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Abstract—An embedded system is a system consisting of
software code, controller hardware, and I/O (Input/Output)
hardware that performs a specific task. Developing an embed-
ded system presents several challenges. First, the development
often involves configuring hardware that requires domain-specific
knowledge. Second, the library for the hardware may have
API usage patterns that must be followed. To overcome such
challenges, we propose a framework called ArduinoProg towards
the automatic generation of Arduino applications. ArduinoProg
takes a natural language query as input and outputs the con-
figuration and API usage pattern for the hardware described
in the query. Motivated by our findings on the characteristics
of real-world queries posted in the official Arduino forum,
we formulate ArduinoProg as three components, i.e., Library
Retriever, Configuration Classifier, and Pattern Generator. First,
Library Retriever preprocesses the input query and retrieves a set
of relevant libraries using either lexical matching or vector-based
similarity. Second, given Library Retriever’s output, Configura-
tion Classifier infers the hardware configuration by classifying
the method definitions found in the library’s implementation files
into a hardware configuration class. Third, Pattern Generator
also takes Library Retriever’s output as input and leverages a
sequence-to-sequence model to generate the API usage pattern.
Having instantiated each component of ArduinoProg with various
machine learning models, we have evaluated ArduinoProg on
real-world queries. Library Retriever achieves a Precision@K
range of 44.0%-97.1%; Configuration Classifier achieves an Area
under the Receiver Operating Characteristics curve (AUC) of
0.79-0.95; Pattern Generator yields a Normalized Discounted
Cumulative Gain (NDCG)@K of 0.45-0.73. Such results indicate
that ArduinoProg can generate practical and useful hardware
configurations and API usage patterns to guide developers in
writing Arduino code.

Index Terms—arduino, embedded system, deep learning, in-
formation retrieval, code generation, api recommendation

I. INTRODUCTION

An embedded system is a system consisting of software
code, controller hardware, and I/O (Input/Output) hardware
that performs a specific task. The software contains the logic
to control the behavior of the system, the controller hardware
executes the code, and the I/O hardware (e.g., sensor, actuator,
display) is used to interact with the environment. Embedded
systems have been applied to various use cases, ranging from
high-critical applications such as rocket controllers to low-
critical applications such as home automation using IoTs.

In this work, we are interested in the activity of developing
an embedded system using a specific controller family called
Arduino. For simplicity, we refer to an embedded system that

leverages Arduino as the controller hardware as an Arduino
application. We target Arduino programming because Arduino
is open source, the user base is large [1] and the documenta-
tion [2] is well-maintained.

Developing Arduino applications poses several challenges.
Writing an Arduino code often involves configuring certain
hardware, both in the code and physical space. To make the
system work properly, the configuration in the physical space
must match the code. This challenge is illustrated in Figure 1.
Although the developer has the option to connect the servo to
any interface between 0-13 in the physical space, the developer
must connect the servo to interface number 10 because the
servo is initialized using interface number 10 in the code
when invoking myServo.attach(pin=10). Choosing the correct
interface number often requires hardware-specific knowledge
that the developer may not be familiar with [3]. Additionally,
each hardware may have its own set of API usage patterns.
It is unlikely for a developer to remember all such patterns,
given a large number of hardware libraries available.

Servo myServo ;
myServo . a t t a c h ( p i n = 1 0 ) ;

Fig. 1. An example of how the setup in the physical space and code should
match. The servo should be connected to interface number 10 because the
servo motor is initialized using interface number 10 in the code.

The goal of our work is to automatically infer hardware
configurations based on a natural language description of the
desired hardware, and to generate API usage patterns that
advise developers on the correct usage of the hardware with
the specified configuration. We leverage natural language as
the input specification because it is easy for developers to
provide. To design the framework, we curate and study real-
world user questions posted on the official Arduino forum [4].
Our finding shows that it is possible to infer the hardware
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configuration based on the method definitions found in the
library’s implementation files and there are common API usage
patterns for guiding developers.

Based on real-world user questions and needs, we formulate
our approach by proposing a framework called Arduino-
Prog. ArduinoProg is composed of three components, i.e.,
Library Retriever, Configuration Classifier, Pattern Generator.
ArduinoProg solves the problem of inferring hardware con-
figurations and generating API usage patterns from a query
by dividing the problem into three main steps. First, Library
Retriever takes a query as input, preprocesses the query, and
retrieves a set of relevant libraries using either lexical matching
or vector-based similarity. We improve the performance of
Library Retriever by extracting important keywords using NLP
techniques before feeding the query to the retrieval model.
Given Library Retriever’s output, Configuration Classifier in-
fers the hardware configuration by classifying the method
definitions found in the library’s implementation files into a
hardware configuration class. Furthermore, Pattern Generator
takes Library Retriever’s output as input and leverages a
sequence-to-sequence model [5], [6] to generate the API usage
pattern.

Leveraging various machine learning models to instantiate
each component of ArduinoProg, we have evaluated Arduino-
Prog on real-world queries. The performance of Library Re-
triever ranges from 44.0% to 97.1% in terms of Precision@K.
The Configuration Classifier can achieve an AUC of 0.79-0.95.
Pattern Generator can yield NDCG@K scores of 0.45-0.73.
Such results indicate that ArduinoProg can generate practical
and useful hardware configurations and API usage patterns to
guide developers in writing Arduino code.

The novelty of our work lies in the following aspects. First,
our proposed framework is new because it can generate both
hardware configurations and API usage patterns for hardware
libraries. In the software engineering domain, existing works
can only generate API usage patterns given natural language
descriptions [7]–[10]. Generating only API usage patterns is
not sufficient because Arduino applications require developers
to configure the hardware in addition to writing the code, and
API usage patterns alone may not convey how to configure
hardware properly. Second, our framework can infer hardware
configuration from only software artifacts without requiring
additional third-party hardware, while prior works rely on such
hardware [11]–[14]. Third, we evaluate our framework using
various machine learning models and demonstrate promising
results.

In summary, our main contributions are as follows:
• We propose ArduinoProg, a novel framework to infer

hardware configurations and generate API usage patterns
for the hardware described in a natural language query.
The implementation of ArduinoProg is available at https:
//github.com/imamnurby/ArduProg.

• We evaluate ArduinoProg on real-world user queries by
instantiating each component of ArduinoProg using various
machine learning models.
The rest of the paper is structured as follows. Section II

covers our study on real-world Arduino codes and users’
programming queries. Section III explains the design and
internal details of ArduinoProg. Section IV describes our
evaluation settings. Section V presents the empirical results.
Section VI discusses the qualitative analysis of some results.
Section VIII concludes our paper.

II. STUDY ON REAL-WORLD QUESTIONS AND CODES

We formulate our approach by conducting a preliminary
empirical study on real-world user questions posted on the
official Arduino forum [4]. In this forum, users can ask
questions on hardware or software topics (e.g., motors and
actuators, displays, sensors). We explain the data collection
process and the results of our study as follows.

A. Collecting Real-World Questions and Codes

We use ”read sensor”, ”interface sensor”, and ”use sensor”
as the queries to search the relevant forum posts. We define
the query using our domain-specific knowledge. We search
the questions using the forum search engine. The forum search
engine relies on lexical matching between a query and a forum
post and employs some preprocessing steps, such as stop-
words removal, frequent-words removal, and word stemming.
We collect forum posts whose titles reflect ”how-to” questions,
mention a specific hardware name, or mention a hardware
functionality. Some examples of the relevant post titles are
”How can I use a water level sensor to turn on and off a DC
motor?”, ”Help with LM34 Temperature Sensor”, ”Calculating
altitude above ground level with BMP280”. We leverage the
question title as the first proxy to collect relevant questions
because a question title often summarizes and identifies the
key topic of the questions [15]–[17]. We get 67 forum posts
from this step. We further narrow down the forum posts
by only considering the posts that: 1) have been marked as
resolved, and 2) contain code snippets or mention specific
hardware library names either in the question body or answer.
We get 35 forum posts in the end.

B. Processing Arduino Codes

We extract a code snippet from each post. For forum posts
that direct users to third-party websites, such as GitHub or
tutorial websites, we directly extract the code snippets from the
source websites. Next, we extract the relevant lines that cor-
respond to the hardware from each code snippet and analyze
these lines to gain insight into how Arduino developers write
codes for hardware. We manually identify a set of hardware
H = (hw1, hw2, . . . , hwn) involved in the code. For each
hw ∈ H , we extract the object declaration obj followed by the
statements that involve method calls of each obj. If a method
call returns a value that is assigned to another variable, we
also include the statements that involve the assigned variable.
Including such statements allows us to capture the possible
data dependencies and interactions between hardware objects
in the code. Additionally, we include statements that involve
analogRead, digitalRead, and pinMode method invocations or
invocations from a Wire object. Such invocations are used to

2

https://github.com/imamnurby/ArduProg
https://github.com/imamnurby/ArduProg


interact with hardware. To enhance our understanding of the
code, we extract the readme, header (.h), and implementation
(.cpp) files of the libraries that correspond to the hardware
involved in the code. Such files can enhance our understanding
because they may contain hardware and methods documenta-
tion.

C. Analysis Results

Insight#1: A piece of codes may contain multiple hard-
ware with some interactions, but the interactions are
often simplistic. Our analysis reveals that 17 out of 35
studied codes involve multiple hardware. We scrutinize these
17 codes and find that such interactions do not occur when
configuring hardware interfaces. The interactions only involve
simple if-else logic between the value obtained from input
devices (e.g., sensor, keypad) to control actuators, memory
devices, or display devices, such as moving an actuator if
the sensor reading is more than a certain threshold. The
first insight implies that we can independently infer hardware
configurations and generate API usage patterns although the
query contains multiple hardware.

Insight#2: Hardware configurations can be classified into
explicit and implicit configurations. In the explicit config-
uration, the user manually specifies the physical connection
between the hardware and controller in the code. This configu-
ration is set by either: 1) instantiating the hardware object with
an interface number, or 2) invoking the initialization method (a
method that is always called at the beginning after the hard-
ware object is instantiated). For example, ”dht11 sensor(10,
DHT11)” specifies that a DHT11 sensor is interfaced through
pin number 10. In contrast, the implicit configuration does not
require the user to specify the interface number because the
hardware configuration is already embedded in the internal
implementation of the library. For instance, ”Adafruit SHT31
sht31 = Adafruit SHT31()” is an example of the implicit
configuration. Our analysis shows 63 hardware components
are found in the 35 codes that we analyzed, with 26 of them
falling under the implicit configuration category and 37 under
the explicit configuration category.

Insight#3: Implicit configurations can be classified fur-
ther into several configuration classes. We scrutinized the
readme, header, and implementation files of the hardware
libraries that fall under the implicit configuration category.
Our study reveals that we can categorize the implicit con-
figuration based on the communication protocol between
the hardware and controller. Specifically, we identified three
configuration classes: address-based (I2C), serial (SPI), and
asynchronous (UART) communications. Address-based com-
munication uses SDA/SCL interfaces, serial communication
uses MISO/MOSI/CLK/CS interfaces, and asynchronous com-
munication uses RX/TX interfaces. Out of the 26 implicit
configurations we analyzed, 21 are address-based, 4 are serial,
and 1 is asynchronous.

Insight#4: Method definitions found in the library’s
implementation files can be used to infer the hardware’s
configuration class. We contrast the readme, header, and

implementation files of the hardware libraries that belong to
different configuration categories. Our comparison shows that
hardware libraries from the same configuration category often
have similar tokens in the constructors and method definitions.
For example, in Figure 2, Both DHT12 and ADS1X15 belong
to the address-based category and utilize the wire objects.

DHT12 (Temperature Sensor)
int DHT12::_readSensor(){
  …
  _wire->beginTransmission(DHT12_ADDRESS);
  _wire->write(0);
  int rv = _wire->endTransmission();
  if (rv < 0) return rv;
  …
  int bytes = _wire->requestFrom(DHT12_ADDRESS, length);
  …}
ADS1X15 (Analog to Digital Comparator)
uint16_t ADS1X15::_readRegister(uint8_t address, uint8_t reg){
  …
  _wire->beginTransmission(address);
  _wire->write(reg);
  _wire->endTransmission();
  int rv = _wire->requestFrom((int) address, (int) 2);
  if (rv == 2)
  …}

Fig. 2. Fragments of two method definitions from two different hardware
that belong to the same configuration class. Both method definitions involve
similar tokens such as ”wire”, ”beginTransmission”, and ”rv”.

As we mention earlier, ArduinoProg is composed of three
components, i.e., Library Retriever, Configuration Classifier,
Pattern Generator. Insight#1 implies that we can treat multiple
hardware in the query individually and also generate its API
usage patterns independently. Insight#1 motivates the design of
Library Retriever and Pattern Generator. Insight#2, Insight#3,
and Insight#4 allow us to frame the problem of inferring
hardware configurations as a classification problem. The goal
is to classify whether a library belongs to either explicit,
address-based, serial, or asynchronous categories based on
the library’s implementation files. Insight#2, Insight#3, and
Insight#4 motivate the design of Configuration Classifier.

III. ARDUINOPROG

This section explains the architecture of ArduinoProg and
how each component in the architecture works. Figure 3 shows
the high-level overview of ArduinoProg.

Fig. 3. The general overview of ArduinoProg. ArduinoProg consists of three
modules: Library Retriever, Configuration Classifier, and Pattern Generator.
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Fig. 4. Input and output examples of ArduinoProg.

The input and output of ArduinoProg is shown in Figure 4.
Library Retriever takes the natural language query as input
and recommends a set of library names. Then, Configuration
Classifier receives the library names as input and predicts the
configuration class of each recommended library. The configu-
ration class is then mapped to the interface configuration using
a predefined dictionary, based on Insight#3 in the preliminary
study described in Section II. Similarly, given the library
names as input, Pattern Generator generates the API usage
pattern for each recommended library.

The working mode of ArduinoProg consists of training and
inference phases. In the training phase, ArduinoProg trains a
set of models to perform the required tasks, i.e., retrieving rel-
evant libraries, predicting hardware configurations, and gener-
ating API usage patterns. In the inference phase, ArduinoProg
is ready to interact with a developer. ArduinoProg receives a
query that describes the intended library and recommends a set
of libraries with the hardware configurations and API usage
patterns. We explain each module and the workflow in each
working mode as follows.

A. Library Retriever

Fig. 5. Library Retriever leverages Retrieval Model Trainer module to train
a retrieval model. The dashed boxes indicate input and output.

1) Training: Figure 5 demonstrates the workflow of Library
Retriever in the training phase. The inputs of this phase are

model specifications and a training corpus, while the output is
a trained retrieval model.

Retrieval Model Trainer receives model specifications as
input to initialize the retrieval model. The model specification
contains information about the model type and the correspond-
ing hyperparameters. There are two supported model types,
i.e., BM25 and deep learning-based models.

For the deep learning-based models, each training instance
is represented as a triplet of (anchor, positive sample, negative
sample). Anchor refers to a library name, the positive sample
is a library relevant to the anchor, and the negative sample
is a library irrelevant to the anchor. To train the model, a
tokenizer tokenizes each element in the triplet and the model
converts each tokenized element to a vector representation. We
leverage Triplet Loss [18] as the objective function, aiming
to minimize the distance between the anchor and positive
sample while maximizing the distance between the anchor and
negative sample in the vector space. The Triplet Loss equation
is shown in equation 1, where f is a function that converts its
input into a vector and α is a hyperparameter.

Ltriplet =max(||f(anchor)− f(sample+)||−
||f(anchor)− f(sample−)||+ α, 0)

(1)

We perform the tokenization at the subword where the
smallest unit can be a character. Subword-level tokenization
allows the model to leverage the similarity between similar
library names. For example, in Table I, three different li-
braries (i.e., ”BMP280 DEV”, ”Adafruit BMP280 Library”,
and ”DFRobot BMP3XX”) contain the same subword token,
i.e., BMP. Intuitively, the same subword token can help the
model to learn that those libraries are similar.

TABLE I
AN EXAMPLE OF TOKENIZATION IN THE SUBWORD LEVEL.

Library Name Tokenization Results
BMP280 DEV BMP, 280, DEV
Adafruit BMP280 Library Adafruit, BMP, 280, Library
DFRobot BMP3XX DF, Robot, BMP, 3XX

For BM25, the training corpus consists of a list of library
names. A tokenizer tokenizes each library name at the subword
level, resulting in a list of subword tokens. Retrieval Model
Trainer then counts the term frequency, inverse document
frequency, and length of the resulting subword tokens for each
library name.

Fig. 6. Library Retriever involves four modules in the offline phase: Keyword
Extractors, Tokenizer, Retrieval Model, and Ranker. The dashed boxes indicate
input and output.

2) Inference: Figure 6 illustrates the workflow of Library
Retriever in the inference phase. Retrieval Model receives a
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query as input and converts the query to its vector represen-
tation. Then, Retrieval Model computes the similarity of the
query vector with the library name vectors. The output of the
inference phase is the top-K library names with the highest
similarity scores. The detailed steps are as follows.

First, Keyword Extractors takes a query Q as input and
outputs a set of keywords K = (k1, k2, . . . , km), where
ki ⊆ Q and m ≤ n. A keyword refers to the tokens in
the query that are most likely to appear in a library name.
The reason to extract the keywords instead of using the query
directly is that unimportant tokens (tokens other than the
keywords) can lower the similarity score between the query
and the target library name. To exemplify, consider an ideal
retrieval condition where a query exactly matches a library
name. Hence, the similarity score is maximum in such a
condition. Conversely, the presence of unimportant tokens
lowers the similarity score because the query does not match
the library name.

The steps for Keyword Extractors to identify keywords in
a query are as follows. Keyword Extractors tokenizes the
query Q into n tokens in the word level. Then, each token
is labeled with the corresponding part-of-speech tag, and
Keyword Extractors parses the tagged query to generate the
dependency tree. Subsequently, Keyword Extractors extracts
noun phrases from the parsed query. A noun phrase consists
of a root noun and its modifiers. In each noun phrase, frequent
words and PoS tags are removed. Next, Keyword Extractors
identifies the token corresponding to a sensor name in each
noun phrase. Keyword Extractors determines a sensor name
by checking whether the token contains both alphabetical and
numeric characters. We use this heuristic since most library
names are alphanumeric, e.g., BMP280, DHT11, SHT31. If
the noun phrase does not contain a sensor name, the root noun
of the phrase is used as the keyword.

Tokenizer tokenizes each keyword ki ∈ K and yields a set
of tokenized keywords W = (w1, w2, . . . , wm) where wi ∈ W
corresponds to the subword tokenization result of each ki ∈ K.
Next, Retrieval Model converts each keyword wi ∈ W to a
vector and computes the similarity of this vector with all the
library name vectors, resulting in a list of K library names
for each keyword. Then, the top-K library names from each
keyword are gathered, resulting in an unordered list of K x m
library names. Here, K is the number of considered results
(i.e., top-K results), while m is the number of keywords.
Then, the results of K library names from each keyword
are gathered, resulting in an unordered list of K x m library
names. K is the number of the considered results (i.e., top-K
results), while m is the number of keywords. Finally, Ranker
outputs a ranked list of K library names.

B. Configuration Classifier

1) Training: Figure 7 (top side) shows the workflow of
Configuration Classifier in the training phase. The input of
Configuration Classifier is a library name and the output is a
trained encoder and a trained classifier that will be used in the
inference phase.

Fig. 7. The workflow of Configuration Classifier in the training and inference
phases.

Feature Retriever takes a library name as input and then
converts it to a library feature. To get the library feature,
Feature Retriever extracts the method definitions found in
the library’s implementation files. Next, Tokenizer receives
the library feature as input, then tokenizes it at the subword
level and appends a CLS token prefix. The result is a
tokenized feature F = (CLS, x1, . . . , xn), where xi ∈ F
indicates a subword token and n indicates the length of the
tokenized feature. Encoder receives the tokenized feature F
and converts each x ∈ F to a vector, resulting in a list
vectorized feature F ′ = (CLS′, x′

1, . . . , x
′
n). Next, the CLS′

token is fed to Classifier to predict the configuration class.
The predicted configuration and the corresponding label are
passed to the loss function to compute the loss. We compute
the loss using Binary Cross Entropy (BCE) to update the
Encoder and Classifier weights. The BCE equation is shown
in Equation 2, where yn indicates the label, xn indicates the
predicted hardware configuration class, and σ indicates the
sigmoid function.

LBinary−CE = −yn log(σ(xn))− (1− yn) log(1− σ(xn)) (2)

2) Inference: Configuration Classifier is ready to predict
the hardware configuration of the given input library name
in the inference phase. Figure 7 (bottom side) illustrates the
workflow of Configuration Classifier for the inference. The
workflow in the inference phase is similar to the workflow in
training phase. The difference is that there is no optimization
using the loss function.

C. Pattern Generator

Fig. 8. The workflow of Pattern Generator in the training and inference
phases.

1) Training: Figure 8 (top side) shows the workflow of
Pattern Generator in the training phase. Pattern Generator
receives a library name as input and outputs Trained Encoder
and Trained Decoder.
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Given a library name, Preprocessor appends the library
name with the class names, resulting in a set of pro-
cessed inputs P = (p1, p2, . . . , pn) where each pi ∈ P is
libname SEP classnamei and n is the number of class
names in a library that represent a hardware object. The
intuition behind appending the library name with a class
name is to give the encoder more information about which
API usage patterns to generate because a library may support
multiple hardware with different functionalities. For instance,
the library Adafruit ICM20X supports two different hardware,
i.e., ICM20649 and ICM20948. ICM20649 can read linear
acceleration and orientation values, while ICM20948 can
also read the magnetic field value besides acceleration and
orientation values. These two hardware have different API
usage patterns.

Tokenizer takes each pi ∈ P as input, then appends two spe-
cial tokens, i.e., BOS to indicate the beginning of a sequence
and EOS to indicate the end sequence. Then Tokenizer tok-
enizes the processed input at the subword level. The tokeniza-
tion result is BOS, l1, l2, . . . , la, SEP, c1, c2, . . . , cb, EOS
where a indicates the length of the tokenized library name
and b indicates the length of the tokenized class name. A
special token SEP is used to differentiate whether a to-
ken belongs to the library or class names. Afterward, En-
coder converts each subword token in the tokenized result
to a vector with a dimension d, resulting in a context vec-
tor BOS′, l′1, l

′
2, . . . , l

′
a, SEP ′, c′1, c

′
2, . . . , c

′
b, EOS′. Decoder

takes the context vector as input to generate the API usage
pattern. The generated API usage pattern and the ground
truth are passed to the loss function to compute the loss and
subsequently update the weights of Encoder and Decoder. We
leverage Cross-Entropy loss with softmax activation function
to train Encoder and Decoder.

2) Inference: Pattern Generator is ready to generate API
usage patterns given a library name as input. Figure 8 (bot-
tom side) shows the workflow of Pattern Generator for the
inference. The workflow in the inference phase is similar to
the workflow in the training phase. The difference is that there
is no optimization using the loss function.

IV. EXPERIMENTAL SETTINGS

This section explains the experimental setting of Arduino-
Prog. The experimental setting includes the training and
benchmark data collection, evaluated models, and evaluation
metrics. We explain the experimental setting of each compo-
nent in ArduinoProg as follows.

A. Library Retriever

1) Training: The training data consists of triplets, each
consisting of an anchor, a positive sample, and a negative
sample. The anchor is a library name. The positive sample is
a library that is relevant to the anchor, i.e., it interfaces with the
same type of hardware. Conversely, the negative sample is a
library that is irrelevant to the anchor. To construct training
triplets, we crawl 4,309 library names from the Arduino
library reference [2], belonging to 7 different categories. The

categories are communication, data storage, device control,
display, sensors, signal input/output, and timing. For each
library name, we extract the hardware name and remove the
frequent tokens. Then, we sample 50 positive and negative
samples. In the end, the total number of training triplets is
234,577.

2) Evaluation: The evaluation data consists of pairs, each
consisting of a query and a set of ground truth libraries. We
used 35 real-world question titles from our preliminary study
in Section II as the queries. We only use the question title as
the query because a question title summarizes and identifies
the key idea of the question, while the question body often
contains irrelevant information [15]–[17]. We observe that
posts in the forum often contain incomplete ground truths,
where the solution of a post only mentions the library from
a specific hardware manufacturer although the question title
does not specify the manufacturer’s name. To ensure the
completeness of the ground truth libraries, we collect them as
follows. First, we manually extract the hardware mentioned in
the query. Next, we use string matching to identify the libraries
from the Arduino library reference [2] that support the same
hardware. Specifically, we match the hardware name in the
query against the library name, description, and readme file
of each library in [2]. Then, we manually inspect the results
to remove any noises. In total, we have 35 pairs of a query
with the ground truth libraries.

3) Models: We instantiate Library Retriever with the fol-
lowing models, BM25 [19], BERT [20], DistillBERT [21],
RoBERTa [22], and CodeBERT [7]. We chose BM25 because
it is widely used for tackling lexical-based search problems.
We select BERT, RoBERTa, and CodeBERT to compare the
effects of different pretraining corpora. BERT and RoBERTa
are pretrained using human language corpora, while Code-
BERT is pretrained using code corpora. We chose DistillBERT
to evaluate the performance on a smaller deep learning model.

4) Metrics: We leverage Precision@K [23] to measure each
model’s performance. Precision@K measures the proportion
of relevant libraries in the result list. Precision@K ranges
from 0 to 1. Higher Precision@K is better; it means that the
result list contains more relevant results. Equation 3 shows the
formula to compute Precision@K.

Prec@K =
|{ground truths} ∩ {retrieved libraries@K}|

|{retrieved libraries@K|}
(3)

B. Configuration Classifier

1) Training: The training data for the classifier is a pair
of a library feature and a configuration class. Here, the
configuration class corresponds to the ground truth. To obtain
the library feature, we crawl 475 libraries from the Arduino
library reference [2] that belong to the sensors and signal
input/output categories. Then, we extract the cpp files from
these libraries and parse each file using tree-sitter [24] to
obtain the abstract syntax tree. Subsequently, we traverse
the abstract syntax tree and extract the method definitions.
For the configuration class, we manually label each library
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TABLE II
THE DISTRIBUTION OF THE CONFIGURATION CLASSES IN OUR DATASETS.

Dataset Split #UART #SPI #I2C #Explicit

475-libraries Train 8 20 75 49

475-libraries Validation 13 31 89 49

475-libraries Testing 11 40 90 51

real-queries Testing 5 23 156 118

with address-based (I2C), serial (SPI), asynchronous (UART),
or Explicit. We infer the label of each library by manually
inspecting the readme file and hardware datasheet, i.e., the
official specification document provided by the manufacturer.
Next, we create training, validation, and test sets from the 475
crawled libraries. We use stratified sampling to keep the class
distribution across different sets equal. The number of pairs
is 150 for the training set, 155 for the validation set, and 170
for the testing set.

2) Evaluation: The evaluation data is a pair of a library
feature and a configuration class. We evaluate the classifier
using the testing set obtained from splitting the initial 475
libraries. Additionally, we also evaluate the classifier using 35
real-world queries from our preliminary study in Section II.
We refer to this setting as ”real-queries”. In the second sce-
nario, we feed the queries into the retrieval model, which then
generates the top-10 library recommendations. We perform the
same steps for each recommended library to obtain the library
feature and configuration class. This evaluation scenario is
more challenging because the recommendations may belong
to categories that differ from the training data, such as display
and device control. The total number of testing data in the
second scenario is 290. The number is smaller than 350 (35
queries x 10 recommendations) because we exclude cases
where our heuristics fail to extract method definitions when
traversing an abstract syntax tree. The distribution of the
classes in the training and testing sets is shown in Table II.

3) Models: We leverage CodeBERT [7] as the encoder to
produce the vector representation of the library feature be-
cause CodeBERT has been pretrained using corpora containing
method definitions. For the classifier, we use the Dense layer,
Random Forest [25] (RF), and Support Vector Machine [26]
(SVM).

4) Metrics: We use AUC (Area Under the Curve) to
measure how well the model can correctly classify a library
into the correct communication protocol classes. We choose
AUC because it does not depend on the classifier threshold.
The AUC value ranges between 0 and 1, and a higher AUC
value indicates better class differentiation by the model than
a lower AUC value.

C. Pattern Generator

1) Training: The training data for the API usage pattern
generation is a pair of an input feature and an API usage
patterns. The input feature refers to the library name followed
by the filename used in the #include directive. We create the
training data by collecting 106,777 client codes from GitHub.
First, we check the #include directives to identify the libraries

used in the code, then extract the object declarations O =
(o1, o2, . . . , on). We only extract the object that corresponds
to the libraries listed in the official Arduino library reference.
Second, we extract all API usage patterns that belong to each
o ∈ O inside the setup and loop functions. We focus on the
setup and loop functions because the execution of Arduino
code always begins with the setup function followed by the
loop function. If the setup or loop functions invoke another
function, we also include the API usage patterns inside the
invoked function. We extract API usage patterns by traversing
the abstract syntax tree using tree-sitter. In the end, the total
number of training data is 84,222 pairs.

2) Evaluation: We leverage the code attached to 35 forum
posts that we have collected (see Section II) to create (input
feature, API usage patterns) pairs for our benchmark. First,
we manually identify the valid libraries used in each code
from the #include directives and object declarations. A valid
library refers to a library listed in the official Arduino library
reference [2]. Second, we manually extract the API usage
patterns of each identified library from the code. We manually
performed the data collection to ensure the reliability of the
benchmark. In the end, the total number of testing data is 31
pairs.

3) Models: We evaluate the following models to generate
API usage patterns, Co2BERT (CodeBERT2CodeBERT, a
Transformer sequence-to-sequence model [5] based on Code-
BERT [7]), PLBART [8], CodeT5 [9], and DeepAPI [10].
We choose Co2BERT, PLBART, and CodeT5 because they
have been proven to achieve competitive performance on the
code generation task. We choose DeepAPI, which leverages an
RNN architecture, to demonstrate that ArduinoProg is flexible
and can be initialized with any model, not just Transformers.

4) Metrics: We leverage NDCG [27] (Normalized Dis-
counted Cumulative Gain) to evaluate the generation perfor-
mance. We use NDCG because it considers two factors. First,
NDCG considers how close a result is to the ground truth using
a relevancy function. Second, NDCG weights the relevancy
score of a result by its ranking in the result list. The intuition
is because results at the lower ranking are less valuable as such
results are less likely to be examined by a user. Equation 5
shows the formula to calculate NDCG up to position K in the
result list.

DCG@K =

K∑
i=1

2reli − 1

log2(i+ 1)
(4)

NDCG@K =
DCG@K

ideal DCG@K
(5)

NDCG is computed as DCG divided by the ideal DCG.
Equation 4 computes DCG, where reli refers to the relevancy
measurement. We use the following relevancy metrics to
measure how close the generated sequence is to the ground
truth.
• ROUGE-n [28] measures the relevancy based on the number

of n-grams in the ground truth that appear in the result.
• METEOR [29] measures the relevancy based on the har-

monic mean of unigram precision and recall. METEOR also
considers the order of the generated result.
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• LCS (Longest Common Subsequences) measures the rele-
vancy by the longest common subsequences between the
ground truth and result divided by the ground truth length.

Moreover, ideal DCG@K is computed by setting the value of
reli with 1 (ideal value) for i ∈ [1,K].

V. EMPIRICAL RESULTS

A. Library Retriever

Table III shows the results of retrieval experiment using
Library Retriever.

TABLE III
THE RESULTS OF PRECISION@K ON THE LIBRARY RETRIEVAL

EXPERIMENT USING 5 DIFFERENT MODELS. THE PRECISION@K VALUES
ARE REPORTED IN PERCENTAGE.

K=1 K=5 K=10 K=1 K=5 K=10

BM25 37.1 29.1 25.4

CodeBERT 40.0 35.4 27.4 11.4 8.0 6.3

RoBERTa 34.3 23.4 16.9 17.1 12.6 12.0

BERT 48.6 28.0 21.4 22.9 16.0 14.0

DistillBERT 37.1 36.0 29.4 25.7 19.4 18.0

BM25 77.1 69.1 60.0

CodeBERT 97.1 67.4 54.0 68.6 33.1 22.0

RoBERTa 88.6 62.9 44.0 62.9 34.9 25.1

BERT 91.4 68.6 49.4 57.1 32.0 23.7

DistillBERT 91.4 65.7 52.0 71.4 42.3 30.0

52.1 35.4 26.1 44.6 25.3 17.0

23.9 23.6 17.9

2

1

Setting

Average Improvement of keyword extraction

Average Improvement of fine-tuning

Subword tokenizer + 

keyword extraction

Precision@K (%)

ModelQuery Preprocessing No Fine-tuning

Subword tokenizer

With Fine-tuning

First, the overall results show that the models that leverage
the keyword extraction in the query preprocessing steps per-
form better than those without the keyword extraction. The
keyword extraction can increase the performance of models
fine-tuned with Triplet loss by 26.1% to 52.1% on average.
For the models without fine-tuning, the improvements range
from 17.0% to 44.6%. Such results demonstrate that irrelevant
words in the query can lower the performance of the retrieval
models. Further discussion is in Section VI.

Takeaway 1: Our keyword extraction in the preprocessing step
is useful. It can improve the precision by 17.0% to 52.1% at
various values of K.

Second, the results indicate that fine-tuning using Triplet
loss on Transformer-based models (CodeBERT, RoBERTa,
BERT, DistillBERT) is beneficial. All fine-tuned models per-
form better than those without. The average improvements
range from 17.9% to 23.9%.

Takeaway 2: Fine-tuning using Triplet loss is beneficial because
it can improve the precision of the Transformer-based models
by 17.9% to 23.9% at various values of K.

Third, the overall results show that Transformer-based
models fine-tuned using Triplet loss outperform BM25 in
setting (1). However, BM25 can yield competitive results in
some cases, particularly in setting (2). The Transformer-based
models consistently outperform BM25 at K=1, but BM25’s
performance becomes competitive at K=5. Moreover, at K=10,

BM25 yields better results than the Transformer-based models.
These findings suggest that BM25 and the Transformer-based
models may complement each other when deployed in real-
world scenarios.

Takeaway 3: BM25 and the Transformer-based models can
yield competitive results in the setting (2). BM25 and the
Transformer-based models may complement each other.

B. Configuration Classifier

Table IV shows the results of the hardware classification
experiments on Configuration Classifier.

TABLE IV
THE AUC RESULTS ON THE HARDWARE CLASSIFICATION EXPERIMENT

USING 3 DIFFERENT CLASSIFIERS ON 2 TESTING DATA.

UART SPI I2C EXPLICIT

Dense 0.89 0.83 0.96 0.99 0.92

SVM 0.92 0.77 0.96 0.96 0.91

RF 0.96 0.88 0.98 0.99 0.95

Dense 0.66 0.68 0.91 0.90 0.79

SVM 0.82 0.81 0.87 0.89 0.85

RF 0.69 0.69 0.90 0.91 0.80

Average 

AUC

475-libraries

real-queries

Average AUC per Class
ClassifierTesting Set

As seen in Table IV, RF (RandomForest) yields the best
performance among the other classifiers in the 475-libraries
split with average AUC value of 0.95. On the other hand,
SVM performs the best on the real-queries split with average
AUC value of 0.85. Furthermore, all classifiers have lower
AUC values in the real-queries split compared to the 475-
libraries split. The possible reason for this discrepancy is that
the real-queries split contains libraries from categories other
than those within the training data. We confirm that the real-
queries split includes 96 libraries from the sensor, 63 libraries
from the device control, and 26 from the display, while the
training data only consists of the libraries that belong to the
sensor and signal input-output categories.

Takeaway 4: RF yields the best performance among the other
classifiers on the 475-libraries split with an AUC value of 0.95.
On the other hand, SVM achieves the best result on the real-
queries split with 0.85 AUC value.

C. Pattern Generator

Table III shows the results of API usage pattern generation
using Pattern Generator.

In terms of NDCG-ROUGE@K (NDCG@K measured with
ROUGE score), the best performing model is Co2BERT with
0.73, 0.69, and 0.69 at K=1, K=5, and K=10, respectively.
A high NDCG-ROUGE@K means that the individual APIs
in the ground truth sequences are most likely to appear in
the generated API sequences (unigram recall of the APIs in
the ground truth). Deep API and Co2BERT yield competitive
results at various K values in terms of NDCG-LCS@K.
The interpretation of NDCG-LCS@K is similar to NDCG-
ROUGE@K. However, NDCG-LCS@K considers the longest
common subsequences between the ground truth sequences
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TABLE V
THE NDCG@K RESULTS FOR THE API USAGE PATTERN GENERATION ON
4 DIFFERENT MODELS USING 3 RELEVANCY METRICS, I.E., ROUGE, LCS

(LONGEST COMMON SUBSEQUENCES), AND METEOR.SMU Classification: Restricted#

K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10
Co2BERT 0.73 0.69 0.69 0.65 0.60 0.59 0.53 0.45 0.42
PLBART 0.52 0.47 0.46 0.43 0.35 0.34 0.33 0.23 0.21
CodeT5 0.52 0.46 0.45 0.43 0.34 0.33 0.32 0.22 0.22
Deep API 0.71 0.69 0.69 0.64 0.62 0.62 0.53 0.46 0.45

Model
NDCG@K

ROUGE METEORLCS

and the generated API sequences instead of individual APIs
recall. The value of NDCG-LCS@K is lower than NDCG-
ROUGE@K, meaning that the models also tend to produce
APIs that do not appear in the ground truth sequence. We con-
firm such a fact by measuring NDCG-METEOR@K. NDCG-
METEOR@K is more strict than NDCG-ROUGE@K; it gives
a penalty if the order in the generated API sequences is
incorrect. The results in terms of NDCG-METEOR@K are
similar to NDCG-LCS@K; Deep API and Co2BERT perform
competitively. On the other hand, both PLBART and CodeT5
do not perform well in all the NDCG metrics.

Takeaway 5: Co2BERT and Deep API perform competitively
in terms of NDCG@K across different relevancy measurements.
On the other hand, PLBART and CodeT5 do not perform well.

VI. DISCUSSION

In this section, we discuss how irrelevant words in the
query can affect the performance of Transformer-based models
in Library Retriever. Next, we scrutinize the strengths and
pitfalls of BM25 in recommending relevant hardware. Then,
we discuss the performance of Configuration Classifier using
various classifiers that have been evaluated. After that, we
analyze why the generated API usage patterns from Pattern
Generator differ from ground truths.

A. Library Retriever

TABLE VI
THE EFFECT OF IRRELEVANT WORDS ON THE RANKING AND SIMILARITY

SCORES OF THE SAMPLED LIBRARIES.SMU Classification: Restricted#

Query (Ranking)-Prediction
Cosine 

Similarity
(1)-Adafruit_BMP280_Library 0.97
(2)-DFRobot_BMP280 0.97
(3)-Arduino-BMP388 0.74
(1)-Adafruit_BMP280_Library 0.83
(2)-DFRobot_BMP280 0.82
(3)-Arduino-BMP388 0.68
(2)-Adafruit_BMP280_Library 0.70
(1)-DFRobot_BMP280 0.73
(3)-Arduino-BMP388 0.63
(23)-Adafruit_BMP280_Library 0.48
(12)-DFRobot_BMP280 0.51
(14)-Arduino-BMP388 0.49

 (1) bmp280

(2) with bmp280

(3) above ground level 
with bmp280

(4) calculating altitude 
above ground level with 
bmp280

Table VI demonstrates that irrelevant words can lower the
similarity scores between a query and a set of libraries. As the
number of irrelevant words increases, the scores become lower.
Moreover, adding irrelevant words may change the prediction
ranking at some points, such as in query (3) and query (4).
Such results indicate that some words may have a greater
impact on the retrieval results than others.

Next, we discuss why BM25 yields good results. The ma-
jority of the queries contain a hardware name, and it is worth
noting that library names also often contain a hardware name.
For example, the library name ”Adafruit BMP280 Library”
contains ”BMP280”. As BM25 relies on lexical matching, it
can perform well on such queries. However, for the queries
that do not specifically mention a hardware name, BM25 fails
to return relevant libraries. An example of such a query is
”Need help with coding IR,” where IR refers to the type of
the sensor, i.e., infrared, rather than a specific sensor name.

B. Configuration Classifier

Table IV indicates that the dense classifier works well on
all classes in the 475-libraries split, with a 0.92 AUC score.
However, the results are lower on the real-queries split, i.e.,
0.79. In the previous section, we mentioned that the real-
queries split contains libraries from more diverse categories
than the 475-libraries split. Because the performance of the
dense layer in the 475-libraries split is high (i.e., 0.89 on
UART and 0.83 on SPI), the bad results on the real-queries
split may indicate that the dense classifier overfits certain
categories. The same trend is also observed when using the
RF classifier.

C. Pattern Generator

We select some representative examples of the API usage
patterns generated by the best-performing model to understand
the results better. Figure 9 shows several examples of the
generated API usage patterns. SMU Classification: Restricted#

Case 1
Hardware: Servo (actuator)
Ground Truth
attach -write
Predictions
(1) attach - write
(2) attach - writeMicroSeconds
(3) attach - write - detach

Case 2
Hardware: NovaSDS011 (dust sensor)
Ground Truth
begin - setWorkingMode - setDutyCycle - queryData
Prediction
(1) begin - setWorkingMode - getVersionDate - setDutyCycle - queryData
(2) begin - setWorkingMode - setDutyCycle - queryData
(3) begin - setWorkingMode - getVersionDate - queryData

Fig. 9. The examples of the generated API usage patterns. The API calls are
separated by ”-”.

We find that some of the generated API usage patterns are
valid, even though they are different from the ground truth.
The reason is that a library may have multiple valid patterns,
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as shown by the example in Case 1 of Figure 9. The API usage
pattern in Case 1 is used to control a servo. The attach method
initializes the connection to the controller. The subsequent API
call can be either the write or writeMicroSeconds method,
depending on which mechanism is preferred to control the
servo. Optionally, the servo can be detached using the detach
method after being attached. Although the second and third
usage patterns are different from the ground truth, these usage
patterns are still valid.

Moreover, the generated usage patterns can be different due
to calling optional APIs, as shown in Case 2 in Figure 9.
We find that the APIs can be categorized into two based on
their functionality: core and optional. In Case 2, the API usage
pattern is begin, setWorkingMode, and queryData. ”begin” is
used to initialize the connection to the controller, setWorking-
Mode is used to configure the working mode of the sensor,
and queryData is used to get the reading value from the sensor.
These APIs correspond to the core functionality and should be
invoked sequentially. On the other hand, getVersionDate and
setDutyCycle are optional APIs; getVersionDate is used to get
the firmware version, while setDutyCycle is used to overwrite
the default configuration of the duty cycle. These APIs can be
called in between the core APIs. If these optional APIs are
removed, the top-3 predictions become identical.

VII. RELATED WORKS

A. Developing Embedded System

Makhsari and Mesbah [3] scrutinize the challenges of
programming embedded systems in the context of IoT environ-
ments by analyzing the bugs and interviewing IoT developers.
The study [3] confirms that developers often find difficulty
when developing applications that involve hardware because
it often requires domain-specific knowledge. In the Arduino
domain, Booth et al. [1] conducted a user study by asking
developers to develop Arduino applications. The study demon-
strated that 80% of circuit-related problems are caused by
miswiring and missing electronic components. Moreover, both
experienced and beginner developers faced a problem despite
their level of expertise. As a consequence, a number of tools
have been proposed to help developers develop Arduino appli-
cations. TAC (Trigger-Action-Circuits) [11] allows developers
to specify hardware setups automatically using hand-crafted
templates. However, TAC is not scalable because developers
should manually create such templates for each hardware.
VirtualWire [12] allows developers to configure hardware
connections through software by leveraging a specialized
device. Similarly, CircuitSense [13] and SchemaBoard [14]
can visualize existing hardware connections in software using
specialized hardware. Such approaches [12], [14] only help
developers to test and debug problems; developers still rely
on their domain-specific knowledge to correctly configure the
hardware. Several interactive tutorial-based approaches have
also been proposed to guide developers to set up hardware
correctly, such as [30]–[33]. However, such approaches still
hand-crafted tutorials.

B. Recommending API Usage Patterns
Various techniques have been proposed to mine and generate

API usage patterns, such as MAPO [34], UP-miner [35], and
PAM [36]. MAPO and UP-miner leverage pattern mining
technique, while PAM use probabilistic model as the core
technique. FACER [37] recommends API usage patterns based
on code-examples. BIKER [38], [39] recommends API usage
patterns by leveraging the similarity of StackOverflow posts
and API documentation. Yuan et al. [40], [41] propose API
recommendation system for Android applications. Recently,
many deep learning-based models have been adapted to learn
API usage patterns. RecipeGen++ generates API sequences
specifically for trigger action programs [42], [43]. Ling et al.
develop a graph neural network using collaborative filtering to
recommend relevant API usage patterns [44]. DeepAPI [10]
leverage Recurrent Neural Network and attention mechanism
to generate API usage patterns.

VIII. CONCLUSIONS

Writing Arduino applications can be challenging due to
two main reasons. Firstly, developers may be required to
configure hardware that they are not familiar with. Secondly,
hardware libraries usually have specific usage patterns that
developers may not remember. To address these challenges,
we propose a framework called ArduinoProg for automating
Arduino programming. This framework has three main compo-
nents: Library Retriever, Configuration Classifier, and Pattern
Generator. Library Retriever recommends relevant hardware
libraries based on natural language queries, Configuration
Classifier recommends the hardware configuration by classify-
ing method definitions found in the libraries’ implementation
files to a configuration class, and Pattern Generator generates
sample API usage patterns using a sequence-to-sequence deep
learning model. We evaluate each component of ArduinoProg
using various models and real-world queries, and our results
show that they are promising for guiding Arduino developers.

Our study also suggests that further improvements can be
explored, such as incorporating more diverse features into
Configuration Classifier, adapting various ranking or clustering
techniques in Library Retriever, model training with more real-
world queries and Arduino documents, and evaluation with
actual developers. However, we leave such improvements as
future work.

IX. DATA AVAILABILITY

The implementation of ArduinoProg, labelling results, and
datasets are available on https://github.com/imamnurby/Ard
uProg.
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