
DronLomaly: Runtime Detection of Anomalous
Drone Behaviors via Log Analysis and Deep

Learning
Lwin Khin Shar, Wei Minn, Ta Nguyen Binh Duong, Jiani Fan, Lingxiao Jiang, Daniel Lim Wai Kiat

School of Computing and Information Systems
Singapore Management University

Email:{lkshar, weiminn, donta}smu.edu.sg, jiani001@e.ntu.edu.sg, {lxjiang, waikiat.lim.2019}@smu.edu.sg

Abstract—Drones are increasingly popular and getting used
in a variety of missions such as area surveillance, pipeline
inspection, cinematography, etc. While the drone is conduct-
ing a mission, anomalies such as sensor fault, actuator fault,
configuration errors, bugs in controller program, remote cyber-
attack, etc., may affect the drone’s physical stability and cause
serious safety violations such as crashing into the public. During
a flight mission, drones typically log flight status and state units
such as GPS coordinates, actuator outputs, accelerator readings,
gyroscopic readings, etc. These log data may reflect the above-
mentioned anomalies. In this paper, we propose a novel, deep
learning-based log analysis approach for detecting anomalies in
the drone log that could lead to physical instabilities. We train
a LSTM-based deep learning model on the normal flight logs
produced by a baseline drone. Essentially, the model learns the
sequential patterns of flight state units and correlations among
them. The model can then be used to detect anomalies in the state
units as the log entries are being recorded by the drone’s control
program at runtime. In our experiments, we built detection
models based on several logs produced by 3 different drone
control programs, namely DJI, ArduPilot and PX4, and used
them to detect anomalies in the logs. On average, our approach
achieves 0.968 recall and 0.963 precision, and it can detect
anomalies during runtime within a few milliseconds.

Index Terms—Drone security; anomaly detection; log analysis;
deep learning

I. INTRODUCTION

Drones refer to aerial vehicles that do not have a human pilot
on board. They have been increasingly used in missions such
as military operations, surveillance, infrastructure inspection,
package delivery, crop dusting, first aid, emergency response,
etc. As more and more drones are flying in public airspace,
safety concerns are also rising. In the past decade, drones have
often been reported as causing hazards to aircraft or train, or to
people and property on the ground [1]. For example, in 2016,
a drone collided with a travelling train in United Kingdom [2].

While conducting a flight mission, several factors such
as an input validation vulnerability in the drone controller
program, a sensor fault that incorrectly reads the surrounding
obstacles, or a remote cyber-attack that intentionally produces
noises to confuse the sensors may affect the drone physical
stability, resulting in a crash into public area or in the wrong
hand. For example, Kim et al. [3] and other studies [4], [5]
found multiple input validation bugs in ArduPilot and PX4
control programs. Son et al. [6] demonstrated that drone’s

gyroscopic sensors can be incapacitated by producing malign
sound noises with resonant frequencies. They also showed
that the sensors’ frequencies can be easily scanned by a
consumer-grade speaker. Hence, conducting flight missions
in populated areas poses serious risks, as also highlighted
by several incidents [7], [8]. Therefore, anomaly detection of
drone physical states when a drone is conducting its mission
is important. Existing approaches are not suitable for detection
such anomalies at runtime. State-of-the-art drone fuzzing ap-
proaches such as RVFuzz [3], PGFuzz [4], and LGDFuzzer [5]
are effective at finding input validation and semantic bugs
in control programs. LGDFuzzer, in particular, is a learning-
based approach that uses an flight state predictor based on an
LSTM model. However, the state predictor is generated at the
start using prior flight logs and there’s no more learning during
the fuzzing process i.e. it is an offline approach. As such,
certain bugs may go undetected as the fuzzer is not trained to
recognized anomalies in new experiences and circumstances.

Drones, especially industrial and military grade drones,
usually record flight data at runtime. The log contains multiple
entries; each entry typically contains timestamp, flight status
and state units. Given a baseline data, these runtime log
data can be leveraged to detect potential physical instabilities
of the drone. There are log analysis approaches such as
LogAnomaly [9], DeepLog [10], and LogRobust [11] which
can analyse and detect anomalies in the logs online. But these
approaches have been designed specifically for different kinds
of logs such as print logs from web-based micro-services,
network access logs, etc., and for detecting software anomalies
such as abnormal API usages or network intrusion detection.
Therefore, these approaches are not suitable for detecting
unstable physical states of the drone.

In this paper, we develop a novel log analysis-based deep
learning approach called DronLomaly, specifically designed
for detecting flight log anomalies that could result in physical
instabilities online (while the drone is conducting a flight
mission). More specifically, DronLomaly takes as input a list
of flight logs of a good drone which successfully executed a
given flight mission repeatedly, for training the model. Each
log entry contains a timestamp, flight status (e.g., flight mode,
battery status, configuration values), and state units (e.g., GPS
coordinates, acceleration and rotation on X, Y and Z axis).



Essentially, state units indicate the physical conditions of
the drone. DronLomaly learns a LSTM-based deep learning
model on those logs. LSTM has the ability to learn long-
term dependencies over sequences, which makes it suitable for
our context where it is required to predict the next possible
state given the sequence of past states. The input to our
LSTM model is a history of recent flight states and the
output is the next possible flight state (predicted state). If the
actual state recorded in the log significantly deviates from the
predicted state, anomaly is reported. It is possible that the
reported anomaly is a false alarm. For example, the drone may
encounter environmental conditions that were not present in
training missions and as a result, the actual flight state may
deviate from the states observed during the training. While
such deviation itself may not be desirable (for example, the
mission is sensitive and requires the drone to keep the states as
close as possible to those observed during the training), it may
not cause the physical instability of the drone. To mitigate this,
we design DronLomaly to incrementally learn the new normal
patterns, without requiring re-training from scratch.

We evaluated DronLomaly on several logs produced by 3
control programs — DJI, ArduPilot and PX4. DJI is a closed
source control program and to our knowledge, it is not well
investigated in the context of anomaly or bug detection, even
though DJI holds 76% of the global drone market according
to Statista [12]. ArduPilot and PX4 are open source control
programs which are widely used by drone manufacturers
such as Parrot and Mamba. In total, our experiments include
427,938 log entries, containing 4,181 anomalies. We train the
models on 80% of the log entries that do not include anomalies
and tested on the other 20% of the log entries. The results show
that our approach has 0.968 recall and 0.963 precision, and it
can detect the anomalies during runtime within milliseconds.

Our contributions in this paper include:
1) We designed and implemented DronLomaly to detect

drone physical instabilities at real time. We use a LSTM
deep learning model to learn the sequential log data that
characterize normal physical states. We then apply the
model to predict the next possible states given a set of
recent log entries. If the actual states significantly deviates
from the predicted states, anomaly is reported.

2) We also provide a mechanism for users to update Dron-
Lomaly using the false positives and improve its accuracy.

3) We also deployed and tested the trained models on a
Raspberry Pi device, a companion computer for au-
tonomous drones. We compared the performance of
model inference on different types of logs (DJI, ArduPilot
and PX4), discussed the feasibility of deploying model in
real-life use cases.

4) We have open sourced DronLomaly at [13]; the site
makes available the tool and the dataset.

II. BACKGROUND AND MOTIVATION

A. Drone System
Typically, a drone system consists of Ground Control Sta-

tion (GCS), Remote Controller (RC), Companion Computer,

Flight Controller, Sensors, and Motors. Figure 1 shows a block
diagram of a drone system.

Fig. 1: A typical drone system

Flight Stack (software side of the Flight Controller) is
the heart of the drone that controls the drone’s movements
and operations by using information from the sensors that
represents the physical state of the drone such as Global
Positioning System (GPS), Barometer, Accelerometer, Gyro-
scope, and Thermometer, and orchestrating the motors on the
airframe accordingly. Most open-source Flight Stacks expose
APIs that support the MAVLink protocol (de-facto standard
for UAV communication on the Application Layer) that is
used by Remote Controllers (Wirelessly), Ground Control
Stations (Wirelessly) and Companion Computers (Wired and
physically attached to the drone and typically powered by
the drone’s batteries). Companion Computer is usually a
lightweight computer such as Raspberry PI inside which the
custom-written business application invokes high-level SDKs
such as MAVSDK that uses MAVLink protocol to communi-
cate to the Flight Controller to achieve its business objectives
such as Waypoint Missions, Object Detection and Structural
Inspections, and other payload operations such as camera
actions and robotic hands.

As an example, gyroscope detects angular velocity in three
axis. So it can detect rate of change of angle in pitch, roll and
yaw. Likewise, accelerometer measures a drone’s acceleration
along the three axis X, Y, and Z. If the drone is stationary in
horizontal position then its X and Y axis will give 0g output
whereas z-axis will give 1g output. 1g is the gravity which is
experienced by every object on earth. During the tilt X, Y and
Z will give output which lies between 0g and 1g. The values
can then be applied to trigonometry formulas to arrive at the
tilt angle of drone. As such, these sensor values can be used to
detect the physical states of the drones e.g., position, velocity,
attitude, magnetic field interference, vibration level, etc.

Drones are expected to be stable and do not shake, wobble
or tilt unexpectedly. Otherwise, it will lose its balance and
fall down. It is very important for the Flight Controller to
receive accurate sensor readings from such sensors so that it
can send adequate actuator commands to stabilize the drone.
Sensors that are faulty or unable to function well under certain
conditions (e.g., extreme weather or incorrectly configured
parameter values) may cause drone incidents. For example, a
drone may be tilting when hovering. This is quite a common
issue that occurs when the accelerometer or the gyroscope
was not properly calibrated, e.g., it was not calibrated on



a flat surface. In such events of critical component failures,
flight controllers are programmed to trigger Fail-Safe mode
which comprises performing automated procedures such as
Emergency Landing or Return-to-Home in order to protect
the drone from sustaining or incurring physical damages in
the current erratic state, especially during autonomous modes
which does not involve the supervision of a human drone
operator.

B. Flight Logs in the Drone

Majority of the drones, especially industrial drones, logs
flight data during the flight. This data typically includes
flight status, sensor readings, and other information such as
configuration parameter values. It essentially serves as the
electronic flight recorder for the drone. Different types of
drones may use different file format (e.g., DAT, TXT, CSV,
etc.) and data structure to record the data. As an example,
Figure 2 shows the data structure of DJI flight log files. “Packet
Type” header indicates the type of the packet. There are eight
different packet types, which are GPS, motor, home point,
remote control, tablet location, battery, attitude, and flight
status. “Payload” contains the actual information according to
the packet type. ‘Motor’ payload indicates the speed and the
load of motors on the drone. ‘Home point’ states the home
point coordinates of the drone. ‘Remote control’ states the
remote control status such as throttle, rudder, and elevator.
‘Tablet location’ reports the latitude and longitude of the tablet
during a “Follow Me” mission. ‘Battery’ indicates the battery
status such as battery capacity, temperature, current, and
voltage. ‘Attitude’ provides the pitch, roll and yaw readings.
‘GPS’ provides the GPS location of the drone, altitude, 3-axis
acceleration, gyro, and other sensor readings. ‘Flight status’
provides flight mode (autopilot, go home, hover, etc.), other
configuration parameters (gain, agility, max speed limit, etc.),
and also the flight time in milliseconds since the start of the
flight.

In the context of our work, we extract ‘GPS’, ‘Attitude’,
‘Battery’, and ‘Flight status’ from DJI logs. Figure 3 shows
an excerpt of a log extracted from a DJI drone used in our
experiments. Same kind of information can also be extracted
from other types of drones although it may be in different
format and data structure.

Fig. 2: Packet Structure of DJI DAT files

C. Threat Model

Our threat model includes threats that may cause drone
incidents. According to drone incidents reported in the drone
incident databases [1], [14], [15], the causes of drone incidents
can be categorized into the following:

1) Human error: drone operator loses control of the drone

Fig. 3: A sample DJI log. ‘velocity x/y/z’ values are in m/s;
‘status mode’ refers to the mode the drone is currently in
(‘6’ means simulation); ‘rtk connect status’ refers to the GPS
connection status.

2) Violation of regulation: e.g. flying over non-fly zone or
flying above the allowed altitude

3) Communication issue: e.g. loss of communication be-
tween ground control station (GCS) and the drone

4) Hardware fault: e.g., faulty sensors or interferences
5) Software configuration issue: setting invalid configuration

parameter values
6) Bad weather: e.g. extreme temperature and wind
In principal, online flight log anomaly detection when the

drone is flying for a particular flight mission can deal with
these issues, except human error. This is because those issues
will most likely manifest into deviations from normal physical
states that are observed when a good drone executes the
same flight mission without any issue1, and we can expect
the companion computer that is running online log anomaly
detection to detect those deviations and perform appropriate
fail-safe actions to shepherd the drone to safety. Therefore, the
last five categories represents our threat model and serves as
our motivation for this work.

As an example, Figure 4 shows two scenarios. In scenario
(a), the norm of the magnetic sensor measurement is a con-
stant throughout the whole flight regardless of the drone’s
thrust. This is a normal scenario. In scenario (b), the two
measurements now seem to be correlated; the current drawn
by the motors may be influencing the magnetic field. And this
may lead to incorrect yaw estimation, and possibly to drone
crashing. Hence, scenario (b) represents an abnormal case,
which deviates from the normal scenario. Our log anomaly
analysis approach aims to detect such cases.

Fig. 4: Plot of a drone’s thrust and norm of magnetic field,
which have (a) no correlation (normal), and (b) strong corre-
lation

1Regarding regulatory violations, it is assumed that the flight mission by a
good drone was conducted without violating regulatory constraints.



Fig. 5: The workflow of our approach

III. METHODOLOGY

A. Overview

Figure 5 shows the overall workflow of our approach. We
use the bidirectional Long Short-Term Memory (LSTM) to
build the prediction model. Given a sequence h of feature
vectors that characterise the physical states of the drone, it
predicts the next possible feature vector (physical state).

More specifically, each feature vector v consists of flight
status f and state units a, e.g., v = {flight Mode, Gain, accelX,
accelY, accelY}. Flight status refers to flight status information
such as flight mode and Gain configuration value; state units
refers to sensor readings such as acceleration at X-axis, Y-axis,
and Z-axis. In short, we shall refer to this vector as v = {f, a}.
This vector is normalized so that the values fall within the
range of 0 and 1.

Our model takes as input a sequence h of pre-
processed feature vectors with timestamp t (i.e., h =
{vt−h, vt−h−1, . . . , vt−1, , vt}). It then predicts the next state
units a′t+1. If an actual state unit (e.g., a sensor reading)
observed in the current log is different from the predicted state
unit, the corresponding state unit is flagged. DronLomaly then
performs correlation analysis between the flagged state unit
and other units, based on the whole current log data. If there is
any significant change among the correlations, in comparison
with the baseline correlation data, anomaly is reported. The
rationale of incorporating correlation analysis in addition to
LSTM-based prediction is to reduce the false positive cases
due to new stable states that were not observed in the training
stage. Furthermore, LSTM model makes prediction based on h
most recent log entries whereas correlation analysis considers
the whole log and hence, they are complementary.

In the subsequent subsections, we discuss the details of our
approach.

B. Prediction Model

LSTM stands for Long Short-Term Memory Model, which
is a class of deep neural networks tailored to deal with time-
series or sequential data. It has two key vectors — one
represent the short-term state which keeps the output at the
current time step and another represents the long-term state

Fig. 6: Sequential patterns of flight log data, used for training
the Bidirectional LSTM model

which stores, reads, and rejects items meant for the long-term
while passing through the network. The decision of reading,
storing, and writing is based on some activation functions, e.g.
ReLU or Sigmoid. The output from those activate functions
is a value between (0, 1). Bidirection LSTM model is an
extension of the LSTM model. In addition to learning from the
sequence of the input as it is, it also learns from the reverse
of that sequence. Since it learns from both the past and the
future, it may be able to learn the context better. As such,
LSTM model makes it suitable for our context where it is
required to predict the next possible state given the sequence
of past states.

Idea. Our idea is that normal flight logs containing the
records of a (successful) flight mission have sequential patterns
of flight states. Hence, for a given sequence of feature vectors
that characterise flight states, its next flight state would be
predictable if no anomaly occurs.

Input. Let Ω = {(f1, a1), (f2, a2), . . . (fn, an)}) be the
whole set of feature vectors, extracted from a given log of a
flight mission. The sequence for detection is a sliding window
of the h most recent feature vectors. This is the input to
our prediction model. As an example, Figure 6 shows the
sequential patterns of the flight states, where h = 3. As we
can observe from Figure 6, our data is a multi-variate time
series data where (bidirection) LSTM model can be applied.
We normalize the values in each vector by the average and
the standard deviation of all values from the same parameter
position from the training data.

Prediction Model. Our model has one bidirectional LSTM
layer with a drop out of 0.1, one fully-connected linear layer
with 128 neurons and ‘ReLU’ activation function, and one
output layer. For the multi-variate time series data, the training
process tries to adjust the weights of its LSTM model in order
to minimize the error between a prediction and an observed
feature vector. Mean Squared Error (MSE) loss is used to
minimize the error. This process is done in an iterative manner,
which is determined by the Epoch value. We set Epoch to 2000
with Early Stopping which is reached when the validation loss
does not decrease below 0.001 continuously for 20 iterations.

Optimal values of h and model hyper-parameter values are
determined through updating them iteratively and checking
whether the predicted state values are closer to the ground
truth.

Output. The output is a real value vector as a prediction for
the next state units, based on a sequence of feature vectors



from recent history.
Anomaly Detection. Instead of setting a magic error thresh-

old for anomaly detection purpose in an ad-hoc fashion, we
compute the mean and the standard deviation σ of all values of
each state unit observed in the training. Assuming a normal
distribution, 99% of the values should be within 3σ of the
mean value and therefore, we consider that if a value lies
outside of 3σ, it is an outlier (anomaly). We therefore define
a threshold called deviation threshold ς = 3σ. At deployment
(in detection phase), if the error between the predicted state
unit and the observed state unit is larger than ς , the particular
state unit is flagged as a likely anomaly.

Since the feature vector characterises the physical states of
the drone, this method is able to detect physical instabilities of
the drone, which may be caused by hardware fault, software
configuration issue, violation of regulation, or bad weather.
For example, due to an acceleration sensor fault, the drone’s
control program may not receive the correct reading of the
drone’s acceleration. Therefore, it may try to correct the
deviation and yet the sensor fault may prevent a successful
correction. And as a result, the control program may continue
to correct, resulting in physical instability of the drone and
causing a crash. Figure 7 shows a timeseries plot depicting
the deviation from the expected acceleration on X-axis around
the timesteps 40 and 100.

Fig. 7: Actual values vs predicted values of a state unit
‘acceleration on X-axis’. The histogram at the bottom indicates
the errors between these values.

When an anomaly of particular sensor unit is detected in
this phase, instead of sending an alert to the user immediately,
DronLomaly performs the correlation analysis with regards to
that unit, to reduce false alarms.

C. Correlation Analysis

Several factors such as different environmental conditions
and configurations may result in different drone states, which
are not observed in the training logs but are considered stable.
Our prediction model may yield those cases as abnormal,
which would be false alarms. To reduce such cases, Pearson
correlation analysis is used to augment the prediction model.
Pearson correlation measures the strength of the linear re-
lationship between two variables. It has a value between -
1 to 1, with a value of -1 meaning a total negative linear

correlation, 0 being no correlation, and +1 meaning a total
positive correlation.

DronLomaly keeps a baseline record of Pearson correlations
among each pair of sensor readings, e.g., acceleration sensor
readings on X-axis vs Y-axis, which are computed based on the
training logs. A matrix structure is used to store the pairwise
correlation coefficients. Figure 8 shows an example, derived
from a DJI log.

AccX AccY AccZ
AccX 1.0 0.035 0.0346
AccY 0.035 1.0 0.08
AccZ 0.0346 0.08 1.0

Fig. 8: Correlations among pairs of acceleration sensor read-
ings on X, Y, Z-axis

Here, we define another threshold called correlation thresh-
old ρ = 0.12. When deviation of a sensor unit is detected by
the prediction model, DronLomaly then takes the whole current
log and computes the correlations between the flagged sensor
unit and each of the other state units. If any correlation change
is larger than ρ (i.e., ±0.1 correlation coefficient), anomaly is
reported. In an actual deployment, alert message would be sent
back to the GCS so that the operator can take an appropriate
action.

D. Update of the Anomaly Detection Model

The training data may not cover all possible stable states.
Several factors such as different environmental conditions and
configurations may result in new different drone states which
may not be abnormal but might still be flagged as abnormal by
our model as it has not been trained on those states. Hence, it is
important that our prediction model can incrementally update
its baseline with newly observed stable states. DronLomaly
provides a mechanism in which the user upon observing a
false positive, can adjust the weights of the trained model to
adapt to the new stable state. The update process is just like
the training process discussed in III-B, where h sequence of
the recently recorded drone state (false positive cases) is fed
into the Bidirectional LSTM model as the new training data.
The weights of the model are adjusted to form an improved
baseline for prediction with lower the error between the model
output and the actual observed values from the false positive
cases. Afterwards, the prediction model is saved as a multi-
dimensional weight vector (in the form of *.h5 file), which is
reloaded to perform further predictions and online learning.

IV. EVALUATION

We consider that DronLomaly would be practically useful
if it can effectively detect anomalous states. And it is also
important that the detection model is efficient (low runtime
overhead) so that it can be deployed in the actual drone. As
a result, the following research questions are investigated in
this section:

2This threshold was determined through some preliminary experiments.



• RQ1 - Effectiveness: can DronLomaly effectively detect
anomalies in the flight logs? That is, what is the recall,
precision, and F-measure?

• RQ2 - Efficiency: can DronLomaly be run in the com-
puting device that can actually be used to control/fly
the drones? More specifically, how long does it take
for DronLomaly to read the current log entry and detect
anomalies in such a device?

A. Experiment Design

Datasets. We use 3 sets of flight logs generated by DJI,
ArduPilot, and PX4 control programs. DJI is a closed source
control program. ArduPilot and PX4 are open source control
programs. ArduPilot logs are taken from LGDFuzzer [5]
which were generated by repeatedly flying a flight mission
called AVC2013 [16]. We obtained PX4 logs by flying a
few flight missions in the Software-In-The-Loop (SITL) setup
that comprises Gazebo simulator, PX4 and QGroundControl
running on Ubuntu 20.04 environment [17]. Inspired by
AVC2013, we further augmented the generalizability of the
PX4 logs data by randomly generating the waypoints inside
the perimeter that is defined by GPS coordinates of a set of
Polygon corners as demonstrated by [18]. We collected DJI
logs by flying a physical DJI drone, DJI Matrice 300. Firstly,
we used the waypoint generator provided in DJI OSDK [19]
to generate GPS Longitude and Latitude waypoints in a shape
of a 10-sided polygon with 5 repeats. We then uploaded the
generated waypoints into the drone. During the flight, we use
the telemetry program to extract the logs.

We manually injected faulty values in the logs in a way that
those values reflect faulty sensor readings, actuator outputs,
GPS and Magnetic field interferences, and communication
signal losses. We discussed how this is done in more detail
in Section IV-B. Table I shows the details of the datasets. Es-
sentially, DJI dataset contains faulty velocity sensor readings
and communication signal losses; ArduPilot dataset contains
faulty accelerator and gyroscope sensor readings. PX4 dataset
contains faculty accelerator and gyroscope sensor readings, ac-
tuator faults, and strong GPS and Magnetic field interferences.

TABLE I: Datasets. ‘entries’ refers to the total number of log
entries including both normal and anomalous entries; ‘acc’,
‘gyro’, ‘vel’ refer to the number of anomalous entries that
represent faulty accelerator, gyroscope, and velocity senor
readings, respectively. Similarly, ‘actu’ refers to the number
of drone actuator faults; ‘gps’ and ‘mag’ refer to strong GPS
and magnetic field interferences, respectively; ‘com’ refers to
the number of communication signal losses among ‘entries’.

Dataset entries acc gyro vel actu gps mag com
DJI 229,328 0 0 500 0 0 0 708
ArduPilot 144,176 500 500 0 0 0 0 0
PX4 54,434 887 887 0 75 12 112 0

Training and Testing. Given each dataset (Table I), we split
its log entries into 80% and 20%, ensuring that 80% of log
entries contain only the normal entries. We then use the 80%

set for training (no anomalies were used in the training) and
the 20% set for testing.

Hardware. Training of the models were conducted on a Mac
OS machine with i7 2.6 GHz CPU and 16 GB memory. The
trained models were tested on Raspberry Pi 4 Model B with
8 GB memory (for the sake of RQ2).

We implemented DronLomaly with Python 3.7 and Keras
2.4.

B. RQ1: Effectiveness

To measure the effectiveness of DronLomaly, we use Recall,
Precision, and F-measure; which are standard measures typi-
cally used for evaluating anomaly detection approaches [9]–
[11], [20]. They are defined as follows:
• Recall Pr = tp/(tp+ fn)
• Precision Pd = tp/(tp+ fp)
• F-measure = 2× (Pr × Pd)/(Pr + Pd).

where tp is the true positives (detected anomaly), fn is the
false negatives (missed anomaly), and fp is the false positives
(non-anomaly reported as anomaly). Recall measures the abil-
ity of the model to find all the relevant cases (true positives
– anomaly) within a dataset. Precision measures the ability of
the model to identify only the relevant cases. F-measure is the
harmonic mean of precision and recall. It reports a balance
between precision and recall.

Table II shows the results. On average across all types of
anomaly, it achieves 0.968 recall, 0.963 precision, and 0.956 F-
measure. In all types of anomaly, it achieves the F-measure of
0.9 and above. Therefore, this answers RQ1 that DronLomaly
is highly effective at detecting anomalies in drone logs.

TABLE II: Results

Type of Recall Precision F-measure
Anomaly
DJI-vel 0.986 0.948 0.967
DJI-com 1.0 0.999 0.999
ArduPilot-acc 0.998 0.919 0.956
ArduPilot-gyro 0.904 0.946 0.924
PX4-acc 1.0 0.994 0.997
PX4-gyro 0.997 0.939 0.9
PX4-actuator 0.907 1.0 0.951
PX4-gps 0.917 1.0 0.957
PX4-mag 1.0 0.918 0.957

In the following, we discuss the results in more detail. We
explain our fault injection strategy to achieve abnormal phys-
ical states that are realistic. We also discuss how DronLomaly
dealt with the threat model that we discussed in Section II.

High vibration levels. When the drone’s vibration level
is too high, it could be due to hardware fault, software
configuration issue, or bad weather. High level of vibration
is one of the most common problems for multirotor drones.
This can lead to problems such as motors heating up, sensor
clipping, or position estimation failures that result in fly-
aways. The good news is that this problem often manifests
into abnormal sensor measurement values such as overlapping
accelerator measurements along Z-axis and X-/Y-axis, which
can be detected by anomaly detection models like ours.



An example of such a manifestation is shown in Figure 9.
In our experiments, we simulated this behavior with PX4
dataset. DronLomaly achieved 1.0 recall and 0.994 precision
for this particular anomaly (refer to ‘PX4-acc’ in Table II). We
observed that DronLomaly can detect the cases well especially
when the fault injection resulted in a high correlation between
acceleration at Z-axis and acceleration at X-/Y-axis.

Sensor calibration errors. Sensors often need to be cali-
brated, especially after flying through extreme environmental
conditions. When the sensors are not calibrated or improperly
calibrated, it may causes instabilities. This can be considered
as both hardware fault and software configuration issue. This
could also manifest into abnormal sensor measurement values
such as the one shown in Figure 9. Similar to the above,
fault injection was done to accelerometer, gyroscope, and
velocity sensor values in Ardupilot, PX4, and DJI datasets.
DronLomaly generally achieved good recall and precision
(refer to ‘DJI-vel’, ‘ArduPilot-acc’, ‘ArduPilot-gyro’, ‘PX4-
gyro’ in Table II).

Fig. 9: High correlation between acceleration at Z-axis and
acceleration at X-/Y-axis could indicate high level of vibration
(highly unstable)

Magnetic field interference. The magnetic field should be
uncorrelated with the thrust of the drone. If it is correlated, it
is likely that the current drawn by the motors is influencing the
magnetic field, which is an abnormal physical state as it could
lead to incorrect yaw estimation. We injected faults that reflect
such a scenario in PX4 dataset (see example in Figure 4b).
DronLomaly detected all injected faults and produced 10 false
alarms (refer to ‘PX4-mag’ in Table II).

GPS signal interference. GPS signal tends to be weak and
thus it can be interfered/jammed by components transmitting
or radiating in a frequency used by the GPS. To simulate this
signal interference behavior, we injected faults in the PX4
log file by increasing the noise indicator values at certain
time-steps, as shown in an example in Figure 10. Our model
detected most of the injected cases except one (refer to ‘PX4-
gps’ in Table II).

Actuator faults. If the actuator outputs are outside the
normal range for a long period of time, it could be an
indication that the drone is imbalanced, the controller runs

Fig. 10: GPS signal noise

into saturation, or the drone is carrying a weight that requires
more than the thrust it can support. Similar to the GPS signal
interference case, we created log file by injecting the actuator
output values above the normal range for 100 continuous time-
steps. Our model detected most of the cases except seven cases
(refer to ‘PX4-actuator’ in Table II). The 7 false negatives
were due to some of the original values (non-anomalies) in
the dataset also fall outside of the actuator’s normal range
at certain timesteps. Hence, when our model encounters the
injected abnormal values initially, it does not consider them as
anomalies until this continues for a few continuous timesteps.

Communication issues. Due to various problems such as
large distance, encapsulated surroundings, faulty communica-
tion component, or signal jamming, there may be a loss of
communication between the GCS and the drone, or between
the GPS satellite and the drone. Such issues can be easily de-
tected by monitoring the state units such as GPS coordinates,
rc signal and mavlink signal. For example, if GPS coordinate
values in the log indicate zero for a certain period of time,
our model will flag this as anomaly, since it would observe
that GPS values are generally not zero in the normal logs. We
injected such faults in the DJI dataset. Our model detected
all the injected cases and produced one false alarm (refer to
‘DJI-com’ in Table II).

C. RQ2: Efficiency

To evaluate the efficiency of DronLomaly, i.e., the runtime
performance when we deployed DronLomaly on a Raspberry
Pi 4 Model B with 8 GB memory, which can actually be used
to control/fly a drone. We then ran a script to load our models
and use the models to predict each log entry in the test set, in
the Raspberry Pi device. We collect the time taken for loading
the models and predicting as each log entry is fed to the model
at real time. On average, DronLomaly takes about 2 minutes
to load a model. However, this is a one time cost. Figure 11
shows the boxplot of the time taken for predicting each of the
log entries in the test datasets. We can observe that it takes
a few milliseconds to analyze a log entry, which we deem is
very reasonable.



Fig. 11: Boxplot of DronLomaly’s runtime performance when
deployed in Raspberry Pi

D. Limitations

In our preliminary experiments, we observed that Dron-
Lomaly’s performance varies with different h values and
the larger h results in a better performance. But we did
not investigate further about how to determine the optimal
sliding window size in the context of drone anomaly detection.
Likewise, we also did not investigate much about the impact
of using different thresholds (i.e., deviation threshold and cor-
relation threshold) for reporting anomalies. Also, when flying
the drones to generate DJI and PX4 logs, we used default
configuration parameters. Therefore, we did not consider the
impact of varying configuration parameter values. In this work,
we dealt with 7 types of fault data in the logs. But there are
also other kinds of faults that we did not consider such as
the faults that may be induced by invalid or arbitrary flight
commands given by human users. We plan to address these
problems as future work.

V. RELATED WORK

A. Log-based anomaly detection for software systems

Log analysis for anomaly detection is a well-known prob-
lem in software engineering. Existing approaches such as
LogAnomaly [9], DeepLog [10], and LogRobust [11] analyse
and detect anomalies in the runtime logs of web-based mi-
croservices and networked devices. In particular, LogAnomaly
models semi-structured system logs as natural language se-
quences using a word embedding-inspired template represen-
tation. It then trains a LSTM network to automatically detect
both sequential and quantitative anomalies. LogRobust [11]
shows that in practice, log data usually exhibits unseen events
and sequences, which is the key reason why prior methods
assuming log data is stable over time do not perform well.
LogRobust uses an attention-based Bi-LSTM model to capture
the importance of different log events and to handle unstable
events. The approach has been evaluated on logs from Hadoop
and an actual Microsoft online service. DeepLog [10] also
makes use of the LSTM model to learn log patterns from
normal software executions as baselines. It can then detect
anomalies when log patterns deviate from these baselines. In
addition, DeepLog builds system workflows to help with root

cause analysis when anomalies are detected. We note that these
approaches mainly target software anomalies such as abnormal
API usages or intrusion detection in computing systems. Our
work instead focuses on detecting unstable physical states in
drones using log files.

The latest approaches (2022) in this area include Deep-
TraLog [20], and an empirical study by Le and Zhang
[21]. DeepTraLog leverages deep learning and builds a graph
representation to capture the complexity of logs produced
by many different related microservices to perform anomaly
detection. As a result, DeepTraLog reports high precision
and recall measures, with an average increase of 0.37 in F-
measure over existing approaches. In [21], the authors perform
an extensive empirical study of several state-of-the-art deep
learning models designed for anomaly detection in software
systems. They use different public log datasets collected from
actual deployments of distributed computing systems such as
Hadoop on Amazon EC2, the Blue Gene/L supercomputer,
etc. They found that aspects such as training data selection
and different characteristics of the datasets have significant
impacts on the results. More importantly, the performance of
these studied models are usually not as good as expected; so
log-based anomaly detection is still an open problem.

B. Anomaly detection and defense approaches for drones

Drones, especially industrial and military grade drones,
records flight data at runtime in the form of logs. Such logs
might contain entries for timestamps, sensor readings and other
statuses. Physical instabilities could be detected using these
runtime log data, if a given baseline, i.e., normal flight data,
could be obtained. This problem is similar to log differencing
in software systems [22]. However, not much work has been
done on log-based anomaly detection in the context of drones,
especially when we need to perform such detection at runtime.
For instance, in [23], the authors design a forensics framework
to enable the examination of a drone’s activities via its log after
the flight. The work presented in [24] analyzes positioning
data in drones made by three different vendors, namely DJI,
Parrot and Yuneec, to carry out flight path reconstructions.
In [25], the authors implement a digital forensic method
for analyzing drone data based on self-organizing maps, and
evaluate it with ArduPilot DIY Drone and DJI Phantom 4
images. These existing work have mostly dealt with after-the-
fact drone forensics analyses, e.g., to find evidence for the
court of law, etc. To the best of our knowledge, no work has
been done regarding log-based anomaly detection in drones
during runtime.

To detect bugs in drone control programs, several drone
fuzzing approaches have been proposed, in particular RV-
Fuzz [3], PGFuzz [4], and LGDFuzzer [5]. RVFuzz deals
with input validation bugs affecting drone’s control param-
eter inputs. Those bugs can be exploited easily via normal
ground control commands, leading to physical disruptions of
drones. LGDFuzzer aims to detect incorrect configurations
of drone control parameters which can be set by normal
users, or by attackers. It leverages machine learning, fuzzing,



genetic search and multi-objective optimization to identify
wrong configurations and suggest feasible ranges of control
parameters. PGFuzz is a fuzzing approach based on pre-
determined safety and functional policies. Such policies are
expressed in temporal logic formulas, which include user
commands, configurations, and drone physical states. Fuzzing
inputs are then generated considering a distance measuring
how close the state of the drone to a policy violation. PGFuzz
has been validated on popular drone control programs such as
ArduPilot and PX4. We note that the above mentioned fuzzing
approaches could be effective at finding input validation and
semantic bugs in drone control programs, but it is not possible
for them to detect all the potential bugs. Therefore, fuzzing
approaches are useful, but by themselves they cannot handle
unstable physical states in drones when undetected bugs are
activated at runtime.

Protecting drones against various cyber-attacks is a growing
research area [26]. Existing approaches mostly consider the
system perspectives by employing network intrusion detection
systems (IDS), or securing drone wireless communication, etc.
For instance, [27] describes a Moving Target Defense (MTD)
approach focusing on communication network security and in-
trusion detection. In [28], Zhang et al. implements algorithms
at the physical network layer to secure wireless channels used
in drones to ground communication in 5G networks. In [29],
a rule-based IDS is employed to protect drone systems against
various cyber-attacks. Such systems needs human experts to
configure the rules used in detection, and may not work when
encountering new types of attacks. [30] discusses anomaly
detection techniques focusing on distributed denial of service
attacks in drone networks. Our work in this paper on log-
based detection of anomalies in drones during runtime can
complement existing defense approaches which have been
focusing more on the physical infrastructure of drone systems.

VI. CONCLUSION

In this work, we address the problem of detecting anoma-
lies that could cause physical instabilities of drones. Drones
experiencing physical instabilities while conducting a fight
mission could cause serious safety concerns. Drones usually
log flight data at runtime. Such logs typically contains flight
information such as GPS, actuator outputs, accelerator read-
ings, gyroscopic readings, together with the timestamps. We
leverage the normal logs recorded by the drones to train a
bidirectional LSTM-based deep learning model. This model
is then used for detecting anomalies as the new log entries
are recorded at runtime. We evaluated this approach based on
the logs produced by three drone control programs — one
closed source and two open source. We injected the logs with
seven types of faults that reflect realistic scenarios such as mal-
functioning sensors, high vibration levels, signal interferences,
etc. In terms of accuracy, our prediction models achieved
0.968 recall and 0.963 precision. In terms of efficiency, our
prediction models, when deployed on a Raspberry Pi device
that can actually be used to control a drone, were able to
generate a prediction within a few milliseconds on average. In

future, we plan to extend this work by investigating the impact
of various thresholds and varying configuration parameters.
We also plan to look into other kinds of faults that were not
considered in this work.

ACKNOWLEDGMENT

This research / project is supported by the National Re-
search Foundation Singapore, under the National Satellite of
Excellence in Mobile System Security and Cloud Security
(NRF2018NCR-NSOE004-0001).

REFERENCES

[1] “List of uav-related incidents,” https://en.wikipedia.org/wiki/List of
UAV-related incidents, Accessed 2022.

[2] R. Alex, “Drone hits flying scotsman on north yorkshire moors,”
https://www.yorkpress.co.uk/news/ryedale/14351263.drone-hits-flying-
scotsman-on-north-yorkshire-moors/, March 2016.

[3] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “Rvfuzzer: Finding input validation bugs in robotic
vehicles through control-guided testing,” in 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, 2019, pp.
425–442.

[4] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “Pgfuzz:
Policy-guided fuzzing for robotic vehicles,” in Network and Distributed
Systems Security (NDSS) Symposium, 2021.

[5] R. Han, C. Yang, S. Ma, J. Ma, C. Sun, J. Li, and E. Bertino,
“Control parameters considered harmful: Detecting range specification
bugs in drone configuration modules via learning-guided search,” in
International Conference on Software Engineering (ICSE 22), 2022.

[6] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
881–896.

[7] T. N. Y. Times, “F.A.A. opens inquiry after baby hurt in drone crash,”
https://www.nytimes.com/2015/09/23/business/drone-crash-injures-
baby-highlighting-faa-concerns.html, 2015.

[8] S. Shankland, “Facebook drone investigation: Wind gust led to bro-
ken wing,” https://www.cnet.com/tech/services-and-software/facebook-
drone-investigation-wind-gust-led-to-broken-wing, 2016.

[9] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in IJCAI, vol. 19, no. 7,
2019, pp. 4739–4745.

[10] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 1285–1298.

[11] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 807–817.

[12] D. Slotta, “Leading global drone manufacturers 2021, by share
of sales volume,” https://www.statista.com/statistics/1254982/global-
market-share-of-drone-manufacturers/, June 2022.

[13] W. Minn, “Dronlomaly: Runtime detecting of anomalous drone behav-
iors,” https://github.com/weiminn/DronLomaly, 2022.

[14] “Dedrone: Worldwide drone incidents,” https://www.dedrone.com/
resources/incidents/all, Accessed 2022.

[15] “Drone incidents: A survey of legal cases,” https://dronecenter.bard.edu/
drone-incidents/, Accessed 2022.

[16] A. Team, “Sparkfun autonomous vehicle competition 2013,” https:
//avc.sparkfun.com/2013, Accessed 2022.

[17] “Gazebo simulation,” https://docs.px4.io/main/en/simulation/
gazebo.html, 2022.

[18] “A quick trick to create random lat/long coordinates in python (within a
defined polygon),” https://medium.com/the-data-journal/a-quick-trick-
to-create-random-lat-long-coordinates-in-python-within-a-defined-
polygon-e8997f05123a, 2021.

[19] “Dji onboard sdk (osdk) 4.1.0,” https://github.com/dji-sdk/Onboard-
SDK, Accessed 2022.

https://en.wikipedia.org/wiki/List_of_UAV-related_incidents
https://en.wikipedia.org/wiki/List_of_UAV-related_incidents
https://www.yorkpress.co.uk/news/ryedale/14351263.drone-hits-flying-scotsman-on-north-yorkshire-moors/
https://www.yorkpress.co.uk/news/ryedale/14351263.drone-hits-flying-scotsman-on-north-yorkshire-moors/
https://www.nytimes.com/2015/09/23/business/drone-crash-injures-baby-highlighting-faa-concerns.html
https://www.nytimes.com/2015/09/23/business/drone-crash-injures-baby-highlighting-faa-concerns.html
https://www.cnet.com/tech/services-and-software/facebook-drone-investigation-wind-gust-led-to-broken-wing
https://www.cnet.com/tech/services-and-software/facebook-drone-investigation-wind-gust-led-to-broken-wing
https://www.statista.com/statistics/1254982/global-market-share-of-drone-manufacturers/
https://www.statista.com/statistics/1254982/global-market-share-of-drone-manufacturers/
https://github.com/weiminn/DronLomaly
https://www.dedrone.com/resources/incidents/all
https://www.dedrone.com/resources/incidents/all
https://dronecenter.bard.edu/drone-incidents/
https://dronecenter.bard.edu/drone-incidents/
https://avc.sparkfun.com/2013
https://avc.sparkfun.com/2013
https://docs.px4.io/main/en/simulation/gazebo.html
https://docs.px4.io/main/en/simulation/gazebo.html
https://medium.com/the-data-journal/a-quick-trick-to-create-random-lat-long-coordinates-in-python-within-a-defined-polygon-e8997f05123a
https://medium.com/the-data-journal/a-quick-trick-to-create-random-lat-long-coordinates-in-python-within-a-defined-polygon-e8997f05123a
https://medium.com/the-data-journal/a-quick-trick-to-create-random-lat-long-coordinates-in-python-within-a-defined-polygon-e8997f05123a
https://github.com/dji-sdk/Onboard-SDK
https://github.com/dji-sdk/Onboard-SDK


[20] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and
D. Zhang, “Deeptralog: Trace-log combined microservice anomaly de-
tection through graph-based deep learning,” 2022.

[21] H. Van Le and H. Zhang, “Log-based anomaly detection with deep
learning: How far are we?” in In 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), 2022.

[22] L. Bao, N. Busany, D. Lo, and S. Maoz, “Statistical log differencing,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 851–862.

[23] A. L. S. Renduchintala, A. Albehadili, and A. Y. Javaid, “Drone foren-
sics: digital flight log examination framework for micro drones,” in 2017
International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, 2017, pp. 91–96.

[24] R. Kumar and A. K. Agrawal, “Drone gps data analysis for flight path
reconstruction: A study on dji, parrot & yuneec make drones,” Forensic
Science International: Digital Investigation, vol. 38, p. 301182, 2021.

[25] S. H. Mekala and Z. Baig, “Digital forensics for drone data–intelligent
clustering using self organising maps,” in International Conference on
Future Network Systems and Security. Springer, 2019, pp. 172–189.

[26] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security analysis
of drones systems: Attacks, limitations, and recommendations,” Internet
of Things, vol. 11, 2020.

[27] C. Gudla, M. S. Rana, and A. H. Sung, “Defense techniques against
cyber attacks on unmanned aerial vehicles,” in Proceedings of the
international conference on embedded systems, cyber-physical systems,
and applications (ESCS), 2018, pp. 110–116.

[28] G. Zhang, Q. Wu, M. Cui, and R. Zhang, “Securing uav communications
via joint trajectory and power control,” IEEE Transactions on Wireless
Communications, vol. 18, no. 2, pp. 1376–1389, 2019.

[29] R. Mitchell and R. Chen, “Adaptive intrusion detection of malicious
unmanned air vehicles using behavior rule specifications,” IEEE trans-
actions on systems, man, and cybernetics: systems, vol. 44, no. 5, pp.
593–604, 2013.

[30] J.-P. Condomines, R. Zhang, and N. Larrieu, “Network intrusion detec-
tion system for uav ad-hoc communication: From methodology design
to real test validation,” Ad Hoc Networks, vol. 90, p. 101759, 2019.


