
The Case for Mobile Forensics of Private Data Leaks:
Towards Large-Scale User-Oriented Privacy Protection

Joseph Chan Joo Keng, Tan Kiat Wee, Lingxiao Jiang, and Rajesh Krishna Balan
School of Information Systems, Singapore Management University

{joseph.chan.2012, kwtan.2010}@phdis.smu.edu.sg, {lxjiang, rajesh}@smu.edu.sg

ABSTRACT
Privacy protection against mobile applications on mobile de-
vices is becoming a serious concern as user sensitive data
may be leaked without proper justification. Most current
leak detection tools only report leaked private data, but pro-
vide inadequate information about the causes of the leaks
for end users to take preventive measures. Hence, users of-
ten cannot reconcile the way they have used an application
to a reported leak — i.e., they are unable to comprehend the
(il)legitimacy of the leak or make a decision on whether to
allow the leak. This paper aims to demonstrate the feasibili-
ty and benefits of identifying the causes of leaks from a us-
er’s point of view, which we call mobile forensics of privacy
leaks. Its goal is to correlate user actions to leaks, and report
the causes from a user-oriented perspective. To make the
case, we have performed a preliminary study that identifies
leak causes based on logs of user actions in more than 220
Android applications and corresponding leak reports from a
leak detection tool. Our results show that more than 60%
of the 105 applications (of the 220 we sampled) that leak
private data leak data do so due to user actions on certain
in-application GUI widgets. About 44% also leak data right
after users launch them, while 32% leak data periodically af-
ter launch. We also constructed a database containing leak
causes from all tested apps, and demonstrated the use of vi-
sual overlays to warn users about potential leaks.

1. INTRODUCTION
We live in a world continually being proliferated by uses

of mobile devices, where large amount of private data is ac-
cessible by mobile applications (apps), such as phone IMEI,
SMS, GPS locations, our contact list, and more [1]. The da-
ta becomes a potential treasure trove to malicious users who

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSYS ’13, July 29-30 2013, Singapore
Copyright 2013 ACM ...$15.00.

can sell it to analytics company, advertising companies or
even competitors. Balancing mobile privacy and functional-
ity thus becomes an increasingly urgent focus for research.

Various leak monitoring tools have been developed to de-
tect leaks of private data, such as TaintDroid [2] and PiOS [3].
These tools either uses dynamic or static analysis to perform
leak detection. However, these tools have common short-
comings that the reported leaks contain limited information
about the causes of the leaks: 1) End users cannot easily rec-
oncile their actions to leaks (e.g., did this leak occur because
I swiped a screen or tapped a particular button?). 2) User
cannot make decisions on the (il)legitimacy of the leaks, and
may easily make the same leak-causing actions again.

We present the case for mobile forensics of privacy leaks
that aims to correlate user actions to leaks. We propose an
approach framework for enabling such mobile forensics: us-
er actions in mobile apps are logged through an instrumen-
tation of the mobile system which is Android in our case;
privacy leaks for the apps are also logged through a leak de-
tection tool (TaintDroid); then correlation between user ac-
tions and leaks are discovered through leak-cause analysis
(an association rule mining [4–6] technique). With this ap-
proach framework, we demonstrate the feasibility and bene-
fits of mobile forensics with a preliminary study conducted
on over 220 Android apps. We find that almost half (47%) of
the apps sampled leak various kinds of privacy data. More
than 60% of the 105 leaky apps leak data as a result of user
actions on certain GUI widgets in the apps. About 44% of
the leaky apps also leak data right after users launch them,
while 32% leak data periodically after launched.

In addition, we have constructed a database containing
leak causes from all tested apps, and further performed man-
ual evaluation of the identified leak causes and find that they
have promising accuracies: the causes identified for about
26.6% of the apps have accuracies in the range of 80-100%,
and the accuracies of the causes identified for more than 60%
apps are higher than 60%. We also have demonstrated the
use of visual overlays to warn users about potential leaks so
that users may easily identify the potential leak-causing wid-
gets and based on the interface of the widgets have easier
time in deciding whether the functionality of the app war-
rants the leak.

The rest of the paper is organised as follows. In Section 2,
we present potential motivational applications for mobile foren-
sics of privacy leaks. Section 3 describes related work. Sec-
tion 4 presents our approach framework for mobile forensic-
s. Section 5 shows the empirical study conducted to support
the case for mobile forensics. Finally, we discuss the study
with future work in Section 6 and conclude in Section 7.

2. MOTIVATION
The key objective for our mobile forensics is to provide

user-oriented information for end users to comprehend the
linkage between their own actions and leaks so that user-
s can make better decisions in protecting their privacy. We
describe two scenarios where leak causes that relate user ac-
tions to leaks can aid users.

2.1 Interactive Privacy Leak Reporter
One deployment scenario of leak causes identified by mo-

bile forensics is to enable a real-time privacy leak reporter
to track user actions performed in an application so far and
interactively informs the user of potential leaks. Differen-
t from existing leak detectors (e.g., TaintDroid, PiOS) that
report leaks when they happen, such an interactive leak re-
porter has the knowledge about leak-causing user actions,
and can be designed to capture such user actions, and warn
users about widgets that may leak privacy in certain follow-
up actions, depending on the current mobile screen content.
The warning could take the form of real-time highlighting
and/or disabling of leaky widgets in the app, or an off-line
replay tool that replays the user actions that cause privacy
leaks. In this manner, the user will still be able to use a
leaky mobile app while side-stepping any user actions that
can cause privacy leaks. The user-centric and fine-grained
nature of a mobile forensics-based leak reporter also means
that a user can potentially better understand the connection
between app functionalities and types of data being leaked,
and would be better equipped to make an informed choice in
utilizing an app. However, such a leak reporter needs to be
designed carefully to ensure good usability for the user.

2.2 Enhanced App Stores
Another scenario of using the knowledge of leak causes is

through application stores when users download and install
an app. Current installation process only informs users of
the permissions the app needs, but does not tell whether the
permissions are indeed necessary for the functionality of the
app. The leak-cause knowledge not only informs what the
leak may be, it can also inform how and where it leaks pos-
sibly through screen captures or replays of the leak-causing
actions in the app. App stores can collect such knowledge
through a system working internally in a similar way to our
approach framework. For newly uploaded applications, the
app stores in the verification phase can employ mobile foren-
sics and collected leak-cause knowledge to reject the app
should it contains any unnecessary leaks.

Another interesting possibility would be crowd-sourcing
user-perceptions on the app leak-causes from real users of
Android apps. Based on the interactive privacy leak reporter
in the previous scenario, the app stores could allow users to
install a questionable app and make the final choice by pre-
senting the relevant leak-cause knowledge to them. This can
also be a more convenient way to engage users in provid-
ing feedback on whether a permission requested by an app
is really needed for the functionality of the app. This may
also provide an interesting angle for research on user-centric
permissions analysis.

3. RELATED WORK
In this section, we describe some related work on mobile

privacy and discuss their limitations.
Privacy Leak Detection. Various tools, such as Taint-

Droid and PiOS [2, 3], have been developed for privacy leak
detection in mobile applications. These tools are useful in
detecting leaked private data, but they are less useful in guid-
ing users to react appropriately with respect to a leak report.
For example, a notification of a leak of private data has oc-
curred while the user is on the launcher screen does not in-
dicate why that leak has occurred and what the user should
do.

Permissions-Based Framework. The Android platfor-
m utilizes a permissions-based framework [7] that runs at
install-time and informs the users of the privacy that the
app requires (up to 130 application level permissions). It
has been shown that most mobile users are unable to com-
prehend the implications and finer details of each permis-
sion [8]. Permissions granting process has become a rou-
tine to most mobile users, who would indiscriminately agree
to the set of permissions as a matter of habit without much
thought.

4. APPROACH FRAMEWORK
We propose the following approach shown in Figure 1 to

demonstrate the feasibility of the forensic study of private
data leaks and its potential applications (apps). First, we in-
strument the mobile system to collect user traces with Taint-
Droid as our leak detector. Second, we perform extensive
testing of selected mobile applications to collect the traces
and leaks. Lastly, various analyses are carried out to pro-
duce the causal relations between user actions and leaks.

4.1 App Testing and Log Collection
To identify user actions that may cause private data leak-

s, we perform extensive testing on the app that uncovers its
behaviour to collect as much user actions and leak reports as
possible for analysis. In order to generate all possible inter-
actions in a systematic way, we could employ an automated
testing approach for mobile apps. There are a number of s-
tudies [9–14] for this purpose. However, we have realised
that no publicly available tool fits our needs for a scalable
automatic test on Android apps. These tools are generally

Leak-PreventionLarge-Scale Testing

 App Testing Sub-System

Apps

TaintDroid

Event Logger

Leak &
Event Logs

Apps

Report Cards

Cloud-Based
Reporting

Leak-Cause
Database

Association
Rules

Mining

Leakage
Patterns and

Validation

Leak-Cause Analysis Leak-Prevention Mechanism

PDFill PDF Editor with Free Writer and ToolsFigure 1: Approach Overview

tested in a graphical environment, one-by-one. Automat-
ic tools like Android Monkey tool [15] are usually use for
stress testing which does not provide a systematic way of
capturing leak behaviours. Other tools, provide test frame-
works for developers to write or record, but not automatical-
ly generate test cases [16–18]. For these reasons, we opted
to use manual testing for our preliminary study.

We performed manual testing in two phases. In the first
phase, we perform extensive testing to ensure high coverage
on all GUI components (a.k.a. widgets). We test each ap-
p at least three times. We utilized a manual “breath-first”
search for each test case. In each iteration, we start off with
a ’root’ app layout page, and attempt to manually trigger as
many on-screen widgets as possible, trying to cover all pos-
sible widgets. If a widget click brings a new page layout,
we retract to the previous root page if all widgets have not
been clicked yet. The root page is shifted to a new app page
when all widgets have been covered. There are situations
when it might be impossible to click on all widgets on a root
page (e.g., multiple individual news items on a news app).
For such situations, we click on only a small number (4 to 5)
of widgets which are representative of that particular page.
Unless there are obvious sequencing requirements for trig-
gering a particular functionality of the application (e.g., we
often need to log in first before we can post a comment in the
application), our manual testing does not explicitly consider
the sequencing of user events that we trigger. TaintDroid [2],
is used as a leak reporting tool. However, it only reports what
private data is leaked, but does not report what user actions
trigger the leak. Thus, we instrumented the mobile system
(with TaintDroid) to report user events via the system logs.
We also develop a logger to capture all user traces and leak
events reported in the logs. In the second phase, we perform
more intensive testing based on knowledge from analyzing
the leak causes reported from the first phase described in
Section 4.2. Using preliminary leak-cause data that identi-
fied leaky widgets from phase 1, we further tested the ap-
p with an additional three more rounds focusing on these
leaky widgets. The logs from these additional runs are al-
so collected to further enhance the cause analysis results in

Section 4.2.

4.2 Leak-Cause Analysis
In leak-cause analysis, we establish linkages between us-

er actions and actual leaks. We utilize association rule min-
ing [4–6] to identify the correlation based on how frequently
two concerned events (a particular user action and a particu-
lar leak report in our setting) happen together within certain
time windows (10 seconds in our preliminary study). A user
action can be within multiple overlapping time windows cor-
responding to different leaks. Our assumption and intuition
for applying this technique as follows: the leaking behaviour
of an application stays constant with time, similar behaviour
is expected to occur repeatedly if sufficient amount of logs
are collected. Thus we can extract patterns and identify caus-
es of various leaking behaviour. For example, if a news app
is reported to leak IMEI as many times as the ”Load More
News” button was touched by the user, we may infer that the
user action of touching this button is highly correlated with
the leak of the IMEI in this app.

The outputs of such analysis are expressed as association
rules whose left sides indicate the causes of the leaks on the
right sides. For example: touch of “Load more news” →
Leak of IMEI. We use WEKA [19] to perform rule mining
on the logs. We call such leaks associated with mined user
actions user-triggered leaks. For our preliminary study, we
utilized the Apriori algorithm available in WEKA to validate
such association rules with absolute support and confidence
thresholds of 2 and 0.5 respectively. The thresholds were
tuned based on a small sample of about 10 apps and fitted
reasonably well with our test logs.

There are also cases when no association rules with strong
supporting evidences (i.e., occurring enough numbers of times
during our testing) are identified for a particular leak. In such
case, we further look at the time when such a leak happens
to classify it accordingly:
• If the leak only happens once when an application s-

tarts, it is still a leak caused by a user action (launch-
ing the application), and we classify it as a start-up or
one-time leak.

• If the same leak happens repeatedly during the run of
an application, with an approximately constant time in-
terval, we classify it as a periodic leak, as it is triggered
by a user action (launching the application) but not tied
to any user action during the run of the application.

4.3 Leak Prevention
Once we have identified leak causes for an application, we

can provide such useful knowledge to users in various ways
to help prevent leaks in a more user friendly way. We can
generate various kinds of “Report Cards” for an application
either in the app store, or during run-time to report possible
leaks to users as illustrated in Section 5.4.

5. EMPIRICAL SURVEY
To demonstrate the necessity and benefits of mobile foren-

sics of private data leaks, we perform an empirical evaluation
of selected popular applications in the Google Play applica-
tion store [20] based on our proposed approach framework.
In this evaluation, we report various types and distributions
of leak behaviors uncovered from the subject application-
s, and report the cause analysis results based on association
rule mining.

5.1 Experimental Setup
Applications. We have sampled the top 10 applications from
the 22 categories(From Nov 2012)from Google Play store
(Total of 226, 6 additional apps). Note that the number of
categories was recently changed to 26 at the start of 2013,
but as our experiment was performed in November of 2012,
our test captured only the 22 pre-updated categories. The
6 additional applications were added to make up for cases
when some apps randomly crashed, possibly due to compat-
ibility issues with the TaintDroid tool.
Testing environment. Our testing has all been performed
on a Google Nexus One phone running Android v2.3.4 with
our custom ROM that includes TaintDroid and our instru-
mentation to capture user actions.
Testing duration. For each application, we install and run
the app (without other apps in the background) as described
in Section 4.1. Each test of an app lasts for about 10-15
minutes.

5.2 Taxonomy of Leak Causes
Ratio of Leaky Applications. Out of the 226 applications

studied, 121 applications are not leaking private data (non-
leaking apps). Among the 105 apps (46.5%) leaking privacy
data, 64 apps (28.3%) were found to leak private data due to
user actions on application widgets. With the cause analysis
as described in Section 4.2, we notice that an application can
leak data in various ways: (1) User-Triggered Leaks (identi-
fied by association rules), (2) Start-Up or One-Time Leaks,
and (3) Periodic Leaks.

The distribution of the 105 apps with various leak caus-
es is shown in Figure 2. 32.4% (34) of the leaky apps leak

(1)

34 apps

(32.4%)

(2)

14 apps

(13.3%)
(3)

21 apps

(20.0%)

(1) + (2)

23 apps

(21.9%)

(1)+(3)

3 apps

(2.9%)

(1)+(2)+(3)

4 apps

(3.8%)

(2)+(3)

6 apps

(5.7%)

User-Triggered Leaks (1)

Start-Up Leaks (2)

Periodic Leaks (3)

Figure 2: Distribution of Various Leak Causes.

6

68

4

64

2

66

5

8

8

0 10 20 30 40 50 60 70

Address Book

(Phone Contacts)

GPS Location

ICCID (SIM Identifier)

IMEI

Last-Known Location

Location (Non-GPS)

Microphone Input

Net-Based Location

Phone No.

Figure 3: Distribution of types of leaked data.

private data solely due to (1) User-Triggered actions on wid-
gets. 13.3% (14) leak solely on (2) Start-Up. 20% (21) leak
data solely in a (3) Periodic fashion. 21.9% (23) can leak da-
ta by either (1) User-Triggers or (2) Start-Up. 2.9% (3) leak
data either by (1) User-Triggers or (3) Periodically. 3.8%
(4) applications leak data by any of the three means. 5.7%
(6) have no User-Triggered leaks, but leak data on either (2)
Start-up or (3) Periodically.

5.3 Distribution of Various Private Data Leaked
Figure 3 shows the distribution of various types of pri-

vate data that is leaked by our subject applications. 9 dif-
ferent leaked data types have been found: {Phone Contact-
s, GPS Location, ICCID (SIM card identifier), IMEI, Last-
Known Location, Location (Non-GPS), Microphone Input,
Net-based Location, Phone Number}. It is noticed that a
majority of leaks are of 3 types: IMEI, Location (Non-GPS),
and Net-Based location. As most of the processes in the ap-
plications required an active internet connection, it is unsur-
prising perhaps that much of the private data leaked is of

their Net-Based location, which is the coarse-grained geo-
graphical location obtained from mobile users’s IP address-
es. However, it is surprising that many applications are leak-
ing IMEIs and non-GPS location, which is the user loca-
tion obtained from cellular towers, to external servers. From
our observation, IMEIs are often used (but possibly unnec-
essary) as a unique identifier to link mobile users to activ-
ities such as user feedback, comments, and record-keeping
for access when requesting server-based information by the
applications.

5.4 Leak-Cause Database and Applications
This section presents our ideas on using leak causes in a

user-oriented way to help reduce unwanted leaks.

5.4.1 Creation of A “Leak-Cause” Database
Establishing a database that contains all leak causes for

various applications can help to enhance the usability and
trustworthiness of an application store, as discussed in Sec-
tion 2.2. We thus have constructed a leak-cause database for
all of the Android applications under test. Table 1 shows
sample causes from this database for 4 applications: ‘Dic-
tionary’, ‘HungryGoWhere’, ‘Gmail’, and ‘MessengerWith-
You’. The database contains relevant information pertain-
ing to the leak behaviours of the apps: type of private data
leaked, and widgets identified by our association rule min-
ing step that may be triggered by user actions to leak data.
For example, The rule 4) for ‘Dictionary.com’ indicates that
touching the ‘ImageView #3’ widget after touching ‘Button
#1’ would leak users’ locations. The leaky widgets can be
uniquely identified by 8-digit Java hash code identifiers and
(x,y) layout coordinates, with their corresponding leak type
associations. A total of 647 leak causes were mined from the
64 apps with user-triggered leaks.

By far, we have not observed any leak that is only trig-
gered by a sequence of more than one user actions. Intu-
itively, such cases should exist. For example, a user may
need to touch a series of buttons in an app to trigger the dis-
play of a widget and the mere display of the widget would
leak data. Our manual testing process may also be a cause of
the no-show of such cases in our study since, as mentioned
in Section 4.1, we did not consider the ordering among wid-
gets. We plan to further investigate such cases in our future
work when automated testing tools can help to exercise an
apps more extensively.

The accuracy of mined leak causes would impact the us-
ability of such a database, and thus we perform further val-
idation of the leak causes to improve our confidence on the
preliminary analysis results. The validation testing was a
separate phase on top of the manual test-cases described in
4.1. For all the 64 applications with User-Triggered leaks,
we verify each of the leak causes by rerunning the applica-
tion and performing the user actions stated in the cause and
observing whether the leak monitoring reports the leak or
not. We define the accuracy to be the percentage of leak

0

5

10

15

20

25

Accuracy of Association Rules Miner (%)

80-100%

60-79%

40-59%

<40%

Number of Apps

12.5% (8 apps)

26.6% (17 apps)

34.3% (22 apps)

26.6% (17 apps)

Figure 4: Distribution of Leak-Cause Accuracies.

causes that have been verified to be correct, out of the total
number of leak causes.

The number of leak causes (association rules) found and
the number of causes verified for the 4 example applications
are also shown in Table 1. In the ‘Dictionary’ app for exam-
ple, 18 rules were found, out of which 13 were verified, and
thus its accuracy is 72%.

The leak cause accuracies for the 64 applications are il-
lustrated in Figure 4. We observe that our leak-cause analy-
sis is very accurate (80-100%) for 26.6% of the application-
s. Overall, the miner achieves an average accuracy of about
60% across the 64 applications.

Our preliminary study does indicate that false negatives
do exist. However, this study does not investigate false nega-
tives since the full search space of leaky widgets is unknown
to us. We plan to complement our approach with static anal-
ysis to obtain a better search space of leaky widgets in our
future work.

Causes of Mining Inaccuracies: We highlight a number of
causes for the inaccuracies in our current rule mining which
we can improve in future work. We observed that multiple
non-leaky widgets are often situated in close proximity to a
leaky widget on the screen layouts. This causes false pos-
itives due to these non-leaky widgets showing up as false
candidates in the Association Rules mining. Co-occurrences
of start-up/periodic leaks together with user-triggered leaks
can confuse the rule mining and cause false positives. Also,
there are situations in which widgets might leak infrequent-
ly (e.g. only once before stopping), and this contributes to
false negatives. It is also known that TaintDroid may gener-
ate false positives due to the usage of tag aggregation at var-
ious points in the system to reduce storage costs. All these
reasons contribute to mining inaccuracies.

5.4.2 Creation of Visual Leaky Layouts
For easier notification and illustration of leak causes and

No. App Name Leaks Found Association Rules(Sample) # of Rules Found # of Verified Rules

1 Dictionary.com 1) Location 1)(ImageView #1)→ (Location)+(Net-based Location) 18 13

2) Net-based Location 2)(ImageView #2)→ (Location)+(Net-based Location)

3)(TextView #1)→ (Net-Based)+(Location)

4) (Button #1) + (ImageView #3)→ (Location)+(Net-based Location)

2 HungryGoWhere 1) ICCID (SIM Card Identifier) 1)(TextView #1)→ (ICCID)+(IMEI) 10 10

2) IMEI 2)(LinearLayout #1)→ (ICCID)+(IMEI)

3)(LinearLayout #2)→ (ICCID)+(IMEI)

4) (RelativeLayout #1)→ (ICCID)+(IMEI)

3 Gmail 1) Address Book (Phone Contacts) 1)(LinearLayout #1)→ (Address Book)+(Phone Book) 6 5

2) Phone No. +(GPS Location)+(Net-based Location)

3) GPS Location 2)(Button #1)→ (Address Book)+(Phone Book)

4) Net-based Location +(GPS Location)+(Net-based Location)

4 Messenger WithYou 1) IMEI 1)(Button #1)→ (IMEI) 6 4

2)(Button #2)→ (IMEI)

3)(Button #3)→ (IMEI)

4)(Button #4)→ (IMEI)

Table 1: Sample Association Rules in Our Leak-Cause Database

potential uses of the rules for end users, we create visual pre-
sentations of the leak causes by overlaying semi-transparent
shaded-boxes on the top of leaky widgets in applications.
The semi-transparent overlays may be shown at run-time to
warn users about potential leaks. Screen captures could also
be available through app stores for users’ reference whenev-
er they want to download, install, upgrade the application.
Such information is much more user friendly and easier for
users to digest and help them to be better informed and make
better decisions. These visual overlays provide a preview on
what can be implemented for permission analysis & user-
studies as well as potential user notification methods as de-
scribed in section 2.

6. DISCUSSION & FUTURE WORK
In this paper, we presented our case for a user-centric

privacy protection mechanism using leak analysis in mo-
bile forensics. Although, we have shown that our approach
demonstrates the impact that it can have to users there are
still some considerations. Firstly, our approach relies on
TaintDroid as a leak detector. However, TaintDroid uses dy-
namic analysis through data-flow and does not track priva-
cy data leaking through control-flow. Hence, static analysis
can also be utilized to improve the accuracy of leak-cause
associations, as well as mitigate blind spots in the dynamic
analysis. Secondly, the usage of association mining and the
data does not represent the full scope of data-mining tech-
niques. We plan in future work to adopt other approaches
to leak-cause generation. Lastly, Our taxonomy and testing
was performed on an older version of TaintDroid (running
on Android v2.3.4). A new version of TaintDroid running
on v4.1 has been released by its developers, this new version
allows us to test a larger number of apps (including games)

from the Google Play. However, we deferred testing with
this version to the future.

For the leak-cause database in user notifications, difficul-
ties in issuing widget-level warnings to users might exist.
Such warnings might be too fine-grained or numerous to be
effective or pleasant to the user. This is especially true for
apps with complex UIs or a large number of leaky widgets.
We plan to conduct system-level user-studies in the future
to investigate and resolve this issue. In addition, some leaks
may be legitimate for the functionality provided by the app,
but our current database cannot tell the legitimacy of a leak.
AppProfiler [21] has analyzed users’ opinions about how ap-
plications affected their privacy. We also plan to carry out a
similar study on the (il)legitimacy of data leaks in conjunc-
tion with the study on the usability of our system.

In our future work, we planned to realised the motivation-
al applications mentioned in section 2, the Enhanced App
Store and the Interactive Privacy Leak Reporter with a com-
prehensive user study to validate its usefulness.

7. CONCLUSION
In this paper, we present the case for mobile forensics of

private data leaks in mobile applications. Through our em-
pirical study of more than 220 Android applications from
Google Play based on our proposed approach framework,
we show that there is a high percentage (46.5%) of applica-
tions that leak various types of private data, that leaks may
be triggered by different conditions (user actions on some
in-app widgets, start-up or one-time, or periodic), and that
our leak-cause analysis can identify the actual leak causes
with reasonably promising accuracies.

With the construction of a leak-cause database, we also
demonstrate that the information accumulated there is easier

for users to understand than existing leak monitoring tools,
and can be used to develop more user-friendly mechanism
for privacy protection. Such mobile forensics of leaks can
also be enabled in a large scale, with appropriate testing in-
frastructures and/or user-feedback channels, to identify leak
causes from various application, either in the application s-
tores or in the mobile systems, before installation or during
runtime, to aid better privacy protection.

8. ACKNOWLEDGEMENTS
This work is supported in part by the National Research

Foundation Singapore under its IDM Futures Funding Ini-
tiative, and administered by the Interactive & Digital Media
Program Office, Media Development Authority. Any opin-
ions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the granting agency, or Singapore Man-
agement University.

9. REFERENCES
[1] C. Gibler, J. Crussell, J. Erickson, and H. Chen,

“AndroidLeaks: Automatically detecting potential
privacy leaks in android applications on a large scale,”
in Proceedings of the 5th international conference on
Trust and Trustworthy Computing (TRUST),
pp. 291–307, 2012.

[2] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,
P. McDaniel, and A. Sheth, “TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones,” in OSDI, pp. 1–6, 2010.

[3] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:
Detecting privacy leaks in iOS applications,” in
Proceedings of the Network and Distributed System
Security Symposium, 2011.

[4] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules,” in Proc. 1994 Int. Conf.
Very Large Data Bases (VLDB’94), (Santiago, Chile),
pp. 487–499, Sept. 1994.

[5] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts
and Techniques. Morgan Kaufmann, 3 ed., 2011.

[6] L. Dehaspe and H. Toivonen, Discovery of Relational
Association Rules. Springer-Verlag, 2000.

[7] T. Vidas, N. Christin, and L. Cranor, “Curbing android
permission creep,” in Proceedings of the Web, vol. 2,
2011.

[8] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner, “Android permissions: User attention,

comprehension, and behavior,” in Proceedings of the
Eighth Symposium on Usable Privacy and Security,
p. 3, ACM, 2012.

[9] C. Hu and I. Neamtiu, “Automating GUI testing for
android applications,” in Proceedings of the 6th
International Workshop on Automation of Software
Test (AST), pp. 77–83, 2011.

[10] S. Anand, M. Naik, M. J. Harrold, and H. Yang,
“Automated concolic testing of smartphone apps,” in
FSE, pp. 59:1–59:11, 2012.

[11] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and A. M. Memon, “Using GUI
ripping for automated testing of android applications,”
in ASE, pp. 258–261, 2012.

[12] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han,
and W. Zou, “SmartDroid: An automatic system for
revealing UI-based trigger conditions in android
applications,” in Proceedings of the 2nd ACM
workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM), pp. 93–104, 2012.

[13] K. Lee, J. Flinn, T. Giuli, and C. Peplin,
“AMC:verifying user interface properties for vehicular
applications,” in MobiSys, 2013.

[14] W. Yang, M. Prasad, and T. Xie., “A grey-box
approach for automated GUI-model generation of
mobile applications,” in FASE, 2013.

[15] “Android application exerciser monkey.”
http://developer.android.com/tools/help/

monkey.html.
[16] “monkeyrunner.” http://developer.android.

com/tools/help/monkeyrunner_concepts.html.
[17] “Robotium.”

http://code.google.com/p/robotium/.
[18] “Robolectric.”

http://pivotal.github.com/robolectric/.
[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer,

P. Reutemann, and I. H. Witten, “The WEKA data
mining software: An update,” SIGKDD Explorations,
vol. 11, no. 1, 2009.

[20] “Google play.” https://play.google.com.
[21] S. Rosen, Z. Qian, and Z. M. Mao, “Appprofiler: a

flexible method of exposing privacy-related behavior
in android applications to end users,” in Proceedings
of the third ACM conference on Data and application
security and privacy, pp. 221–232, ACM, 2013.

