
kbe-Anonymity: Test Data Anonymization
for Evolving Programs

Lucia, David Lo, Lingxiao Jiang, and Aditya Budi
School of Information Systems

Singapore Management University, Singapore
{lucia.2009, davidlo, lxjiang, adityabudi}@smu.edu.sg

ABSTRACT
High-quality test data that is useful for effective testing is
often available on users’ site. However, sharing data owned
by users with software vendors may raise privacy concerns.
Techniques are needed to enable data sharing among data
owners and the vendors without leaking data privacy.
Evolving programs bring additional challenges because

data may be shared multiple times for every version of a
program. When multiple versions of the data are cross-
referenced, private information could be inferred. Although
there are studies addressing the privacy issue of data
sharing for testing and debugging, little work has explicitly
addressed the challenges when programs evolve.
In this paper, we examine kb-anonymity that is recently

proposed for anonymizing data for a single version of a
program, and identify a potential privacy risk if it is
repeatedly applied for evolving programs. We propose kbe-
anonymity to address the insufficiencies of kb-anonymity
and evaluate our model on three Java programs. We
demonstrate that kbe-anonymity can successfully address
the potential risk of kb-anonymity, maintain sufficient path
coverage for testing, and be as efficient as kb-anonymity.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Symbolic Execution/Tes-
ting tools; H.2.8 [Database Applications]: Data Mining;
K.4.1 [Public Policy Issues]: Privacy

General Terms
Algorithms, Reliability, Security

Keywords
k-anonymity, behavior preservation, privacy preservation,
testing and debugging

1. INTRODUCTION
Quality of test data is important for the effectiveness of

testing and debugging. High quality test data could expose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3–7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$15.00.

hard-to-spot bugs in a program. This data is often available
on users’ site. However, sharing data owned by a user with
software vendors could raise privacy concerns. For example,
patient information in United States are protected under
HIPAA privacy and security regulation [13]. Techniques are
needed to enable data sharing with the vendors for testing
and debugging without leaking any private information.

Additional challenges occur when programs evolve. Can
we ensure that a set of released data has sufficient coverage
for multiple program versions? When data is released
multiple times for different versions, can we ensure the
multiple shared datasets would not leak private information?

There exist studies that address the privacy issue of data
sharing for testing and debugging [4–7, 12, 15]. However, to
our best knowledge, no study has explicitly addressed the
additional challenges when programs evolve. Often the case,
it is assumed that there exist certain strategies to share data
multiple times, but no study has examined the implications
of data sharing across program versions.

In this paper, we investigate the challenges of generating
high quality test data for evolving programs and protecting
private information. In particular, we analyze the effects of
applying kb-anonymity [5] on evolving programs, identify
the associated risk, and propose an enhanced model that
addresses the risk. Our contributions are as follows:

• We identify a potential privacy risk, namely probing
attack that may break kb-anonymity if data is shared
for multiple versions of a program.

• We propose an enhanced model for evolving programs,
kbe-anonymity, that could address probing attacks.

• We empirically evaluate our model on three Java pro-
grams with several synthesized versions and demon-
strate that our model can successfully thwart the
attacks, maintain sufficient path coverage, and be as
efficient as kb-anonymity.

The structure of this paper is as follows. Section 2 presents
preliminaries related to privacy preservation. Section 3
describes a potential attack, called probing attack. Section 4
describes our kbe-anonymity model. Section 5 evaluates our
model. Section 6 explores more related work, and Section 7
concludes.

2. PRELIMINARIES
We use an example to introduce terms related to privacy

preservation. Consider a piece of code provided by a soft-
ware vendor to the user, as shown in Figure 1, and consider
a set of data points (a.k.a. tuples or records) owned by the
user, as shown in Table 1.

Table 1: Sample Private Patient Data.
Name Zip Code Age Disease
Tom 11112 101 Cancer
Jane 21111 105 Diabetes
Jack 11112 14 Cancer
Mary 21111 16 Diarrhea

public static void main(String[] args) {
String name = args[0];
int age = Integer.parseInt(args[1]);
String disease = args[2];
System.out.print("Please take good care of your health: ");

}

Figure 1: Sample Program—Initial Version 0

The dataset in Table 1 is comprised of a set of four tuples
and four fields: name, zip code, age, and disease. Based
on literatures [5,11], the dataset that has no anonymization
applied, is called raw data or a set of raw tuples.
Some fields (e.g., name or national ID) may uniquely

identify an individual and called identifiers. Some other
fields (e.g., age, zip code) may not identify a person, but
can identify a person collectively when linked together to
publicly available data (e.g., the voter’s registration list in
US that contains every registered person’s name, date of
birth, gender, etc.). A set of such fields is called a quasi-
identifier. A third kind of fields (e.g., disease, time of last
visit to a hospital) cannot reveal an identity, but they are
private information about a person, called sensitive fields.
Anonymizing raw data aims to break the linkage between

sensitive fields and identifiers and/or quasi-identifiers. kb-
anonymity [5] is recently proposed to anonymize data for
testing purpose. It is built on top of a well-known privacy
model, k-anonymity [11]. To maintain the data quality and
privacy, kb-anonymity requires that each path executed by
a tuple in the anonymized dataset should be executed by
at least k tuples in the raw data and each tuple in the raw
dataset should not appear in the anonymized dataset. The
code in Figure 1 has four raw tuples executing the same path.
Thus, when k = 2, only one anonymized tuple (e.g., <Jill,
11111, 104, Flu> a.k.a. shared data) which is needed to be
generated and shared with a vendor. This tuple appears
random to the vendor, protecting individual’s privacy in the
raw data and covering all paths in the code.

3. PROBING ATTACK
When a vendor upgrades a software system, he could

request test data repeatedly from a data owner for each
version of the system. Private information may be leaked
if the vendor maliciously designs the versions so that the
shared data for a previous version and that for another
version can be linked to reveal private information.
We identify risk that related to multiple shared dataset

for evolving programs, called probing attack. The general
steps of a probing attack are as follows:

1. An attacker obtains the identifiers and/or quasi-
identifiers for an individual based on public data or
previous anonymized data from a data owner.

2. The attacker constructs a program path to be executed
by the particular individual’s tuple and a limited
number of other tuples in the raw data and send this
version to the data owner for anonymization.

3. The attacker guesses the sensitive information about
the individual and introduces another program path to
be executed if the guess is correct, and send the new
version to the data owner for data anonymization.

4. The attacker looks for differences between the new
anonymized dataset and the previous one, and infer
private information based on the differences.

Consider Version 1 of the original code shown in Figure 2
without the part in dashed box. The raw data in Table 1
cover both paths in Version 1. The anonymized tuple
in Section 2 (<Jill, 11111, 104, Flu>) reduces the path
coverage (covers one path represented by a path condition1

age>100), although the privacy is protected for k = 2.
public static void main(String[] args) {

String name = args[0];
int age = Integer.parseInt(args[1]);
String disease = args[2];
System.out.print("Please take good care of your health: ");
if (age > 100) {

System.out.println("Venerable elderly");
if (name.equals("Tom") && disease.equals("Cancer")) {

System.out.println("Hi Tom!");
}

} else {
System.out.println("Adorable youth");

}
}

�������	
�

Figure 2: Sample Program—Attack Versions 1 & 1’

To maintain the path coverage, two anonymized tuples
would be generated by applying kb-anonymity on Version
1, each of which covers one of the two paths. However,
repeated applications of kb-anonymity on multiple program
versions may leak individual-specific information.

Consider Version 1’ of the code (all code in Figure 2)
that has an additional if condition nested within Version 1.
Since only one raw tuple goes to this if branch (represented
by the path condition age>100 && name.equals("Tom") &&

disease.equals("Cancer")) and another tuple goes to
the else branch (age>100 && !name.equals("Tom")), kb-
anonymity generates no tuple to go through either of the
two paths. Thus, there is only one released tuple that goes
through the path age<=100 for the Version 1’. Since the
number of released tuples for the version 1’ is one fewer
than that for the version 1, the attacker knows that it is
because of the additional if condition and accurately infer
that Tom has cancer. This is a breach of privacy!

4. kbe-ANONYMITY
We present our solution, named kbe-anonymity, to tackle

probing attacks. In a probing attack, an attacker creates a
new program path pnew in a new version of a program such
that a particular raw tuple that executes the same path pold
as k-1 other tuples in the older version will execute the new
path pnew. We cannot release the tuple that executes pnew;
otherwise, the attacker could infer the private information
associated with the probing tuple. Also, we cannot release a
tuple that executes pold because kb-anonymity requires that
a shared tuple must execute a path executed by at least k
raw tuples. Thus, a second application of kb-anonymity on
the new version would result one fewer anonymized tuple;
this could help the attacker to infer the existence of the
probing tuple in the raw dataset. This attack implies that
kb-anonymity may not be directly suitable for anonymizing
data multiple times for evolving programs.

4.1 Subpath Equivalence
Our intuition is that the essence of probing attacks is

to split a set of raw tuples executing the same path into
subsets that execute different paths; the attack is succeed if
some subsets are small enough to single out a tuple. What

1
A path condition for an execution is the conjunction of all the

conditionals along the path for the execution.

medicalCost = 0

medicalCost += 0

medicalCost += 1000 END

Name
==

Andy

diagnosis
==

cancer

Y

Y

N

N

medicalCost = 0

medicalCost += 0

medicalCost += 1000 END

Name
==

Andy

diagnosis
==

cancer

Y

Y

N

N

medicalCost = 0

medicalCost += 1000 END

Diagnosis
==

cancer

Y N

�
Figure 3: A path on the left (dashed arrows) merged with the path in the middle becomes the super-path on the right.

if we prevent the occurrence of small tuple sets? If we
can ensure each tuple always “belongs to” a set of size at
least k, the attacker could not single it out. kb-anonymity
requires anonymized tuples to preserve “behavior”, i.e.,
whole program paths. If we can define an appropriate
“behavior” preservation, we could ensure each tuple set
always contains at least k tuples and prevent probing attack.
Based on this intuition, we propose a new kind of behavior

preservation, called subpath equivalence.

Definition 4.1 (Subpath Equivalence). Two pro-
gram execution paths p1 and p2 and their corresponding
input tuples t1 and t2 are subpath equivalent w.r.t. a
given sequence of program elements sp, if sp is a common
subsequence of p1 and p2.

In whole-path equivalence, two path are inequivalent if
they differ at least one element, while subpath equivalence
allows two paths to be treated as equivalent by adjusting the
given common sequence. This allows us to form behaviorally
equivalent tuple sets of large enough sizes. Thus, the concept
of subpath equivalence is the foundation for kbe-anonymity.

4.2 Path Merging
The key to foil probing attack is to generate an anonymized

dataset that satisfies a relaxed variant of kb-anonymity
by preserving subpath equivalence, instead of whole-path
equivalence. Whenever a path is executed by less than k
of raw tuples, the path is merged with another path, by
removing the different segments in the two paths, to form
a super-path sp that may be executed by enough (≥ k) raw
tuples. Thus, when we generate one anonymized tuple t′

for the super-path sp, at least k raw tuples have subpath
equivalent to t′ with respect to sp. The actual path taken by
t′ would be nondeterministically chosen when a constraint
solver is used by kbe-anonymity to resolve sp. Thus, the
attacker could not accurately observe the effect of his probes.
Figure 3 illustrates our path merging. The dashed arrows

in the left and middle subfigure indicate the paths executed
by two different raw tuples. A possible super-path when
the two paths need to be merged is indicated by the dashed
arrows in the right subfigure; “*” means the parts that are
removed. An anonymized tuple is generated to execute the
parts in the super-path. Path within the “*” part is actually
executed by the tuple, but it would be nondeterministic,
thus an attacker could not infer accurately.
Consider the code in Version 1 & 1’ in Figure 2. Tom’s

and Jane’s data execute the same path in Version 1, but
execute different paths in Version 1’ due to the nested if. As
described in Section 3, if we release an anonymized dataset
by applying kb-anonymization on Version 1’, Tom’s disease
would be leaked. Based on subpath equivalence, we generate
an anonymized tuple to represent both Tom and Jane by
finding a random tuple that satisfies the super-path merged

from Tom’s and Jane’s paths in Version 1’ (represented by
the path condition age>100). Whether this random tuple
goes through the nested if would be nondeterministic, thus
the attacker could not tell whether Tom’s data goes into the
nested if (i.e., whether he has cancer or other diseases).

Refining kb-anonymity with subpath equivalence is how
kbe-anonymity works against probing attack. To enhance
the protection, we could require the constraint solver to
produce random solutions every time. If the solver always
produces the same result for the same path condition, an
attacker could infer whether his probe is successful by
observing whether the anonymized tuples are changed or
not. Although such a randomness requirement is difficult
to satisfy, most constraint solvers utilize nondeterminism
internally, and we may consider their outputs pseudo-
random. To simplify our implementation, we require that
every tuple in a kbe-anonymized dataset must be different
from all tuples in the previous anonymized datasets.

5. EMPIRICAL EVALUATION
5.1 Experimental Setting

We evaluate our approach on three Java programs:
OpenHospital (OH) [2], iTrust (IT) [1], and PDManager
(PD) [3]. OH and IT are medical related applications.
PD is an insurance application. We convert parts of the
programs into integer programs that take tuple inputs from
a file because our implementation is based on JPF [14] and
jFuzz [9] which only handles integer constraints so far.

To demonstrate the code path coverage benefit and attack
prevention capability of our approach, we modified each of
the converted versions of the programs (v0) to produce an
attack version vp, by adding various branching statements.
We semi-randomly created thousands of inputs as raw
datasets for each v0 (3900 for OH, 7300 for IT, and 1900
for PD) that covers many paths in v0. We implemented
our solution in Visual C#.Net and Java, and performed all
experiments on a Windows Server 2008 with an Intel Xeon
CPU clocked at 2.53GHz.

5.2 Effectiveness on Path Coverage
We compare our approach to kb-anonymity [5] with the

one-time release strategy (i.e., always releasing the same
data anonymized by kb-anonymity for v0), and show that
we achieve higher path coverage.

For each version v0, we apply kb-anonymity with the raw
dataset D, and obtain the anonymized data Dkb

0 for the
one-time release. Also, we add tens of if-else statements
into v0 to create a new version vp with more paths. The
branching conditions are chosen so that the additional paths
in vp can be covered by some tuples in D. Then, we apply
kbe-anonymity to vp for each v0 to generate the anonymized

data Dkbe

p . For each program, we compare the path coverage

of all data in Dkb
p with that of all data in Dkbe

0 for vp.
Table 2 shows the relative path coverage gains by kbe-

anonymity with respect to kb-anonymity. The gains can
be quite different for different programs, raw dataset, and
privacy requirements for k, ranging from 2% to 100%.

Table 2: Path Coverage Evaluation on v0 and vp.
Program OH IT PD

k 2 5 2 5 2 5
Gain 27.3% 27.3% 2.6% 2.6% 100.0% 100.0%

5.3 Effectiveness on Preventing Attacks
For demonstration, we modify each program to enable

probing attack, by adding new branching statements. Note
that the attack cannot happen with one-time release
strategy, thus we assume data owners use repeat release
strategy (i.e., applying kb-anonymity on the raw dataset for
each new version to release a different anonymized dataset).
For each version of the aforementioned programs v0, we

take its vp and add a new if-else statement to create a
new version v1. The branching conditions are chosen by us
so that there are only k tuples in raw dataset D executing
the if branch. Then, we create another version v′1 by adding
another if-else statement inside the first if branch so that
there is only one tuple in D executes the second if branch.
We apply kb-anonymity on v1 first. There would be

k tuples executing the first if branch, and kb-anonymity
generates one anonymized tuple to represent the k tuples.
Then, we apply kb-anonymity on v′1. Only one of the k tuples
executes the second if branch, and kb-anonymity on v′1
generates no tuple that executes either the first or the second
if branch. When one fewer tuple is generated, the attacker
could know that his probe is successful. But, applying kbe-
anonymity on v′1 would merge the two if branches and
generate one anonymized tuple. Whether this tuple executes
the second if branch appears nondeterministic. Thus, the
attacker could not know whether his probe is successful.

5.4 Performance
Our kbe-anonymity collects and solves path conditions and

is potentially expensive. A heuristic optimization is applied
to obtain an efficient implementation almost linear to the
size of the raw dataset. We perform a scalability evaluation
with the thousands of tuples generated for each of the three
programs. The time of applying kbe-anonymity on various
versions ranges from 1 to 2.3 second(s) per tuple on average,
close to the performance of kb-anonymity [5].

6. RELATED WORK
There are other studies on protecting data privacy

for testing and debugging. Grechanik et al. [8] find
that code coverage of k-anonymized data may decrease
significantly. Taneja et al. [12] show that higher code
coverage could be achieved by using a random data-
swapping algorithm for maintaining guessing anonymity.
Compared with our work, their work do not explicitly
enforce behavior preservation. Also, the randomization
based privacy protection schemes may change certain raw
data unnecessarily, and the code coverages of their solutions
depend on their internal randomness.
Other studies remove or anonymize sensitive information

from program traces [4, 15]. Scrash [4] uses dynamic taint
analysis to remove sensitive information. Panalyst [15]

reproduces failure-inducing inputs in an interactive setting.
Castro et al. [6] use execution record-replay techniques
with dynamic symbolic execution to anonymize a failure-
inducing input. Clause and Orso propose Camouflage [7] to
anonymize a failure-inducing input. They mostly generate
an anonymized input having the same path as one failure-
inducing input, while we consider repeated anonymization
of a set of inputs for evolving programs.

7. CONCLUSION
Much data useful for testing and debugging is only

available on users’ site. Unfortunately, sharing this data
would raise privacy concerns. Mechanisms are needed to
protect privacy while sharing the data with software vendors
for testing and debugging, especially when programs evolve.

We propose kbe-anonymity, a privacy model for anonymiz-
ing data for evolving programs based on a new concept
of subpath equivalence. Privacy is protected by using
path merging, and path coverages of anonymized data
are maintained with constraint solving. Our evaluation
shows that our model can efficiently anonymize test data,
effectively protect privacy against probing attacks, and
maintain reasonable path coverages. We also identify
and handle other attacks when programs evolve which are
discussed in detail in our technical report [10].

8. REFERENCES
[1] iTrust. http://sourceforge.net/projects/itrust/.
[2] Open hospital.

http://sourceforge.net/projects/angal/.
[3] PDM.

http://sourceforge.net/projects/pdmanager/.
[4] P. Broadwell, M. Harren, and N. Sastry. Scrash: a

system for generating secure crash information. In 12th
USENIX Security Symposium, pages 273–284, 2003.

[5] A. Budi, D. Lo, L. Jiang, and Lucia. kb-anonymity: A
model for anonymized behavior-preserving test and
debugging data. In PLDI, 2011.

[6] M. Castro, M. Costa, and J.-P. Martin. Better bug
reporting with better privacy. In ASPLOS, 2008.

[7] J. Clause and A. Orso. Camouflage: Automated
anonymization of field data. In ICSE, 2011.

[8] M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data
privacy always good for software testing? In ISSRE,
2010.

[9] K. Jayaraman, D. Harvison, V. Ganesh, and
A. Kiezun. jFuzz: A concolic tester for NASA Java. In
NASA Formal Methods Workshop, 2009.

[10] Lucia, D.Lo, L. Jiang, and A. Budi. kbe-anonymity:
Test data anonymization for evolving programs. In
Technical Report, Singapore Management University,
http://www.mysmu.edu/phdis2009/lucia.2009/
Publication.htm, 2012.

[11] P. Samarati. Protecting respondents’ identities in
microdata release. In IEEE TKDE, 2001.

[12] K. Taneja, M. Grechanik, R. Ghani, and T. Xie.
Testing software in age of data privacy: A balancing
act. In FSE, pages 201–211, 2011.

[13] U.S. Department of Health & Human Services. Health
information privacy.
http://www.hhs.gov/ocr/privacy/.

[14] W. Visser and P. Mehlitz. Model checking programs
with Java PathFinder. In SPIN,
http://babelfish.arc.nasa.gov/trac/jpf, 2005.

[15] R. Wang, X. Wang, and Z. Li. Panalyst:
Privacy-aware remote error analysis on commodity
software. In 17th USENIX Security Symposium, pages
291–306, 2008.

