
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 1

Checking Smart Contracts with
Structural Code Embedding

Zhipeng Gao, Lingxiao Jiang, Xin Xia, David Lo and John Grundy

Abstract—Smart contracts have been increasingly used together with blockchains to automate financial and business transactions.
However, many bugs and vulnerabilities have been identified in many contracts which raises serious concerns about smart contract
security, not to mention that the blockchain systems on which the smart contracts are built can be buggy. Thus, there is a significant
need to better maintain smart contract code and ensure its high reliability. In this paper, we propose an automated approach to learn
characteristics of smart contracts in Solidity, which is useful for clone detection, bug detection and contract validation on smart
contracts. Our new approach is based on word embeddings and vector space comparison. We parse smart contract code into word
streams with code structural information, convert code elements (e.g., statements, functions) into numerical vectors that are supposed
to encode the code syntax and semantics, and compare the similarities among the vectors encoding code and known bugs, to identify
potential issues. We have implemented the approach in a prototype, named SMARTEMBED , and evaluated it with more than 22,000
smart contracts collected from the Ethereum blockchain. Results show that our tool can effectively identify many repetitive instances of
Solidity code, where the clone ratio is around 90%. Code clones such as type-III or even type-IV semantic clones can also be detected
accurately. Our tool can identify more than 1000 clone related bugs based on our bug databases efficiently and accurately. Our tool can
also help to efficiently validate any given smart contract against a known set of bugs, which can help to improve the users’ confidence
in the reliability of the contract.

F

1 INTRODUCTION

A Smart Contract, a term coined by Nick Szabo in 1994
[1], is a program that can be triggered to execute any task
when specifically predefined conditions are satisfied. The
conditions defined in smart contracts, and the execution of
the contracts, are supposed to be trackable and irreversible
in such a way that minimizes the need for trusted intermedi-
aries. They are also supposed to minimize either malicious
or accidental exceptions in order to ensure trustworthiness
of any business transactions implied by the smart contracts.

In recent years, along with widely-deployed cryptocur-
rencies (e.g., Bitcoin, Ethereum, and many others) on dis-
tributed ledgers (a.k.a., blockchains), smart contracts have
obtained much attention and have been applied to many
business domains to enable more efficient and trustable
transactions. The overall market capitalization of cryptocur-
rencies is more than 200 billions in USD as of August 2018
[2]. Many crytocurrencies involve various kinds of smart
contracts, and a smart contract in the blockchains often
involves cryptocurrencies worthy of millions of USD (e.g.,
DAO [3], Parity [4] and many more). This gives much
incentive to hackers for discovering and exploiting potential
problems in smart contracts, and there is a very significant
need to check and ensure the robustness of smart contracts.

Even though there have been many studies on the
characteristics of bugs in smart contracts and underlying
blockchain systems (e.g., [5]–[9]) and detection of smart

• Zhipeng Gao, Xin Xia and John Grundy are with the Faculty of Informa-
tion Technology, Monash University, Melbourne, Australia.
E-mail: {zhipeng.gao, xin.xia, john.grundy}@monash.edu

• Lingxiao Jiang, David Lo are with the School of Information Systems,
Singapore Management University, Singapore.
E-mail: {lxjiang, davidlo}@smu.edu.sg

• Xin Xia is the corresponding author.

Manuscript received ; revised

contract bugs (e.g., [10]–[16]), there are still increasing needs
to detect and prevent more and more kinds of problems
identified in smart contracts. A major disadvantage of these
existing bug detection tools is that they require certain bug
patterns or specification rules defined by human experts
in order to construct bug detectors and/or code model
checkers to check smart contracts against the defined rules.
With the high stakes in smart contracts and race between
attackers and defenders, it can be far too slow and costly to
write new rules and construct new checkers in response to
new bugs and exploits created by attackers.

In this paper, we propose a new approach that addresses
the above issue. We aim to enable efficient checking of smart
contracts and can evolve checking rules along with the
evolution of code and/or bugs, based on our deep learning
model for smart contracts. The main idea of our approach is
two fold: (1) code and bug patterns, including their lexical,
syntactical, and even some semantic information, can be au-
tomatically encoded into numerical vectors via techniques
adapted from word embeddings (e.g., [17]–[21]) enhanced
with basic program analyses and the availability of many
smart contracts; (2) code checking can be essentially done
through similarity checking among the numerical vectors
representing various kinds of code elements of various
levels of granularity in smart contracts. This idea, with
suitable concrete code embedding and similarity checking
techniques, can be general enough to be applied for vari-
ous code debugging and maintenance tasks. These include
repetitive (a.k.a. duplicate or cloned) contract detection,
detection of specific kinds of bugs in a large contract corpus,
or validation of a contract against a set of known bugs1.

We have built a prototype based on the idea, named

1. “Validation” in this paper is to check if a contract has no bug similar
to the known bugs; it does not mean formal verification of the contract.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2

SMARTEMBED, for smart contracts written in the Solid-
ity programming language [22] used in the Ethereum
blockchain [23]. We have collected 22,725 contracts in their
Solidity source code that are labelled as “verified” in the
Ethereum blockchain and 17 well-known buggy contracts
from the Internet. Our tool can then automatically generate
the vector embeddings from the contract code collected from
the blockchain and provides a mechanism to compose vec-
tor embeddings for any code fragment, either buggy or cor-
rect. All of these vectors then go through similarity checking
for different purposes. Our evaluation results against 22,725
contracts show that, for the tasks of clone detection, bug
detection, and contract validation, our approach can achieve
comparable results compared with specific tools such as
Deckard [24], SmartCheck [14].

The main contributions of this paper are as follows:
• We propose a new approach for Solidity code checking

based on code embedding and similarity checking,
which is applicable for various purposes, such as simi-
lar contract code detection, bug detection, and contract
validation.

• We built a prototype SMARTEMBED based on the ap-
proach, and evaluated it on more than 22,000 Solidity
contracts collected from the Ethereum blockchain.

• Our clone detection results show that our tool can
effectively identify many repetitive Solidity code where
the clone ratio is around 90%, and we can detect more
semantic clones accurately than the commonly used
clone detection tool Deckard.

• Our bug detection results show that SMARTEMBED can
identify more than 1,000 clone related bugs based on
our bug databases efficiently and accurately, which can
enable efficient checking of smart contracts with chang-
ing code and bug patterns. For contract validation, our
approach can capture bugs similar to known ones with
low false positive rates, the query for a clone or a bug is
quite efficient which can be sufficient for practical uses.

This paper is organized as follows. Section 2 presents
related work on smart contract security and relevant tech-
niques. Section 3 presents our approach for smart contract
code embedding. Section 4 evaluates our approach on actual
contracts collected from the Ethereum blockchain. Section 6
discusses limitations of our approach and its evaluation.
Section 7 concludes the paper.

2 RELATED WORK

2.1 Smart Contract and Security Problems

Despite the fact that Ethereum and smart contracts are rela-
tively new, many studies have been performed on security
aspects of smart contracts. Some studies focus on creating
taxonomies of smart contract security vulnerabilities (e.g.,
[15], [25]–[27]). Others focus on specific bug detection. For
example, Loi et al. [12] build a symbolic execution tool called
OYENTE to detect four kinds of security bugs. Tikhomirov
et al. [14] build a static analysis tool called SmartCheck
to automatically check for vulnerabilities and code smells.
Brown et al. [11] present a framework for analyzing run-
time safety and functional correctness of smart contracts

via formal verification; several types of vulnerability, such
as reentrancy and exception disorders, can be identified
by their tool. Chen et al. [9] developed a security tool
for identifying gas costly programming patterns in smart
contracts.

Although the aforementioned research has proposed se-
curity analysis tools to find bugs in smart contracts, most
of those tools are built to discover specific types of potential
vulnerabilities, requiring manually constructed bug patterns
or specifications. To the best of our knowledge, no one has
yet considered how to make such tools more flexible and
adaptive to arbitrary new bugs by using word embedding
for smart contract code. Our work is the first to propose an
approach for detecting smart contract bugs and validating
contracts via similarity checking of contract code embed-
dings, especially the embeddings that take code structures
into consideration.

2.2 Word Embedding and Code Similarity

Embedding (also known as distributed representation [20],
[21]) is a technique for learning vector representations of
entities such as words, sentences and images. One of the
typical embedding technique is word embedding, which
represents each word as a fixed-size vector, so that similar
words are close to one another in the vector space [17]–[20].

Recently, an interesting direction in software engineer-
ing is to use deep learning to compute and use vector
representations of programs. For example, Mou et al. [28]
propose to learn vector representations of source code. They
map the nodes of abstract syntax trees to vectors. Following
their previous work, Mou et al. [29] propose a tree-based
convolutional neural network based on program abstract
syntax trees to detect similar source code snippets. Ye et
al. [17] embed words into vector representations to score a
pair of documents, and use StackOverflow questions and
answers as document corpora to train word embeddings.
White et al. [30] propose an automatic program repair ap-
proach, DeepRepair, which leverages a deep learning model
to identify similarity between code snippets.

Different from these existing tools, our code embedding
methods are based on serialization of solidity parse tree for
different level program elements. To the best of our knowl-
edge, our work is the first to apply the code embeddings to
the specific domain of Ethereum smart contracts as inspired
by the promising results of employing deep learning to the
many other software engineering tasks (e.g., [31]–[37]).

2.3 Clone Detection, Bug Detection, and Code Valida-
tion

A plethora of approaches have been investigated for dif-
ferent tasks such as code clone detection, bug detection,
and code validation and/or program verification. All of the
tasks can be viewed as variants of the problem of finding
“similar” code, depending on the definition of similarity:
code clone detection is to search for code in a code base
“similar” to a given piece of code; bug detection is to search
for code in a code base “similar” to a known bug; and code
validation is to search for (non-existence of) code in a code
base “similar” to any bug. As our approach based on code

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 3

Similarity
Checking

Smart
Contract
Database

Vulnerable
SmartContract

Database
NomarlaizerParser

Code
Embedding

Learning

Bug
Detection

Clone
Detection

Contract Validation

Similarity Checking for
Clone & Bug Detection

Contract
Verification

Our Proposed Model

Q
ue

ry

Return

Bug
Embedding

Matrix

Code
Embedding

Matrix

Embedding
Vector

New Smart
Contract

Contract
Validation

Report

Bug
Detection

Report

Clone
Detection

Report

Fig. 1: Overview of Our Approach

embedding and similarity checking is an instantiation of this
general view, it is related to many such studies too.

For clone detection, many techniques in the literature
generally begin by generating some intermediate represen-
tations for code before measuring similarity. According to
source code representation, these techniques can be classi-
fied as text-based (e.g., [38]–[40]), token-based (e.g., [41]–
[43]), tree-based (e.g., [24], [44], [45]), graph-based (e.g., [46]–
[49]), semantic-based (e.g., [50]–[53]), deep-learning-based
(e.g., [35], [54]), or a mixture. Our approach complements
those studies by applying word embedding to smart con-
tract code and its syntax structures to search for smart
contracts of various levels of granularity.

For bug detection, there also exists many conventional
techniques tailored for smart contracts, such as those based
on static analysis and model checking (e.g., SmartCheck
[14], Securify [13]), symbolic execution and dynamic anal-
ysis (e.g., Oyente [12]), Manticore [55]), and a mix of tech-
niques (e.g., Mythril [16]). “Conventional” here refers to the
fact that they require human curated correctness and/or
bug patterns or specifications in order to check whether
the code complies with or violates the given patterns or
specifications.

There are other bug detection techniques that do not
require predefined bug patterns or specifications; instead,
they often rely on statistically inconsistencies among multi-
ple instances of code. For example, Juergens et al. [56] report
that inconsistencies among similar code are an important
source of bugs in programs, and every second (possibly in-
consistent) modification of a piece of similar code increases
the chance of errors. This phenomenon has been explored in
the literature to detect clone-related bugs (e.g., [57], [58]),
code porting errors (e.g., [59]), semantic bugs (e.g., [60]–
[62]), etc.

Another category of bug detection techniques depending
on historical known bugs is more similar to our approach.
Those approaches learn patterns from known bugs using
various techniques (e.g., graph pattern matching [63] and
heuristic rule matching [57], [58]) and search for similar
instances in a given code base. Recently, such techniques
that require little or zero efforts in manually written specifi-

cations are often based on deep learning (e.g., [64], [65]).
Our approach is relying on the existence of known bugs,

as it automatically learns code and bug representations from
known bugs based on code embedding. It is unsupervised;
there is no need to handcraft features beforehand, which
saves much manual effort in feature selection needed for
many other techniques. Given a sufficiently comprehensive
set of code and known bugs, our approach can potentially
be applicable for both bug detection and contract code vali-
dation. On the downside, our “bug detection” and “contract
validation” are both evaluated with respect to the known
bugs: bug detection is to detect all instances of the known
kinds of bugs in a large contract corpus; contract validation
is to check if a contract is free of any instance of bugs
similar to the known bugs. If no enough known bugs are
available, our approach can utilize potential bugs reported
by conventional techniques too, providing a complementary
way to make bug detection and contract validation more
comprehensive.

3 APPROACH

Fig.1 demonstrates the overall framework of SMARTEM-
BED. Based on similarity checking and code embeddings,
SMARTEMBED is targeting three tasks: clone detection, bug
detection, and contract validation. For clone detection and
bug detection, we aim to identify code clones and clone-
related bugs for smart contracts in the existing Ethereum
blockchain. For contract validation, given a new smart con-
tract, SMARTEMBED will help to validate whether it contains
vulnerable statements associated with our bug database.

To be more specific, the collected source code of smart
contracts are loaded and parsed by our custom built parser,
generating the abstract syntax trees (ASTs) for a smart con-
tract. Then, we extracted a stream of tokens by serializing
the ASTs. Following that, the normalizer reassembles the to-
ken stream to eliminate the differences (e.g., the stop word,
values of constants or literals) between smart contracts. The
result sequence that is output by the normalizer is then fed
into our code representation learning sub-model. Through
the model building and training, each code fragment would

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 4

Fig. 2: Sample Solidity Parse Tree

TABLE 1: Collected Data

Contracts 22,725
Individual Contracts 135,239

Functions 631,261
Statements 1,944,513

Lines of Code 7,329,362

be embedded by a fixed-length dimension vector. All of
the source code will be encoded into the code embedding
matrix. In the meanwhile, all vulnerable source code would
be embedded into the bug embedding matrix.

Next, clone detection, bug detection and contract val-
idation are performed using similarity checking methods
via vector space comparison. Similarity comparison is per-
formed between the possible code snippet pairs, and a
similarity threshold governs whether code fragments will
be considered as code clones or clone-related bugs.

In following sub-sections, we elaborate our data col-
lection, parsing, normalization, embedding learning, and
similarity checking steps.

3.1 Data Collection
To prepare the smart contract code used for our approach
and evaluation, firstly we collected Solidity smart contracts
using EtherScan2, which is a block explorer and analytics
platform for Ethereum. To be more specific, we built our
own web scrapers to systematically search and download
every HTML page on the entire site. After parsing HTML
output from that page, needed information (e.g. contract
address/source code/byte code/opcodes) were extracted
from the HTML file for our further assessment.

By April 20, 2018 when we started our evaluation ex-
periments, we had collected 22,725 verified smart contract.
We counted the number of individual contracts (given the
source code of a smart contract, there may include sev-
eral individual contracts), functions, statements, and lines
associated with these smart contracts. On average, each
smart contract involves around 6 individual contracts, 27
functions, 85 statements, and 323 lines of code. Table 1
describes the statistics of our collected dataset.

3.2 Parsing
The abstract syntax tree (AST) is a structural representation
of a program. In this step, for each smart contract, we used

2. https://etherscan.io/

a custom-built Solidity parser to parse the smart contract
into an AST. We built our code embeddings based on AST
because its tree structured nature provides opportunities to
capture structural information of programs.

More specifically, ANTLR and a custom Solidity gram-
mar were used to generate the XML parse tree as an in-
termediate code representation. The source code was fully
translated to this internal tree representation. After that, we
built the code embeddings based on this abstract syntax tree.
Listing 1 and Fig. 2 provides a simple example of a smart
contract and its corresponding AST, defined in Solidity.

We serialized the parse tree of a smart contract differ-
ently for contract-level, function-level and statement-level
program elements, depending on the types of the tree
nodes that contain or are siblings of the relevant elements.
The high level idea of such a processing is to capture the
structural information (e.g., branch and loop conditions) in
and around the focal elements. Further, non-trivial tokens
and identifier names are processed and put into the code
element sequences serialized from the trees, so that certain
data flow information (via defining/using a same name) is
added into the sequences too. We describe the details of the
tokenization process below with the aforementioned sample
Solidity code.

1 pragma s o l i d i t y ˆ 0 . 4 . 1 5 ;
2

3 c o n t r a c t Overflow {
4 uint p r i v a t e r =0;
5

6 func t ion addValue (uint value) re turns (bool) {
7 // p o s s i b l e overflow
8 r += value ;
9 }

10 }

Listing 1: An Example of Solidity Program

Contract Level Tokenization: We extracted all terminal
tokens from the XML parse tree by performing an in-
order traversal. Regarding the previous smart contract, the
following tokens were extracted (1 10 stands for the line
range of this contract).

1 1 10 : pragma s o l i d i t y ˆ v e r s i o n l i t e r a l ; c o n t r a c t
Overflow { uint p r i v a t e r = 0 ; func t ion
addValue (uint value) re turns (bool) { r +=

value ; } }

Function Level Tokenization: Considering the function
level tokenization, we appended the contract signature to
the end of function tokens. For the previous smart contract,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 5

function level tokenization’s result was given as follows (6 9
represents this function starts at line 6 and ends at line 9).

1 6 9 : func t ion addValue (uint value) re turns (
bool) { r += value ; } c o n t r a c t Overflow
overflow { }

Statement Level Tokenization: Different from the contract-
level and function-level tokenization, for statement-level
tokenization, based on the terminal tokens, we added more
details of structural and semantic relations. For example,
regarding the previous smart contract, structural informa-
tion such as the chain of ancestors in ASTs as well as
function signatures were retrieved from the XML parse tree.
By adding the chain of ancestors in ASTs, our model can
capture the structural relationship; by adding the diverse
neighbourhood nodes, our model can capture the “context”
information of a focal element.

1 8 8 : sourceUnit c o n t r a c t D e f i n i t i o n c o n t r a c t P a r t
f u n c t i o n D e f i n i t i o n block statement
simpleStatement r += value ; funct ion addValue
add value (u int value) re turns (bool)
c o n t r a c t Overflow overflow { }

Our parse tree based serialization of the code with
respect to a focal element captures most structural (con-
tainment and neighbouring) and some semantic (data-flow)
information, which serves the downstream applications.

3.3 Normalization
An important task during preprocessing is normalization.
In this step, we normalized the token sequence to remove
some semantic-irrelevant information. To be more specific,
the following steps have been taken:
• Stop words : For single-character variables, such as

“i”, “j”, “a”, “b”, “k”, etc., we replaced them with
“SimpleVar”. The below code snippet illustrates this
step :

1 uint p r i v a t e r = 0 ;
2 ==>
3 uint p r i v a t e SimpeVar = 0 ;

• Punctuations : Tokens having no effect on code opera-
tional semantics, non-essential punctuations such as ‘,
’, “,”, “;” were removed. Some other punctuations were
reserved such as “{”, “}”, “[”, “]”. The following code
snippet exemplified this operation :

1 uint p r i v a t e SimpeVar = 0 ;
2 ==>
3 uint p r i v a t e SimpeVar = 0

• Constants : According to the type of constants, we
unified them with “StringLiteral”, “DecimalNumber”,
“HexNumber” and “HexLiteral” respectively. The be-
low gives an example of how this step works :

1 uint p r i v a t e SimpeVar = 0
2 ==>
3 uint p r i v a t e SimpeVar = decimalnumber

• Camel Case Identifiers : For identifiers following camel
casing, we kept it as a reserved token. Additionally, we
split this identifier into its constituent individual words.
For example,

1 addValue
2 ==>
3 addValue add value

The normalizer generated token stream of the 22,725 con-
tracts, 631,261 functions and 1,944,513 statements respec-
tively. After the normalization process, 1.2GB of clean text
remained, amounting to 119,568 tokens. This comprised
the final training dataset that was fed into the training
algorithm.

3.4 Code Embedding Learning

In this step, based on the previous normalization results,
we mapped each possible code fragment, such as state-
ment, function, and contract to a high dimensional vec-
tor respectively. The following two embedding algorithms
are applied: Word2Vec [19] and FastText [18]. Word2Vec
learns vector representations of words that are useful for
predicting the surrounding words in a sentence. However,
traditional Word2Vec failed to capture the morphological
structure of a word. FastText attempts to solve this by treat-
ing each word as the aggregation of its subwords, subwords
are taken to be the n-gram of the word, and the vector for
a word with FastText is the sum of all n-gram vectors of its
component.

To train the model, we used the open source Python
library gensim3, which incorporates the Word2Vec and Fast-
Text training algorithm at the same time. We have to clarify
that we choose FastText as our primary embedding methods
for the later experiment because of the following reasons:
1) According to our experimental result, FastText performs
better on syntactic tasks compared to the original Word2Vec.
The reason for this may be that FastText take into account
subword information, which captures more semantic and
syntactic information from the context 2) FastText can be
used to obtain vectors for out-of-vocabulary (OOV) words,
by summing up vectors for its component char-ngrams.
Since the number of unique tokens in the training dataset
was very limited, i.e. 119,568, OOV problems could be
encountered very often when dealing with a new smart
contract. The details of the code embedding learning process
are described as follows:

3.4.1 Token Embedding

The normalized token stream generated by the normalizer
was used as the training corpus. We then applied the
embedding algorithm to contract-level, function-level, and
statement-level training corpus respectively. After that, each
token within the training corpus was mapped to a real-
valued vector of a fixed dimension. Since there are 308
node types in Solidity’s grammar file, we set the word
embedding size to half of the number of node types, which
is 150, for compressing irrelevant or overlapping meanings
of the node types when SmartEmbed generates embeddings
for the code.4 The token embeddings process served as a
“pretraining” stage for constructing higher-level code em-
beddings.

3. https://radimrehurek.com/gensim/
4. Dimensions in the range of a few hundreds have been used in the

literature [17]–[19], [66] with reasonably good effectiveness. We leave
the sensitivity analysis of vector dimensions as future work.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 6

3.4.2 Higher Level Embedding
As long as we got basic vector representation for tokens,
the embeddings of higher level code fragments such as
statement-level, function-level, and contract-level were able
to be generated by the composition of the possible atomic
tokens. To capture the features of semantics as well as the
size of the code, we chose the summing metric to compose
this shared embeddings in our preliminary study. Specifi-
cally, the code embeddings for a particular code fragment is
summing up all possible tokens’ embeddings within it. The
more formal definition for the code embedding is described
as follows:
Definition : Given a solidity code snippet T , for each token
w in T , we define the code embedding for T as following:

Embedding(T) =
∑
w∈T

wvector (1)

After defining the code embedding for a particular code
fragment, every possible smart contract, function, and state-
ment can be embedded to a fixed-length vector.

3.5 Embedding Matrix Building
By stacking every single vector together, we can easily
obtain 3 code embedding matrices Cc×d, Ff×d, Ss×d with
respect to contract-level, function-level, and statement-level
respectively.
Contract Embedding Matrix Cc×d: For contract-level code
embedding matrix, the first dimension c is the total number
of contracts, which was 22,725, the second dimension d is
the code embedding size we set previously, which was 150
in our case. In other words, contract embedding matrix C
would be a 22,725 × 150 matrix. We considered the ith
element Ci (i = 1, 2, ..., c), which is a 150 dimensional
vector, as the code embedding for ith contract.
Function Embedding Matrix Ff×d: For function-level em-
bedding matrix, the first dimension f was 631,261, which
related to the total number of statements in our study. Hence
function embedding matrix F would be shape of 631,261 ×
150, where each row Fi(i = 1, 2, 3, ..., f) represented the
code embedding for the ith function.
Statement Embedding Matrix Ss×d: For statement-level
code embedding matrix, same as contract-level and
function-level, the first dimension s corresponded to the
total number of statements, which was 1,944,513 in our
study. The shape of statement embedding matrix S would
be 1,944,513 × 150, each row of the matrix represented the
code embedding for a specific statement.

3.6 Similarity Checking
We define the similarity checking methods in this step,
which will be used in the following clone detection, clone-
related bug detection, and contract validation tasks.
Definition : Given two code fragments C1 and C2 , e1 and
e2 are their corresponding code embeddings, we define the
semantic distance as well as similarity between the two code
snippets as below:

Distance(C1, C2) =
Euclidean(e1, e2)

‖e1‖+‖e2‖
(2)

Similarity(C1, C2) = 1−Distance(C1, C2) (3)

Given any two code fragments Ci and Cj , if their similarity
score estimated above over a specific similarity threshold δ,
Ci and Cj are viewed as a clone pair. This similarity check-
ing methods can be employed with vector space comparison
and thus benefit ultimate tasks.

3.7 Clone Detection, Bug Detection, and Contract Vali-
dation

Based on the code embeddings we generated and the simi-
larity checking methods we proposed, we are able to apply
our approach to solve various tasks, i.e., clone detection,
bug detection, and contract validation. For clone detection,
we measure the similarity between two code fragments of
smart contracts, and identify them as clone if the similarity
score is above a pre-defined threshold. For bug detection, we
search code fragments in our code base that are “similar”
to the known bugs, then we identify the code snippets as
buggy if its similarity score is over a pre-defined threshold.
Moreover, for contract validation, when a developer com-
plete a new smart contract, we also measure the similarity
between it and the buggy statements we collected. If the
similarity score is above a pre-defined threshold, the vulner-
able statements can be identified in the new smart contract.
Note that the threshold used for each of these three tasks can
be different due to differences in the nature of these tasks.

4 EMPIRICAL EVALUATION

The main idea of our approach is based on code embed-
ding and similarity checking for various similarity-based
software engineering tasks. Herein, we evaluate how well
our approach embeds code and checks similarity for the
purposes of contract code clone detection, bug detection,
and contract validation.

4.1 Code Embedding Evaluation

As we have introduced in previous sections, representation
learning maps a symbol to a real-valued, distributed vector.
the basic criterion of code embedding is that similar symbols
should have similar representations. In particular, symbols
that are similar in some aspects should have similar values
in corresponding feature dimensions. To demonstrate the
effectiveness of our code embedding, we pick top 100 fre-
quent tokens, then draw the embeddings for the tokens on
a 2D plot using T-SNE algorithm, which are shown in Fig. 3.
Similar words that are close together in the vector space and
are expected to be close in the 2D plot as well.

From the figure, we note that tokens sharing similar
syntactic and lexical meaning are clustered together. For
example, operators such as “+”, “−”, “∗”, “/”, “>=”, “<=”
are grouped together, and tokens such as “args”, “dynargs”,
and “StringLiteral”, “decimals” are close to each other. This
gives us confidence that high dimensional code representa-
tion can meaningfully capture co-occurrence statistics and
distributed semantics for the tokens.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 7

4 2 0 2 4

10

8

6

4

2

()

.

}{
=][

address

decimalnumber

SimpleVar
function

uint256

public

value
uint

owner

msg

returns

sender

token

return
tofrom

if

bool transfer

amount

balances

require

spender

tokens

constant

balance

id

==

contract

totalstring

only

of
is

supply

new

true
internal

indexed

allowed

event

price

balanceOf

+

add

>

onlyOwner

*

mapping=>

>=

safe

!=

success

bytes

totalSupply

get

length

<

sub

state throw

Transfer

wei

hexnumber

oraclize
&&

assert

bytes32

time

name

approvalfor

stringliteral

else

addr

set

allowance

data

<=

- false

dynargs

erc20

/

modifier

args

!

approve

block

wallet

decimals

Fig. 3: Result of Code Embeddings

4.2 Similarity Checking Evaluation

To demonstrate the effectiveness of the similarity checking,
we evaluate our approach with respect to three tasks: code
clone detection, bug detection, and contract validation; and
we compare the results with the following tools designed
specifically for those tasks.
• Deckard [24]: a scalable, tree-based tool for source code

clone detection. It has been widely used and extended
to support the Solidity language, and we can compare
with it on smart contract code clone detection.

• SmartCheck [14]: an extensive static analysis tool that
can detect many kinds of vulnerabilities in smart con-
tracts automatically. It works on Solidity source code,
and has been shown to outperform many other tools
in terms of bugs detected. Hence in our study, we
choose SmartCheck to compare the performance of our
approach in detecting bugs and validating contracts.

In the following sections, we aim to answer the following
six key research questions:
• RQ-1: How effective is our SMARTEMBED for detecting

code clones within smart contracts?
• RQ-2: How effective is SMARTEMBED for bug detection

in smart contracts?
• RQ-3: How effective is SMARTEMBED for distinguishing

the bug fixes from the bugs?
• RQ-4: How effective is the structural and semantic

information added to SMARTEMBED?
• RQ-5: How effective is SMARTEMBED for smart contract

validation?
• RQ-6: How efficient is SMARTEMBED?

4.3 RQ-1: Clone Detection Evaluation

Code clones are common in software and can be considered
useful or harmful depending on different circumstances.
They can appear more frequently in smart contracts than
traditional software as smart contracts are irreversible and
often intended to be self-contained, containing all the code

implementing needed functionalities with little reference to
other contracts. Maintaining smart contracts and managing
duplications, redundancies, and inconsistencies are very
important for contract quality assurance, and the detection
of contract code clones is an important first step. The nature
of the task is similarity based and very suitable for our
approach.

4.3.1 Experimental Setup
Code clone detection is done through the vector space
comparison via similarity checking, which is described in
Section 3. A similarity threshold governs whether two code
fragments are viewed as clones. We evaluate the code clone
detection at the contract level, function level as well as the
statement level by using our approach.
• Contract-level clone detection: As mentioned in Sec-

tion 3, each smart contract can be represented by a fixed
dimensional vector. We construct a pairwise similarity
matrix Ms×s(in our case, M would be a 22718 × 22718
matrix, we removed 7 parsing error cases here), where
each row and column corresponds to a smart contract,
and each cell Mij corresponds to the similarity score
between smart contract si and sj . Given a similarity
threshold δ, if Mij > δ(i 6= j), the corresponding smart
contract si and sj would be considered as a clone pair.

• Function-level clone detection: Theoretically we could
also construct a pairwise similarity matrix the same as
the above, for all functions. However, due to the large
number of functions, which was 631261, the complexity
of computing the pairwise similarity between every
pair of functions directly is too expensive. Hence in this
evaluation, we randomly sample 200 smart contracts
from our repository and use the functions in the 200
contracts, which contain 5307 functions in total, as clone
queries. Following that, a pairwise similarity matrix
Ns×t between the sampled 5307 functions and all of
the functions in the whole contract set is generated (i.e.,
N was a 5307 × 631261 matrix), where each cell Nij

represented the similarity score between the sampled
function Ni and the function Nj . Same as the above,
the associated functions fi and fj will be considered as
a clone pair if Nij > δ.

• Statement-level clone detection: Same with function-
level clone detection, since it is too expensive to calcu-
late the pairwise similarity between every pair of state-
ments directly, we extract all the statements within the
aforementioned 200 sampled contracts, which contain
16,350 statements in total. Following that, we construct
a pairwise similarity matrix Qs×t between the sampled
16,350 statements and all of the statements in the whole
contract set (i.e., N was a 16,350 × 1,944,513 matrix),
where each cell Qij represents the similarity score be-
tween the sampled statement Qi and the statement Qj .
Same as the above, the associated statements si and sj
will be considered as a clone pair if Qij > δ.

4.3.2 Experimental Results
To justify our approach on the task of code clone detection,
we compare our results with those of Deckard (with its
default settings) by the numbers of lines of code that are

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 8

TABLE 2: Code Clone Quantity Summary

Methods Granularity # Cloned # Total Clone
level lines lines ratio

Deckard(1.0)

Original 6623509 7329362 0.9039
Contract 4337582 7329362 0.5918
Function 24504 27045 0.9060
Statement 16448 18117 0.9079

SmartEmbed(1.0)
Contract 2864673 7329362 0.3908
Function 23087 27045 0.8537
Statement 14774 18117 0.815

Deckard(0.95)
Original 7054568 7329362 0.9625
Contract 5337860 7329362 0.7283
Function 26232 27045 0.9699
Statement 17548 18117 0.9685

SmartEmbed(0.95)
Contract 6264136 7329362 0.8547
Function 24640 27045 0.9110
Statement 16760 18117 0.925

Fig. 4: Venn Graph for Contract-Level Clones Detected by
SMARTEMBED and Deckard with similarity threshold 1.0
(left) and 0.95 (right)

Fig. 5: Venn Graph for Function-Level Clones Detected by
SMARTEMBED and Deckard with similarity threshold 1.0
(left) and 0.95 (right)

Fig. 6: Venn Graph for Statement-Level Clones Detected by
SMARTEMBED and Deckard with similarity threshold 1.0
(left) and 0.95 (right)

detected as clones. We set the similarity threshold to 1.0
and 0.95 for Deckard and SMARTEMBED respectively.5 The
results are summarized in Table 2. From the table, we can
observe the following points.
• There is a very high ratio of code clones among smart

contracts. By using Deckard with its default settings
with similarity threshold 1.0, the code clones may in-
volve more than 6.6 million lines of code, while the
total lines in 22725 contracts are just 7.3 million, which
means more than 90% smart contracts on Ethereum are
somehow cloned from others. The code clone ratio is
even higher (more than 96%) if we set the similarity
threshold to 0.95. Since SMARTEMBED can detect code
clones on contract-level, function-level and statement-
level, we exclude the clone fragments in Deckard results
that are smaller than a contract, function and statement
respectively for a fair comparison. The clone ratios on
both function-level and statement-level are consistent
with the original clone ratio. We note that clone ratio
drops at contract-level, this is because we just keep the
results if the whole contract is a clone, removing all the
non-whole contract clones.

• SMARTEMBED report less clones overall than Deckard
on different levels of granularity and similarity
thresholds. Regarding the SMARTEMBED results, the
clone ratio was 0.39 and 0.85 at the contract-level
with respect to similarity threshold 1.0 and 0.95 re-
spectively. At the function-level, as mentioned in the
previous subsection, we randomly sample 200 contracts
which include 5,307 functions, involving 27,945 lines of
code int total. SMARTEMBED detected 23,087 (85%) and
24,640 (91%) of them as clones with similarity threshold
1.0 and 0.95 respectively. Consistent with the function-
level clone results, the clone ratio was 0.82 and 0.93 at
statement-level with respect to the similarity threshold
1.0 and 0.95 respectively. We argue that the main reason
for this phenomenon is that SMARTEMBED is more pre-
cise than Deckard in detecting clones, this is because
SMARTEMBED encodes both structural and some con-
textual semantic information, while Deckard only con-
siders structural information. So, SMARTEMBED should
have more constraints and detect less clones.

• Most code clones detected by SMARTEMBED are also
detected by Deckard. To evaluate the quality of code
clones reported by our approach, we count the numbers
of lines of code in our results that overlap with clones
reported by Deckard (assuming Deckard’s results are
accurate), the results are summariized in Table 3 (for
both 1.0 and 0.95 similarity) and the Venn diagrams in
Fig. 4, Fig. 5 and Fig. 6 for the contract-level, function-
level and statement-level respectively. We note that the
overlap ratio is more stable at function-level, reflecting
that SMARTEMBED is better in finding functional clones
while tolerating non-essential syntactic differences.

Regarding the relatively high clone ratio in smart con-
tracts, we consider that the following reasons can be respon-

5. The definitions of similarity used in SmartEmbed and Deckard are
not exactly the same: SmartEmbed is based on the embedding vectors
(cf. Section 3.6); Deckard [24] is based on tree structures. However, we
simply assume the two are approximate of each other and treat them
the same for easier comparison.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 9

TABLE 3: Code Clone Quality and Overlapping Summary

Granularity Similarity Reported by Reported by Reported by Overlap
Threshold Deckard only both SmartEmbed only ratio

Contract Level 1.0 1499308 2838274 26399 0.65
0.95 97140 5240720 1023416 0.82

Function Level 1.0 1689 22815 272 0.92
0.95 1664 24568 72 0.93

Statement Level 1.0 1933 14515 259 0.87
0.95 945 16603 157 0.93

sible for introducing clones:
• One of the main reasons for introducing clones in

smart contracts is the irreversibility of smart contracts
stored in the Ethereum blockchain. Even when the same
contract creator may want to evolve the contract code
and create new versions of the smart contracts, the
older versions are still kept visible in the blockchain.
We consider such a scenario, and recount all the clones
by creator addresses (i.e., if the detected clones are code
belonging to a same creator, we do not report them),
such clone results still report a considerable high clone
ratio 51% for similarity threshold 0.95 on contract level,
reflecting the fact that cloning contracts across different
creators is more common than usual software.

• ERC20 is the main technical standards for the im-
plementation of tokens. The standardization allows
contracts to operate on different tokens seamlessly,
thus boosting interoperability between smart contracts.
From the implementation perspective, ERC20 are inter-
faces defining a set of functions and events, such as
totalSupply(), balanceOf(address owner), transfer(address to,
uint value). For every contract in our database, if the
contract has implemented all the interfaces required by
ERC20, it will be considered as an ERC20 contract. Fi-
nally, we find that 15,514 out of 22,725 (68.3%) contracts
contain the code blocks to support compliance to the
ERC20 standard, reflecting that template contracts also
plays an important role to cloning in Ethereum.

The experimental results reveals homogeneous of the
Ethereum ecosystem. Our clone detection results can benefit
the smart contract community as well as individual Solidity
developers in the following ways:
• The relatively high ratio of code clones in smart con-

tracts may cause severe threats, such as security attacks,
resource wastage, etc. Finding such clones can enable
significant applications such as vulnerability discovery
(clone-related bugs) and deployment optimization (re-
duce contract size and duplication), hence contribute to
the overall health of the Ethereum ecosystem.

• Our work in identifying clones can also help Solidity
developers to check for plagiarism in smart contracts,
which may cause a huge financial loss to the original
contract creator.

4.3.3 Examples of clone detection

To compare the results of SMARTEMBED and Deckard, we
have manually checked the clones detected by SMARTEM-
BED but not by Deckard. A sample code pair is shown in
Fig. 7 and Fig. 8. The code pair has similar statements but

Fig. 7: Example Pairs of SmartEmbed

Fig. 8: Example Pairs of SmartEmbed

some statements are added and modified, which can be
considered as a type-III or even type-IV semantic clones [67]
and are hard for Deckard to detect as it was designed for
syntactic clones.

We also manually checked the code clone pairs detected
by Deckard but not by SMARTEMBED. A sample code pair
is shown in Fig. 9 and Fig. 10. Even though these two pieces
of code are both functions about “addCompany”, since they
use different data structures, they are not considered as syn-
tactic clones. This is because Deckard ignores the different
identifier names in the code, which results in detecting this
clone by accident. Regarding SMARTEMBED, it maintains
these differences in identifier names, which increases the
differences between associated code embedding vectors.
This further justifies that SMARTEMBED is more precise in
clone detection than Deckard.

Answer to RQ-1: How effective is our SMARTEMBED
for detecting code clones within smart contracts? - we
conclude that SMARTEMBED is highly effective.

4.4 RQ-2: Bug Detection Evaluation
To quickly duplicate some functionality, programmers usu-
ally copy and paste code, which can introduce clone-related

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 10

Fig. 9: Example Pairs of Deckard

Fig. 10: Example Pairs of Deckard

bugs into programs. It is also folklore that programmers
often repeat similar bugs. Such intuitions give the basis
for similarity-based bug detection using our approach. To
pinpoint a bug accurately, we perform bug detection at the
statement level of granularity. That is, for a given known
buggy statement (simply called a bug), every statement in
our code base whose similarity with respect to the bug ex-
ceeds a specific threshold is reported as a potential bug. As
shown in the evaluation results later, compared with other
analysis-based approach, our similarity-based approach can
detect bugs similar to known ones across a large set of pro-
grams more efficiently and accurately, while analysis-based
approach may detect more bugs in individual programs.

4.4.1 Experimental Setup
To detect bugs, we need to collect some known buggy
statements to construct the bug database. Although there
are many contracts in the wild reported to be vulnerable
(e.g., [3], [4]), there is a lack of a comprehensive list of
references to pinpoint buggy statements in those contracts.
We collected a list of 52 known buggy smart contracts
belonging to 10 kinds of common vulnerabilities. These
vulnerabilities are from real world events (e.g., Reentracy,
Honeypot, Replay, Gas Limit) [3], [4], [68], previous research
papers (e.g., Overflow/Underflow, Blockhash/Timestamp)
[6], [7], [12] and/or the CVE reported by some organizations
(e.g., Transfer Flaw, Batch Overflow, Verify Reverse) [69]–
[71].

We then tried our best to pinpoint buggy statements in
those contracts by inspecting research papers, web articles,
and community discussions. A list of vulnerable smart con-
tracts and their vulnerabilities are summarized in Table 4.
For each vulnerable smart contract in the table, one or
more associated buggy lines are identified. We divide the
52 vulnerable smart contracts into two groups: 32 smart
contracts marked with * are used for the bug detection
evaluation, the other 20 are saved for the contract validation
evaluation later. For the bug detection evaluation, 63 buggy
statements are collected from the 32 vulnerable contracts.
We create our bug database from the 63 buggy statements
by using code embedding described in Section 3. That is,
for each buggy statement, we compose a numerical vector

TABLE 4: Vulnerable Smart Contracts

Vulnerability Smart contract name Line num

Overflow/Underflow

*SMT 206
*EthConnectPonzi 201

*BecToken 257
MESH 209

ethpyramid 217

Blockhash/Timestamp

*SmartBillisons 554
*Ethraffle 94

*LuckyDoubler 118
KeberuntunganAcak 124

Ethraffle v4b 92

Implicit Visibility/HoneyPot

*Multiplicator 22
*PrivateBank 35

*KingOfTheHill 12
ETH VAULT 38

Simpson 25
RichestTakeAll 15

Overpowered User/Owner CVE

*EthLendToken 236
*BitCoinRed 42

*Rubixi 18
NetkingToken 184
ZupplyToken 241

Toorr 42

Reentrancy *DAO 1013
MICRODAO 1001

Gas Consumption/Gas Limit

*Simoleon 61
*Penis 63

*FreeCoin 59
Polyion 102

Pandemica 50

Incorrect Signature/Replay

*MTC 211
*CNYToken 213

*GGoken 144
UGToken 140

CNYTokenPlus 180

TransferFlaw/ERC-20 Transfer

*UselessEthereumToken 65
*PhilcoinToken 83
*CosmosToken 58
*XmanToken 61

TacoToken 120
WinlastmileToken 104

Overflow/Batch Overflow

*TUPC 261
*WMCToken 193

*InsightChainToken 288
*NemoXXToken 259

FishOne 360
UpcToken 261

Unsafe Reverse/Verify Reverse

*CockMight 61
*Collegecoin 53

*SynthornToken 58
*VilijavisShares 107

Frikandel 71
Virgo ZodiacToken 99

by summing up the vectors for all relevant tokens in the
statement. Each statement is thus mapped to a vector of
150 dimensions. Since we have 63 buggy statements, a bug
embedding matrix V63×150 is constructed and serves as our
bug database.

The setting for bug detection herein is that, for each
buggy statement embedding Vi ∈ V in our bug database
(simply called a bug), we need to identify every possible
statement Sj ∈ S that is in the set of all statements in
the contracts we collect from the Ethereum blockchain and
similar to the given bug. Given a similarity threshold δ, if
the similarity score estimated between Sj and Vi is over δ,
then Sj will be reported as a potential bug similar to Vi.
We perform such bug detection to report bug candidates for
every bug in our bug database. Following that, we validate
each candidate bug to see whether it involves an actual
bug or not by manually checking. To be more specific, we
compare bug candidate lines reported by our approach with
the real bug lines, the candidate bugs will be validated if one

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 11

TABLE 5: Bug Detection Precision Summary for Various
Clone Types for Similarity Threshold 0.90

Clone Type # bugs reported # bugs validated precision ratio
Type-I 116 116 100% 8.8%
Type-II 989 989 100% 75.4%

Type-III/IV 69 58 84.1% 5.3%
Not-Clones 137 0 0% 10.5%

Total 1,311 1,163 88.7% 100%

Fig. 11: Real bug:EthLendToken@236

of the following conditions was satisfied:
• The bug statements contain the exact identical code

fragments same as the real bugs, which can be consid-
ered as type-I clone-related bugs.

• The bug candidates involve syntactically equivalent
fragments as real bugs, with some variations in iden-
tifiers, literals or types, which can be viewed as type-II
clone-related bugs. A sample pair is shown in Fig. 11
and Fig. 12.

• The candidate bug lines involve syntactically similar
code with inserted, deleted or updated statements,
which can be considered as type-III or type-IV clone-
related bugs. A sample pair is shown in Fig. 13 and
Fig. 14.

If the bug candidate is an actual clone-related bug, then
it is counted as validated in Table 5 and Table 6. To demon-
strate the advantages of SMARTEMBED in clone-related bug
detection, we also compare it with the detection results of
SmartCheck.

4.4.2 Experimental Results
For different types of clones, the bug detection results of
SMARTEMBED are summarized in Table 5. By setting the
similarity threshold to 0.90, we count the number of re-
ported bugs as well as validated bugs with respect to each
clone type (i.e., type-I, type-II, type-III/type-IV). If the bug
candidate does not belong to any of these clone types, it is
identified as Not-Clones. From the table, we can observe the
following points.

Fig. 12: Candidate bug:UHubToken@231

Fig. 13: Real bug:PrivateBank@29-37

Fig. 14: Candidate bug:ETH FUND@35-42

• Most of the bug candidates reported by SMARTEMBED
are Type-II clones. This reflects that solidity developers
do introduce the clone-related bugs by copying and
pasting source code from somewhere else.

• SMARTEMBED can achieve 100% precision for detecting
Type-I and Type-II clone-related bugs. This is because
Type-I and Type-II clones do not involve structural
changes and can be easily identified.

• The performance of SMARTEMBED drops for detect-
ing the Type-III/IV clones. To identify the Type-III/IV
clone-related bugs, we need to decrease the similarity
threshold, which may also introduce more false positive
cases at the same time.

The bug detection results of SMARTEMBED with respect
to different similarity threshold are summarized in Table 6.
For each specific similarity threshold δ in the table, we show
the number of reported bug candidates (i.e., the number
of statements in our set of contracts that have a similarity
higher than δ to some bug in our bug database), and the
number of bugs validated by manual checking together with
the precision. From Table 6, we can see that:

• The precision of SMARTEMBED increases as the similar-
ity threshold increases. For thresholds higher than 0.96,
SMARTEMBED can have a 100% precision.

• The lower the δ is, the more statements may be reported
as potential bugs. When the similarity threshold is
set to 0.91, SMARTEMBED reports 1,052 statements as
potential bugs, while maintaining a high precision of
95%.

• When the similarity threshold is set to 0.90, SMARTEM-
BED reports 1,311 potential bugs, 1,163 of them are
validated as real bugs. The precision of SMARTEMBED
drops to 88.7%. This is reasonable because smaller
similarity threshold will bring in more noises and hence
incur more challenges for detecting clone related bugs.
It also signals that setting the similarity threshold be-
tween 0.90 and 0.91 may be a good choice for the bug
detection task.

Since it is too expensive to run SmartCheck on all the 20k+
contracts, we only run it on the manually validated contracts
associated with the 1,163 statements. SmartCheck automat-
ically checks a given contract for predefined vulnerability
patterns and highlights the lines of code containing the
vulnerabilities. For a fair comparison, we limit SmartCheck
to the bug patterns we collected in Table 4. SmartCheck only
reported 697 out of 1163 statements as bugs, which shows
the advantage of our approach in detecting clone-related
bugs.

4.4.3 Examples of bug detection

We manually checked some bugs reported by SMARTEM-
BED but not by SmartCheck. Some types of bugs, such as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 12

TABLE 6: Bug Detection Precision Summary for Various
Clone Similarity Thresholds

Threshold # bugs reported # bugs validated precision
1.0 116 116 100%
0.99 156 156 100%
0.98 248 248 100%
0.97 322 322 100%
0.96 437 437 100%
0.95 582 572 98.3%
0.94 736 723 98.2%
0.93 875 858 98.0%
0.92 1014 983 96.9%
0.91 1107 1052 95.0%
0.90 1311 1163 88.7%

“Honeypots” in Table 4 can not be effectively checked by
SmartCheck.

For example, the function multiplicate() above is
the only function that does allow a call from anyone other
than the owner. It looks like by sending a value higher than
the current balance of the contract it is possible to withdraw
the full balance from the contract. Both statements in line
7 and 9 try to reinforce the idea that this.balance is
somehow credited after the function is finished. However,
this is a trap since the this.balance is automatically
updated before the multiplicate() function is called.
So if(msg.value>=this.balance) is never true unless
this.balance is initially zero.

1 c o n t r a c t Mul t ip l i ca torX3 {
2 . . .
3 func t ion m u l t i p l i c a t e (address adr)
4 publ ic
5 payable
6 {
7 i f (msg . value>=t h i s . balance)
8 {
9 adr . t r a n s f e r (t h i s . balance+msg . value) ;

10 }
11 }
12 }

Listing 2: MultiplicatorX3 example

Encoding such a bug type into tools like SmartCheck
would require extra efforts in defining the bug specifica-
tion, while our approach can just take the sample bug
and automatically generate embeddings to recognize similar
bugs. Of course, this advantage of our approach relies on
good embeddding of all relevant structural and semantic
information of code, which will be a continuing research
direction in the future.

Answer to RQ-2: How effective is SMARTEMBED for
bug detection in smart contracts? - we conclude that
SMARTEMBED is very effective for clone-related bug detec-
tion in a large set of smart contracts.

4.5 RQ-3: Practical Analysis
Considering the cloning rate in Ethereum is remarkably
higher than the traditional software, a key problem with
code cloning is that the original piece of code should ideally
be fixed in every copy of its later versions. Herein we
perform a practical analysis to verify whether SMARTEMBED
can distinguish bug fixes from the original buggy statement.

TABLE 7: Practical Analysis

Contract Name Similarity (fixed) Report Bug (0.90)
BitcoinRed 0.798 False
CockMight 0.883 False

FishOne 0.733 False
WMCToken 0.726 False
XmanToken 0.668 False

4.5.1 Experimental Setup

Because the code file of deployed contracts is immutable,
hence when a bug is identified in a smart contract, the
developer should deploy a fixed version to the Ethereum
blockchain. For each buggy smart contract in our bug
database, we manually investigated the contract creation
history of the contract creator to see if there is a fixed
version contract for the specific buggy statement. Finally we
found that 5 out of 52 buggy smart contracts include a fixed
version. We pinpointed the fixed statement and estimated
the similarity score between the buggy statement and its
corresponding fixed statement.

4.5.2 Experimental Results

The practical analysis results of SMARTEMBED are summa-
rized in Table 7. A similarity score is calculated between
the buggy statement and its corresponding fixed statement.
From the table, we can see that:
• By setting the similarity threshold to 0.90, all the

fixed smart contracts can be correctly identified by
SMARTEMBED as not vulnerable. Even though the
original version and fixed version are very similar,
SMARTEMBED can effectively identify the real clone-
related bugs and neglect those fixed ones. This is be-
cause SMARTEMBED focuses on statement-level for bug
detection, any small fixes within the buggy statement
will result in different code embedding vectors, which
will also reduce the similarity scores.

• There is a significant drop of similarity scores between
the fixed version contracts and the original ones. This
further justifies the ability of SMARTEMBED to separate
the real buggy statement and fixed statement.

4.5.3 Bug and Bug Fix Examples for Practical Analysis

We show a pair of original buggy statement and its corre-
sponding fixed statement in Fig. 15 and Fig. 16. As illus-
trated in Fig. 15, the function batchTransfer() makes multiple
transactions simultaneously. By passing several transferring
addresses and amounts by the caller, the function would
conduct some checks then transfer tokens by modifying bal-
ances. However, overflow might occur in line 193, uint256
amount = uint256(cnt) * value, if value is a huge number.
It will make amount become a small value rather than
cnt times of value, then transfers out tokens exceeding
balances[msg.sender]. For the fixed version of batchTransfer()
function in Fig. 16, the buggy statement is updated to
uint256 amount = value. mul(uint256(cnt)), herein, the con-
tract creator compute the multiplication by using secure
mathematical operations such SafeMath. The change in the
buggy statement as well as the function signatures reduce

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 13

Fig. 15: Original Version of WMCToken@193

Fig. 16: Fixed Version of WMCToken@283

the similarity score between the buggy statement and the
fixed statement.

Answer to RQ-3: How effective is SMARTEMBED for
distinguishing the bug fixes from the bugs? - we conclude
that SMARTEMBED is very effective for distinguishing the
bug fixes from the clone-related bugs.

4.6 RQ-4: Ablation Analysis

When we perform the bug detection, one main novelty of
SMARTEMBED is adding details of structural (containment
and neighbouring) and semantic (data-flow) information
based on our serialization of parse trees. For example, we
added the chain of ancestors in ASTs to capture sequence
derivations and function signatures to capture the diverse
neighbourhood relations of nodes. As shown in Section 4.4,
this tree-based embedding technique is quite accurate and
effective for bug detection in a large set of smart contracts.
To verify the effectiveness of the structural and semantic in-
formation added to SMARTEMBED, we perform an ablation
analysis with respect to the bug detection task.

4.6.1 Experimental Setup

For the ablation analysis, we compare SMARTEMBED with
one of its incomplete variants, named BASICEMBED. Differ-
ent from SMARTEMBED, BASICEMBED removes all the struc-
tural and semantic relations from the statement tokenization
results, and only keeps the simple statement token se-
quence. By going through the same steps of normalization,
code embedding learning and embedding matrix building
process, we can construct a new code embedding model
for BASICEMBED. Following that, for each bug statement in
Table 4, we apply BASICEMBED to the bug detection task via
similarity checking.

4.6.2 Experimental Results
The bug detection results of BASICEMBED and SMARTEM-
BED are summarized in Table 8. Due to the very large num-
ber of bugs reported by BASICEMBED, which is more than
30k+, manually validating all these potential bugs is too
expensive. Herein this evaluation, we randomly sampled
300 contracts and validated these contracts manually. From
the table, we have the following observations.
• The total number of bugs reported by BASICEMBED

is very large, which is over 30k. At the same time,
the overall precision of BASICEMBED is only around
5%, which means the majority of the bugs reported
by BASICEMBED are false positives. This also reflects
that by simply extracting the token sequence of the
statement is not accurate enough for the bug detection
task.

• Regarding the precision of different similarity thresh-
olds, SMARTEMBED stably and substantially outper-
forms BASICEMBED, which reflects that the structural
and semantic information have a major influence on the
overall performance. This verifies the effectiveness and
necessity of adding structural and context information
based on parse trees.

• 87% of the bugs reported by BASICEMBED have a
similarity threshold of 1.0, which means most of the
bugs reported by BASICEMBED are type-I clone-related
bugs. This is because without considering the context
of the statement, code clones with respect to a sin-
gle buggy statement can be easily identified in other
smart contracts. It further supports our claims that the
structural and semantic relations convey much valuable
information.

4.6.3 Bug Detection Example for the Ablation Analysis
We manually checked some buggy statements that have
a large number of clones reported by BASICEMBED. For
example, BASICEMBED reported 10,679 potential bugs with
respect to the following buggy smart contract.

1 c o n t r a c t Rubixi {
2 . . .
3 address p r i v a t e owner ;
4 func t ion DynamicPyramid () {
5 owner = msg . sender ;
6 }
7 func t ion c o l l e c t A l l F e e s () {
8 owner . send (c o l l e c t e d F e e s) ;
9 }

10 . . .
11 }

Listing 3: Rubixi example

The function above name DynamicPyramid should be
Rubixi. The wrong name gives permissions to anyone to
invoke the DynamicPyramid function to become the owner
of the contract and withdraw fees from it. If the function had
the same name as the contract Rubixi, then the Ethereum
virtual machine would automatically block access from
anyone except the contract creator. This bug happened at
some point of time during the development of the contract:
the contract name was changed from DynamicPyramid into
Rubixi, but the programmers forgot to change the name of
the constructor accordingly.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 14

TABLE 8: Ablation Analysis

threshold SmartEmbed BasicEmbed
bugs reported # bugs validated precision # bugs reported # bugs validated (sampled) precision

1.0 116 116 100% 32,264 13 / 246 5.3%
0.99 156 156 100% 32,264 13 / 246 5.3%
0.98 248 248 100% 32,265 13 / 246 5.3%
0.97 322 322 100% 32,268 13 / 246 5.3%
0.96 437 437 100% 32,296 13 / 246 5.3%
0.95 582 572 98.3% 32,322 13 / 246 5.3%
0.94 736 723 98.2% 32,408 13 / 247 5.3%
0.93 875 858 98.0% 33,708 13 / 259 5.0%
0.92 1014 983 96.9% 34,073 13 / 263 4.9%
0.91 1107 1052 95.0% 37,061 14 / 291 4.8%
0.90 1311 1163 88.7% 37,601 15 / 300 5%

The buggy statement of this smart contract is pinpointed
at line 5, which is owner = msg.sender. However, without
considering context information, this simple statement can
be easily identified in many other smart contracts with the
exact identical code tokens, and most of these reported
bugs are false positive cases. This is the reason for the
extremely large number of bugs and very low precision
by using BASICEMBED. For using SMARTEMBED, we can
encode the context of a statement, such as the function
signatures function DynamicPyramid and contract ancestor
node Rubixi into the code embedding vector, which can
effectively reduce the false positive rate and identify the real
bugs in other smart contracts.

Answer to RQ-4: How effective is the structural and
semantic information added to SMARTEMBED? - we con-
clude that the structural and semantic information added
to SMARTEMBED do have significant benefits for its overall
performance.

4.7 RQ-5: Contract Validation Evaluation

Because a smart contract is immutable once it is deployed
onto the blockchain, it would be better to ensure its cor-
rectness in its pre-deployment phase. The objective of the
experiment here is to test the capability of SMARTEMBED
in catching all bugs in a smart contract that are similar to
known bugs, so as to help validate the correctness of the
contract. Although not a formal verification tool, our ap-
proach can grow its capability in validating a smart contract,
as it is easily extensible to incorporate new known bugs into
our bug database to check whether a smart contract contains
similar bugs.

4.7.1 Experimental Setup

To help validate a given contract, for each statement s in the
contract, we generate a 150 dimensional vector for s based
on our model and query it against all the bugs in our bug
database V63×150. If the similarity between s and any bug
in our bug database exceeds a threshold δ (δ is set to 0.95,
0.90 & 0.85 for this task), s can be reported as a potential
bug.

To assess the effectiveness of our approach, we took the
20 smart contracts without * in Table 4 for test. Also, a list of
“bug-free” smart contracts can help to assess false positive
and false negative rates. Therefore, we collected 20 audited

smart contracts from Zeppelin, one of the most popular se-
curity audit firms. Each vulnerability discovered on them is
automatically considered as a false positive. There are a total
of 2857 statements associated with these 40 smart contracts
(20 buggy and 20 bug-free); 45 statements from the 20 buggy
contracts are labelled as bugs. We performed bug detection
on these smart contracts by using both our SMARTEMBED
approach (SE) and SmartCheck (SC). The confusion matrix
with respect to the bug reports generated by SE with three
different similarity thresholds (0.95, 0.90 and 0.85) and SC
are summarized in Table 9. We also calculated the Precision,
Recall, F1 score, FPR (false positive rate), and FNR (false
negative rate) based on the confusion matrix and show the
metrics in Table 10.

4.7.2 Experimental Results
From Table 9 and Table 10, it can be seen that:
• The majority of the bugs can be checked with our

approach, and our approach can identify clone-related
bugs more accurately than SmartCheck, which is con-
sistent with bug detection evaluation results.

• By using our approach with the similarity thresh-
old 0.90, the number of false positives was 8 and
it decreased to 0 with the similarity threshold 0.95.
SmartCheck reported far more false positives than ours.
Since SmartCheck can check more kinds of bug pat-
terns, it is worth noting that, for a fairer comparison,
we only enabled the bug types listed in Table 4 for
SmartCheck. When other types of vulnerabilities were
disabled, SmartCheck still had a 9.9% false positive rate;
its FPR would be overwhelmingly higher if all bug
types were enabled.

• The number of clone-related bugs discovered by our
approach increased from 27 to 36 with decreasing simi-
larity thresholds from 0.95 to 0.90. A potential explana-
tion is related to a common practice by developers who
may do code cloning but make changes to the clones for
various reasons. Such a practice may cause some cloned
code to become dissimilar to each other, which would
need lower thresholds to detect them.

• The false negatives decreased to 0 when we set the
similarity threshold to 0.85, which means all the bugs
can be identified by our approach using this threshold.
At the same time, the false positives reported by our
approach increased to 116, but still far less than the
results generated by SmartCheck. Looking at the F1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 15

TABLE 9: Confusion Matrix Summary
SE(0.95)/SE(0.90)/SE(0.85)/SC True Bugs True Non-Bugs

Predicted Bugs 27 / 36 / 45 / 25 0 / 8 / 116 / 278
Predicted Non-Bugs 18 / 9 / 0 / 20 2812 / 2804 / 2696 / 2534

TABLE 10: Contract Validation Summary

SE(0.95) SE(0.90) SE(0.85) SC
Precision 100% 81.8% 28.1% 8.3%

Recall 60% 80.0% 100% 55.6%
F1 75% 80.9% 43.7% 14.4%

FPR 0.0% 0.3% 4.1% 9.9%
FNR 40% 20% 0% 44.4%

score of this similarity threshold, our approach is still
much better than SmartCheck.

Answer to RQ-5: How effective is SMARTEMBED
for smart contract validation? - our results show that
SMARTEMBED is effective in capturing bugs similar to
known ones with low false positive rates. Our future work
will also continue to enrich the bug database with more real
bugs and improve the embeddings.

4.8 RQ-6: Time Cost Analysis

The time cost of SMARTEMBED is mostly for the training
of code embeddings and the vector similarity checking,
and is dependent on the sizes of contract codebase and
bug database. To analyze the complexity of our proposed
approach, we need to measure the time complexity in
the computation of similarity as defined in Eqn.(2)(3). For
our machine containing an Intel Xeon CPU E5-2640 v4 @
2.40GHz, the training of code embedding took about a day
for our dataset. The average time for a pairwise similarity
calculation between two code snippets, as defined in Equa-
tion (2) and (3) (Sec. 3.6) is around 250ns. We estimated the
time by applying Deckard, SMARTEMBED and SmartCheck
service tool for clone detection, bug detection and contract
validation tasks respectively. We use the same server de-
scribed above for testing, it took on average 79.2ms and
416.3ms to check a single smart contract by using Deckard
and SmartCheck respectively. Regarding SMARTEMBED, for
clone detection, computing the pairwise similarity matrixM
(M was a 22718×22718 matrix) took on average 6.05s, check-
ing each smart contract only cost 0.26ms. For bug detection,
all statements in our contract codebase are queried against
our bug embedding matrix, computing the similarity matrix
N (N was a 1944513×63 matrix) took on average 53.22s,
checking each smart contract cost 2.3ms. For contract valida-
tion, a given contract is queried against our bug embedding
matrix, which took on average 4.7ms.

Answer to RQ-6: How efficient is SMARTEMBED? - The
query for a clone or a bug using SMARTEMBED is efficient
for practical uses.

5 DISCUSSION
We selected several smart contract projects from Github,
then contacted the Solidity developers by sending clone
reports and bug reports generated by SMARTEMBED for

these projects. For clone detection, we reported the most
similar smart contracts’ url on Etherscan associated with
its similarity score. For bug detection, we reported the
exact bug line and associated bug type. Some developers
expressed interest in using our tool.

(1) Clone Detection - Compared to Etherscan’s “find sim-
ilar contract” function, which can only find “Exact
Match” contracts, our tool is more flexible which can re-
port code clone on contract level, function level or even
statement level governed by a similarity threshold. One
practitioner responded, “If the tool works with individual
functions then that might be useful. I would give you a
shout out on Twitter”. Another developer commented,
“The clone detection isn’t useful to me, but I could believe it
would be useful to authors of widely cloned contracts, such
as cryptokitties or FOMO3D.”

(2) Bug Detection - With the help of our techniques, de-
velopers could quickly check for vulnerabilities and
improve confidence in the reliability of a contract. “It
is nice to have such a tool to identify vulnerable bugs in
smart contract, I probably will give it a try”. However,
there are also some developers who mentioned that
the bug report is not useful, “one intractable problem I
found was that in smart contracts, everything is dangerous,
and you can’t judge whether a contract is secure without
understanding intent - any insecure pattern can be correct
in the context of a contract designed to do that. ”

According to developers’ comments, we have implemented
SMARTEMBED6 as a standalone web application tool [72].
Solidity developers can copy and paste their contract source
code to the web application to find repetitive contract code
and clone-related bugs in the given contract. The source
code of SmartEmbed and contract data used in our experi-
ments can be found in our Github repository7.

Some developers also suggested publishing the tool as
an extension and enhancement to Etherscan so that devel-
opers who have already been familiar with Etherscan can
easily utilize the tool, which can facilitate broader adoption
of the tool and easier collections of new bugs. Since a lot
of Solidity developers use the web IDE Remix to develop,
deploy, and test a smart contract, developers also suggested
integrating the tool as a plugin into an IDE (e.g., Remix and
Visual Studio Code) to help detect clones and bugs early
in development. The efficiency of SmartEmbed’s similarity
checking step (excluding the embedding steps), as shown
in Section 4.8, can be sufficient in supporting the uses in
IDE in real-time when developers are writing their code. We
will follow such suggestions to improve the tool in the near
future.

6. http://www.smartembed.net
7. https://github.com/beyondacm/SmartEmbed

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 16

6 THREATS TO VALIDITY

Internal Validity. Code representations used for code em-
bedding have significant effects on the embedding outcome
and the downstream applications. The ways we calculated
the code embedding for each code snippet is intuitive, which
may bias our approach for detecting clones of different code
sizes. There are a lof of related work have explored different
ways to represent code and embed more semantic informa-
tion into the code vectors, such as paths in control flow
graphs [73], paths in ASTs [74], dynamic execution traces
[75], API sequences and usage contexts [76], and many
others. We will try to employ different code embedding
techniques for the same tasks in the future.

Data Validity. We collected 22,725 solidity smart con-
tracts with source code through Etherscan for our experi-
ment. It is not complete as the number of smart contracts on
Ethereum grows faster recently and the number of contracts
on Etherscan is almost doubled, over 40,000 already, not to
mention many other contracts that do not provide source
code. In the future, we can retrain our model and gain a
better code representation model with the enlarged Solidity
source code data set, and may even extend the embedding
techniques to Solidity bytecode. In addition, due to the lack
of a comprehensive list of Ethereum contract vulnerabilities,
the number of buggy contracts we collected is relatively
small. Our bug database currently contains 52 buggy con-
tracts covering 10 different bug types that are more relevant
for Solidity smart contracts, ignoring bug types that may
be common for other programming languages. The selected
contracts may not be sufficiently diverse or representative
of all contracts, and there can be a lot of false negatives if
applying our approach to detect bug types not included in
our bug database. We will keep expanding both our code
base and bug database in the near future.

External Validity. We validated the clone-related bugs de-
tected by SMARTEMBED only from the SmartCheck bench-
mark. One of the threat is that SmartCheck can also have
the false negative as well as false positive cases, hence the
results may be biased and incomprehensive. There currently
exists other security analysis tools to find bugs in smart
contract, such as Oyente [12], Mythril [16], Gasper [9] and
Securify [13]. We plan to do more large-scale evaluations
with these tools in the near future. We also acknowledge
that the sample size of the user study is not sufficient, we
plan to get more feedback about our tool from practitioners
in the future.

7 SUMMARY

We have proposed a new approach, SMARTEMBED, based
on structural code embedding and similarity checking for
clone detection, bug detection and contract validation tasks
on smart contracts. We have evaluated our approach with
more than 22,000 Solidity smart contracts from the Ethereum
blockchain. For clone detection, SMARTEMBED can effec-
tively identify many instances of repetitive solidity code
where the clone ratio is around 90%, and more semantic
clones can be detected accurately by our tool than Deckard.
For bug detection, SMARTEMBED can identify more than

1000 clone-related bugs based on our bug databases effi-
ciently and accurately, which can enable efficient checking of
smart contracts with changing code and bug patterns. Such
capabilities of SMARTEMBED can be useful for facilitating
contract validation in practice.

ACKNOWLEDGMENT

This research was partially supported by the Australian Re-
search Council’s Discovery Early Career Researcher Award
(DECRA) funding scheme (DE200100021), ARC Discovery
Project scheme (DP170101932), and the Singapore Ministry
of Education (MOE) Academic Research Fund (AcRF) Tier 1
grant from SIS at SMU.

REFERENCES

[1] Nick Szabo. Smart contracts, 1994.
[2] CoinMarketCap. Cryptocurrency total market capitalization, 2018.
[3] DAO. The dao (organization), 2018.
[4] Parity. Parity security alert, 2017.
[5] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. Bug charac-

teristics in blockchain systems: A large-scale empirical study. In
Proceedings of the 14th International Conference on Mining Software
Repositories (MSR), MSR ’17, pages 413–424, Piscataway, NJ, USA,
2017. IEEE Press.

[6] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen.
A survey on the security of blockchain systems. Future Generation
Computer Systems, 2017.

[7] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on ethereum smart contracts (sok). In Principles of Security
and Trust, pages 164–186. Springer, 2017.

[8] Massimo Bartoletti and Livio Pompianu. An empirical analysis of
smart contracts: platforms, applications, and design patterns. In
International Conference on Financial Cryptography and Data Security,
pages 494–509. Springer, 2017.

[9] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-
optimized smart contracts devour your money. In IEEE 24th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 442–446. IEEE, 2017.

[10] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Four-
net, Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Na-
talia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil
Swamy, and Santiago Zanella-Béguelin. Formal verification of
smart contracts: Short paper. In Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Security, PLAS
’16, pages 91–96, New York, NY, USA, 2016. ACM.

[11] Chad E Brown, Ondrej Kuncar, and Josef Urban. Formal verifica-
tion of smart contracts (poster). In 8th International Conference on
Interactive Theorem Proving, page 91–96, 2017.

[12] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and
Aquinas Hobor. Making smart contracts smarter. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 254–269. ACM, 2016.

[13] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen, Arthur Ger-
vais, Florian Buenzli, and Martin Vechev. Securify: Practical
security analysis of smart contracts. In 25th ACM Conference on
Computer and Communications Security (CCS), 2018.

[14] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy,
Ramil Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov.
SmartCheck: Static analysis of ethereum smart contracts. In the 1st
International Workshop on Emerging Trends in Software Engineering
for Blockchain (WETSEB), pages 9–16. ACM, 2018.

[15] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller,
and Elaine Shi. Step by step towards creating a safe smart contract:
Lessons and insights from a cryptocurrency lab. In International
Conference on Financial Cryptography and Data Security, pages 79–
94. Springer, 2016.

[16] Bernhard Mueller. Smashing smart contracts for fun and real
profit. In 9th annual HITB Security Conference (HITBSecConf), pages
2–51, Amsterdam, 2018. Consensys.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 17

[17] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu.
From word embeddings to document similarities for improved
information retrieval in software engineering. In Proceedings of the
38th international conference on software engineering, pages 404–415.
ACM, 2016.

[18] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics, 5:135–
146, 2016.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[21] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representa-
tions: a simple and general method for semi-supervised learning.
In Proceedings of the 48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for Computational
Linguistics, 2010.

[22] Solidity. Solidity home and documentation, 2018.
[23] EtherScan. The ethereum block explorer, 2018.
[24] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane

Glondu. Deckard: Scalable and accurate tree-based detection of
code clones. In Proceedings of the 29th International Conference on
Software Engineering (ICSE), pages 96–105. IEEE Computer Society,
2007.

[25] M. Alharby, A. Aldweesh, and A. v. Moorsel. Blockchain-based
smart contracts: A systematic mapping study of academic research
(2018). In 2018 International Conference on Cloud Computing, Big Data
and Blockchain (ICCBB), pages 1–6, Nov 2018.

[26] Wesley Egbertsen, Gerdinand Hardeman, Maarten van den
Hoven, Gert van der Kolk, and Arthur van Rijsewijk. Replacing
paper contracts with ethereum smart contracts, 2016.

[27] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and
Huaimin Wang. Blockchain challenges and opportunities: A
survey. International Journal of Web and Grid Services, 14(4):352–375,
2018.

[28] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin.
Building program vector representations for deep learning. In
Songmao Zhang, Martin Wirsing, and Zili Zhang, editors, Interna-
tional Conference on Knowledge Science, Engineering and Management
(KSEM), pages 547–553, Cham, 2015. Springer International Pub-
lishing.

[29] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional
neural networks over tree structures for programming language
processing. In AAAI, pages 1287–1293, 2016.

[30] Martin White, Michele Tufano, Matias Martinez, Martin Monper-
rus, and Denys Poshyvanyk. Sorting and transforming program
repair ingredients via deep learning code similarities. In 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 479–490. IEEE, 2019.

[31] Martin White, Christopher Vendome, Mario Linares-Vásquez, and
Denys Poshyvanyk. Toward deep learning software repositories.
In Proceedings of the 12th Working Conference on Mining Software
Repositories, pages 334–345. IEEE Press, 2015.

[32] Christopher S Corley, Kostadin Damevski, and Nicholas A Kraft.
Exploring the use of deep learning for feature location. In 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 556–560. IEEE, 2015.

[33] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep
learning for just-in-time defect prediction. In QRS, pages 17–26,
2015.

[34] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N
Nguyen. Combining deep learning with information retrieval
to localize buggy files for bug reports (n). In 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 476–481. IEEE, 2015.

[35] Martin White, Michele Tufano, Christopher Vendome, and Denys
Poshyvanyk. Deep learning code fragments for code clone detec-
tion. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 87–98. ACM, 2016.

[36] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning
semantic features for defect prediction. In IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE), pages 297–308.
IEEE, 2016.

[37] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun
Kim. Deep API learning. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE), pages 631–642. ACM, 2016.

[38] J Howard Johnson. Identifying redundancy in source code using
fingerprints. In Proceedings of the 1993 conference of the Centre
for Advanced Studies on Collaborative research: software engineering-
Volume 1, pages 171–183. IBM Press, 1993.

[39] J Howard Johnson. Visualizing textual redundancy in legacy
source. In Proceedings of the 1994 conference of the Centre for Advanced
Studies on Collaborative research, page 32. IBM Press, 1994.

[40] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A lan-
guage independent approach for detecting duplicated code. In
Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE Interna-
tional Conference on, pages 109–118. IEEE, 1999.

[41] Brenda S Baker. A program for identifying duplicated code.
Computing Science and Statistics, pages 49–49, 1993.

[42] Brenda S Baker. Parameterized pattern matching: Algorithms and
applications. Journal of computer and system sciences, 52(1):28–42,
1996.

[43] Katsuro Inoue. Ccfinder: a multilinguistic token-based code clone
detection system for large scale source code. Annual report of Osaka
University: academic achievement, 2001:22–25, 2002.

[44] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection
using abstract syntax suffix trees. In Reverse Engineering, 2006.
WCRE’06. 13th Working Conference on, pages 253–262. IEEE, 2006.

[45] Wuu Yang. Identifying syntactic differences between two pro-
grams. Software: Practice and Experience, 21(7):739–755, 1991.

[46] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection
of semantic clones. In Proceedings of the 30th international conference
on Software engineering, pages 321–330. ACM, 2008.

[47] Raghavan Komondoor and Susan Horwitz. Using slicing to
identify duplication in source code. In International static analysis
symposium, pages 40–56. Springer, 2001.

[48] Jens Krinke. Identifying similar code with program dependence
graphs. In Reverse Engineering, 2001. Proceedings. Eighth Working
Conference on, pages 301–309. IEEE, 2001.

[49] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. Gplag:
detection of software plagiarism by program dependence graph
analysis. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 872–881.
ACM, 2006.

[50] Lingxiao Jiang and Zhendong Su. Automatic mining of function-
ally equivalent code fragments via random testing. In Proceedings
of the Eighteenth International Symposium on Software Testing and
Analysis ISSTA, pages 81–92, 2009.

[51] T. Kamiya. Agec: An execution-semantic clone detection tool.
In 21st International Conference on Program Comprehension (ICPC),
pages 227–229, May 2013.

[52] F. Su, J. Bell, and G. Kaiser. Challenges in behavioral code clone
detection. In IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), volume 3, pages 21–22,
March 2016.

[53] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi,
Li Li, Jacques Klein, and Yves Le Traon. Facoy: A code-to-code
search engine. In Proceedings of the 40th International Conference on
Software Engineering (ICSE), ICSE ’18, pages 946–957, New York,
NY, USA, 2018. ACM.

[54] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code
search. In Proceedings of the 40th International Conference on Software
Engineering (ICSE), ICSE ’18, pages 933–944, New York, NY, USA,
2018. ACM.

[55] TrailOfBits. Manticore: Symbolic execution for humans, 2017.
[56] Md Shariful Haque, Jeff Carver, and Travis Atkison. Causes,

impacts, and detection approaches of code smell: a survey. In
Proceedings of the ACMSE 2018 Conference, page 25. ACM, 2018.

[57] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. Context-based
detection of clone-related bugs. In Proceedings of the the 6th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering
(ESEC/FSE), pages 55–64. ACM, 2007.

[58] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-
miner: A tool for finding copy-paste and related bugs in operating
system code. In OSDI, pages 289–302, 2004.

[59] Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta.
Detecting and characterizing semantic inconsistencies in ported
code. In 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE, pages 367–377, 2013.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 18

[60] Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection
using semantic inconsistency inference. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 435–445, 2007.

[61] Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix,
and Gilles Muller. Finding error handling bugs in openssl using
coccinelle. In European Dependable Computing Conference (EDCC),
pages 191–196. IEEE, 2010.

[62] Varun Srivastava, Michael D. Bond, Kathryn S. McKinley, and
Vitaly Shmatikov. A security policy oracle: Detecting security
holes using multiple api implementations. In Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), PLDI ’11, pages 343–354, New York,
NY, USA, 2011. ACM.

[63] Jingyue Li and Michael D. Ernst. Cbcd: Cloned buggy code
detector. In Proceedings of the 34th International Conference on
Software Engineering (ICSE), ICSE ’12, pages 310–320, Piscataway,
NJ, USA, 2012. IEEE Press.

[64] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep
learning for just-in-time defect prediction. In IEEE International
Conference on Software Quality, Reliability and Security QRS, pages
17–26, 2015.

[65] Michael Pradel and Koushik Sen. Deep learning to find bugs.
Technical report, TU Darmstadt, Department of Computer Science,
November 2017.

[66] Cuiyun Gao, Jichuan Zeng, Xin Xia, David Lo, Michael R Lyu,
and Irwin King. Automating app review response generation.
In 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2019.

[67] Chanchal Kumar Roy and James R Cordy. A survey on soft-

ware clone detection research. Queen’s School of Computing TR,
541(115):64–68, 2007.

[68] TrailOfBits. Not so smart contracts, 2018.
[69] PeckShield (organization). Batch overflow cve, 2019.
[70] PeckShield (organization). Transferflaw overflow cve, 2019.
[71] PeckShield (organization). Allow anyone cve, 2019.
[72] Zhipeng Gao, Vinoj Jayasundara, Lingxiao Jiang, Xin Xia, David

Lo, and John Grundy. Smartembed: A tool for clone and bug
detection in smart contracts through structural code embedding.
In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 394–397. IEEE, 2019.

[73] Daniel DeFreez, Aditya V Thakur, and Cindy Rubio-González.
Path-based function embedding and its application to error-
handling specification mining. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 423–
433. ACM, 2018.

[74] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A
general path-based representation for predicting program prop-
erties. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, page
404–419, New York, NY, USA, 2018. Association for Computing
Machinery.

[75] Ke Wang, Rishabh Singh, and Zhendong Su. Dynamic neural
program embedding for program repair. CoRR, abs/1711.07163,
2017.

[76] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and
Tien N Nguyen. Exploring api embedding for api usages and
applications. In Software Engineering (ICSE), 2017 IEEE/ACM 39th
International Conference on, pages 438–449. IEEE, 2017.

