
Active Code Search: Incorporating User Feedback to
Improve Code Search Relevance

Shaowei Wang, David Lo, and Lingxiao Jiang
School of Information Systems, Singapore Management University

{shaoweiwang.2010,davidlo,lxjiang}@smu.edu.sg

ABSTRACT
Code search techniques return relevant code fragments giv-
en a user query. They typically work in a passive mode:
given a user query, a static list of code fragments sorted by
the relevance scores decided by a code search technique is
returned to the user. A user will go through the sorted list
of returned code fragments from top to bottom. As the user
checks each code fragment one by one, he or she will natu-
rally form an opinion about the true relevance of the code
fragment. In an active model, those opinions will be taken
as feedbacks to the search engine for refining result lists.

In this work, we incorporate users’ opinion on the results
from a code search engine to refine result lists: as a us-
er forms an opinion about one result, our technique takes
this opinion as feedback and leverages it to re-order the re-
sults to make truly relevant results appear earlier in the
list. The refinement results can also be cached to poten-
tially improve future code search tasks. We have built our
active refinement technique on top of a state-of-the-art code
search engine—Portfolio. Our technique improves Portfolio
in terms of Normalized Discounted Cumulative Gain (ND-
CG) by more than 11.3%, from 0.738 to 0.821.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment

General Terms: Algorithms; Experimentation

Keywords: Code Search; User Feedback; Active Learning

1. INTRODUCTION
Millions of open source and industrial software systems

have been developed and deployed. Maintaining these sys-
tems requires constant searching through various code bases
and documents and relate different parts of the code togeth-
er. Also, the development of new systems can benefit from
reusable knowledge hidden in many existing systems if the
developers can search through existing code and find rele-
vant code for reuse. Studies in the literature have proposed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642947.

various code search techniques that can return pieces of code
considered to be relevant to a user’s query [1, 8].

One factor that potentially affects the effectiveness of code
search is the difficulty in formulating a precise query that
matches the relevant code fragments needed by users. Often,
users could not exactly specify what they want in the form
of a set of keywords or constraints, but they are often able to
decide whether a given code fragment satisfies their needs.
Given a list of code fragments returned by a code search
engine, some code fragments might be close to what a user
wants, while others might be very different. As a user checks
each code fragment one at a time, he or she will naturally
form an opinion about its relevance. It will be beneficial to
utilize user opinions on code fragments that he or she has
checked to improve the results.

This paper aims to improve code search relevance by inte-
grating users’ feedback. Our approach records users’ opin-
ions about each code fragment when they check through a
list of results returned by a search engine and refines the list
so that code fragments that are more relevant to users’ need
would appear earlier in the list, which save users’ time. It
can be built on top of any code search engine that takes tex-
tual keywords or descriptions as query inputs. The feedback
required by our approach does not impose much additional
effort on users, as they would need to navigate search results
anyway to decide whether the results match their needs; the
only difference is that they need to explicitly indicate their
opinions about a search result when using our approach.

Specifically in this paper, we build our approach on one
of the state-of-the-art code search engines, Portfolio [8], to
incorporate user feedback. Users of our approach first re-
ceive a list of search results from Portfolio for their query as
usual. Then, they can provide relevance feedback on each
search result when they check through the list one by one.
The feedback is expressed as a label in a 4-point Likert scale,
where 1,2,3, and 4 indicate whether the result is complete-
ly irrelevant, mostly irrelevant, mostly relevant, and highly
relevant. Once the relevance feedback for a search result is
recorded, our approach incorporates this feedback to re-sort
the remaining search results. This is performed based on
the semantic and structural similarity between each of the
remaining results and all known relevant or irrelevant result-
s. The goal is to have search results that are more likely to
be relevant to be re-arranged nearer to the top of the list.
Our approach can also store past feedbacks collected from
previous queries to potentially improve both the current and
future code queries. We refer to this as active code search—

users can more actively affect the output of a code search
engine by providing a series of relevance feedback.

In the information retrieval community, Rocchio is a pop-
ular way to incorporate relevance feedback by refining a
query based on a set of labeled results [7]. Our approach
is a customized reference feedback mechanism tailored for
code search. Different from Rocchio, which only considers
textual information, we also consider structural information
extracted from source code.

We have evaluated our approach with 70 queries on a code
base containing 19,414 programs written in C and/or C++,
comprised of about 169 million lines of code. Our evalu-
ation shows that Portfolio achieves an average Normalized
Discounted Cumulative Gain (NDCG [5]) score of 0.738 for
the 70 queries on the code base, while our active code search
approach (Portfolioactive) achieves 0.821. We have also com-
pared our approach against Portfolio merged with Rocchio
(Portfoliorocchio) and find that Portfoliorocchio achieves a
lower average NDCG score of 0.764.

The structure of this paper is as follows. We present our
active code search approach in Section 2 and zoom in to the
refinement engine component in Section 3. Our empirical
evaluation results are presented in Section 4. We discuss
related studies in Section 5. We finally conclude and mention
future work in Section 6.

2. APPROACH OVERVIEW
Our active code search framework is shown in Figure 1.

It consists of two major processing components (shown as
rectangular blocks in the figure): Code Search Engine and
Refinement Engine. The interaction between users and these
two major components would result in a list of results (in the
rounded rectangular block) containing potentially relevant
code fragments. As a user can provide feedback piece by
piece incrementally, the list of search results would be refined
in multiple iterations, as illustrated by the circular arrows.
The sequence of the interactions in our active code search
framework is described in the following paragraphs.

Code Search
Engine

List of
Results

Query

Relevance
Feedback

Refinement
Engine

Update

Output

Display

Query

Figure 1: Active Code Search: Overall Structure

First, a user posts a query to a passive code search engine.
The search engine takes the user query and returns a list of
code fragments (i.e., the “List of Results” block in Figure 1)
sorted according to the scores of the code fragments calcu-
lated internally by the search engine. The earlier a code
fragment appears in the list, the more similar the search en-
gine thinks it is to the user query. In this paper, we use
Portfolio [8] in the Code Search Engine block.

Second, as the user navigates through the list of results
one by one, he or she can provide relevance feedback. For

example, after the user investigates the result at the top of
the list, the user forms a judgement if the result is relevant.
The judgement can be expressed as a label for the result in
a 4-point Likert scale, where 1, 2, 3, and 4 indicate whether
the result is completely irrelevant, mostly irrelevant, mostly
relevant, and highly relevant, respectively. Each judgement
for the results investigated by the user is used as input to
the Refinement Engine block one at a time.

Third, as the refinement engine receives a piece of rele-
vance feedback, it refines the ordering of the results in the
list that have not been investigated by the user, aiming to
improve the overall relevance of the refined list. For exam-
ple, an uninvestigated code fragment that is originally at the
5th position could be shifted to the 48th position, as it is
similar to some investigated code fragments that are given
low relevance scores; on the contrary, an uninvestigated code
fragment at the 48th position could be shifted to the 4th po-
sition, as it is similar to some investigated code fragments
receiving high relevance scores. The process that involves
refining a list of results, displaying a refined list, and pro-
viding relevance feedback repeats until the user decides to
stop or when the list is exhausted. When a user stops, it
could correspond to cases where the user has found what he
or she wants, or where the user decides to accept something
marginally relevant and use the returned code from there, or
where the user gives up and decides to complete his or her
task without reference code, etc. In the refinement engine,
the feedbacks of previous queries and their corresponding
refined results are cached. When a new query is posted, if a
similar query is identified in the cache, the refined results of
the similar query are returned. We describe how we identify
the relevant refined results in Section 3.

Our active code search approach does not query the pas-
sive code search engine during the refinement, and thus does
not need changes to the passive code search engine and can
be easily integrated with any engine that takes user queries
in the form of textual keywords or descriptions.

3. REFINEMENT ENGINE
This section describes the core component of our approach

in detail. Figure 2 illustrates the structure of our refinement
engine. The engine takes in the original user query, a list
of results, the relevance feedback from users expressed in 4-
point Likert scores, and outputs a refined list of results that
shows potentially more relevant results nearer to the top.

Our refinement engine has several data blocks (in round-
ed rectangles): “Results”, “Labeled Results”, “Unlabeled Re-
sults”, “Refined Query Representation”, and “Reordered Re-
sults”. Results are the list of results displayed to users so
far. Labeled results are results that have received users’
relevance feedback. Unlabeled results are those that have
not received relevance feedback from users. Refined query
representation is used internally in our refinement engine to
represent the combined effect of the original query and the
results that have been investigated and labeled by the user.
Reordered results are the refined list outputted by the re-
finement engine after taking user feedback into consideration
and will be presented to users for additional feedback.

Our refinement engine has also several processing blocks
(in rectangles): “Update Query Representation”,“Parameter
Tuning”,“Reorder Results”, and “Cache Processor”. These
processing blocks work together to refine the list of results
for the original user query based on the relevance feedback.

Results

Labeled Results

Unlabeled Results

Update

QueryRepresen

tation

Refined

QueryRepresen

Reorder

Results
Reordered

Results

Relevance
Feedback

Parameter
Tuning

Update

Original
Query

Feedback

List of
Results

Cache

Processor

Figure 2: Refinement Engine Component

The “Update Query Representation” block produces the re-
fined query representation from labeled results and the orig-
inal query. This refined query representation is used by the
“Reorder Results” block to produce the refined results. The
“Update Query Representation” block accepts parameters
that are to be tuned periodically as more relevance feedback
is received. This is done by the “Parameter Tuning” block.
The “Cache Processor” block stores the original queries that
the refinement engine have processed before and their corre-
sponding labeled results, refined query representations, and
reordered results. This block also checks if a new input query
closely matches a past query; if it does, it will bootstrap the
refinement engine with the cached data. We elaborate these
processing blocks in Sections 3.1, 3.2, 3.3, and 3.4.

3.1 Update Query Representation
In this block, we incorporate information from search re-

sults that have received relevance feedback (i.e., Labeled Re-
sults) into the original query. We convert the original query
into its representative vectors. We also convert search results
that have received relevance feedback into their representa-
tive vectors. We then update the representative vectors of
the original query to a refined query representation. To e-
laborate “Update Query Representation”, we present some
definitions first, and then the algorithm.

3.1.1 Query and Result Representations
We first introduce the representations for a query and a

result that can be used to transform a textual query or a
code fragment into vectors of numerical scores. We consider
two representations: semantic and structural.

Definition 1 (Semantic Representation). In the se-
mantic representation, a query and a code fragment are viewed
as a bag of words. We use standard tokenization, stop word
removal, identifier splitting, and stemming to convert a query
or a code fragment into a bag of words [7]. The semantic
score of a word is given by the product of its term frequen-
cy and inverse document frequency (tf ∗ idf) [7]. The term
frequency (tf) of a word is the number of times the word ap-
pears in the query or code fragment normalized by the total
number of words in the query or code fragment. The in-

verse document frequency (idf) of a word is the logarithm of
the total number of documents (i.e, the number of methods
in the code base in our code search setting) divided by the
number of documents that contain the word. Given a query
or code fragment q, we denote the vector of semantic scores
representation of q as V Score(q)sem.

Example. Let a query q be lock unlock file, then the term
frequency of words lock, unlock and file are 0.33, 0.33, 0.33
respectively. Also, let the words lock, unlock and file appear
in 270,872, 154,029, and 800,672 methods and there are to-
tally 7,916,458 methods in the code base, so the inverse doc-
ument frequencies for the words calculated by the equation

idf(w,D) = log |D|
|{d∈D:w∈d}| are 1.46, 1.71, and 0.99, respec-

tively, where w is a word in the query and d is a method in
the code base D. Finally, the semantic scores are 0.48, 0.54,
and 0.33 for lock, unlock and file, respectively.

Definition 2 (Structural Representation). In the
structural representation, a query and a code fragment are
viewed as a bag of function calls. The structural score of a
function is given by the product of its term frequency and in-
verse document frequency. Given a query or a code fragment
r in the search results, the term frequency of a function in r
is the frequency of the function being called in r normalized
by the total number of function calls in r; the inverse doc-
ument frequency of a function is the logarithm of the total
number of code fragments in the search results divided by the
number of code fragments in the search results that call the
function. We denote the vector of structural scores of r as
V Score(r)str. Note that the original query entered by a user
does not contain method calls, thus it is represented by a vec-
tor of zeroes. However, as we incorporate results that have
received relevance feedback from users to the original query,
the query’s vector of structural scores would be updated.

Example. Consider a code fragment r which is a function
ScLockedFile. There is only one function unlock called in
ScLockedFile. So the term frequency of unlock is 1. There
are totally 50 search results returned, and the function un-
lock is called by 2 code fragments in the results; so its in-
verse document frequency value is log 50

2
=1.40. Finally, the

V Score(r)str for unlock is 1.40.

3.1.2 Vector Operations
We also define operations that are applied to vectors and

help to make it easier to describe the algorithm in the fol-
lowing subsections of this paper.

Definition 3 (Vector Summation and Division). –
Let v[i] be the score in a vector v corresponding to a word or
a function i. In the case that the word or the function i does
not have a corresponding entry in v, let v[i] returns 0. Given
two vectors v1 and v2, the summation of these two vectors
would result in a new vector vr, and ∀i : vr[i] = v1[i]+v2[i].
Consider a vector v and a constant c, the division of vector v
by c would result in a new vector vr, and ∀i : vr[i] = v[i]/c.

We also need a similarity metric among vectors so that we
can gauge the refinement of queries and search results. In
this paper, we measure vector similarity by using the well-
known cosine similarity [7].

3.1.3 Algorithm
The procedure for“Update Query Representation”is shown

in Algorithm 1. The procedure takes in a set of search re-
sults labeled so far (LBL), the new feedback (fback), the
set of unlabeled results (ULBL), the original user query
origquery, and a set of weights (α1, α2, α3, α4) that deter-
mine the contributions of labeled results with the Likert s-
cores 1, 2, 3, and 4 respectively. Weight α1, α2, α3, α4 are
set to be -0.3, -0.1, 0.1, and 0.5 initially. The procedure up-
dates the set of labeled results LBL and unlabeled results
ULBL, and creates a refined query representation refquery
which consists of two vectors refquerysem and refquerystr
which are the semantic and structural representations.

To transform the inputs to the outputs, the procedure
works in the following steps. We split the results in LBL
into four sets based on the relevance scores (Line 11). After
this step, we compute the semantic center of each set (Line
12) by the following equation:

Cisem =

∑
r∈LBLi

V Scoresem(r)

|LBLi|

Similarly, we compute the structural center of each set (Line
13) by the following equation:

Cistr =

∑
r∈LBLi

V Scorestr(r)

|LBLi|

The (semantic or structural) center of each set is a vec-
tor that is the summation of the (semantic or structural)
vectors of all results appearing in the set normalized by
the size of the set (i.e., the number of results in the set).
We then compute the semantic refined query representation
(refquerysem) by combining the centers of the correspond-
ing four sets (Cisem) with the semantic score vector of the
original query (origquerysem) (Line 14). The structural re-
fined query representation (refquerystr) is computed in a
similar way (Line 15). This refined query representation
(refquerysem,refquerystr) is then used to help reorder the
search results in Section 3.2.

3.2 Reorder Results Block
Algorithm 1 Update Query Algorithm

1: Procedure UpdateQuery
2: Input:
3: LBL: Labeled search results
4: fback: New feedback, i.e., a new Likert score to an unlabeled

search result
5: ULBL: Unlabeled search results
6: origquery: Original user query
7: α1, α2, α3, α4: The weights of contributions of labeled results

with the Likert score 1, 2, 3, and 4 respectively
8: Output: Updated LBL, ULBL, and a refined query representa-

tion refquery
9: Method:
10: Add fback into LBL, and remove the result labeled by fback

from ULBL
11: Let LBL1, LBL2, LBL3, and LBL4 be the sets of results in

LBL with Likert scores 1, 2, 3, and 4 respectively
12: Compute the semantic centers of LBL1, LBL2, LBL3, and

LBL4 and denote them as C1sem, C2sem, C3sem, and C4sem

13: Compute the structural centers of LBL1, LBL2, LBL3, and
LBL4 and denote them as C1str, C2str, C3str, and C4str

14: Let refquerysem = V Scoresem(origquery) +
∑

i=1...4
αi×Cisem

15: Let refquerystr = V Scorestr(origquery) +
∑

i=1...4
αi × Cistr

16: Return LBL, ULBL, and (refquerysem, refquerystr)

In this block, we sort the unlabeled results based on their
similarity with the refined query representation. The pseu-
docode is shown in Algorithm 2. It takes in the refined
query representation refquery generated by Algorithm 1
and a list of unlabeled search results ULBL. It outputs
a reordered ULBL in the following steps. First, it iterates
through the list of unlabeled results to compute the struc-
tural and semantic similarity scores between the score vec-
tors of each result and those of refquery, i.e., refquerysem
and refquerystr (Lines 8–9). It then takes the average of
these two scores as the overall similarity score for each un-
labeled result (Line 10). Then, it reorders the unlabeled
results according to their overall similarity scores in the de-
scending order (Line 12).

Algorithm 2 Reorder Result Algorithm

1: Procedure ReorderResults
2: Input:
3: refquery: Refined query representation
4: ULBL: Unlabeled results
5: Output: Reordered ULBL
6: Method:
7: for all r in ULBL do
8: Let simsem = cos(V Score(r)sem, refquerysem)
9: Let simstr = cos(V Score(r)str, refquerystr)

10: Let simoverall =
simsem+simstr

2

11: end for
12: Sort all results in ULBL in the descending order according to

their overall similarities to refquery as computed at Lines 8–10
13: Return ULBL

3.3 Parameter Tuning
Our refinement engine takes in 4 weight parameters: α1,

α2, α3 and α4. These 4 parameters are initially set to take
the following values: -0.3, -0.1, 0.1, and 0.5, respectively.
We re-tune these weight parameters whenever we receive a
new relevance feedback rating a result with Likert score 3 or
4 (i.e., the result is mostly or highly relevant). Our algorith-
m tunes the parameters by trying many possible parameter
settings one at a time. For each parameter setting, we con-
sider its effectiveness on the set of labeled data known so
far. We pick the parameter setting which is the most effec-
tive (i.e., it achieves the highest NDCG on the set of labeled
data known so far).

The pseudo-code is shown in Algorithm 3. Let us define a
notation AP (a, b, s) to represent an arithmetic progression
(AP) between a and b with a step s. We initialize two ranges
α1−2 and α3−4 to be AP (−0.5, 0.4, 0.1) and AP (0, 0.9, 0.1)
respectively (Line 6). The first is the range of possible pa-
rameter values for α1 and α2. The second is the range of
possible parameter values for α3 and α4.

Then we try to adjust the 4 parameters by trying different
combinations of values picked from the sets α1−2 and α3−4

(Line 8). After a combination of parameters are picked, we
evaluate its effectiveness on the set of labeled results known
so far LBL (Line 9). We simply reorder LBL using the
parameter combination setting and compute NDCG. The
larger the resultant NDCG score is, we assume the better
a parameter combination is. We repeat the two steps (i.e.,
Line 8 and 9) until we find a local optimum (Line 10). We
detect a locally optimal setting for α1, α2, α3, α4 by trying
all combinations of values picked from the sets α1−2 and
α3−4 in order and looking for a combination whose resultant
NDCG score is 1 or no smaller than the NDCG scores of its
neighboring configurations in the combinations of parameter

values in the arithmetic progressions. We finally output the
local optimal setting of the 4 parameters (Line 11).

Algorithm 3 Parameter Tuning Procedure

1: Procedure ParameterTuning
2: Input:
3: LBL: Labeled results
4: Output: Parameters α1, α2, α3, α4

5: Method:
6: Initialize two sets α1−2 and α3−4 to be AP (−0.5, 0.4, 0.1) and

AP (0, 0.9, 0.1) repectively
7: repeat
8: Adjust the value of the 4 parameters
9: Evaluate effectiveness of the adjusted parameters on LBL
10: until a local optimum is reached
11: Output the local optimum

3.4 Cache Processor
Once a user posts a new query, the “Cache Processor”

block checks whether there exists a highly similar query in
the cache. If a highly similar query is identified, its corre-
sponding cached results will be used to bootstrap the re-
finement engine. To identify whether a highly similar query
exists, this block computes the similarity of the new query
with each of the old queries. The similarity of a new query
qnew and an old query qold is computed by taking the cosine
similarity of their corresponding semantic vectors:

Similaritysem = cos(V Score(qnew)sem, V Score(qold)sem)

We rank the old queries based on their similarity scores.
The top-one old query whose similarity is larger than a
threshold t is identified as the highly similar query (ties are
randomly broken). If no old query has similarity above t,
then no highly similar query is identified. In this study, by
default, we set t to 1 which means only the exactly same
query will be identified.

4. EXPERIMENTS

4.1 Experimental Settings
The code base we use in this work is from FreeBSD1. We

download 49,889 program versions from this code base, but
use only the latest version for programs that have multi-
ple versions. Finally, we use 19,414 programs written in C
and/or C++ in our study. The total size of these programs
is around 36GB, and they contain about 169 million lines
of code, 8 million functions, and 2 million files. We have
used 70 queries created by Portfolio’s author [8]. All these
queries are formulated as set of keywords to address some
programming tasks reported in Portfolio’s user study.

We involve users for evaluation and use a simple web ap-
plication written in PHP to display search results and collect
user feedback. In the user study, we have 10 participants, 9
of them are PhD students who have at least of two years of
Java and C++ programming experience, and the other is a
professional software engineer who has three years of Java
and C++ programming experience. Each participant is as-
signed a number of queries2 and asked to examine the top
fifty search results for each query and provide a relevance
score in a 4-point Likert scale for every result.

1ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/
2Each query is assigned to only one participant.

0.2

0.3

0.4

0.5

Im
p

ro
ve

m
e

n
t

-0.1

0

0.1

0.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Im
p

ro
ve

m
e

n
t

Query Id

Figure 3: Improvement of Portfolioactive over
Portfoliooriginal in terms of NDCG

Table 1: Three sample cases where Portfolioactive

improves the NDCG of the search results the most
Query NDCG of NDCG of Reordering

Portfoliooriginal Portfolioactive samples
mscdex emulation 0.557 0.738 14→2, 15→3
filename lock 0.596 0.873 46→2, 47→3
controlled access
digital camera 0.612 0.792 30→2, 50→8
to jpeg

4.2 Evaluation Results
We build our approach on top of Portfolio and thus we

need to compare the two approaches. We compare the ND-
CG score of Portfolioactive with that of the original Portfolio
(Portfoliooriginal). Our evaluation shows that the original
Portfolio on average achieves an NDCG score of 0.738 while
Portfolioactive on average achieves an NDCG score of 0.821,
a 11.3% improvement. Figure 3 presents a detailed com-
parison of the NDCG score for every query. Portfolioactive

wins in 67 cases while marginally performing worse for 3
other cases (query number 35, 49, and 52). We also perform
a Wilcoxon signed-rank test on the NDCGs and find that
the improvement achieved by Portfolioactive is statistically
significant (p-value < 0.05).

For illustration, Table 1 shows the top three cases where
Portfolioactive improves the NDCG of the search results the
most. For example, for “mscdex emulation”, Portfolioactive

reorders two highly relevant results from positions 14 and 15
to positions 2 and 3 just after one feedback, and improves
the NDCG from 0.557 to 0.738.

In the default setting, for each code search task, users give
a feedback to each of the first 50 results and after each feed-
back we apply our refinement engine. We would like to test
the effectiveness of our active code search approach with d-
ifferent numbers of feedbacks from users (denoted as Kf).
In this experiment, users only give feedback to the first Kf

results. We vary Kf in the set {1,5,10,20,30,40,50}. Ta-
ble 2 compares the effectiveness of Portfoliooriginal with our
Portfolioactive with different number of feedbacks (Kf) to
refine the results. When only one feedback is given by users
for refining the results, Portfolioactive achieves a 7.46% im-
provement over Portfoliooriginal. As the Kf value increases,
Portfolioactive achieves more and more improvement until
Kf reaches 30. The effectiveness of Portfolioactive remains
constant when Kf is increased from 30 to 50.

We also want to compare the effectiveness of our approach
against Portfolio with Rocchio (Portfoliorocchio). Differen-
t from our proposed approach, standard Rocchio does not
consider structural scores and use a static set of weights to
incorporate labeled results to refine a query. In our experi-

Table 2: Comparison of Portfoliooriginal and
Portfolioactive in terms of NDCG for different Kf

Kf Portfoliooriginal Portfolioactive Improvement

1 0.738 0.794 7.46%
5 0.738 0.809 9.59%

10 0.738 0.816 10.55%

20 0.738 0.820 11.05%
30 0.738 0.821 11.12%

40 0.738 0.821 11.12%
50 0.738 0.821 11.12%

ments, we set the weights of Rocchio to their recommended
values [7]: a = 1, b = 0.75, and c = 0, where a, b, and c are
the weights of the original query, results labeled as relevant,
and results labeled as irrelevant respectively.

We compare Portfolioactive with Portfoliorocchio in terms
of NDCG. Portfoliorocchio achieves an average NDCG score
of 0.764. Porfolioactive achieves an average NDCG score of
0.821 which is a 7.5% improvement over Portfoliorocchio’s
result. We also perform a Wilcoxon signed-rank test and
find that the improvement achieved by Portfolioactive is sta-
tistically significant (p-value < 0.05).

4.3 Threats to Validity
Threats to internal validity include experimenter biases.

There might be subjectivity in the relevance scores that a
participant assigns to returned code fragments. Threats to
external validity relate to the generalizability of our find-
ings. We have only investigated 70 queries and considered a
code base consisting of 19,414 projects and 169 million lines
of code. We have also only considered the case where the
value of threshold t of the Cache Processor block is set to 1.
Threats to construct validity refer to the suitability of our
evaluation metrics. We use NDCG, a common metric used
to investigate the quality of web search engines [5, 7].

5. RELATED WORK
There are many code search approaches proposed to help

users find relevant code. Some of them take textual infor-
mation as input to search code. McMillan et al. propose
Portfolio that takes natural language descriptions as input
and outputs a list of functions or code fragments along with
corresponding call graphs [8, 9]. Chan et al. propose an ap-
proach to help developers find usages of API methods given
simple text phrases [1]. They use an efficient graph search
algorithm to return an optimum connected subgraph that
matches a query. Haiduc et al. propose a code search tool
named Refoqus that is able to predict the quality of a textu-
al query for further query reformulation [3]. Different from
their work, we integrate the structural information of source
code itself with text information to refine code search result-
s. There are also some code search engines that allow users
to query by specifying structural constraints [10,11].

Gay et al. [2] use the Rocchio algorithm to incorporate us-
er feedback to improve the performance of concern localiza-
tion. They are interested in finding methods that need to be
fixed given a defect report. In their approach, each method
and defect report is treated as a simple textual document.
Different from their work, we address a different problem (we
recommend code fragments from a short textual query) and
propose a new and specialized query refinement algorithm

(instead of using Rocchio) which incorporates structural in-
formation and employs parameter tuning.

There are also existing studies in software engineering that
employ active learning. Lucia et al. propose an approach
that adds an active learning layer on top of existing clone-
based bug detection tools to increase true positive rate [6].
Hayes et al. use the Rocchio algorithm to improve the qual-
ity of requirement tracing techniques which infer links be-
tween two textual documents, e.g., high level to low level
requirements [4].

6. CONCLUSION AND FUTURE WORK
In this paper we propose active code search, where a user

can provide feedback to code search engines and guide the
engines to improve the relevance of search results. We pro-
pose a refinement engine that can take into consideration
user relevance feedback: based on a set of results whose rel-
evance feedback have been received, our engine enhances the
user original query and use it to update the search results
by reordering the potentially more relevant search results to
the top of the list for users to see. The refinement process
can be repeated for a number of times until the list is ex-
hausted or the user decides to stop searching further down
the list. Our active code search technique imposes little ad-
ditional overhead on users, and can improve the relevance
of search results from any passive code search engine that
takes textual descriptions as user queries. We have evalu-
ated our approach on 70 queries and find that our active
code search approach on average improves the effectiveness
of code search by 11.3% in terms of NDCG. We have also
compared our approach against Rocchio and finds that we
can improve it by 7.5%.

In this work we only apply our approach to Portfolio. We
plan to apply our approach to other passive code search tools
and show that the active code search paradigm can benefit
those code search engines too.

7. REFERENCES
[1] W. K. Chan, H. Cheng, and D. Lo. Searching connected API

subgraph via text phrases. In FSE, 2012.

[2] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. On the use of
relevance feedback in IR-based concept location. In ICSM,
2009.

[3] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. D. Lucia, and
T. Menzies. Automatic query reformulations for text retrieval
in software engineering. In ICSE, 2013.

[4] J. Hayes, A. Dekhtyar, and S. Sundaram. Advanced candidate
link generation for requirements tracing: The study of methods.
In TSE, 2006.

[5] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4):422–446, Oct. 2002.

[6] Lucia, D. Lo, L. Jiang, and A. Budi. Active refinement of clone
anomaly reports. In ICSE, 2012.

[7] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge, 2008.

[8] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu.
Portfolio: finding relevant functions and their usage. In ICSE,
2011.

[9] C. McMillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu.
Portfolio: Searching for relevant functions and their usages in
millions of lines of code. ACM Trans. Softw. Eng. Methodol.,
22(4), 2013.

[10] S. Wang, D. Lo, and L. Jiang. Code search via topic-enriched
dependence graph matching. In WCRE, 2011.

[11] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu.
Matching dependence-related queries in the system dependence
graph. In ASE, 2010.

