
Interpreting CodeBERT for Semantic Code Clone
Detection

Shamsa Abid, Xuemeng Cai, Lingxiao Jiang
School of Computing and Information Systems

Singapore Management University
{shamsaabid, xuemengcai, lxjiang}@smu.edu.sg

Abstract—Accurate detection of semantic code clones has many
applications in software engineering but is challenging because of
lexical, syntactic, or structural dissimilarities in code. CodeBERT,
a popular deep neural network based pre-trained code model, can
detect code clones with a high accuracy. However, its performance
on unseen data is reported to be lower. A challenge is to interpret
CodeBERT’s clone detection behavior and isolate the causes
of mispredictions. In this paper, we evaluate CodeBERT and
interpret its clone detection behavior on the SemanticCloneBench
dataset focusing on Java and Python clone pairs. We introduce
the use of a black-box model interpretation technique, SHAP, to
identify the core features of code that CodeBERT pays attention
to for clone prediction. We first perform a manual similarity
analysis over a sample of clone pairs to revise clone labels and
to assign labels to statements indicating their contribution to
core functionality. We then evaluate the correlation between the
human and model’s interpretation of core features of code as
a measure of CodeBERT’s trustworthiness. We observe only a
weak correlation. Finally, we present examples on how to identify
causes of mispredictions for CodeBERT. Our technique can help
researchers to assess and fine-tune their models’ performance.

Index Terms—Explainable AI, Model Interpretation, Black-
box, Semantic Clone Detection, Code Model, Deep Learning

I. INTRODUCTION

Code clones support software engineering tasks such as
program understanding, aspect mining, copyright infringement
investigation, and software evolution analysis; making clone
detection important for various software analysis tasks [1].
Semantic clones present a challenge for most code clone detec-
tion tools since semantic clones may not be textually similar.
Several semantic code clone detection techniques have been
proposed in the recent years [2–13] with a growing interest in
applying machine learning techniques. These deep learning-
based code models report high accuracy for the clone detection
task, however, interpretability of the code models remains to be
explored. These deep learning-based models are intrinsically
complex with their multilayered architectures, and it is unclear
how and why these models make the predictions. For clone
detection in particular, any instances of misprediction are a
red flag for the quality of the model or data and are worthy
of investigation.

This research is supported by the Ministry of Education, Singapore under
its Academic Research Fund Tier 3 (Award ID: MOET32020-0004). Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views of the Ministry
of Education, Singapore.

CodeBERT is a popular deep neural network based pre-
trained code model which is reported to detect code clones
with a high accuracy (94% F1-score) [13, 14]. However, recent
studies show that the performance of CodeBERT for code
clone detection decreases, (27-47% drop in F1-score [15] and
15-40% drop in recall [16]), when evaluating different code
than those used for model building. However, there is no
explanation study that attempts to discover the reasons why
the model mispredicts on unseen data. We need a solution to
interpret CodeBERT’s predictions for clone detection to get
insight into the decision-making behavior of CodeBERT and
to identify the causes of mispredictions. Furthermore, we need
to measure the level of confidence we can have in CodeBERT’s
predictions for detecting code clones.

The key research questions of our study are thus as follows:
What parts of code in a clone pair is CodeBERT looking at to
classify it as a semantic clone? How far or close the model’s
code comprehension behavior is to human’s code comprehen-
sion? How can we identify causes of mispredictions?

In this paper, we aim to explain CodeBERT’s [14] clone
detection predictions for semantic code clones. We use Code-
BERT to classify a set of 115 Java and 120 Python clone
pairs1 from the SemanticCloneBench [17] dataset and then
use a black-box model interpretation technique to explain
the behavior of the model. First, we manually determine the
semantic similarity between methods in a clone pair and
assign clone and non-clone labels. This labeling helps identify
mislabeled clone pairs for a fair evaluation of the model. We
then calculate CodeBERT’s accuracy of predicting semantic
clone pairs using our updated clone labels. We also manually
assign importance labels to each method’s statements to quan-
tify their contribution to the core functionality as per human
understanding. Second, we use SHAP [18], an attribution-
based interpretation technique, to obtain the importance scores
of individual statements (including header2) of each method
in a clone pair as a measure of their contribution towards
the clone prediction. We refer to our application of SHAP
to clones pairs as CloneSHAP. Using the SHAP values, we
then identify the key statement types of a method that Code-

1Clone pairs include both true and false pairs unless specified otherwise.
2Whenever we refer to code statements of a method it includes the method’s

header as well.

1

BERT pays attention to for the clone label prediction. This
provides insight into the key statements influencing a model’s
prediction. Third, we evaluate the correspondence between
human and machine interpretation of important statements.
Our intuition is as follows: If statements with higher SHAP
values also have higher importance levels assigned by humans,
then we may infer that the model’s prediction is based on
core functionality similar to human intuition. This, in turn,
establishes the model’s trustworthiness. Finally, we present
some examples on how to identify the parts of code causing the
mispredictions for CodeBERT using our interpretation method
based on SHAP values.

We make the following main contributions:
• We perform a manual analysis of 115 Java and 120

Python clone pairs from SemanticCloneBench to assign a
binary similarity label to clone pairs. Our manual labeling
of clone pairs similarity identifies 49 mislabeled Java
clone pairs and 42 mislabeled Python clone pairs. Using
our manually assigned clone labels as ground truth, we
evaluate CodeBERT’s semantic clone prediction accuracy
as 56.5% on Java and 54.45% on Python clone pairs.

• We manually assign importance scores to Java statements
and Python statements constituting the 115 Java and
120 Python clone pairs as part of creating a dataset of
human-intuitions for code statements that reflect the core
functionality of a method.

• We use SHAP values to identify key statements of
methods in a clone pair that contribute towards a pre-
diction. Method headers and for statements have the
highest average impact on CodeBERT’s true predictions
and false predictions respectively for Java clone pairs.
Return statements have the highest average impact on
CodeBERT’s true and false predictions for Python clone
pairs.

• Using the SHAP values, we discover that machine-
interpretation of statements correlates with human-
intuition only as much as 53.2% of the time for Java
and 58.33% of the time for Python clone pairs. Thus, we
can infer that CodeBERT does not analyze code the same
way as humans do. Because of this weak correlation, our
confidence in CodeBERT for semantic clone detection is
also weak.

• We present some mispredicted cases of Java and Python
clone pairs, and demonstrate how to identify the cause of
misprediction using SHAP values.

To support the replication of our experiment and results, we
have uploaded our code, our labeled data, and the results of
our experiments online on GitHub [19].

II. BACKGROUND

A. Semantic Code clones

Semantic code clones are also known as Type-4 clones.
These clones include code fragments that are semantically
similar in terms of functionality, but possibly different in how
the functionality is implemented. These types of clones may

1 def is_sorted(stuff) :
2 for i in range(1, len(stuff)) :
3 if stuff [i - 1] > stuff [i] :
4 return False
5 return True

Listing 1: Clone208.py - A

1 def is_sorted(stuff) :
2 for index, item in enumerate(stuff) :
3 try :
4 if item > stuff [index + 1] :
5 return False
6 except IndexError :
7 return True

Listing 2: Clone208.py - B

Fig. 1: Python clone pair which CodeBERT correctly detects
as a semantic clone.

have little or no lexical or syntactic similarity and hence
are difficult to detect. Figure 1 shows an example of a
semantic code clone pair found in SemanticCloneBench which
is correctly identified by CodeBERT.

The constituent clone pairs of SemanticCloneBench are
sourced from code snippets found in answers to questions
on Stack Overflow [20]. The general intuition is that code
solutions to the same question will be semantically similar.
StackOverflow questions may ask for a specific code example
to implement a functionality, ask for bug fixes, or even ask
for explanations of program behavior. However, some Stack
Overflow questions may ask for functionality for which there
may be semantically dissimilar solutions. For example, for
the question, “How can I create a memory leak in Java?”,
there may be solutions with entirely different functionalities
to achieve the goal of a memory leak. We observe that such
cases of Java clone pairs in the SemanticCloneBench dataset
are not valid semantic clone pairs. In this paper, we identify
the mislabeled clone pairs that we randomly sample from
SemanticCloneBench.

B. CodeBERT

CodeBERT [14] is a pre-trained model for natural language
(NL) and programming language (PL). It is a multi-layer bidi-
rectional transformer and uses attention [21]. CodeBERT uses
the same model architecture as that of RoBERTa-base [22].
RoBERTa is a successor of BERT with optimized pre-training.
CodeBERT was trained with the settings used for training
multilingual BERT [23]. The CodeBERT model has 125
million parameters. CodeBERT is trained on six programming
languages Ruby, JavaScript, Go, Python, Java, and PHP. For
our experiments, we use CodeBERT that is originally tuned
on clone pairs from BigCloneBench [24].

To predict the semantic similarity using CodeBERT, we pass
two methods to a tokenizer. [CLS] and [SEP] tokens are added
at the start and end of a method’s tokens and each method is
padded with [PAD] tokens to get the same number of tokens
for each method. The padded sequences are then concatenated

2

and passed to the CodeBERT model. CodeBERT then predicts
the label of the method pair as 1 if they are similar or 0 if
they are dissimilar.

C. SHAP Theory

SHAP (SHapley Additive exPlanations) [18] is a game
theoretic approach to explain the output of any machine
learning model. Shapley values calculate the importance of
a feature by comparing what a model predicts with and
without the feature. However, since the order in which a
model sees features can affect its predictions, this is done in
every possible order, so that the features are fairly compared.
SHAP explanation outputs a base value, an expected value,
and feature contribution values of dataset features. The base
value is an average model output over the training dataset.
The expected value is the model output over a test sample.
The feature contribution values are between -1 and +1. These
values may either be positive or negative; pushing the model
output from the base value to model output. Positive SHAP
value means positive impact on prediction, leading the model
to predict 1. Negative SHAP value means negative impact,
leading the model to predict 0.

III. INTERPRETATION APPROACH

For interpreting CodeBERT’s semantic clone detection, we
filter (subsection III-A, process (subsection III-A1), and select
a subset of Java and Python clone pairs from Semantic-
CloneBench). We manually label our selected clone pairs and
assign true or false clone labels depending on whether both
methods of the clone pair are semantically similar or not (sub-
section III-B1). Having these clone labels as the ground truth
allows us to perform a fair evaluation of CodeBERT’s accuracy
for detecting clone pairs. We also manually label individual
statements based on human interpretation of contribution of a
statement towards the core functionality of a method (subsec-
tion III-B2). We then execute our CloneSHAP interpretation
technique (subsection III-C) on our sampled code pairs to get
SHAP values of method statements within the code pairs. A
correlation analysis between human-assigned statement labels
and machine-interpreted SHAP values allows us to evaluate the
CodeBERT model’s trustworthiness. Furthermore, analyzing
positive SHAP values for mispredicted code pairs leads us to
identify statements causing the mispredictions.

A. Dataset Filtering

We filter out and select only those clone pairs that consist of
at most 10 statements. The reason for this constraint is our lack
of computation resources required to handle larger statement
permutations for getting SHAP values of larger-sized methods.

1) Code Flattening: To minimize the syntactic violations of
Java code while performing line-level mutations, we perform
a flattening step such that statements spanning multiple lines
appear on a single line. The flattening step also removes lines
containing only curly braces which results in condensed Java
code with each line of a method occupied by either its header
or a statement. This will reduce the CloneSHAP Interpreter’s

processing overhead by reducing the number of statement per-
mutations that need to be explored. To perform this flattening,
we parse the AST of the Java code and extract only the
method headers and certain statement types from the method’s
code. We extract statement types like variable declarations,
expressions, if statements, while statements, for statements,
and return statements. The interpretation technique operates
only on the flattened Java code. Since Python code is free from
curly brackets, it already has a condensed representation. We
cannot remove any other lines to reduce processing overheads.

After filtering Java clone pairs with less than or equal to
10 statements, we obtain 230 Java clone pairs. For these
clone pairs, we check whether reducing the methods in an
original code file to our flattened format changes the original
prediction. There are a total number of 115 code pairs where
the flattened format preserves the original prediction. For the
remaining 50% of the 230 code pairs, the model’s prediction
changes due to flattening either of the constituent methods.
This indicates that the model’s prediction is dependent on non-
essential code parts 50% of the time. This is a key observation
which implies that CodeBERT’s predictions are unreliable. We
exclude such clone pairs from our interpretation analysis and
perform our experiments on only the 115 prediction-preserving
flattened Java clone pairs.

After filtering Python clone pairs with less than or equal
to 10 statements, we obtain 400 Python clone pairs. Out of
these we sample 120 clone pairs. The margin of error for this
sample size is 6% with a 90% confidence level for our results.

B. Human Intuition Labeling

Four human resources manually analyze the clone pairs’
functionalities, assess the similarities, and assign true or false
clone labels. Furthermore, they manually analyze and assign
importance levels to statements of the sampled clone pairs.
From the human evaluators, three are the authors of the paper,
whereas the fourth is an external resource selected based on
their development experience in Python. Two individuals H1
and H2 label the Java clone pairs and statements and have 7
years and 3 years of Java development experience and a third
individual H3 who breaks the ties on clone pairs has 20 years
of working experience with Java. H2 and another individual
H4 label the Python clone pairs and have 4 and 4.5 years of
Python development experience, while H3 who breaks the ties
has 15 years of working experience with Python.

1) Labeling Clone Pairs: We manually evaluate the 115
Java and 120 Python clone pairs for semantic similarity.
To determine the clone label for a clone pair, a human
evaluator goes through the steps of reading both methods of
a clone pair, referring to the StackOverflow user question (if
needed), understanding the functionalities of the two methods,
comparing similarities and differences, and finally assigning
the clone label. For each clone pair, two human resources
independently analyze the functionalities of both methods in
a clone pair and assign a true label to a clone pair if they find
both functionalities to be similar, and a false label if they
find the methods to be dissimilar. To determine functional

3

Fla�ened

Java Clone

Pairs

Python

Clone Pairs

Clone SHAP

Interpreter

Human-Machine

Correla�on Analysis

SHAPm1 =(0.06, 0.05, 0.05, 0.07, 0.04, 0.06, 0.07, 0.05)

SHAPm2 =(0.10, -0.16, -0.07, 0.03, 0.11, 0.10, 0.08, 0.23, 0.06)

HumanLabelsm1 =(-1,1,1,1,1,0,1,1)

HumanLabelsm2 =(-1,1,1,1,1,1,0,1,1)

Codem1 =(h,s1,s2,..sn)

Codem2=(h,s1,s2,…,sn)

Codemi Permuta�ons

h,s1,s2,…,sn

Clone Label Predic�ons

Mispredic�on

Analysis

Vector Embeddings

of Mutated Code

Codem1 =(h,s1,s2,s3,s4,s5,s6,s7,s8)

Codem2 =(h,s1,s2,s3,s4,s5,s6,s7,s8,s9)

Weak

Correla�on

Fig. 2: Explaining the predictions of the CodeBERT model for semantic code clone detection

similarity, the evaluators focus on the presence of common
functionality while ignoring any lexical, syntactic, and struc-
tural differences, as well as ignoring any additional code such
as print statements and exception handling statements. A third
human evaluator independently evaluates and assigns labels to
only those clone pairs which were assigned different labels by
the evaluators. We then use a majority vote to break any dis-
agreements between the two evaluators. Since the clone pairs
in the Java dataset include references to the StackOverflow
question, the human evaluator uses the StackOverflow question
and its context to get a better idea of the functionality of each
method.

2) Labeling Statements: We refer to the statements in a
method that are essential to the core functionality of a method
as core statements. We refer to the statements which are not
essential to the core functionality of the method as non-core
statements. Finally, we refer to the statements for which the
human evaluator can not make a firm decision regarding its
relevance to the core functionality as gray statements. The
two evaluators analyze each statement in a method and decide
whether a statement is relevant to the core functionality of the
method. The evaluator assigns a 1 label to core statements and
-1 label for non-core statements. The evaluator assigns a value
of 0 is to any statements that they are not sure about regarding
their relevance to the core functionality. To break ties between
any disagreements between the two evaluators, we define and
apply a rule. For conflicts involving gray statements, the other
core or non-core label applies. For conflicts between core and
non-core judgements, we update the label to 0.

C. Interpreting CodeBERT’s Predictions Workflow
Figure 2 gives an overview of the process of generating

explanations of CodeBERT’s predictions from the Python and
Java code pairs. The CloneSHAP interpreter module shown in
the Figure 2, processes one code pair at a time. A code pair has
two methods shown as Codem1

and Codem2
. Each method has

a method header h and a set of statements s1, ..., sn. Only one
of the methods of a code pair, whose SHAP values need to be
generated, gets mutated at a time, while the code for the other
method remains in its original form. For getting statement

permutations for a method, we use the KernelExplainer [25]
from the Python SHAP library. Kernel SHAP is a method
that uses a special weighted linear regression to compute the
importance of each feature. The grey blocks in the Codemi

per-
mutations matrix indicate the statements not included in some
permutation. We then convert each statement permutation to
the embedding vector space of the input method consisting
of statement token IDs. The explainer then gets predictions
from CodeBERT for each permutation vector, computes the
weight for each permutation with the SHAP kernel, fits the
weighted linear model, and returns SHAP values. SHAP values
for method m1 (SHAPm1 in Figure 2) are generated when
method m1 is being mutated. Similarly SHAP values for
method m2 are generated during the mutation of m2. Since
clone detection is a binary classification task, the SHAP
KernelExplainer outputs two sets of SHAP values in a list. We
choose the set of SHAP values from the index corresponding
to the model prediction. These SHAP values are between -1
and +1. A positive SHAP value means the statement has a
positive impact on a predicted label. A negative SHAP value
means negative impact on a predicted label.

Using the SHAP values (e.g. SHAPm1) and human-
assigned statement labels (e.g. HumanLabelm1), we can
perform a human-machine correlation analysis to evaluate
the CodeBERT model’s trustworthiness. Furthermore, we can
perform misprediction analysis by analyzing positive SHAP
values (e.g. 0.07 in SHAPm1

highlighted in figure) for
mispredicted code pairs to identify statements (e.g. s4 and s7
in Codem1 highlighted in figure) causing the mispredictions.

IV. EVALUATION METHODOLOGY

Our evaluation aims to understand and explain Code-
BERT’s clone detection predictions using the SHAP machine-
interpretability technique with respect to human’s labels. In
relation to the key research questions introduced in Section I,
the objectives of our evaluation are to answer the following
specific questions:

• RQ1: What is the prediction accuracy of CodeBERT for
detecting semantic clone and non-clone code pairs?

4

• RQ2: What is the impact of various code statements on
CodeBERT’s predictions?

• RQ3: Does CodeBERT’s interpretation of the impact
of a statement on the prediction align with the human
interpretation?

• RQ4: How can we identify causes of CodeBERT’s mis-
predictions using SHAP values?

For RQ1, our goal is to evaluate CodeBERT’s semantic
clone predictions for Java and Python clone pairs against our
revised and reliable clone labels. This will establish the current
state of performance of CodeBERT for detecting semantic
code clones.

For RQ2, our aim is to explore whether we can identify
some parts of code, specifically method headers and state-
ments, that contribute towards a true prediction, and those
that contribute towards a false prediction. To achieve this,
we group the SHAP values by statement types. Then, we
analyze the distribution of SHAP values across these statement
types and identify the top statement types that influence the
model’s prediction. This allows us to interpret the behavior
of CodeBERT in terms of its attention to particular types of
statements.

The purpose of RQ3 is to establish trustworthiness of
CodeBERT for code clone detection by evaluating whether
the model analyzes code similar to a human. We do this by
checking the closeness of machine interpretation to human
interpretation. To do this, humans label essential or core
statements that contribute to the core functionality of a method.
The SHAP technique allows the identification of the key
statements that contribute to the predictions. We compare the
human labels against SHAP values. Our intuition is that if the
machine-identified core statements correspond to the human-
labeled core statements then we can say that the model is
looking at core features similar to human intuition. In case
there is little or no correspondence, then it is a cause for
concern over the correctness of the model.

The goal of RQ4 is to isolate the causes of mispredictions.
By comparing the model’s predictions against the human
labels, we identify the mispredicted clone pairs. For the
mispredicted clone pairs, we analyze the statements using
SHAP values as a guide to identify the statements contributing
to the mispredictions.

A. Evaluation Metrics

We calculate the precision, recall and accuracy of Code-
BERT for semantic clone detection for Java and Python clone
pairs using the following formulas for precision (Eq. 1), recall
(Eq. 2), and balanced accuracy (Eq. 3):

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

balanced accuracy =
TPR+ TNR

2
(3)

Because of the imbalanced number of clone and non-clone
code pairs, we apply the balanced accuracy formula to get the
accuracy of classification. A True Positive (TP) classification
occurs when both the human clone label and model prediction
are a clone, a True Negative (TN) occurs when both the
human clone label and model prediction are a non-clone, False
Positive (FP) occurs when the model predicts a clone but the
human label is a non-clone, and False Negative (FN) occurs
when the model predicts a non-clone but the human label is
a clone. TPR is the True Positive Rate or recall and TNR is
the True Negative Rate or specificity (Eq. 4),

TNR =
TN

TN + FP
(4)

We calculate correlations between human-assigned impor-
tance levels of statements and machine-interpreted SHAP
magnitudes of statements. We calculate the human-machine
correlation C using Pearson’s correlation as shown in the
equation 5:

C = corr(Hx, SHAPx) (5)

where x = {m1,m2} represents the method of the clone
pair whose statement label distributions are evaluated for
correlation. Hx is the set of statement labels assigned by
humans to a method x and SHAPx is the set of magnitudes
of SHAP values generated for statements within a method of
a code pair. For example, Hx = (−1, 1, 1, 1, 1, 0, 1, 1) and
SHAPx = (0.06, 0.05, 0.05, 0.07, 0.04, 0.06, 0.07, 0.05).

We calculate the percentage of positive correlations from
the total number of clone pairs S.

PositiveCorrPercent =
[C]

| S |
∗ 100 (6)

where [C] is the count of positive correlations for sample S.

V. EVALUATION RESULTS

A. CodeBERT’s performance analysis

We analyze the CodeBERT model’s performance on our
sample of 115 Java and 120 Python code pairs from the Se-
manticCloneBench using our revised and reliable clone labels
as ground truth. All code pairs in the SemanticCloneBench
dataset are supposed to be true clone pairs. However, we
identified 49 Java and 42 Python code pairs as non-clones.
CodeBERT has a 67.3% and 62.5% precision of clone detec-
tion on Python and Java code pairs respectively. Furthermore,
CodeBERT has a 92.3% and 68.18% recall of clone detection
on Python and Java code pairs respectively. We find that the
balanced accuracy is 56.5% on Java and 54.45% on Python
clone pairs.

There are a total of 49 clone pairs in our filtered Java dataset
of 115 clone pairs, which are mislabeled in the benchmark
(where human label is F in Table I). We note that for Java
clone pairs, CodeBERT predicts both clones and non-clones
correctly 58.26% of the time. Of the 49 mislabeled clone
pairs in our sample, 22 are correctly identified by CodeBERT

5

TABLE I: CodeBERT’s predictions for 115 Java and 120
Python clone pairs with respect to human labels

Description CodeBERT’s Prediction Human Label Java Python

True Negative F F 22 7
False Negative F T 21 6
False Positive T F 27 35
True Positive T T 45 72

with respect to human labels. Thus CodeBERT can detect the
mislabeled clones 44.8% of the time.

We note that for Python clone pairs, CodeBERT predicts
clone and non-clone pairs correctly 65.83% of the time. We
see a large number of false positive predictions for Python
(35) than false negative predictions (6) which means that
CodeBERT is biased towards finding similarities in Python
clone pairs. For the 42 mislabeled clone pairs in our sample
of 120 Python clone pairs which are mislabeled, only seven
are correctly identified by CodeBERT. The low accuracy may
be attributed to mislabelled clones in the data on which
CodeBERT is trained.

Answer to RQ1: We find that CodeBERT has a
semantic clone detection prediction accuracy of 56.5%
on Java and 54.45% on Python clone pairs.

B. Code Parts Influencing CodeBERT Predictions

We investigate the types of code statements which are
influential in causing correct or incorrect predictions. Figure
3 shows the violin plots of distributions of SHAP values over
various statement types from both Java and Python code pairs.
We observe that for Java clone pairs for which the model pre-
diction is correct, all statement types have a stronger positive
impact on the predictions than a negative impact. The highest
positive impact on the prediction is seen from the variable
declaration statement. On the other hand, some of the variable
declaration statements may also have a negative impact on the
prediction. Expression statements have the strongest negative
SHAP value which means that such expression statements in
true clones may be contributing to functionality different from
the core common functionality while in false clones, such
statements may be contributing to similar functionality. Based
on our comparison of SHAP value averages over statement
types for correct predictions, the highest average SHAP value
comes from method headers. Thus, we may infer that method
headers contribute the most on average towards the prediction
of a Java clone pair. Indeed, humans also attribute a part
of their understanding of a method’s functionality from the
method headers.

We observe that for Java code pairs for which the model
prediction is incorrect, the highest positive impact on the
prediction is seen from the expression statement, implying
that some expression statements contribute significantly to
some incorrect predictions. The highest negative impact on

the prediction is seen from the variable declaration state-
ment (vardec). The highest average SHAP value for incorrect
predictions comes from for statements. Thus, we may infer
that for statements contribute the most on average towards the
misprediction of a Java code pair. Overall, method headers
and for statements have the highest average impact on Code-
BERT’s correct predictions and incorrect predictions (+0.0638
and +0.09) respectively for Java code pairs.

For Python code pairs for which the model prediction is
correct, the highest positive impact on the prediction is seen
from the method header. On the other hand, the highest
negative impact on the prediction is seen from the variable
declaration statements. The highest average SHAP value for
correct predictions comes from return statements. Thus, we
may infer that return methods contribute the most on average
towards the prediction of a Python code pair. For Python
code pairs for which the model prediction is incorrect, the
highest positive and negative impacts on the prediction is seen
from the variable declaration statements. The highest average
SHAP value for mispredictions comes from return statements.
Overall, return statements have the highest average impact
on CodeBERT’s correct and incorrect predictions (+0.070 and
+0.074 respectively) for Python code pairs.

Answer to RQ2:
Method headers and for statements have the highest
average impact on CodeBERT’s predictions for Java
clone pairs, whereas for Python the impact is from
return statements.

C. Human-Machine Interpretation Correlation Analysis

We analyze the SHAP values for core, non-core and gray
statements labeled by humans to see whether core statements
have more impact on CodeBERT’s predictions than gray
statements, which in turn, have a higher impact on predictions
than non-core statements. From Figure 4 we see that there is
no such trend for Java code. For Java clone pairs, all core,
non-core, and gray statement types have similar SHAP value
distributions indicating similar impact on predictions. On the
other hand, we note that for Python code, the magnitude of
impact of core statements is noticeably greater than for non-
core statements. We also note that the gray statements possess
more positive SHAP values than negative values. Furthermore,
the non-core statements have lower positive impact than gray
statements. This indicates that for Python code, the model’s
predictions are more affected by core statements similar to our
human intuition.

For evaluating the human-machine correlation, we compare
the magnitudes of SHAP values of statements with the human
evaluators’ assigned labels using Pearson’s correlation anal-
ysis. Table II shows the percentage of positive correlations
between human-assigned statement labels and SHAP magni-
tudes for a sample size |S| of Java and Python clone pairs.

Table II shows the human and machine interpretation cor-
relations over a sample S of clone pairs for Java and Python.

6

(a) Java code statements contribution towards correct (left) and incorrect (right) model predictions

(b) Python code statements contribution towards correct (left) and incorrect (right) model predictions

Fig. 3: Visualizing Java and Python code statements contribution towards correct and incorrect model predictions

(a) Java code (b) Python code

Fig. 4: Visualizing human and model intuition correspondence
from a distribution of SHAP values for different statement
labels

Each row in the table shows the percentage of positive
correlations between the human and model distributions for
the first method (m1) or second method (m2) a code pair. As
we mentioned earlier that we obtain the SHAP values of each
method in a code pair independently, by keeping one method
intact while mutating the other. Each row in the table presents
human-machine correlations for code pairs of a certain code
(Java/Python) and prediction outcome (correct/incorrect).

For Java clone pairs, we observe that for 53.22% of
the clone pairs, the SHAP-based machine-interpretation for
m1 has a positive correlation with the human-interpretation
(shown in Table II) in case of correct predictions. Also,
for 48.33% of the code pairs, the SHAP-based machine-

interpretation for m2 has a positive correlation with the
human-interpretation in case of correct predictions. However,
the meaningful correlations where the correlation coefficient
is higher than 0.5 are rare with 12.9% for m1 intuitions and
11.66% for m2 intuitions. We observe that the correlation is
weaker for incorrect predictions as expected at only 4.34% for
m1 intuitions and 2.32% for m2 intuitions. We can infer that
the CodeBERT model perceives the Java statements in a way
different from a human.

For Python code pairs, we observe that for 43.08% of
the clone pairs, the SHAP-based machine-interpretation for
m1 has a positive correlation with the human-interpretation
(shown in Table II) in case of correct predictions. Also,
for 51.56% of the code pairs, the SHAP-based machine-
interpretation for m2 has a positive correlation with the
human-interpretation in case of correct predictions. However,
the meaningful correlations where the correlation coefficient
is higher than 0.5 are rare with 10.77% for m1 intuitions and
6.25% for m2 intuitions. We observe that the correlation is
weak for incorrect predictions at only 8.1% for m1 intuitions
and 8.33% for m2 intuitions. We can infer that the CodeBERT
model perceives the contribution and impact of Python state-
ments in a way different to a human.

Answer to RQ3: Machine-interpretation of statements
correlates with human-intuition only as much as 53.2%
of the time for Java and 58.33% of the time for Python
clone pairs.

7

TABLE II: Human (H) and machine (M) interpretation cor-
relations (Cor.) for Java and Python clone pairs grouped by
correct (✓) and incorrect (X) predictions

Code H M Prediction %PositiveCor. % Cor. ≥ 0.5 |S|

Java Hm1 SHAPm1 ✓ 53.22 12.9 62
Java Hm1 SHAPm1 X 45.65 4.34 46
Java Hm2 SHAPm2 ✓ 48.33 11.66 60
Java Hm2 SHAPm2 X 50.00 2.32 43
Python Hm1 SHAPm1 ✓ 43.08 10.77 65
Python Hm1 SHAPm1 X 56.76 8.1 37
Python Hm2 SHAPm2 ✓ 51.56 6.25 64
Python Hm2 SHAPm2 X 58.33 8.33 36

D. Misprediction Analysis

In Figure 5, we present a Java clone pair that is mispredicted
by CodeBERT when in fact it is a true semantic clone pair. The
methods have some similarities in terms of prompting the user
for input and validating it, but they also have some differences
in their implementation. The first function reads input using
input.findInLine(“.”) to check if a dot character is found, and
then retrieves the first character of the input as the choice. It
uses a while loop to validate the choice and prompt the user for
a valid input until a valid choice of ’x’ or ’o’ is entered. The
second function also reads input using input.findInLine(”.”) to
check if a dot character is found. If a dot character is found, it
retrieves the first character of the input as the choice. However,
it uses an if condition to conditionally enter a while loop for
validation and prompting the user for a valid input. This loop
is only entered if the dot character is found and the choice is
not ’x’ or ’o’.

The SHAP values of the statements for the first method are
SHAPm1

= (0.06, 0.05, 0.05, 0.07, 0.04, 0.06, 0.07, 0.05)
and for the second method they are SHAPm2

= (0.10, -0.16,
-0.07, 0.03, 0.11, 0.10, 0.08, 0.23, 0.06). From the values in
SHAPm1 , we note that the fourth and seventh statements
have the highest positive SHAP values, indicating that these
statements on Line 4 and Line 7 of Listing 3 have the highest
impact on predicting it as a non-clone. It is interesting to note
that the code on Lines 4 and 6 of the first method is different
from the second method. From the values in SHAPm2 , we
note that the eighth statement has the highest positive SHAP
value, indicating that this statement on Line 8 of Listing 4 has
the highest impact in predicting the clone pair as a non-clone.
On the other hand, the negative SHAP values corresponding
to the second and third statements have the highest impact on
predicting it as a clone. It is interesting to note that the code
on Lines 2 and 3 of the second method is similar to code in
the first method.

In Figure 6, we present a Python clone pair that is mis-
predicted by CodeBERT when in fact it is a true semantic
clone pair. These two methods are similar in their purpose,
which is to retrieve a value from a nested structure based on
a given path. The first method iterates over each level in the
path and uses the get() method to retrieve the corresponding
value from the matrix. If the value is not found at any level, it
breaks out of the loop and returns None. The second method
uses the reduce() function and operator.getitem() to traverse

1 char wf () {
2 Scanner input = new Scanner (System.in);
3 System.out.println ("What is your choice? (x/o)");
4 char choice = input.findInLine (".").charAt (0);
5 while (choice != ’x’ && choice != ’o’) {
6 System.out.println ("You must enter x or o!");
7 choice = input.next ().charAt (0);
8 }
9 return choice;

10 }

Listing 3: Clone29 - A

1 char wf () {
2 Scanner input = new Scanner (System.in);
3 System.out.println ("What is your choice? (x/o)");
4 if (input.findInLine (".") != null) {
5 choice = input.findInLine (".").charAt (0);
6 while (choice != ’x’ && choice != ’o’) {
7 System.out.println ("You must enter x or o!");
8 choice = input.findInLine (".").charAt (0);
9 }

10 }
11 return choice;
12 }

Listing 4: Clone29 - B

Fig. 5: Java clone pair mispredicted as false by CodeBERT.
Statements highlighted have high SHAP values indicating the
cause of misprediction.

the nested structure and retrieve the value at the specified path.
If a KeyError is raised during the traversal, indicating that a
level in the path is not found, it returns None. Both functions
provide a way to access nested values based on a given path,
but they differ in their implementation and thus are semantic
clones. The SHAP values of the statements for the first method
are SHAPm1 = (0.03, -0.03, 0.06, 0.05, -0.02, 0.02) and for
the second method they are SHAPm2

= (-0.03, 0.18, -0.09,
-0.13, 0.22). From the values in SHAPm1

and SHAPm2
, we

note that the third and fifth statements have the highest positive
SHAP values for m1 and m2 respectively, indicating that these
statements in Listing 5 and Listing 6 have the highest impact
on predicting it as a non-clone. It is interesting to note the
statements with negative SHAP values like the header in m2
and other statements that are pushing the prediction towards
a clone prediction. In this way using SHAP values, we can
interpret the causes of misprediction for a particular clone pair.

Answer to RQ4: Statements having the highest pos-
itive SHAP values can be identified as the major
contributors towards a misprediction.

VI. DISCUSSION

From the answer to RQ1, we note that the clone detection
performance of CodeBERT on semantic clones that we label
is lower from what is previously reported. Thus we note that
CodeBERT’s clone detection performance does not generalize
well to a new dataset.

From the answer to RQ2, we found that method head-
ers and for statements have the highest average impact on

8

1 def get_target_path(pth, mtx) :
2 for level in pth :
3 mtx = mtx.get(level, None)
4 if mtx is None :
5 break
6 return mtx

Listing 5: Clone314.py - A

1 def get_target_path(path, matrix) :
2 try :
3 return reduce(operator.getitem, path, matrix)
4 except KeyError :
5 return None

Listing 6: Clone314.py - B

Fig. 6: Python clone pair mispredicted as false by CodeBERT.
Statement highlighted have high SHAP values contributing
towards the misprediction.

CodeBERT’s predictions for Java clone pairs. This means
the CodeBERT model trained itself to pay more attention to
method headers and for statements while making decisions on
code similarity. For Python clone pairs, CodeBERT seems to
have trained itself to decide the clone label by paying attention
to return statements. Thus, we discover some intrinsic training
patterns for the CodeBERT model.

From the answer to RQ3, we note that the impact magni-
tudes (SHAP values) of statements on CodeBERT’s predic-
tions do not correspond to the importance levels that humans
assign to statements. Thus, we infer that CodeBERT’s intuition
for predicting clones does not align with human intuition.

We demonstrated how SHAP values may help us identify
the statements that may be the reason for the mispredictions.
While we only discuss cases where CodeBERT mispredicts a
true clone pair, it would be interesting to analyze the cases
where CodeBERT mispredicts a false clone pair as well. Due
to limited space, we leave this discussion for future work.

VII. THREATS TO VALIDITY

A. Construct Validity

Our study acknowledges a potential limitation concerning
the labeling of clones and code statements. We followed a
labeling guideline that we agreed upon within our research
team. However, it is important to note that the definition of
semantic clones lacks strict consensus within the code clone
community. Therefore, what we identify as a clone based on
our criteria may not align with the definition or identification
of clones used by other researchers or practitioners. Further-
more, the importance levels for statements are subjective to
the intuition of the evaluators and may be different for other
Java and Python experts.

SHAP has its own limitations and using the SHAP technique
is a threat to validity of our interpretation of CodeBERT’s
behavior. This threat comes from how SHAP values are ap-
proximated. KernelSHAP works by permuting feature values
and making predictions on those permutations. The problem
is, when permuting features (statements in our case), we

assume they are independent. However with code, we have
dependencies across statements. Furthermore, the SHAP value
method suffers from inclusion of unrealistic data instances
while generating and evaluating permutations of code. These
two issues pose a threat to the validity of the conclusions
which we make regarding the impact of statements on pre-
dictions. The use of better interpretation techniques for clone
detection models is needed for future work.

Our correlation analysis measures for correspondence be-
tween human and model intuition focus only on positive
correlations only and may not fully reflect all kinds of cor-
respondence.

B. External Validity

The filtering of clone pairs with methods having more than
ten lines of code is a threat to the validity of our conclusions
for larger methods. Whether our results on the current smaller
code examples can generalize to larger code is future work.

C. Internal Validity

While we strive to include major statement types that are
likely to contain core functionality, the analysis results from
including other statement types may be different from our
current findings for Java. While we consider the impact of
expression statements as a whole, there may be different
impacts for sub-types of expressions.

VIII. RELATED WORK

Interpretability techniques for machine learning models can
be classified into two categories, namely local and global
interpretability. Local explainability techniques aim to provide
justification for predictions on a sample input [18, 26–29]. On
the other hand, global explainability techniques aim to explain
the behavior of the whole model [18, 30–32]. In our work, we
apply local interpretatbility on individual clone pair samples
and then perform a cumulative analysis by aggregating the
local interpretability results to achieve global interpretability.

There are different code mutation or simplification tech-
niques [33–36] used for understanding code models for dif-
ferent tasks; however, our interpretation focuses on semantic
clone prediction behaviors with respect to human under-
standing which is the first of its kind. Apart from SHAP,
another related perturbation-based explanation mechanism is
LIME [26]. LIME fits a local interpretable model to perturbed
input instances to explain an input’s prediction. SHAP is the
better approach; having a strong theoretical foundation in
cooperative game theory, which provides clear rationale for
feature importance calculations.

IX. CONCLUSION

In this paper, we present a novel method using SHAP
values to explain CodeBERT’s predictions for classifying
semantic code clones. SHAP values help in identifying the key
code statements in a clone pair that influence the prediction.
Such explanations of the predictions helps us to identify the
statements that the model picks on to determine semantic

9

similarity. Furthermore, explanations of mispredictions help
to identify characteristics of data samples for fine-tuning and
improving CodeBERT’s performance. Our analysis reveals that
machine-interpretation of core statements is weakly correlated
to human-intuition indicating a gap between human and model
interpretation. Other researchers can use our labeled dataset
of semantic clones and our interpretation method to evaluate
other clone detection models and interpret their models’ clone
detection behavior and assess their model’s reliability. To
support the replication of our experiment and results, we have
uploaded the code for our interpretation techniques and the
results of our experiments online on GitHub [19].

REFERENCES
[1] Chanchal Kumar Roy and James R Cordy. A Survey on Software Clone

Detection Research. Queen’s School of Computing TR, 541(115):64–68,
2007.

[2] Abdullah Sheneamer and Jugal Kalita. Semantic clone detection using
machine learning. In 2016 15th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 1024–1028. IEEE,
2016.

[3] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshy-
vanyk. Deep learning code fragments for code clone detection. In
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 87–98. IEEE, 2016.

[4] Huihui Wei and Ming Li. Supervised Deep Features for Software
Functional Clone Detection by Exploiting Lexical and Syntactical In-
formation in Source Code. In IJCAI, pages 3034–3040, 2017.

[5] Gang Zhao and Jeff Huang. DeepSim: deep learning code functional
similarity. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 141–151, 2018.

[6] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and
Cristina V Lopes. Oreo: Detection of clones in the twilight zone. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 354–365, 2018.

[7] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. Deep learning similarities from
different representations of source code. In 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR), pages
542–553. IEEE, 2018.

[8] Abdullah Sheneamer. CCDLC Detection Framework-Combining Clus-
tering with Deep Learning Classification for Semantic Clones. In
2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), pages 701–706. IEEE, 2018.

[9] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang.
Neural detection of semantic code clones via tree-based convolution. In
2019 IEEE/ACM 27th International Conference on Program Compre-
hension (ICPC), pages 70–80. IEEE, 2019.

[10] Yuan Yuan, Weiqiang Kong, Gang Hou, Yan Hu, Masahiko Watanabe,
and Akira Fukuda. From local to global semantic clone detection. In
2019 6th International Conference on Dependable Systems and Their
Applications (DSA), pages 13–24. IEEE, 2020.

[11] Bingzhuo Li, Chunyang Ye, Shouyang Guan, and Hui Zhou. Semantic
Code Clone Detection Via Event Embedding Tree and GAT Network.
In 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security (QRS), pages 382–393. IEEE, 2020.

[12] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai
Shi. Functional code clone detection with syntax and semantics fusion
learning. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 516–527, 2020.

[13] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie
Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al.
GraphCodeBERT: Pre-training Code Representations with Data Flow.
arXiv preprint arXiv:2009.08366, 2020.

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Code-
BERT: A Pre-Trained Model for Programming and Natural Languages.
arXiv preprint arXiv:2002.08155, 2020.

[15] Tim Sonnekalb, Bernd Gruner, Clemens-Alexander Brust, and Patrick
Mäder. Generalizability of code clone detection on codebert. In Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, New York, NY, USA, 2023. Association
for Computing Machinery.

[16] Saad Arshad, Shamsa Abid, and Shafay Shamail. Codebert for code
clone detection: A replication study. In 2022 IEEE 16th International
Workshop on Software Clones (IWSC), pages 39–45. IEEE, 2022.

[17] Farouq Al-Omari, Chanchal K Roy, and Tonghao Chen. Semantic-
clonebench: A semantic code clone benchmark using crowd-source
knowledge. In 2020 IEEE 14th International Workshop on Software
Clones (IWSC), pages 57–63. IEEE, 2020.

[18] Scott M Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. Advances in neural information processing systems,
30, 2017.

[19] CloneSHAP Interpreter Code, Data and Results. https://github.com/
Cxm211/CloneSHAPInterpreter, July 2023.

[20] Stackoverflow. https://stackoverflow.com/, February 2022.
[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
Is All You Need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv
preprint arXiv:1907.11692, 2019.

[23] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is
Multilingual BERT? arXiv preprint arXiv:1906.01502, 2019.

[24] BigCloneBench-Dataset. https://github.com/microsoft/CodeBERT/blob/
master/GraphCodeBERT/clonedetection/dataset.zip, February 2021.

[25] SHAP KernelExplainer. https://shap.readthedocs.io/en/latest/example
notebooks/tabular examples/model agnostic/Simple%20Kernel%
20SHAP.html?highlight=kernelexplainer#Simple-Kernel-SHAP,
December 2022.

[26] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i
trust you?”: Explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 1135–1144, New York,
NY, USA, 2016. Association for Computing Machinery.

[27] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra.
Counterfactual explanations for models of code. In Proceedings of
the 44th International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP ’22, page 125–134, New York, NY,
USA, 2022. Association for Computing Machinery.

[28] Ehud Kalai and Dov Samet. On weighted shapley values. International
journal of game theory, 16(3):205–222, 1987.

[29] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors:
High-precision model-agnostic explanations. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

[30] Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and
Satish Chandra. Explaining mispredictions of machine learning models
using rule induction. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 716–727, 2021.

[31] Finale Doshi-Velez and Been Kim. Towards a rigorous science of
interpretable machine learning. arXiv preprint arXiv:1702.08608, 2017.

[32] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec.
Interpretable & explorable approximations of black box models. arXiv
preprint arXiv:1707.01154, 2017.

[33] Md Rafiqul Islam Rabin, Vincent J. Hellendoorn, and Mohammad Amin
Alipour. Understanding neural code intelligence through program sim-
plification. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2021, page 441–452, New York,
NY, USA, 2021. Association for Computing Machinery.

[34] Md Rafiqul Islam Rabin, Aftab Hussain, and Mohammad Amin Alipour.
Syntax-guided program reduction for understanding neural code intelli-
gence models. In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming. ACM, jun 2022.

[35] Md Rafiqul Islam Rabin and Mohammad Amin Alipour. Program-
transformer: A tool for generating semantically equivalent transformed
programs. Software Impacts, 14:100429, 2022.

[36] Md Rafiqul Islam Rabin and Mohammad Amin Alipour. Featureextrac-
tor: A tool for extracting key input features of code intelligence models.
Software Impacts, 14:100432, 2022.

10

https://github.com/Cxm211/CloneSHAPInterpreter
https://github.com/Cxm211/CloneSHAPInterpreter
https://stackoverflow.com/
https://github.com/microsoft/CodeBERT/blob/master/GraphCodeBERT/clonedetection/dataset.zip
https://github.com/microsoft/CodeBERT/blob/master/GraphCodeBERT/clonedetection/dataset.zip
https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/model_agnostic/Simple%20Kernel%20SHAP.html?highlight=kernelexplainer#Simple-Kernel-SHAP
https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/model_agnostic/Simple%20Kernel%20SHAP.html?highlight=kernelexplainer#Simple-Kernel-SHAP
https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/model_agnostic/Simple%20Kernel%20SHAP.html?highlight=kernelexplainer#Simple-Kernel-SHAP

	Introduction
	Background
	Semantic Code clones
	CodeBERT
	SHAP Theory

	Interpretation Approach
	Dataset Filtering
	Code Flattening

	Human Intuition Labeling
	Labeling Clone Pairs
	Labeling Statements

	Interpreting CodeBERT's Predictions Workflow

	Evaluation Methodology
	Evaluation Metrics

	Evaluation Results
	CodeBERT's performance analysis
	Code Parts Influencing CodeBERT Predictions
	Human-Machine Interpretation Correlation Analysis
	Misprediction Analysis

	Discussion
	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity

	Related Work
	Conclusion

