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Abstract—The widely used C preprocessor (CPP) is generally
considered a source of difficulty for understanding and main-
taining C/C++ programs. The main reason for this difficulty
is CPP’s purely lexical semantics, i.e., its treatment of both
input and output as token streams. This can easily lead to
errors that are difficult to diagnose, and it has been estimated
that up to 20% of all macros are erroneous. To reduce such
errors, more restrictive, replacement languages for CPP have
been proposed to limit expanded macros to be valid C syntactic
units. However, there is no practical tool that can effectively
validate CPP macros in legacy applications.

In this paper, we introduce a novel, general characterization
of inconsistent macro usage as a strong indicator of macro er-
rors. Our key insight is that all applications of the same macro
should behave similarly. In particular, we map each macro call
c in a source file f to ¢’s normalized syntactic constructs within
the abstract syntax tree (AST) for f’s preprocessed source, and
use syntactic similarity as the basis for comparing macro calls
of the same macro definition. Utilizing this characterization,
we have developed an efficient algorithm to statically validate
macro usage in C/C++ programs. We have implemented the
algorithm; evaluation results show that our tool is effective in
detecting common macro-related errors and reports few false
positives, making it a practical tool for validating macro usage.

Keywords-preprossing, macro errors, inconsistencies

I. INTRODUCTION

C and C++ are two of the most commonly used pro-
gramming languages for system-level and general purpose
programming. Both languages support a meta-level pro-
gramming mechanism by providing a set of preprocessor
directives, such as source file inclusion (#include), macro
definitions (#define), and conditional compilation (#if). A
C/C++ source file is normally a mix of preprocessor code
and actual C/C++ code [16], [17], and the C preprocessor
(CPP) [2] is used to preprocess C/C++ source code to pure
C/C++ syntax.
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CPP is widely used to make C/C++ code more man-
ageable and portable through its preprocessor directives.
However, CPP operates at a purely lexical level, transform-
ing input character sequences directly to output character
sequences when preprocessing C/C++ source code (a.k.a.
macro expansion). It does not consider syntactic or semantic
information related to the source code. A sequence of
characters, even if they appear exactly the same, may be
interpreted in different ways later by a C/C++ parser or com-
piler, depending on their surrounding contexts. Because the
C/C++ parser/compiler operates on the preprocessed code
and generally has no knowledge about the CPP directives in
the original source, it cannot guarantee correct macro usage.

Because of CPP’s lexical nature, many programming
errors exist due to inappropriate macro definition and usage.
The most common source of errors in CPP usage stems
from the macro expansion process, and it has been estimated
that up to 20% of all macros contain errors [13]. Although
some errors lead to syntactically invalid C/C++ code and
will result in compilation errors, many do not reveal them-
selves until the compiled code exhibits strange behavior at
runtime. Thus, much research has attempted to characterize
what constitutes an error in preprocessor usage so that
tools may be developed to automatically detect such errors
accurately. However, there is no general characterization that
captures macro errors accurately without compromising the
programming flexibility offered by the current preprocessor
language.

There are two main general approaches to this problem:
(1) developing replacement languages for CPP to avoid such
errors altogether, and (2) designing analysis tools to detect
certain incorrect CPP usage. The first approach advocates
the close integration of preprocessor languages with the host
languages so that there is no difference between macro errors
and other programming errors. This way, no specific tools
are needed for detecting macro errors. This approach can
be beneficial for developing new software, but it is less
useful for detecting and eliminating macro errors in the large
amount of legacy C/C++ code using CPP.

The second approach has a few alternatives: (a) ignoring
the preprocessor and performing simple lexical analysis on
C/C++ code, (b) assuming that the C/C++ parser/compiler
can catch all preprocessor errors and only analyzing the



preprocessed code and occasionally reporting macro-related
errors by accident, or (c) attempting to emulate the pre-
processor and checking how it affects the way the code is
being parsed. Alternative (a) is too simplistic since many
macro usage patterns cannot be captured purely lexically,
and syntactic or semantic information from the preprocessed
code is often needed for precise analysis. When utilizing
good macro coding conventions to check for violations, a
tool effectively imposes restrictions on the preprocessor lan-
guage and is likely to report high numbers of false positives
(because violating a coding style may not necessarily be
an error) and false negatives (because the enforced coding
styles may not capture certain classes of errors).

Alternative (b) can be used to detect those macro-related
errors that result in compilation errors, but some more
difficult-to-detect errors do not result in compilation errors.
The following is an example of such an error:

#define MULTIPLY (argl,arg2) arglsarg2

MULTIPLY (1+1,2);

where the macro call will expand into “1+1%2”, which
is parsed as “l1+(1%2)”. By just inspecting the expanded
expression, such tools cannot decide whether the expression
is an error or not.

As for alternative (c), it cannot reliably catch errors in
CPP usage since CPP is very permissive in changing how
a piece of code gets parsed. For the same example as the
above, such tools may notice the expanded expression has a
different parse tree structure than the structure for the macro
definition itself, but they cannot know whether the difference
is intended or not. Reporting such differences as errors may
result in high false positive rates and affect adoption of such
tools.

In this paper, we take the second general approach by
developing a static validation tool for CPP macros. Our goal
is to design a tool that can detect general macro usage
errors, has few false positives, and does not impose any
restrictions on the preprocessor language, thus overcoming
disadvantages of previous approaches. To this end, we for-
malize a novel, general notion of inconsistent macro usage,
capturing our intuition that macro calls of the same macro
definition should be similar. We utilize information from
CPP for the original source code and syntax trees of the
preprocessed source code. In particular, we normalize each
macro call to capture how it influences the abstract syntax
tree of the preprocessed code and use syntactic similarity
to compare macro calls with the same macro name. Any
inconsistency is reported as a potential macro usage error.
Our characterization has a number of benefits. It is general
and does not rely on any macro usage patterns or coding con-
ventions; is flexible and does not impose restrictions on how
developers define macros, thus preserving the flexibility of

the preprocessor language. It only relies on our observation
that the same macro should be used in a similar manner.

We have implemented our approach in a prototype tool,
CPPCHECKER, to detect inconsistent macro usages. CP-
PCHECKER is designed to detect inconsistencies across all
uses of a macro in every source file of a program. Ernst et
al. [13] performed a study on macro usage and errors. We
have performed empirical evaluations of our tool on the top
four test subjects used in Ernst et al.’s study [13]. The results
show that the tool can detect common, difficult-to-detect
macro errors categorized by Ernst et al. [13] through error
injection. It is precise and reports very few false positives. It
has also detected previously unknown inconsistencies in the
latest releases of these test subjects. It is efficient, adding
negligible overhead over parsing.

The rest of the paper is structured as follows. Section II
gives the details of our approach: it gives some background
on CPP and macros, defines inconsistent macro usage,
and presents the detailed algorithms to detect inconsistent
macros. We discuss details of our tool implementation in
Section III and present the evaluation results in Section IV.
Section V discusses possible ways to enhance our current
technique and tool. Finally, we survey related work (Sec-
tion VI) and conclude (Section VII).

II. OUR APPROACH

In this section, we give some background information on
CPP and macros, discuss our notion of inconsistent macro
usage, and present details of our algorithms.

A. Background on Macros

CPP, the C macro preprocessor, expands all macro calls
and handles all preprocessing directives. There are two types
of macros, object-like and function-like. Object-like macros
do not take any arguments, while function-like macros take
arguments. The syntax of a macro definition is given below:

#define < identifier > <replacement token list >
#define < identifier >(<parameter list >) \
<replacement token list >

where the first form is for object-like macros and the second
for function-like macros. In both cases, the “identifier” (with
arguments in the second case) corresponding to a macro
definition in the tokenized text is replaced by its replacement
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Figure 1. Left is AST of ALLOCATE_MEM(1+1); right is the AST of
ALLOCATE_MEM(2).

token list. This is called a macro call. As other macros can
be called in a replacement token list, we define an expanded
macro as a series of tokens that contain no macro calls. Such
a token stream is created by recursively expanding macros
in the replacement token list until there are no macros left.
The following is an example of a function-like macro with
two calls:

~
#define ALLOCATE_MEM(arg) malloc(arg=2)
int main(){
ALLOCATE_MEM(1+1);
ALLOCATE_MEM(2);
1
N J
which after preprocessing becomes:
~
int main(){
malloc(1+1%2);
malloc (2x2);
1
N J

B. Defining Inconsistent Macros

Ernst et al. [13] classify ten categories of macro usage
and nine categories of erroneous macro usage. Erroneous
macros are mainly results of the lexical treatment of token
streams in macro expansions. Our goal is to define a simple,
but general, notion to capture erroneous macro usage.

Our key insight is that all macro calls to the same
macro definition must be similar because like other types
of abstraction mechanisms, a macro definition abstracts an
“intended,” shared usage pattern. To compare macro calls, we
use structural similarity between the subtrees of the abstract
syntax trees (ASTs) that two macro calls correspond to. If
two macro calls to a macro definition are not structurally
similar then we have detected an inconsistency.

The ALLOCATE_MEM example shown earlier (Sec-
tion II-A) is an example of inconsistent macro usage.
Because the operator * has higher precedence over +,

“malloc(1+1%2)” will be parsed as “malloc(1+(1%2))” and al-
locate 3 bytes of memory, while the other call “malloc(2+2)”

will allocate 4 bytes of memory.

Stylistic conventions [30] like parenthesizing arguments
can be used to avoid macro errors, but unfortunately variable
names cannot be parenthesized in all macro definitions
[3]. For example, in macros requiring that their argument
be textually inserted in the particular position inside an
expression, enclosing the correspondent variable name in
parentheses may inhibit required order of evaluation. For
example,

#define MKSTR(args) static_cast<std :: ostringstream &>\
(std :: ostringstream () << std:: flush << args). str ()

std :: string msg = MKSTR("There are " <<4 <<
" lines in the program");

requires that the insertion to the stringstream occurs first.
This macro cannot be re-written to parenthesize the macro
parameter. Manually applying style conventions is also
tedious and error prone, especially for large or complex
macros, so having a tool that can verify correct application
of these conventions is useful even for code that is properly
styled.

In general, stylistic conventions can often be applied
to macros that are expressions or analogs of complete
statements. At a high level these macros can be viewed as
functions. Some macros just generate composite pieces of
source code and therefore do not fit into these categories.
Styling conventions cannot be applied to these as adding
parentheses or brackets would interfere with their function-
ality.

Our definition of inconsistent macro usage is based on
how a macro call impacts the syntactic structure of the
preprocessed code. If two calls to the same macro definition
have different impact, we say there is an inconsistent macro
usage. The question remains how to define “impact.” It is
clear this cannot be directly based on the syntactic structure
of the macro calls since many macros take arguments or
call other macros. We need to normalize the macro calls by
removing nodes coming from these sources before checking
for similarity. However, we do not remove all nodes that
come from arguments or calls to other macros; we should
keep those nodes that “influence” the parsing structure,
which will be made more precise in the following.

Our definition of inconsistent macro usage utilizes the
structure of an AST to decide which nodes to remove and
which ones to keep. The reason we use an AST is because
preprocessed code is parsed into an AST, which is the right
context to discuss the syntactic impact of a macro call.

Definition 1 (Structurally Significant): Let M (@) be
a macro call and T = t1,...,t; be the corresponding
expanded token sequence of M(@). An AST node n;
that is parsed from ¢; of T s structurally insignificant if
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t; is part of the macro argument @ or comes from the
macros M, ..., M; called by M. Otherwise, we say n; is
structurally significant.

For example, the ASTs for the two expanded
"ALLOCATE_MEM" macro calls in our earlier example
are illustrated in Figure 1. Nodes 1, 4, 6, 7, 8, and 10
are structurally significant and nodes 2, 3, 5, and 9 are
structurally insignificant.

Definition 2 (Normalized Syntax Tree): Let T denote
the smallest syntactic AST unit containing a macro call
M(@). We create the normalized syntax tree of T with
respect to M (@) by deleting every structurally insignificant
node n; with no structurally significant node in the subtree
of T rooted at n;.

Note that in the example in Figure 1, nodes 3, 5, and 9
are removed because they are structurally insignificant and
subtrees rooted at those nodes do not contain any significant
nodes. On the other hand, although node 2 comes from a
macro argument, it is kept because the subtree rooted at node
2 contains structurally significant nodes.

Now with the definition of normalized syntax tree of a
macro call, we can define consistent and inconsistent macro
usage.

Definition 3 (Consistent Macro Usage): Let M (@)
and M (7) be two macro calls to the same macro definition
M. Further, let 77 and 7% be the corresponding normalized
syntax trees of M (@) and M (?) respectively. We say the
calls are consistent if T7 = T5. Otherwise, the calls are
inconsistent.

Consider the example in Figure 1 again. The normalized
syntax trees for the two calls are different, thus we detect
an inconsistent macro usage and a possible macro error.

C. Detailed Algorithms

This section gives a detailed description of our algorithm,
structured according to the flow-chart in Figure 2. Since
ASTs usually do not contain detailed information on macro
calls, we construct annotated ASTs using a separate pre-
processor to provide such information. An annotated AST

| with AST Nodes

Match Macros Detect Inconsis-

"| tent Macro Calls

Inconsistency Checker

High-level view of detecting inconsistent macro usage.

Algorithm 1 Matching AST nodes with post-CPP tokens
Input: L < in-order linearization of the AST

Input: 7" — post-CPP token sequence

Output: M — set of nodes paired with tokens

1: for n € L do

2 if n is not a structural node then
3 for t € T do

4: T=T\{t}
s.

6

7

if n corresponds to ¢ then
M = MU{(n, )}
break

is created by matching a post-CPP token sequence and an
AST (Section II-C1). In order to compare macro calls we
construct a normalized tree representation for each macro
call. A normalized tree is constructed by traversing an
AST to find the smallest embedding subtrees containing all
the tokens from a macro call (Section II-C2) and deleting
structurally insignificant nodes (Section II-C3). If we have
two macro calls to a macro definition, we consider the
two calls to be inconsistent if the normalized trees for the
two macro calls are dissimilar (Section II-C4). A macro
definition that has only one call is consistent by definition.

1) Matching ASTs with post-CPP token sequences: A
C/C++ parser generates ASTs based on post-CPP token
sequences and has no knowledge of the CPP syntax in pre-
CPP source files. Because our notion of inconsistent macro
calls are based on normalized trees, we need a detailed
mapping from the macro calls in pre-CPP token sequences
to their corresponding AST nodes.

We annotate an AST with detailed information on macro
calls, such as which nodes in the AST correspond to the for-
mal macro body, the actual macro arguments, and the calls
to other macros in the macro body during expansion. Such
information can be provided by a separate preprocessor that
keeps track of token transformations during macro expansion
and annotates each token in post-CPP token sequences with
its corresponding pre-CPP token.

Algorithm 1 annotates each AST node with a post-CPP to-
ken. Each node in an AST is checked to see if it corresponds
to a token in expanded macro calls. The correspondence



between a node and a token is determined by the in-order
linearization of an AST as that always has the same ordering
as its post-CPP token sequence.

In Algorithm 1, we also require that “n” is not a struc-
tural node. This is needed because an AST often contains
structural nodes which are generated as auxiliary nodes to
represent language semantics and do not have any corre-
sponding token in the original source files, such as constant
folded expressions and structural place-holders. The worst-
case time complexity of this algorithm is O(N), where N
is the number of nodes in an AST.

2) Finding Smallest Embedding Subtrees: Our notion of
inconsistent macro usage relies on representing only the
parts of an AST that are truly relevant to each expanded
macro call. Here, we aim to find a set of embedding subtrees
in an AST that contains all tokens from each expanded
macro call and use such subtrees for consistency checking.

Since an expanded macro can often correspond to only
parts of a complete syntactic unit in C/C++ language,
e.g., a subexpression in an expression, we look for the
smallest embedding subtrees that contain all tokens from
each expanded macro call and the fewest irrelevant tokens.
Especially, when an expanded macro call spans more than
several statements but does not correspond to a complete
syntactic unit, we generate a set of embedding subtrees that
are the most essential to the expanded macro. For instance
in the following example:

#define SPANS_STATEMENTS (i+2); i++;
int i; 2«SPANS_STATEMENTS;

the smallest embedding subtrees for
“SPANS_STATEMENTS” expanded are the subexpression
“(i+2)” and the statement “i++;”’, instead of all the
code “int i; 2x(i+2); i++;” or the two statements
“Dk(142); 1++;7.

Algorithm 2 finds such smallest set of subtrees for each
macro call. This is done in two steps. First, in a pre-order
traversal, the top-most AST nodes that are matched with a
token from the macro call (c.f. Section II-C1) are kept (Lines
2-5). These top-most nodes can be disjoint parts of the same
macro call, so we traverse the parents of these nodes bottom-
up, up to statement boundaries (the condition on Line 8), to
locate nodes that encapsulates larger parts of the macro call
(the condition on Line 9) so that the number of embedding
subtrees can also be reduced. Then such parent nodes replace
the encapsulated subtrees as a new embedding subtree in the
result set. The worst-case time complexity of Algorithm 2
is O(N), where N is the number of nodes in the AST.

3) Normalizing Macro Calls: Our notion of inconsistent
macro usage operates on normalized syntax trees where all
insignificant nodes are considered for removal. An insignif-
icant node comes from a macro argument or another macro
called during macro expansion, but it is only removed if
there are no significant nodes in its subtree.

Algorithm 2 Finding smallest embedding subtrees of a
macro call
Input: 7" < pre-order numbering of the AST
Input: M < set of nodes matched with the macro call
Output: S « root of subtrees containing the macro call

. I=0

2: for n € T do

3 ifneMandn ¢ then

4 I = I U children(n)

5 S=SuU{n}

6: for n € S do

7. p=n

8:  while p is not a statement boundary do
9 if size(S N children(p)) > 1 then
10: S = S\ children(p)

11 S=SU{p}

12: p = parent(p)

Algorithm 3 Normalizing macro calls
Input: 7" «— post-order numbering of the AST nodes
Input: S — list of significant nodes

1: forn € T do

2. ifn¢S then

3: if children(n)NS = ( then

4: Remove ¢
5: else
6: S=5Un

As an example, we show how to normalize two macro
calls to a function-like macro:

e N
#define TEST_MACRO(arg) arg+3

int i,j;

TEST_MACROC();

TEST_MACROC(+));

\ J

The example code expands into:

. . \
int i,j;
1%3;
i+j*3;
N J

The left hand side of Figure 3(a) shows the AST for the
first macro call. As the ‘i’ node comes from the macro
argument we remove it to get the normalized tree on the
right hand side. Similarly, the left hand side of Figure 3(b)
shows the AST of the second macro call. Nodes ‘i’, ‘+’ and
‘j> come from the macro argument so we consider removing
them, but since ‘+’ has the structurally significant nodes ‘*’
and ‘3’ in its subtree we keep it in the normalized tree on

the right hand side of Figure 3(b).
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(a) The left graph is for TEST_MACROC() before argument re-
moval; the right hand side is after argument removal.

Figure 3.

Algorithm 4 Detection of inconsistent macro uses
Input: M; < numbering of normalized tree for call 1
Input: M5 < numbering of normalized tree for call 2
Input: c < allowed tree difference
if edit_distance(My, Mz) > ¢ then

return “inconsistent”
else

return “consistent”

LA

Using algorithm 3 we remove insignificant nodes to create
a normalized tree representation of a macro call. As input the
algorithm takes a post-order numbering of the AST nodes
in the smallest subtrees containing a macro call. The worst-
case time complexity of the algorithm is O(N), where N is
the number of nodes corresponding to a macro call.

4) Detecting Inconsistent Macro Usage: We detect in-
correct usage of a macro definition by comparing the the
normalized syntax trees corresponding to each macro call
to the macro definition. According to our notion, two macro
calls to the same macro definition with structurally dissimilar
normalized trees indicate a possible macro error.

The right hand sides of Figure 3(a) and Figure 3(b) show
the normalized trees for the two macro calls in the example
in Section II-C3. Since the two normalized trees are clearly
dissimilar, the macro usage is inconsistent and it indicates
an inappropriate macro definition.

Algorithm 4 detects inconsistencies based on normalized
trees for macro calls. Each macro call is represented by
a numbering of its normalized tree, and we use the edit
distance among the numbering of trees to determine in-
consistency. The edit distance between M7 and Ms is the
number of edit operations (either insertion, deletion, or
modification) required to transform them into each other. An
advantage of using edit distance in the algorithm is that it
may tolerate certain inconsistencies among normalized trees
if a user expects different usage of a macro and sets the
threshold ¢ to a value larger than 0. For our evaluation we
only use edit distance 0. The running time of the algorithm
is O(min(|Mi], [Mal)).

o

(b) The left graph is for TEST_MACRO(i+j) before argument
removal; the right side is after argument removal.

Examples of normalized syntax trees.

IITI. IMPLEMENTATION

We have implemented our algorithm as a macro error
detection tool, CPPCHECKER. We use the ROSE open
source compiler infrastructure [6], [28] for parsing and the
Boost Wave C99/C++ preprocessor [1] for annotating ASTs
with macro information. Our tool supports both C and C++.

We designed our tool to use an SQLite database for
communication between different phases of our analysis,
allowing new software packages to be added without
requiring existing packages to be re-analyzed. Each analysis
phase is implemented as a separate C++ program. The
first step is to create the normalized syntax tree for each
macro call and store both macro definitions and calls and
the trees into database. Then, for each macro definition
M, we query the database for the normalized trees for all
calls to M and compare the trees to detect inconsistent
macro usage. The database can be easily accessed to create
macro error reports or suggest possible fixes. We designed
our tool based on database to make whole program and
even cross-program analysis easy, and all macro calls to a
macro definition are analyzed only once per definition. For
example, if file f; contains calls to a macro M defined in
file fs, all calls to M in f; and f> are analyzed together
for detecting inconsistencies.

A. Constructing AST

Our definition of inconsistent macro usage and our al-
gorithms are formulated over abstract syntax trees (ASTs).
Although it is also possible to apply our algorithms to
parse trees, we utilize the higher-level structure of ASTs
to get the normalized trees for macro calls. For instance, a
binary operator in an AST has two subtrees, one for the left
operand and one for the right operand, which simplifies tree
structures and the normalization process.

We use ROSE [6], [28] to construct ASTs for source
files. ROSE supports Fortran, C, and C++ among other lan-
guages. Like other compiler infrastructures, ROSE consists
of front-ends, a mid-end, and back-ends. The intermediate
representation used in ROSE is high-level, builds ASTs,
and provides a framework for writing static analysis tools.
The mid-end contains a set of analyzes that we use to



construct CPPCHECKER. In particular, ROSE has built-in
traversal mechanisms, which are useful for implementing
our algorithms. The traversal mechanisms support pre-order,
post-order, and pre-post-order traversals.

When creating an annotated AST, we need to know how to
map between an AST and its corresponding post-CPP token
sequence. Algorithm 1 creates such a mapping, but it takes as
input an in-order traversal of the AST nodes. Because ROSE
does not provide in-order traversal, we construct our own in-
order traversal using a pre-order traversal. The AST structure
for certain nodes in ROSE can be ambiguous as how to
create an in-order traversal. For instance, a node representing
a conditional expression “c 7 e1 : es” has three subtrees: one
each for the condition ¢, the true expression e, and the false
expression e;. We need to number the node twice, one for
“?” (between ¢ and eq) and one for “:” (between e; and
es) to ensure that the in-order traversal of the AST nodes is
equivalent to the ordering of the token sequence.

B. Annotating AST

Like most compilers, ROSE generates ASTs based on
post-CPP token sequences and has no knowledge of macro
calls except for their expanded forms in the post-CPP token
sequences. Because our notion of inconsistent macro usage
is based on normalized trees, we need a detailed mapping
from AST nodes to macro calls. We use a separate prepro-
cessor, integrated with ROSE, to get the detailed information
on macro calls.

Our implementation currently uses the Boost Wave pre-
processor [1]. Wave is an implementation of the C99/C++
preprocessor standard with a simple-to-use interface for
observing macro expansions and directive handling. Wave
exposes a token iterator interface, a context object, and
preprocessing hooks. It iterates over a pre-CPP token stream
and expands macros according to the C99/C++ preprocessor
standard in a way equivalent to the CPP step in the ROSE
compiler. In our implementation, Wave does a second CPP
pass over all source files and we utilize its preprocessing
hooks to annotate each ROSE AST node with information
about preprocessor directives during its process.

C. Whole Program & Incremental Analysis

The use of a database facilitates whole program and
incremental analysis. We chose an SQLite database [7] as it
is a small C library that implements a self-contained, zero-
configuration SQL database engine. Zero-configuration is a
significant advantage in terms of usability as no setup or
administration is needed. The database is stored in a single
disk file which is easily shared across different machines.
Based on our experience this has proven to be useful in shar-
ing information about macro usage as the database presents
an easy interface for sharing detailed macro information.
Another benefit is that once the database is constructed no
recompilation is necessary if for instance a new threshold

Package Version LOC NCNB Files
be 1.06 21870 15831 39
gzip 1.3.12 18391 11916 58
rcs 5.7 30570 20903 46
remind 3.01.06 32677 24197 50
Table I

ANALYZED PACKAGES AND THEIR SIZES; NCNB LINES ARE
NON-COMMENT, NON-BLANK LINES.

value c is chosen for edit distance in Algorithm 4. We can
also check additional software packages without recompiling
packages that are already in the database to enable incremen-
tal analysis.

IV. EMPIRICAL EVALUATION

This section presents our evaluation of CPPCHECKER.
It discusses the setup for the evaluation, including the
test subjects and system setup. It also lists the types of
macro errors categorized by Ernst et al. [13] for use in
the evaluation. CPPCHECKER’s effectiveness is evaluated in
terms of recall, precision, and efficiency.

A. Experimental Setup

We evaluated the effectiveness of CPPCHECKER in vali-
dating macro usage on the packages in Table 1. Out of the
programs evaluated by Ernst et al. [13], these are the ones
with the highest usage of CPP macros. All analysis runs
were done on a workstation with two Xeon X5355 2.66 GHz
quad-core processors and 16 GiB of RAM, of which we used
one core for our experiments. The workstation has a 4-disk
RAID with 15,000 RPM 300 GB disks. It runs Red Hat
Enterprise Linux 4 with kernel version 2.6.9-78.

B. Types of Macro Errors

We detect four types of macro errors defined by Ernst
et al. [13]: inconsistent arity, unparenthesized formal, un-
parenthesized body, and swallows else. Out of all the errors
defined by Ernst et al., these are the most difficult-to-
detect categories because they cannot be easily detected by
inspecting the macro definition or macro call.

Inconsistent Arity: The macro name is defined multiple
times with different definitions, like for instance:

#define MAX(a,b) a>b?a:b
#define MAX(a,b) a>=b? a: b

This may either indicate a real bug or a macro name used
for different purposes in different parts of the package.
CPP requires an “#undef MACRO_NAME” directive before
redefining a macro in the same file, while this is not
necessary when redefining the macro in a different file within
the same package. We treat all macro definitions with the
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#define PARSENUM(var, s) \
var = 0;
while ( isdigit (x(s))) { \
var x= 10; \
var += x(s) — ‘0’ ; \
s++; \
}
k J
[ #define UPPER(c) toupper(c) ]

#define PARSENUM(var, string) \
if (! isdigit (x( string ))) return; \
var = 0; \
while ( isdigit (+( string ))) { \
var *= 10; \
var += *(string) — ‘0’ ; \
string++; \

#define UPPER(c) islower(c) ? toupper(c) : (c)

N
RN

Figure 4. Example macros of inconsistent arity found in Remind.

same formal name as the same macro, thus enforcing that
all calls to this macro should be consistent.

Unparenthesized Formal: An argument is used as part of
an expression without being parenthesized, so that prece-
dence rules can cause two different macro expansions parsed
into dissimilar AST subtrees. The following is a concrete
example:

#define SQUARE(x) x*x
SQUARE(1) ...
SQUARE(1+1) ...

where the second macro invocation evaluates to 3, not 1.

Unparenthesized Body: The macro body is an expression
that should be parenthesized to avoid precedence issues. For
example, consider the following code:

#define ADD(X,y) x+y
3xADD(1,2) ...

which evaluates to the value 5 instead of 9.

Swallows Else: The macro ends with an if statement without
a corresponding else clause, and swallows any else following
it in the token stream. For instance

#define AN_IF(x) if(x){ }

if ( condition )
AN_IF(true)
else

will parse into an AST construct where the if-statement from
the macro expansion has an else-statement. Other invoca-
tions of the same macro may not have an else-statement in
the context immediately following the macro call so that
they are inconsistent with this invocation.

Multiple Formal Uses: Some argument is used as an
expression several times, so any side effect in the actual

macro argument will occur several times. For instance:

#define SQUARE(X) (x)*(x)
SQUARE(x++) ..

will perform the “++” operation twice. This type of macro
errors is easy to detect with a simple scan of the macro body.
Because this is not a result of inconsistent usage across two
macro calls, we do not model this type of errors.

Ernst et al. presents two additional types of errors that
cause a compiler parsing error: dangling semicolon after a
macro call and side-effecting a formal argument that cannot
be side-effected in the target language.

There are also three macro error types that we do not
model because they are easy to detect. Usage of free
variables in the macro to achieve dynamic scoping is the only
one which can result in runtime error. The two other errors
will not result in runtime error, but causes problems for a
programmer trying to understand the code: macro arguments
that is not used in the macro definition and macro names that
are reserved words in the target language.

C. Evaluation on Mature Packages

All the packages in Table I are stable and mature packages
that have been screened for the types of errors we detect.
In addition, they utilize styling conventions to avoid macro
errors. In particular, all the projects parenthesize macro
arguments wherever applicable in order to enforce a par-
ticular operator precedence. The following is an example of
parenthesized arguments in “bc—1.06/h/number.h’:

[ #define MAX(ab)  ((a)>(b)(a):(b)) }

Although such tactics are effective when applicable, they
cannot be applied to all macro arguments because a macro
argument is not restricted to representing expressions or
complete statements (see Section II for a concrete example).

For these reasons, we expect our tool to find few macro
inconsistencies in these mature and stable projects. Table II
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#define fixangle (a) (a — 360.0 %\
(floor (a / 360.0)))
#define elonge 278.833540 double Day, N, M;
#define elongp 282.596403
N = ((360 / 365.2422) % Day — 360.0 x
double Day, N, M; (floor (360 / 365.2422) x Day / 360.0)));
N = fixangle (360 / 365.2422) * Day); M = (N + 278.833540 — 282.596403 — 360.0 *
M = fixangle(N + elonge — elongp); (floor (N + 278.833540 — 282.596403 / 360.0)));
J L J
Figure 5. Example bug injection in Remind. Code to the right is the preprocessed version of the code to the left.
Swallows-Else Unparenthesized-Body Unparenthesized-Formal
Package Inject Cons Incons Inject Cons Incons Inject Cons Incons
be 0 0 0 3 0 3 0 0 0
gzip 3 0 3 13 0 13 3 0 3
Ics 2 0 2 6 0 6 2 0 2
remind 0 0 0 12 0 12 8 0 8
Total 5 0 5 32 0 32 13 0 13
Table III

EVALUATION OF HOW WELL CPPCHECKER DETECT INJECTED BUGS OF MACRO ERROR TYPES SWALLOWS-ELSE, UNPARENTHESIZED-BODY AND
UNPARENTHESIZED-FORMAL.

Package MD MC  Consistent Inconsistent
be 39 321 36 3
gzip 78 403 78 0
rcs 63 547 62 1
remind 71 1072 69 2
Total 251 2343 247 6
Table II

ANALYSIS OF CONSISTENCY OF FUNCTION-LIKE MACRO CALLS ACROSS
PROJECTS. MD IS THE TOTAL NUMBER OF FUNCTION-LIKE MACRO
DEFINITIONS, MC IS THE TOTAL NUMBER OF MACRO CALLS TO THE
FUNCTION-LIKE MACRO DEFINITIONS.

shows that 6 out of the 251 macro definitions are reported
inconsistent by CPPCHECKER. Investigating each inconsis-
tency by hand, we find that two of them are actual inconsis-
tencies. Both of the inconsistencies are of type inconsistent
arity, and the macro definitions are shown in Figure 4. The
macros PARSENUM and UPPER have different definitions
in the same package, which can lead to potential errors.

Due to an implementation limitation in the ROSE frame-
work, four of the reported inconsistencies are not actual
errors. Because of this limitation in ROSE, we cannot
properly identify the nodes originating from the macro
arguments when the macro expands into an enum definition.
The following is such an example:

#define MACRO_CALL(X) (x+2)
enum X {

enl = MACRO_CALL(1),

en2 = MACRO_CALL(2)

|5
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D. Evaluation on Injected Errors

We also injected errors into the packages in Table I to eval-
uate our tool’s effectiveness in detecting actual inconsistency
errors. Errors were only injected for the macro error types
that do not require writing new macro definitions: swallows
else, unparenthesized body, unparenthesized formal. The
injection was done by making one copy of the packages for
each macro error type. We removed parenthesization from
macros that use styling conventions. In each copy of the
package for a macro error type, we injected one erroneous
macro call for every macro definition that is vulnerable to
this type of errors.

An example error that we injected is shown in Figure 5.
This injected error causes a detected inconsistency. In the
original code the macro argument “a” to the function-like
macro “fixangle” is parenthesized. By removing the paren-
theses, the two macro calls to “fixangle” become inconsistent
with respect to each other.

In Table III the injected column shows how many macro
definitions are vulnerable to each type of macro errors. The
inconsistent column shows that CPPCHECKER detected all
the injected errors.

E. Efficiency

We measured the efficiency of our tool on the four
packages. Table IV lists the results, which show that 64%
of the analysis time was spent on constructing the ASTs,
while 36% was spent on generating the normalized trees




Package AST  Tree Normalization Inconsistency
bc 99s 47s 0.021s
gzip T1s 65s 0.015s
rcs 306s 123s 0.016s
remind 266s 188s 0.012s
Total 7425 423s 0.064s
Table IV

TIMING INFORMATION IN SECONDS FOR THE CONSTRUCTION OF THE
AST, THE CONSTRUCTION OF THE NORMALIZED TREE FOR ALL
MACROS AND THE DETECTION OF INCONSISTENCIES.

for every macro call. The timing for the creation of the
normalized trees includes the time to map between pre-CPP
token streams and ASTs. Detecting inconsistencies took less
than a second for all of the projects as it is a simple database
lookup. The results indicate that our tool is efficient and only
adds negligible overhead over standard parsing.

V. DISCUSSION

We detect the most difficult to detect macro errors using
our notion of inconsistent macro usage. These are errors
that cannot be easily found through inspection of the
macro definitions or the macro calls. For instance, detecting
unparenthesized-body errors involves understanding com-
plex interactions between the CPP language grammar and
the target language grammar. The complexity of doing this
increases with the size of the macro and the complexity of
its expressions as the developer must carefully observe how
the target language grammar interprets the expanded macro.
This is particularly burdensome since the developer usually
works in the pre-CPP form of the source code. Conversely,
multiple formal uses can be detected by inspecting the macro
definition when the macro definition is given a side-effecting
argument to see if that argument is used multiple times.
Although simple heuristics can be used to detect the types of
macro errors that are not covered by our current notion it is
attractive to have a single notion that detect as many macro
error types as possible. One possibility is to extend our
notion with program dependency graphs (PDGs) to detect
these error types, which we leave for future investigation.

Ernst ef al. indicate that many packages likely contain
macro errors. Many open source projects apply stylistic
conventions in order to avoid macro errors, but from our
experience some projects do not use these conventions and
others do not strictly follow them. It would be interesting to
perform a large scale study of the frequency of macro errors
in open source packages.

We applied CPPCHECKER as a separate step of the devel-
opment process. Integrating the tool into the development
tool chain is likely to make macro usage less error-prone
because it can be used to provide early detection of macro
errors. This is particularly useful for new projects that use
macros from other packages since the tool can compare the
new usage case of a macro with existing usage patterns of

the same macro.

It is common that Fortran programs use CPP and we
expect our notion of inconsistent macro usage is applicable
to that domain as well. It would be interesting to extend our
tool to support Fortran. Constructing an annotated AST for
Fortran is likely to pose some interesting challenges since
Fortran code uses traditional text-based C preprocessors as
opposed to token-based ISO C preprocessors. As ROSE
currently has a Fortran front-end, it is likely that we can
reuse most of the existing code for CPPCHECKER.

Since CPPCHECKER provides an accurate mapping from
the pre-CPP and post-CPP token streams to ASTs, we
believe it presents an opportunity for developing better refac-
toring tools for C/C++ programs. It is particularly interesting
to develop tools for analyzing macro usage across programs
for across-program understanding and maintenance. In the
context of ROSE, our algorithms can be essential for source-
to-source analysis as it provides a mechanism for refactoring
code without losing the abstraction provided by macros.

VI. RELATED WORK

Our work builds on the study of macro usage by Ernst
et al. [13]. In order to analyze macro usage, they used a
tool called PCP3 [10] that extracts parse trees representing
source code and provides its own preprocessor to record
information about macro expansions. However, PCP3 does
not detect errors in macro usage and as a refactoring tool it
fails on complex macros. Our work uses abstract syntax trees
because of its higher-level syntax. An AST representation is
also richer since type information is available for analysis.

Previous research has also proposed replacement lan-
guages for CPP. More restrictive preprocessors are created
to avoid the possible macro errors defined by Ernst et
al. [13]. An example is a replacement macro language called
ASTEC [24] by McCloskey et al.. They also developed
a translator called MacroScope that converts existing code
using CPP to use their macro language. MacroScope uses an
algorithm for finding the smallest set of statements contain-
ing a macro call to detect errors in macro usage. However,
MacroScope enforces coding styles to detect potential errors
and therefore likely has high number of false positives.
For instance, macros expanding into an if statement that
swallows an else statement from the macro context will
always be marked by MacroScope as an error. This will
incorrectly identify macro calls as errors where “swallows-
else” is intended. Also, this approach is only useful if
developers either adopt the more restrictive replacement
preprocessor language or adopt a style convention that can
be quite restrictive.

Extending the target language with a macro syntax lan-
guage has been proposed to facilitate the construction of
syntactically valid macros [32], [19]. Weise et al. [32]
introduced explicit code template operators into the macro
language, and used the type system to guarantee that the



macro definition is a valid syntactic fragment in the target
language. Syntax macros produce ASTs that replace the code
of the macro invocation and therefore restricts the macro def-
inition to be syntactically valid units. Our approach will also
catch errors other than syntax errors. Using syntax macros
requires changes in the compiler to extend the language
syntax and the user code to adopt the new preprocessor
syntax.

Many style guides are also available. They describe rules
for how to avoid macro errors [4], [5], [30]. These style
guides will only work to the extent that developers correctly
apply them to their code. There are tools available to
automatically enforce such guidelines. Various lint [18], such
as LC-lint [14] and PC-lint/Flexelint [8], can check whether
C programs satisfy certain restrictions, such as unparenthe-
sized macros and unused macro definitions. Programmers
are allowed, to some extent, to define their own rules for
detecting bad code, so that the tools can check for those rules
as well. These tools enforce certain pre-specified coding
guidelines, while as we have a simple, uniform definition of
macro inconsistencies that captures a large class of (difficult-
to-detect) macro errors.

A standard compiler without knowledge of macros can
detect some types of CPP errors. However, as the compiler
is unaware of the CPP syntax, it is limited to detecting errors
where CPP generates incorrect C/C++ language syntax or
semantics. The compiler can for instance detect where a
macro call expands into an assignment expression where the
type on the right hand side cannot be assigned to the left
hand side. Some studies thus provide more comprehensive
error checking capability in addition to that is provided by
a compiler. Krone et al. [21] apply concept analysis to infer
configuration structures caused by macro uses in source
code and represent such structures in concept lattices to
gain insight into the structures and properties of possible
configurations. Sajeev et al. [27] examine the most common
macro errors and present a number of algorithms for de-
tecting those errors statically. In order to provide a formal,
common ground for understanding preprocessor languages,
Favre [15] describes a denotational semantics for CPP. Our
goal is different; we aim at statically validating macro usage.

Many studies have also proposed different refactoring,
maintaining techniques for programs written in preprocessed
languages. Padioleau er al. [26] propose a special parsing
technique that can parse most C/C++ programs without pre-
processing. The technique also finds some coding mistakes
related to macros, but it may require adapting to some
different conventions and idioms for different programs.
Spinellis et al. [29] use the concept of token equivalence
classes to bridge the gap between the language semantics
and non-preprocessed source code. Their CScout tool is able
to analyze large interdependent program families and allows
rename and remove refactorings on the original C source
code. Mennie et al. [25] describes a method of fact extraction

and code manipulation to create a set of transformations
which will remove preprocessor directives from the original
source, converting them into regular C/C++ code with as
few changes as possible, while maintaining readability in
the code. Vid4cs et al. [31] propose a preprocessor schema.
Instances of the schema may be used to model preprocessor
constructs in the original source code, the preprocessed
compilation unit, and the transformations made by the
preprocessor, and thus may help program understanding and
maintenance.

The concept of inconsistencies is also helpful for identi-
fying abnormalities and has been applied to detect different
kinds of bugs. Engler et al. [12] observe that what cor-
rectness rules a system must obey are often undocumented
or specified in an ad hoc manner, while such information
may be inferred from source code itself, rather than pro-
grammers, thereby avoiding the need for a priori knowledge
of correctness rules for detecting violations. CP-Miner [22]
utilizes inconsistent identifier names among similar pieces
of code to find Copy-paste related bugs. PR-Miner [23]
detects inconsistent API usage among programming rules
as potential bugs. Ammons e? al. [9] and Kremenek et
al. [20] considered inconsistencies in the context of program
specifications, while Xie et al. [33] use redundancies in
programs, such as idempotent operations, unused values,
dead code, un-taken conditional branches, and redundant
null-checks, to flag possible errors. More semantic-aware
inconsistencies can also be useful for bug detection. For
example, Dillig ef al. [11] use inconsistent uses of a same
pointer to find null-pointer dereference errors.

VII. CONCLUSIONS

The pure lexical semantics of CPP macros can easily
result in programming errors. Thus far no effective tool
exists to statically validate the correct usage of macros.
In this paper, we have introduced a general characteriza-
tion of macro errors and developed an algorithm to detect
many difficult-to-detect macro errors while preserving the
flexibility of CPP. Our technique is based on normalizing
macro calls and comparing them for structural dissimilarity
to detect potential macro-related errors. Evaluated on a
number of open-source projects, our tool, CPPCHECKER,
is precise and reports very few false positives. It is also
efficient, adding negligible overhead over traditional parsing.
We believe it is practical and can be used routinely to check
for macro-related errors and validate macro usage.
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