers for labeling as either pass or fail).

After the bootstrapping stage, Ochiai updates the suspiciousness score for
each statement based on the selected traces and the existing suspicious group
set are broken into {s1,$2,53,54,511} and {ss,56,57,58,59,510} (cf. either Fig-
ure 1(b) and Table 4), they are called g; and go respectively. At this time, the

Table 4 Evolution of Suspiciousness Scores for the Running Example in Figure 1(a) using
RAPTOR (Gonzalez-Sanchez et al, 2011a).

Suspicious Group(s) Selected Program Spectra Normalized Ochiai Scores
(the groups are ordered according to their suspiciousness) | Test Case[s1 s2 3 s¢ s5 o6 7 s8 s9 s10s2pyf| s1 52 s3 s4 S5 s6  s7  s8 s9  s10 sl
{s1,52,53,54,55,56,57,58,59,510,511} t2 (771111111 1 I[F|00909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909
{55,56,57,58,59,510},{s1,52,53,54,511} t8 111100000 0 1|P|0.0742 0.0742 0.0742 0.0742 0.1049 0.1049 0.1049 0.1049 0.1049 0.1049 0.0742
{57,58,59,510},{s6,55},{s1,52,53,54,511} t6 |7 1711110000 [|P|00696 00696 0.069 0.0696 0.0852 0.0852 0.1205 0.1205 0.1205 0.1205 0.0696
{57,58},{55,56}{51,52,53,54,511},{9,510} t4d |7 111111100 [[F|00824 00824 0.0824 0.0824 0.0951 0.0951 0.1165 0.1165 0.0824 0.0824 0.0824
{s7,58},{s6},{s5},{s10},{51,52,53,54,511},{s9} t7 |7 711101 11 0 1[P|00840 0.0840 0.0840 0.0840 0.0940 0.1085 0.1085 0.1085 0.0664 0.0940 0.0840
{571,450}, {s5},{51,52,53,54,511},{s6},{s8},{s9} t9 |7 1 1 1 1 01 0 1 1 I|F|[0.0885 0.0885 0.0885 0.0885 0.0969 0.0834 0.1084 0.0834 0.0834 0.1022 0.0885
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trend for the statements in g; is [+], because the ranks of these statements
change from 11 to 6, while the trend for the statements in g, is [0], because
their ranks are still 11. The corresponding time series of the statements in go
are: yo = 0 and y; = 1. Applying Equation 2, we obtain the change potential
of the trend of the program elements in g, as 1.

We now calculate Hq for the current suspicious group set G = {g1,92}
according to Equation 3:

Ho=Wa +Wa, =(D_ 02+ (> 1)>=36

degy dega

Now there are 10 candidate traces: {t;|]1 < i < 12A4d ¢ {2,8}} to be
evaluated. We will use each candidate trace t; to break ties in G (G < t;).
Then we calculate the score that evaluates the breaking effect: Hgy,)-

For example, when evaluating tg, tg covers s1,52,53,54,55,5¢ and s11, thus
breaks suspicious gs into {s5,s6} and {s7,ss,S9, S10}, let us call them go; and
g22 respectively. Now, the score W,, = % X Wy =2, Wy,, = % x 6 =4. So if
choosing tg, the score for (G < tg) is

H(ceto) = Wi, + Wi, =20

g22

And the reduction is

He — H(Gcte) =36—-20=16

In the same way, we evaluate all candidate traces and find that the reduc-
tion of tg is maximal, so we select tg as the next trace and ask a developer
to manually label tg. The developer then labels it as “pass”. After adding
newly labeled trace tg into the selected trace set Ts, we recalculate the suspi-
cious score of all program elements according to the current selected trace set.
After calculation, the normalized suspicious score of the elements in {ss,s6}
reduced from 0.1049 to 0.0852 and their ranks remains the same. The suspi-
cious scores of the elements in {s7,ss,89,510} increase from 0.1049 to 0.1205
and thus their ranks rises from 6 to 4. After that, the trends of program el-
ements are updated. For example, the trend of elements in {si1,52,53,54,513}
becomes ([0] [0]), the trend of the statements in {s5,s6} becomes ([+] [0])
and those in {s7,s5,59,510} corresponds to ([+] [+]).

Note that right now {s7,ss,s9,510} gets the highest change-potential score
and thus can get more chances to be broken up. As shown in Figure 1(b), after
three iterations, DMS selects (tg—tg—t4). In the next iteration, DMs chooses
tg and breaks {s7,ss} and {s5,56} which have greater change potentials and
consequently ranks s7 the highest. Overall, DMS only requires user to manually
label four additional traces (tg—tg—t4—>to).

As a comparison, RAPTOR always chooses the test case that maximally re-
duces the overall sizes of groups of statements that have the spectrum records
(i.e., Ambiguity Group Reduction, c.f. Section 2.2.3). As shown in Table 4,
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RAPTOR effectively selects the same test cases as DMS in the first four itera-
tions; however, it chooses t7 in the next iteration to break {s1,52,53,54,59,510,511 }
and {ss,s6}, and it takes one more iteration to rank s7 the highest. It thus re-
quires users to label five additional test cases besides to (tg—tg—t4—t7—t9).

4.5 Approach Complexity and Robustness

The time and space complexity of our approach depend on many various fac-
tors. It takes linear time with respect to the number of iterations or test cases
we want to select, takes quadratic time with respect to the total number of
available test cases, takes cubic time with respect to the number of program
elements, takes cubic time with respect to the number of suspicious groups
in each iteration. Our approach would also store all of the test spectra in the
memory for convenience. In comparison with the other existing approach RAP-
TOR, the trend analysis step in our approach may be more computationally
expensive. However, the step would still take short absolute amount of time
since the number of selected test cases can be limited to tens or hundreds to
achieve effective fault localization.

The results of our approach may not be deterministic either since there
are random factors (e.g., the first failed test case to choose) and several user-
defined parameters (e.g., the maximal number of test cases to select) employed
in the approach. Thus, we repeat running our approach for multiple times in
our evaluation to take average performance. The maximal number of test cases
to select (i.e., k in Algorithm 1) and the switching threshold w in the boot-
strap phase would affect how much improvements our approach can achieve
over other existing techniques, but they do not matter for the main focus of
our evaluation, which is to evaluate whether Diversity Maximization Speedup
(Dwms) is effective for reducing manual labelling effort and diagnostic cost. Al-
though we expect different optimal & and w for different kinds of programs
and faults, we use a consistent setting k& <= 500 and w = 10 in our evaluation
and would suggest potential users to starts with a small setting where they
can tolerate the manual labelling cost.

5 Empirical Evaluation

In this section we present empirical evaluation that analyzes the impact of DMS
on manual effort needed for test case labeling, and compares our approach with
multiple previous test case prioritization methods.

In particular, our seek for answers to the following two research questions:

RQ1 What is the effectiveness of DMS on single-fault programs?
RQ2 What is the effectiveness of DMs on multi-fault programs?

Section 5.1 shows our experimental results that answer the first research
question. Section 5.2 presents answers to the second research question. Sec-
tion 5.3 describe the discussion and some threats to validity.
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5.1 RQ1: Single-Fault Programs

Section 5.1.1 gives details about our experimental setup for single-fault pro-
grams. In Section 5.1.2, we introduce the subject programs used in our study.
Sections 5.1.3 & 5.1.4 show the results.

5.1.1 Experimental Setups and Measures

In our experiment, every test case prioritization technique starts from an ar-
bitrary labeled failed trace because developers start debugging only when test
cases fail.

In this paper, we use RAPTOR as the bootstrapping technique (P in Figure
1). During the bootstrapping process, w is set to 10 to facilitate trend analysis.

Following Jiang et al (2011), for each faulty version, we repeat each prioriti-
zation technique 20 times to obtain its average cost. For each time, a randomly
chosen failed trace is used as the starting point to alleviate the sensitivity of
the technique to the choice of starting traces. On the other hand, to fairly
compare our approach with other prioritization methods, the same randomly
chosen failed traces are used as the starting traces for all methods.

The effectiveness of test case prioritization methods would be manifested
as the effectiveness of the subsequent fault localization results. So one way to
compare the effectiveness of different prioritization methods based on the dif-
ferent diagnostic costs of the subsequently applied fault localization technique
when the same number of test cases are selected by the different prioritization
methods. In the literature, many fault localization studies use the percentage
of program elements that need to be inspected according to the ranked list
of fault localization results to locate all faults as one kind of diagnostic costs,
which is defined as follows:

| {5 | frs(dj) 2 frs(d)} |
cost = & D] & (7)

where D consists of all program elements appearing in the program and d.,

represents the fault(s) (i.e., the root cause(s) of failures) of a program. We
calculate the average cost as the percentage of elements that developers have
to examine until locating the root causes (d,) of failures. The lower the cost is,
the better a fault localization technique is. Since multiple program elements
can be assigned with the same suspicious score, the numerator is considered
as the number of program elements d; that have bigger or the same suspicious
score to d, in this paper.*

4 There are a number of alternative ways to define diagnostic costs and accuracies, such
as using the number of faults located when up to a certain percentage of program elements
are inspected (e.g. Wong et al, 2014; Debroy and Wong, 2013; Cleve and Zeller, 2005; Baah
et al, 2010; Jones et al, 2002; Lucia et al, 2014), or assuming a random ordering for elements

i | frg(dj)=frg(d«)}|+1
with the same score and incorporating their expected rank U | frs (@) =Irs (@)} in
calculating cost (e.g. Ali et al, 2009; Steimann et al, 2013; Steimann and Frenkel, 2012;
Xu et al, 2011). We use the one in Equation 7 and 8 as they are commonly used and
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We can also define the accuracy of a fault localization technique as the
reverse of the cost, which is the higher the better:

accuracy = 1 — cost (8)

In the following parts of the paper, we thus use cost and accuracy interchange-
ably when the context is clear.

Another way to measure the effectiveness of test case prioritization meth-
ods is to see how many test cases can be reduced by each method. A major
goal of our paper is to minimize the number of test cases that need manual
labelling but can maintain fault localization accuracies. So, in the following
evaluation results, we also show the numbers of reduced test cases with respect
to a targeted fault localization cost (or accuracy).

If labeling all test cases and performing fault localization on all program
spectra results in an average diagnostic cost ¢, we call it the base line cost. If a
test prioritization technique or fault localization technique leads to a diagnostic
cost ¢/, then we say the technique achieves % of base line effectiveness, where
x is defined as follows:

/

z =5 %100 9)
C

To be fair, the number of reduced test cases by each prioritization technique
should be measured when the technique achieves 100% of base line effective-
ness. However, in reality, it is hardly possible to directly control the cost to
be exactly 100% of base line. So, we allow 1% deviation; i.e., in the following
evaluation results, we measure the numbers of reduced test cases when at most
101% of base line effectiveness is achieved.

5.1.2 Subject Programs

We use five real C programs and seven Siemens test programs from the Software-
artifact Infrastructure Repository (SIR) (Do et al, 2005). We refer to the five

real programs (sed, flex, grep, gzip, and space) as UNIX programs. Table 5

shows the descriptive statistics of each subject, including the number of faults,

available test cases and code sizes. Following many previous studies (e.g. Jones

et al, 2002; Abreu et al, 2009), we exclude faults not directly observable by

the gcov profiling tool® (e.g., some faults lead to a crash before gcov dumps

profiling information and some faults do not cause any test case to fail), and

in total we study 254 faults.

easy to understand, and our focus is on evaluating whether different test case prioritization
techniques change the diagnostic costs, instead of measuring the absolute costs. We believe
that if our technique shows significant improvements over one kind of diagnostic cost, it
should also show improvements over other kinds of diagnostic cost.

5 http://gcc.gnu.org/onlinedocs/gec/Geov.html
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Table 5 Subject Programs

Program Description ‘ LOC ‘ Tests ‘ Faults ‘
tcas Aircraft Control 173 1609 41
schedule2 Priority Scheduler 374 2710 8
schedule Priority Scheduler 412 2651 8
replace Pattern Matcher 564 5543 31
tot_info Info Measure 565 1052 22
print_tokens2 Lexical Analyzer 570 4055 10
print_tokens Lexical Analyzer 726 4070 7
space ADL Compiler 9564 1343 30
flex Lexical Parser 10124 567 43
sed Text Processor 9289 371 22
grep Text Processor 9089 809 17
gzip Data Compressor 5159 217 15

Table 6 Labeling Effort on Subject Programs

Subject STMT- STMT- FEP- ART-
Programs | Dms | RAPTOR SEQUOIA ApDpTL | TOoTAL | ADDTL | MIN
Siemens 18 20 500+ 500+ 500+ 97 150
UNIX 16 48 176 150 500+ 98 56

5.1.3 Experimental Results: Reducing Number of Test Cases

Here, we investigate the effectiveness of DMs in reducing the number of test
cases needed for a targeted diagnostic cost. We compare DMS with previous
test case prioritization techniques in terms of labeling effort when to achieve
101% of base line effectiveness as stated in Section 5.1.1.

Since Dms would output a ranked list of suspicious program elements, we
compute the diagnostic cost ¢, for DMS when we just inspect top n (n €
{1,2,--+,|D|}) suspicious elements. We record the mazimum n that ¢, is still
within 101% of base line cost as the amount of labeling effort. Also, we limit
the maximum number of test cases allowed to select (i.e., k in Algorithm 1)
to 500 in this specific evaluation.

Table 6 shows how many labels are needed on average to achieve 101%
of base line effectiveness for each approach. E.g., RAPTOR requires 48 labels
on average for each faulty version from the 5 UNIX programs while DMS only
needs 16. Overall, DMS requires the minimal amount of labeling effort by
achieving 67.7% labeling reduction on UNIX programs and 10% reduction on
Siemens programs in comparison with the existing best approach (RAPTOR).



Diversity Maximization Speedup for Fault Localization 21

5.1.4 Experimental Results: Reducing Cost

Here, we investigate the effectiveness of DMS in reducing cost given a targeted
number of labeled test cases. We select 30 test cases (i.e., set k& = 30 in
Algorithm 1), which we believe are not too many to manually label. We also
find that in our experiments the average debugging cost of using DMs will not
reduce noticeably even if more labeled test cases beyond 50 are added further
(See Figure 3), which is in line with studies in the literature (e.g. Abreu et al,
2009; Liblit et al, 2005) that tens of passed and failed spectra may suffice for
fault localization. During the bootstrapping process, the first 10 test cases are
picked by RAPTOR. We use different prioritization techniques and apply Ochiai
to evaluate program elements on the selected program spectra. A prioritization
technique that obtains a lower cost is better.

Fig. 3 Average Cost of DMS when Selecting Different Numbers of Test Cases.

Following Baah et al (2010, 2011) and the cost metric (Equation 7), we
compare the effectiveness of two prioritization methods P4 and Pp by using
one of the methods (for example, Pg) as reference measure. When selecting the
same number of traces k, the cost difference: cost(Pg)— cost(P4) is considered
as the improvement of P4 over Pg. A positive value means that P4 performs
better than Pp (since lower cost is better) and a negative value means that
the performance deteriorates if we use P4 to replace Pg. The difference cor-
responds to the magnitude of improvement. For example, if the cost of test
cases from P4 is 30% and the cost of Py is 40%, then the improvement of



22 Xin Xia*T et al.

Table 7 Comparison of Prioritization methods.

Test Prioritization Method ‘ Positive ‘ Negative ‘ Neutral ‘

DMS vs RAPTOR 25.20% 19.29% 55.51%
DMS vs SEQUOIA 33.46% 19.69% 46.85%
DMS vs STMT-ADDTL 42.13% 19.29% 38.58%
DmMS vs STMT-TOTAL 62.99% 7.87% 29.13%
Dwms vs FEP-ADDTL 40.16% | 20.08% 39.76%
Dwms vs ART-MIN 31.50% 19.29% 49.21%

Table 8 Distribution of positive improvements.

Test Pri. Tech. ‘ Max ‘ Mean ‘Median‘ Min ‘

Dwms vs RAPTOR 77.42% | 7.71% 3.93% | 0.03%
Dwms vs SEQUOIA 66.67% | 14.38% 8.06% 0.23%
DMS vs STMT-ADDTL | 72.87% | 14.68% | 5.17% | 0.03%
Dwms vs STMT-TOTAL | 94.97% | 27.68% | 22.29% | 0.03%
Dwms vs FEP-ADDTL | 45.90% | 13.83% | 6.35% | 0.03%
Dwms vs ART-MIN 53.81% | 7.70% 3.23% | 0.03%

Py over Pp is 10%, which means that developers would examine 10% fewer
statements if P4 is deployed.

Result Summary. Table 7, 8, and 9 compare our method with the existing
prioritizing techniques. The results show that our method outperforms no
worse than other methods for the majority of faulty program versions.

As illustrated in Table 7, DMS performs better than RAPTOR on 25.20%
of the faulty versions, worse on 19.29% of the faulty versions, and shows no
improvement on 55.51% of the faulty versions. The first row of Table 8 char-
acterizes the degree of positive improvement of DMS over RAPTOR. As the
table indicates, half of the 25.20% faulty versions with positive improvement
values have improvements between 0.03% and 3.93%, and the other half have
improvements between 3.93% and 77.42%. The average positive improvement
of DMS over RAPTOR is 7.71%.

Table 9 characterizes the degree of negative deterioration of DMS over
other techniques. As the first row in the table indicates, for half of the 19.29%
faulty versions, DMS deteriorates between 0.03% and 0.60% from RAPTOR, and
for the other half, DMS deteriorates between 0.60% and 1.15%. The average
percentage of negative deterioration of DMS over RAPTOR is 0.54%.

We conduct paired Wilcoxon signed-rank test to confirm the difference
in performance between DMS and six existing prioritization techniques. The
statistical test result rejects the null hypothesis and suggests that the improve-
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Table 9 Distribution of negative deterioration.

Test Pri. Tech. ‘ Max ‘ Mean ‘ Median ‘ Min ‘

DMS vs RAPTOR 1.15% 0.54% | 0.60% 0.03%
DMS vs SEQUOIA 31.71% | 4.01% 1.33% 0.03%
Dwms vs STMT-ADDTL | 30.73% | 4.14% 1.52% | 0.03%
Dwms vs STMT-TOTAL | 27.88% | 4.61% | 2.64% | 0.17%
Dwms vs FEP-ADDTL | 24.70% | 5.06% | 2.15% | 0.03%
Dwms vs ART-MIN 22.41% | 4.11% 1.72% 0.03%

ments of DMS over other existing techniques are statistically significant at 95%
confidence interval.

Detailed Comparison. Table 6 shows that RAPTOR, FEP-ADDTL and ART-
MIN achieve 101% of base line effectiveness with less than 500 test cases on
subject programs. Figure 4, 5, and 6 show the comparison of fault localization
costs between DMS and the three different prioritization techniques. The hori-
zontal axes represent the number of versions that show differences in the Cost
of fault localization. The vertical axes represent the percentage difference in
Costs. If DMS is better than the reference method, the area above zero-level
line will be larger.

Dwms vs FEP-ADDTL. Previous studies (Rothermel et al, 2001; Elbaum et al,
2002) show that FEP-ADDTL is the most promising prioritizing method for
fault detection. Without test oracles, FEP can be estimated by 1— False Neg-
ative Rate (FNR) (Gonzdlez-Sanchez et al, 2011b) ¢ which is also used in our
study. Figure 4 presents the comparison between DMS and FEP-ADDTL over
all faulty versions that show performance differences. FEP-ADDTL is used as
the reference prioritization technique. The baseline represents the fault local-
ization cost on program spectra prioritized by FEP-ADDTL. Each program
version is a bar in this graph and we remove versions from the graph that
have no cost differences. In the figure, the vertical axis represents the magni-
tude of improvement of DMS over FEP-ADDTL. If the bar of a faulty version
is above the horizontal axis, that means on this version DMs performs better
than FEP-ADDTL (positive improvement) and the bars below the horizontal
axis represent faulty versions for which DMS performs worse than FEP-ADDTL.

The comparison shows that DMS performs better than FEP-ADDTL on 102
versions, out of 153 versions that show differences in cost, but performs worse
than FEP-ADDTL on 51 versions. The positive improvement ranges from 0.03%
to 45.90%, with an average of 6.35%.

6 FNR is the program passing rate when program element is the real fault and executed in
test case. Usually when FNR is high, the fault is difficult to be detected by Spectrum-based
fault localization techniques.
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Fig. 5 Improvement of DMS over Art-MIN.

Dus vs Art-MiIn. In this study we compare the effectiveness of DMS to Adap-
tive Random Test Prioritization(ART) (Jiang et al, 2009). There are various
strategies for ART, in this experiment we only compare with the best one:
ART-MIN (Jiang et al, 2009; Gonzdlez-Sanchez et al, 2011b,a). Figure 5 shows
the results of the study in which ART-MIN is used as the baseline method.
The comparison shows that DMS is better than ART-MIN. Out of 129 ver-
sions that show differences in cost, our prioritization method performs better
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Fig. 6 Improvement of DMS over RAPTOR on UNIX programs.

than ART-MIN on 80 versions but performs worse than the ART-MIN on 49
versions.

Dums vs RApTOR. Figure 6 shows the comparison between DMs and RAPTOR on
UNIX programs. Here we use RAPTOR as the reference metric. The comparison
shows that DMS outperforms RAPTOR on 20 versions by at least 1% cost, and
on only 5 versions, it is worse than RAPTOR by over 1% cost.

There is also improvement on Siemens programs: 32.2% versions show d-
ifferences and the average debugging cost improvement is 1.3%, which is not
so significant as compared with UNIX programs. This is probably due to the
small software size. On Siemens programs, RAPTOR can reach 101% of base
line effectiveness by only selecting 20 test cases on average (see Table 6). By
selecting such few test cases, RAPTOR already obtains the maximal ambiguity
group reduction due to very limited different coverage profiles. For example,
all test cases of tcas only have less than 15 ambiguity groups in all faulty
versions. In this case, the speedup by our method is trivial. In real scenario,
programs to be diagnosed would be more similar to UNIX programs.

5.2 RQ2: multi-fault Programs

Section 5.2.1 gives details about our experimental setup for multi-fault pro-
grams. Section 5.2.2 introduces the subject programs used in our study. Sec-
tions 5.2.3 & 5.2.4 show the results.
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5.2.1 Experimental Setups and Measures

The overall experimental setups and measures used for comparison for the
multi-fault setting is similar to the single-fault setting.

There is only a minor difference in the definition of the diagnostic cost as
now there are multiple faults. The diagnostic cost is defined as follows:

{4 | frs(dj) > ming, e ps frs (d) }
|D|

where D consists of all program elements appearing in the program and D, is
a set, of faults in a program. We calculate the average cost as the percentage of
elements that developers have to examine until locating all root causes (D).
Since multiple program elements can be assigned with the same suspiciousness
score, the numerator is considered as the number of program elements d; that
have bigger or the same suspiciousness score to a root cause d, in D, with the
lowest suspiciousness score. In this setting, we consider the worst-case scenario
where developers need to find all root causes by inspecting all elements that
have a score no lower than the score of any root cause.

cost = (10)

5.2.2 Subject Programs

Each multi-fault program version used in our study contains more than one
fault where each fault involves only one line (or one simple statement if the
statement is broken into more than one line) in the program and different
faults affect different lines. This consideration is aligned with previous studies
(e.g. Zhang et al, 2013; Abreu et al, 2009). We use a dataset containing 173
multi-fault versions of 8 C programs as shown in Table 10. Different versions
may contain the same fault, and there are 157 distinct faults in total. The
dataset was previously used by Lucia et al (2014) to evaluate 40 different
association measures.

Table 10 multi-fault Subject Programs

Program 7# Bugs Per Version ‘ # Tests ‘ # Versions
tcas 5 1,608 41
schedule2 2 2,710 10
schedule 5 2,650 9
replace 5 5,542 32
tot_info 5 1,052 23
print_tokens2 5 4,115 10
print_tokens 2 4,130 10
space 5 1,343 38
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5.2.3 Experimental Results: Reducing Number of Test Cases

We investigate the effectiveness of DMS in reducing the number of test cases
needed for a targeted diagnostic cost for our multi-fault subject programs.
Table 11 shows how many labels are needed on average to achieve 101% of base
line effectiveness (cf. Section 5.1.1) for each approach. For example, RAPTOR
requires 98 labels on average for each faulty version from all of the eight
program datasets while DMS needs 79. In total, DMS requires the least amount
of labeling effort; in comparison with the existing best approach (FEPADDTL),
Dws achieves 5.95% labeling reduction on all of the datasets.

Table 11 Labeling Effort on Subject Programs

Subject STMT- STMT- FepP- ART-

Programs| Dwms | RAPTOR | SEQUOIA | ApptL | TOTAL | ADDTL | MIN

All [79 | o8 [ 1 [z [240 [ |64 |

5.2.4 Experimental Results: Reducing Cost

This subsection investigates the effectiveness of DMS in reducing cost given a
targeted number of labeled test cases. Similar to the single-fault setting, we se-
lect 30 test cases and utilize the same method to compare between techniques.
We also find that in our evaluation the average debugging cost of using DMS
will not reduce significantly even if more labeled test cases than 50 are added
further (see Figure 7).

Summary. Table 12, 13, and 14 summarize the comparison between our
method and the existing prioritizing techniques. Table 12 illustrates the distri-
butions of DMS’s performance against other techniques. For example, the first
row shows that DMS performs better than RAPTOR on 34.68% of the faulty
versions, worse on 31.79% of the faulty versions, and shows no improvement
on 33.53% of the faulty versions. The first row of Table 13 characterizes the
degree of positive improvement of DMS over RAPTOR. As the table indicates,
half of the 34.68% faulty versions with positive improvement values have im-
provements between 0.03% and 1.05%, and the other half have improvements
between 1.05% and 46.75%. The average positive improvement of DMS over
RAPTOR is 5.95%. Table 14 illustrates the degree of negative deterioration of
DwMs over other techniques. The first row shows that, half of the 31.79% faulty
versions for which DMS performs worse than RAPTOR have deterioration be-
tween 0.23% and 2.94%, and the other half have deterioration between 2.94%
and 53.30%. The average deterioration of DMs from RAPTOR is 8.54%.

We conduct paired Wilcoxon signed-rank test to confirm the difference in
performance between DMS and six existing prioritization techniques. The sta-
tistical test result rejects the null hypothesis and suggests that the performance
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Table 12 Comparison of Prioritization methods.

Test Prioritization Method ‘ Positive ‘ Negative ‘ Neutral ‘

Dwms vs RAPTOR 34.68% | 31.79% 33.53%
DMS vs SEQUOIA 46.24% 39.31% 14.45%
DMS vs STMT-ADDTL 50.29% 28.23% 21.39%
DMS vs STMT-TOTAL 71.10% | 24.86% 4.05%
Dwms vs FEP-ADDTL 51.45% | 29.48% 19.08%
Dwms vs ART-MIN 71.68% | 23.70% 4.62%

Table 13 Distribution of positive improvements.

Test Prioritization Method ‘ Max

‘ Mean ‘Median‘ Min ‘

Dwms vs RAPTOR 46.75% | 5.95% 1.05% | 0.03%
Dwms vs SEQUOIA 51.75% | 18.31% 14.31% | 0.56%
DwMms vs STMT-ADDTL 54.24% | 10.67% | 4.50% 0.04%
DMS vs STMT-TOTAL 56.31% | 19.25% | 25.42% | 0.19%
Dwms vs FEP-ADDTL 99.05% | 17.94% | 9.04% | 0.02%
Dwms vs ART-MIN 99.13% | 42.96% | 36.83% | 0.14%
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Table 14 Distribution of negative deterioration.

Test Prioritization Method ‘ Max ‘ Mean ‘ Median ‘ Min ‘
DwMms vs RAPTOR 53.30% | 8.54% 2.94% 0.23%
DMS vs SEQUOIA 52.00% | 8.49% 4.37% 0.19%
DMS vs STMT-ADDTL 53.86% | 10.88% | 4.87% | 0.14%
DmS vs STMT-TOTAL 51.38% | 10.56% | 7.10% | 0.13%
Dwms vs FEP-ADDTL 47.13% | 10.72% | 5.89% | 0.04%
Dwms vs ART-MIN 46.21% | 3.33% 2.01% 0.16%

differences between DMS and other techniques are statistically significant at
95% confidence interval.

Detailed Comparison. Similar to the single-fault setting, we show the com-
parison between DMS and three methods, RAPTOR, FEP-ADDTL and ART-
MIN, in terms of fault localization costs in Figure 8, 9, and 10.

Dus vs FEP-ApDTL. Figure 8 presents the comparison between Dms and FEP-
ADDTL over all faulty versions that show cost differences. The comparison
shows that DMS is better than FEP-ADDTL on 89 versions, out of 140 versions
that show differences in cost, but performs worse than the FEP-ADDTL on
51 versions. The positive improvement ranges from 0.02% to 99.05%, with an
average of 17.94%.

Dums vs Art-Min. We compare the effectiveness of DMS to the best variant
of Adaptive Random Test Prioritization(ART), namely ART-MIN (Jiang et al,
2009; Gonzalez-Sanchez et al, 2011b,a). Figure 9 shows the results of the study
in which ART-MIN is used as the baseline method. The comparison shows that
Dws is better than ART-MIN on 124 versions, out of 165 versions that show
differences in cost, but performs worse than the ART-MIN on 41 versions.

Dums vs RapTor. Figure 10 shows the comparison between DMS and RAPTOR.
The comparison shows that DMS is better than RAPTOR on 60 versions, out
of 115 versions that show differences in cost, but performs worse than the
RAPTOR on 55 versions. The average deterioration (8.54%) of DMs (Table 14
is higher than its average improvement (5.95%) in comparison with RAPTOR
(Table 13), even though DMs reduces the total labelling effort from 98 test
cases to 79 (Table 11). We are yet unclear about the reason causing the trade-
off in the multi-fault programs. It is very intriguing future work to find ways
to balance between labelling effort and diagnostic cost better.

5.3 Discussion and Threats to Validity

As we have noticed, the improvement of DMS in single-fault and multi-fault
programs are different. In the 12 single-fault programs, DMS requires the min-
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Fig. 9 Improvement of DMS over Art-MIN.

imal amount of labeling effort by achieving 67.7% labeling reduction on U-
nix programs and 10% reduction on Siemens programs in comparison with
the existing best approach—RAPTOR. While in the 8 multi-fault programs,
Dwms achieves 5.95% labeling reduction in comparison with the existing best
approach—FEP-ADDTL. The phenomenon happens since we consider the worst
cases of DMS in multi-fault programs, i.e., we consider the root case d, with the



Diversity Maximization Speedup for Fault Localization 31

40% H

Improvement
$

0 10 20 30 40 50 60 70 20 90 100 110
No. of Versions

Fig. 10 Improvement of DMS over RAPTOR.

lowest suspiciousness score. In some versions of the multi-fault programs, DMS
needs more test cases to achieve 101% of base line effectiveness than that of
FEP-ADDTL. For example, in the version 2 of the program print_token2, DMS
need to label 500 test cases to achieve 101% of base line effectiveness, while
FEP-ADDTL only requires 59 test cases. Thus, the average reduced number of
test cases for DMS in multi-fault program is not as high as that in single-fault
programs.

However, the improvements of DMS in reducing cost are statistically signif-
icant for both single-fault and multi-fault programs at 95% confidence interval
via paired Wilcoxon signed-rank tests. Moreover, although we notice that DMmS
reduce the number of test case of Fep-Addtl by 5.95% in multi-fault programs,
but there are 51.45% fault versions that DMS show positive improvement over
Fep-Addtl, and 29.48% fault versions that DMs show negative deterioration
over Fep-Addtl, while the number for single-fault programs are 40.16% and
20.08%.

The threats to our studies include the issue of how representative the sub-
jects of our studies are. Since the Siemens programs are small, and larger pro-
grams may be subject to different testing and debugging traits. To strengthen
the external validity, we include UNIX programs which are real-life programs.
These subjects have been adopted for evaluation in many studies (e.g. Jones
and Harrold, 2005; Abreu et al, 2009; Santelices et al, 2009).

Another possible threat is that although our method outperforms exist-
ing method in 25.2% to 62.99% program versions and gets equivalent cost
in around 30% versions, there are still a certain percent of versions that our
method does not perform very well. But as we can see in the studies, most of
the negative deterioration of those versions are relatively small comparing to
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the positive improvements. We also conduct statistical tests to further confirm
the advantage of Dwms.

There are also many other kinds of threats to validity affecting fault lo-
calization techniques in general as listed in a recent study by Steimann et al
(2013), such as heterogeneity of test cases, biases in injected faults, unrealistic
assumptions about locating and understanding faults, etc. Although we focus
on evaluating test case prioritization techniques, instead of fault localization
techniques, our work inevitably inherits the threats to validity for fault lo-
calization techniques since our evaluation of prioritization techniques is done
through the evaluation of fault localization. We hope in future work the threats
to validity for both fault localization and test case prioritization techniques
can be addressed together.

6 Related Work

In this section, we describe related work on fault localization, defect predic-
tion, test case prioritization, diagnostic prioritization, and automated oracle
construction. The survey here is by no means a complete list.

Fault Localization. Over the past decade, many automatic fault localization
and debugging methods have been proposed. The ways of calculating suspi-
ciousness for program elements based on program spectra are various, such as
Tarantula (Jones et al, 2002; Jones and Harrold, 2005), Ochiai (Abreu et al,
2009)), SOBER (Liu et al, 2005), DStar (Wong et al, 2014), and many others
(e.g. Xie et al, 2013; Naish et al, 2011; Lucia et al, 2014; Jiang and Su, 2007).
Renieris and Reiss (2003) propose a nearest neighbor fault localization tool
called WHITHER that compares the failed execution to the correct execution
and reports the most ambiguity locations in the program. Zeller (2002) applies
Delta Debugging to search for the minimum state differences between a failed
execution and a successful execution that may cause the failure. Liblit et al
(2003) consider predicates whose true evaluation correlates with failures are
more likely to be the root cause. Campos et al (2013) propose ENTBUG which
applies entropy theory to guide test case generation.

Test Case Prioritization. Test case prioritization techniques are initially
proposed for early fault detection in regression testing. Rothermel et al (2001)
show the coverage-based and Fault-exposing-potential based approaches can
improve the rate of fault detection of test suites. Elbaum et al (2002) further
investigate “version-specific prioritization” on different profile granularities.
(Li et al, 2007) show that Additional Greedy Algorithm is among the best
approaches for regression test case prioritization. Baudry et al (2006) propose
Dynamic Basic Block (DBB) for test suite reduction. Their method focuses on
the number of DBBs. Gonzilez-Sanchez et al (2011a) further consider group
sizes for test suite reduction.

Oracle Construction. Although in recent years, many studies (e.g. Pacheco
and Ernst, 2005; Xie, 2006; Bowring et al, 2004) aim to automatically generate
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test oracles, they are often heavy weight, based on certain assumption and thus
applicable to specific scenarios. Eclat (Pacheco and Ernst, 2005) can generate
assertions based on a learning model, but they assume correct executions. Xie
(2006) proposes a method called Orstra for oracle checking. Bowring et al
(2004) propose ARGO which selects test cases inducing unknown behaviors
to actively construct test oracles for improving test quality. The approach is
more suitable for regression testing. Our approach complements these studies
by reducing the effort needed for the purpose of fault localization.

7 Conclusion and Future Work

This paper proposes a new concept and technique named Diversity Mazimiza-
tion Speedup (DMS) aiming to minimize the amount of effort in manual oracle
construction, while still permitting effective fault localization. In comparison
with six other existing prioritization techniques on 12 C programs, we have
shown that our technique requires on average a smaller number of labelled test
cases to achieve the targeted diagnostic cost of subsequent fault localization
techniques, and that if the same number of labelled test cases are allowed, it
can choose test cases that may be more effective in reducing debugging cost.
We have shown that the improvements made by our technique on real-life
programs over other existing techniques are statistically significant.

In future, we will evaluate the proposed approach on more subject pro-
grams. We will also explore the possibility of adopting more sophisticated
trend analysis methods.
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