
On the Generalizability of Neural Program Models with respect to
Semantic-Preserving Program Transformations

Md Rafiqul Islam Rabina, Nghi D. Q. Buic, Ke Wangb, Yijun Yud, Lingxiao Jiangc, Mohammad
Amin Alipoura

aUniversity of Houston, United States.
bVisa Research, United States.

cSingapore Management University, Singapore.
dThe Open University, UK.

Abstract

Context: With the prevalence of publicly available source code repositories to train deep neural

network models, neural program models can do well in source code analysis tasks such as predicting

method names in given programs that cannot be easily done by traditional program analysis tech-

niques. Although such neural program models have been tested on various existing datasets, the

extent to which they generalize to unforeseen source code is largely unknown. Objective: Since

it is very challenging to test neural program models on all unforeseen programs, in this paper,

we propose to evaluate the generalizability of neural program models with respect to semantic-

preserving transformations: a generalizable neural program model should perform equally well on

programs that are of the same semantics but of different lexical appearances and syntactical struc-

tures. Method: We compare the results of various neural program models for the method name

prediction task on programs before and after automated semantic-preserving transformations. We

use three Java datasets of different sizes and three state-of-the-art neural network models for code,

namely code2vec, code2seq, and GGNN, to build nine such neural program models for evaluation.

Results: Our results show that even with small semantically preserving changes to the programs,

these neural program models often fail to generalize their performance. Our results also suggest

that neural program models based on data and control dependencies in programs generalize better

than neural program models based only on abstract syntax trees (ASTs). On the positive side, we

observe that as the size of the training dataset grows and diversifies the generalizability of correct

predictions produced by the neural program models can be improved too. Conclusion: Our results

on the generalizability of neural program models provide insights to measure their limitations and

Preprint submitted to Journal of Information and Software Technology March 6, 2021

provide a stepping stone for their improvement.

Keywords: neural models, code representation, model evaluation, program transformation,

generalizability

1. Introduction

Abundance of publicly available source code repositories has enabled a surge in data-driven ap-

proaches to programs analysis tasks. Those approaches aim to discover common programming pat-

terns for various downstream applications [3] that are not easily achievable via traditional program

analysis techniques, e.g., prediction of data types in dynamically typed languages [23], detection

of the variable naming issues [4], or repair of software defects [17]. The advent of deep neural

networks has accelerated the innovation in this area and has greatly enhanced the performance

of these approaches. The performance of deep neural networks in cognitive tasks such as method

name prediction or variable naming has reached or exceeded the performance of other data-driven

approaches. The performance of neural networks has encouraged researchers to increasingly adopt

neural networks in program analysis tasks, giving rise to increasing uses of neural program models.

While the performance of neural program models continues to improve, the extent to which

they can generalize to new, unseen programs is still unknown, even if the programs are in the same

programming language. This problem is of more importance if we want to use them in downstream

safety-critical tasks, such as malware detection and automated defect repair. This problem is

particularly hard, as the interpretation of neural models that constitute the core reasoning engine

of neural program models remains challenging—especially for the complex neural networks (e.g.,

RNN) that are commonly used in the proposed neural program models.

A comprehensive understanding of the extent of generalizability of neural program models would

help developers to know when to use data-driven approaches and when to resort to traditional de-

ductive methods of program analysis. It would also help researchers to focus their efforts on devising

new techniques to alleviate the shortcomings of existing neural program models. Lack of knowledge

about the limits of neural program models may exaggerate their capability and cause careless ap-

plications of the neural program models on the domains that they are not suited for; or, spending

time and efforts on developing neural program models while a traditional, more understandable

technique can perform equally well or better.

2

Recently, we have seen a growing interest in the rigorous evaluation of neural program models.

Wang and Christodorescu [50] compared the robustness of different program representations under

compiler optimization transformations. They found that the program representations based on

static code features are more sensitive to such changes than dynamic code features. Allamanis

[1] evaluated the impact of code duplication in various neural program models and found that

code duplication in the training and test datasets inflated the performance of almost all current

neural program models. More recently, preliminary studies in this field started to emerge; e.g.,

Rabin et al. [40] proposed the idea of testing neural program models using semantic-preserving

transformations; Bui et al. [13] measured the impact of a specific code fragment by deleting it from

the original source code; Zhang et al. [58] proposed a sampling approach to generate adversarial

examples for code classification models; and Compton et al. [15] showed that the obfuscation of

variable names makes a model on source code more robust with less bias towards variable names.

Further, Yefet et al. [56] followed and proposed adversarial example generation for neural program

models using prediction attribution [45]; Ramakrishnan et al. [41] increased robustness of neural

representations of code by adding semantically equivalent programs to the training data; and Bielik

and Vechev [11] proposed an approach for increasing the robustness of neural program models for

type prediction based on finding prediction attribution, adversarial training, and refining source

code representations. Although these studies share the similar ultimate goal of evaluating and

improving the performance of neural program models with respect to unseen programs, there is

still a lack of systematic quantifiable metrics to measure the extent to which the neural program

models can generalize to unseen programs, and it would not be fair either to evaluate a neural

program model against all possible unseen programs that it was not designed for.

Goal. In this paper, we attempt to understand the limits of generalizability of neural program

models by comparing their behavior before and after semantic-preserving program transformations.

That is, how the results of a neural program model generalize to a semantically-equivalent program.

By limiting unseen programs to semantically equivalent ones and controlling the semantic-preserving

program transformations, we are able to provide a fair, systematic, quantifiable metric for evaluating

the generalizability of a neural program model.

In this paper, we report the results of a study on the generalizability of three highly-cited neural

program models: code2vec [7], code2seq [6], and GGNN [19]. To evaluate their generalizability, we

transform programs in the original datasets for testing to generate semantically-equivalent counter-

3

parts. We employ six semantic-preserving transformations that impact the structure of programs

(i.e. abstract syntax trees) with varying degrees, ranging from common refactoring, e.g., variable

renaming, to more intrusive changes such as changing for-loops to while-loops.

Our results suggest that all neural program models evaluated in this study are sensitive to

the semantic-preserving transformations; that is, the output of the neural program model would be

different on transformed programs compared to its output on the original programs. This sensitivity

remains an issue even in the cases of small changes to the programs, such as renaming variables

or reordering independent statements in a basic block. Moreover, our results suggest that neural

program models (e.g., GGNN) that encode data and control dependencies in programs generalize

better than the neural program models that are solely based on abstract syntax trees, and in most

cases the generalizability of a neural program model can be improved with the growth in the size

of training datasets.

The results of this study reveal that the generalizability of neural program models is still far from

ideal and require more attention from the research community to devise more generalizable models

of source code, or designing pre-processing techniques, e.g. canonicalizing program representations,

to increase immunity of neural program models to such program transformations.

Compared to closely related work by Yefet et al. [56] and Ramakrishnan et al. [41] where their

goals are adversarial code generation and increasing robustness of neural program models, this

paper provides a complementary view to the evaluation of neural program models by focusing on

the evaluation of generalizability of neural program models with a large number of transformations,

and in-depth analysis of changes in their behavior on transformed programs. This paper also

evaluates the impact of the size of datasets and programs on the generalizability of neural program

models.

Contributions. This paper makes the following contributions.

• We introduce the notion of generalizability with respect to semantic-preserving transformations

for neural program models.

• We perform a large-scale study to evaluate the generalizability of state-of-the-art neural program

models. We also provide insights into the generalizability of existing neural program models and

discuss their practical implications.

• We provide an in-depth analysis of changes in the prediction and evaluate the impact of the size

of datasets and programs on the generalizability of neural program models.

4

Figure 1: Variable Renaming on java-small/test/hadoop/ApplicationAttemptId.java file.

2. Motivating Example & Definition

We use code2vec [7] for exposition in this section. The code2vec [7] is a recent, highly-cited

(200+ citations as of Nov. 2020) neural program model that predicts the name of a Java method

given the body of the method. Such a neural program model can assist developers in classification

of methods, code similarity detection, and code search.

Figure 1 shows two semantically-identical methods that implement compareTo functionality.

The only difference between them is in the name of one of the variables. The left snippet in

Figure 1 uses other, while the code on the right uses var01. However, the code2vec outputs, i.e.,

predictions, on these semantically equivalent programs are drastically different. code2vec predicts

the snippet on the left to be compareTo function, and the function on the right to be getCount.

It seems that the predictions of code2vec rely much on the identifier names (e.g., other). This

reliance would make code2vec susceptible to a common refactoring such as variable renaming, and

would make it not generalize to the code snippets that are semantically the same, but are different

syntactically, even under common transformations.

Lack of generalizability would lead to distrust in the neural program models and hamper their

wider adoption and application. If such neural program models were to be deployed in the problem

settings wherein higher levels of generalizability are required, e.g., malware detection and bug

repair, it would be much better for the neural program models to demonstrate a high level of

generalizability with respect to certain metrics.

Generalizability. We define generalizability as the capability of a neural program model to return

1var0 is not an uncommon identifier name in Java as it appears in the training vocabulary of the datasets. At
the time of writing, a search on the GitHub returns more than 75K Java classes that use this identifier.

5

the same results under semantic-preserving transformations.

In this paper, we differentiate generalizability from the term robustness that is commonly used

in the neural network literature [46] for two main reasons. First, robustness is usually defined in the

face of adversarial examples that have security implications, while we do not generate adversarial

examples. Second, robustness implies imperceptible differences in the two focal inputs (e.g., minor

pixel changes in two images) that are hard to attain in a sparse domain such as source code; the

program transformations used in this paper often lead to perceptible changes of textual appearances

and syntactic structures in program code. We also note that our definition of generalizability

differs from what is used in [28] that evaluates the usefulness of a neural program model in various

downstream tasks.

Together with clearly defined semantic-preserving program transformations and their change

impact on the prediction results of neural program models (cf. Section 4), we aim to provide a

systematic quantifiable way to measure the generalizability of neural program models, and thus shed

lights on their capabilities and limits for future improvements. With the extensibility of the program

transformations and the measurements of their change impact, our evaluation approach may also

be extended to measure the generalizability of neural program models more comprehensively in the

near future.

3. Background

Most neural program models use neural network classifiers in their core components that take a

code snippet or a whole program as an input, and make predictions about some of its characteristics;

e.g., a bug prediction classifier that predicts the buggy-ness of statements in the input program.

Performance of a neural program model depends on three main factors: quality of data (i.e.,

source code for this study), the representation of data for the neural network, and the neural

network characteristics and its training parameters.

Quality of the data is concerned with the representativeness of data, and proper cleaning and

preprocessing of the data. Currently, most studies use open-source projects usually in mainstream

programming languages, e.g., C#, Java, C, or JavaScript. The available datasets for these tasks are

still very immature and not standardized, and their quality is somewhat unknown. For example, a

recent study by Allamanis [1] showed that virtually all available datasets suffer from code duplication

that can greatly impact the performance of neural program models.

6

The second factor affecting the performance of neural program models is source code represen-

tations. Since neural networks need to take vectors of numbers as direct inputs, source code embed-

dings are used to produce a vector representation of source code. The representation determines

which program features to include and how they should be represented in the vector embeddings.

The representations can be broadly categorized into two categories: static and dynamic. Static

program representations consider only the features that can be extracted from parsing texts of the

programs, while dynamic representations include some features pertaining to the real executions of

the programs.

The third factor impacting the performance of a neural program model is the characteristics—

e.g., type, topology, and hyper-parameters—of the neural networks it uses. There are numerous

choices of network architectures each with different properties. Currently, the class of recurrent

neural networks (e.g., LSTM) and graph neural networks are among the most popular architectures

in neural program models [7, 6, 19].

4. Evaluation Approach

Our approach for evaluating neural program models relies on a metamorphic relation that states:

the outputs of a neural program model should not differ on semantically-equivalent programs. To

this end, the evaluation approach is divided into two main steps: (1) generating new programs

using semantic-preserving transformations, and (2) comparing the outputs of a neural program

model before and after the transformations to compute generalizability metrics. We describe these

steps in the rest of this section.

4.1. Target Downstream Task

We use the method name prediction task [2, 5] in this work to evaluate the generalizability of

neural program models. The goal of the task is to predict the name of a method given the body of

the method. This task has several applications such as code search [35], code summarization [5],

and code analogies [7]. Figure 1 depicts an example of this task wherein neural program models

are given a method body and return candidate names for the method body, i.e., compareTo and

getCount. This task has been used as the downstream task to evaluate several state-of-the-art

neural program models [4, 7, 6].

7

4.2. Transformations

In this work, we only evaluate neural program models that take a method body as their input,

therefore, we use the following set of transformations that are applicable to method-level code to

generate semantically-equivalent methods. This set includes transformations ranging from common

refactoring like variable renaming to more intrusive ones like loop exchange. The goal is to evaluate

the generalizability of neural program models under a wide range of semantic-preserving changes

to the structure of a method.

• Variable Renaming (VN) is a refactoring that renames the name of a variable in a method.

The new name of the variable will be in the form of varN for a value of N such that N has not

been defined in the scope. VN is a widely-used refactoring for methods.

• Permute Statement (PS) swaps two independent statements (i.e., with no data or control

dependence) in a basic block of a method.

• Unused Statement (UN) inserts an unused string declaration to a randomly selected basic

block in a method. Unused variables in methods are a common malpractice by developers.

• Loop Exchange (LX) replaces for loops with while loops or vice versa.

• Switch to If (SF) replaces a switch statement in a method with an equivalent if statement.

• Boolean Exchange (BX) switches the value of a boolean variable in a method from true to

false or vice versa, and propagates this change in the method to ensure a semantic equivalence

of the transformed method with the original method.

Note that each transformation has different impact on the structure of methods as follows.

• The Variable Renaming transformation only changes the terminal values and does not affect the

structure of an AST.

• The Permute Statement transformation does not change the nodes, rather it only reorders two

subtrees in an AST.

• The Unused Statement transformation adds a few nodes into an AST, which increases the number

of paths in the AST.

8

• The Loop Exchange transformation extensively impacts an AST by removing and inserting nodes.

• The Switch to If transformation also impacts the AST of a method substantially by removing

and inserting nodes.

• The Boolean Exchange transformation alters the value of true or false and modifies the struc-

ture of an AST by removing or inserting unary-not nodes.

4.3. Generalizability Metrics

In this study, we define a few metrics to measure different results of a neural program model for

transformed programs and thus to quantify the generalizability of the neural program model.

Specifically, suppose M denotes a set of methods, given a semantic-preserving program trans-

formation T that takes a method and creates a set M ′ =
⋃

m∈M T (m) of transformed methods,

and a neural program model NPM : M → L, where L denotes a set of labels, maps methods to

labels. We evaluate the generalizability of NPM with respect to the transformation T , by com-

paring NPM(m) and NPM(m′) for m′ ∈ T (m) for m ∈ M . Ideally, the neural program model

should produce the same results on both m and m′, that is NPM(m) = NPM(m′). We define the

following metrics.

Prediction Change Percentage. We compute the prediction change percentage as follows:

PCP =
|{m′ ∈M ′|NPM(m) 6= NPM(m′)}|

|{m′ ∈M ′}|
∗ 100. (1)

The lower values of PCP for NPM would suggest higher a degree of its generalizability with respect

to the transformation.

Types of Changes. Considering that the correctness of predicted labels of the NPM , five types

of changes can happen:

(1) a correct prediction remains correct after the transformation,

(2) a correct prediction changes to a wrong prediction after the transformation,

(3) a wrong predicted label remains the same wrong label after the transformation,

(4) a wrong prediction changes to a correct prediction after the transformation,

(5) a wrong predicted label changes into a different, yet still wrong label after the transformation.

9

We use the following five metrics to denote the proportion of each of these cases in the experiments.

CCP, CWP, WWSP, WCP, and WWDP respectively denote the percentage of correct predic-

tions that stay correct, the percentage of correct predictions that become wrong, the percentage of

wrong predictions that stay to the same wrong prediction after the transformation, the percentage

of wrong predictions that become correct, and the percentage of wrong predictions that change to

a different wrong prediction after the transformation.

Precision, Recall, and F1-Score. We also use the traditional sub-token metrics (precision, recall

and F1-score) as commonly used in the literature for the method name prediction task [7, 6] in this

generalizability study. Suppose, tp denotes the number of true positive sub-tokens, fp denotes the

number of false positive sub-tokens, and fn denotes the number of false negative sub-tokens in the

predicted method names.

• Precision indicates the percentage of predicted sub-tokens that are true positives. It is the

ratio of the correctly predicted positive sub-tokens to the total number of predicted positive

sub-tokens: Precision = tp
tp+ fp

• Recall indicates the percentage of true positive sub-tokens that are correctly predicted. It is

the ratio of the correctly predicted positive sub-tokens to the total number of sub-tokens in

actual method names: Recall = tp
tp+ fn

• F1-Score is the harmonic mean of precision (P) and recall (R):

F1–Score = 2
P−1+R−1 = 2 . P .R

P +R

For example, a predicted name result compute has two sub-tokens result and compute, and is

considered as an exact match of the ground-truth name computeResult which also has the same

two sub-tokens (ignoring the case and the ordering of the tokens). Similarly, a predicted name

compute has 100% precision but only 50% recall with respect to the same ground truth, and

compute model result has 100% recall but only 67% precision.

5. Experimental Setting

5.1. Subject Neural Program Models

The task of method name prediction [5] has attracted some attention recently. We use three

neural program models that use different code representations and neural network characteristics

for the task: code2vec [7], code2seq [6], and GGNN [19].

10

code2vec [7] uses a bag of AST paths to model source code. Each path consists of a pair

of terminal nodes and the corresponding path between them in the AST. Each path, along with

source and destination terminals, is mapped into its vector embeddings which are learned jointly

with other network parameters during training. The separate vectors of each path-context are then

concatenated to a single context vector using a fully connected layer which is learned during training

with the network. An attention vector is also learned with the network; it is used to score each

path-context and aggregate multiple path-contexts to a single code vector representing a method

body. After that, the model predicts the probability of each target method name given the code

vector of the method body via a softmax-normalization between the code vector and each of the

embeddings of all possible target method names.

While code2vec uses monolithic path embeddings and only generates a single label at a time, the

code2seq [6] model uses an encoder-decoder architecture to encode paths node-by-node and generate

labels as sequences at each step. In code2seq , the encoder represents a method body as a set of AST

paths where each path is compressed to a fixed-length vector using a bi-directional LSTM which

encodes paths node-by-node. The decoder uses attentions to select relevant paths while decoding,

and predicts sub-tokens of a target sequence at each step when generating the method name.

In GGNN [19], a variety of semantic edges are added into the AST of a method body to construct

a graph, and the Gated Graph Neural Network (GGNN) is applied to encode such graphs [4]. The

initial embedding for a node of the graph is the concatenation between the node type embedding

and node token embedding. Then a fixed number of message passing steps are applied for a node

to aggregate the embeddings of its neighbors. The output of the GGNN encoder is then fed into a

bi-directional LSTM decoder to generate the method name as a language model of sub-tokens [19].

5.2. Datasets

We have used the code2seq dataset for training neural program models for the study. There are

three Java datasets based on the GitHub projects: Java-Small, Java-Med, and Java-Large.

• Java-Small: This dataset contains 9 Java projects for training, 1 for validation and 1 for

testing. Overall, it contains about 700K methods. The compressed size is about 366MB and

the extracted size is about 1.9GB.

• Java-Med: This dataset contains 800 Java projects for training, 100 for validation and 100

for testing. Overall, it contains about 4M methods. The compressed size is about 1.8GB and

11

Table 1: Performance of trained models for method name prediction in the testing dataset.

Model Dataset
Original methods in

the testing dataset
Precision Recall F1-Score

code2vec

Java-Small 44426 28.36 22.37 25.01

Java-Med 351628 42.55 30.85 35.76

Java-Large 370930 45.17 32.28 37.65

code2seq

Java-Small 44426 46.30 38.81 42.23

Java-Med 351628 59.94 48.03 53.33

Java-Large 370930 64.03 55.02 59.19

GGNN

Java-Small 44426 49.12 47.18 48.59

Java-Med 351628 58.30 47.49 52.34

Java-Large 370930 60.76 50.32 55.23

the extracted size is about 9.3GB.

• Java-Large: This dataset contains 9000 Java projects for training, 200 for validation and

300 for testing. Overall, it contains about 16M methods. The compressed size is about 7.2GB

and the extracted size is about 37GB.

5.3. Training Models per Datasets

The authors of code2vec and code2seq have made the source code public for training and evalu-

ating their models. For GGNN , the implementation of the network is available but the code graph

generation is not; so we re-implement the step to generate graphs. We use the parser SrcSlice2, an

extension of SrcML3, to produce data dependency edges among AST nodes for training GGNN .

We train each model for the method name prediction task with the configurations described

in their original papers on each of the three aforementioned datasets, and thus construct three

code2vec, three code2seq , and three GGNN neural program models. Similar to the state-of-the-art

approaches, i.e. [7, 6], we train models on the training set, tune on the validation set for maximizing

F1-score, and finally report results on the unseen testing set. Table 1 summarizes the performance

of trained models for method name prediction on the testing set. While the performance of our

trained models for code2seq is on par with to the ones reported in the corresponding paper [6], the

performance of code2vec did not reach the performance reported in [7], due to the differences in the

dataset. However, the performance of our trained code2vec models is similar to the one reported

in [6]. For GGNN , the performance is reasonably different from what were reported in [19] for

2https://github.com/srcML/srcSlice
3https://www.srcml.org/, +400 node types for supporting multiple programming languages

12

mainly three reasons: (1) the ASTs produced by our parser are different, (2) the extraction of some

types of semantic edges proposed in [19] requires expensive analysis of the methods; therefore, we

implemented and included only a subset (seven out of ten) of semantic edges into the ASTs when

constructing the graphs, and (3) the datasets are different.

5.4. Population of Transformed Programs

We have used our own tool based on the JavaParser4 library to transform Java methods.

Henceforth we use terms program and method interchangeably. Two authors were involved in

the implementation, testing and code review. We have performed manual inspection of sample

transformed programs to ensure correctness of the transformations.

We have applied the applicable transformations to the methods available in the testing data

of the three datasets mentioned in Section 5.2. The number of original methods in our study is

1, 415, 116,5. Overall, the number of original methods with incorrect predictions is, on average, 2.8

times higher than the number of methods with correct predictions.

We create a set of single-place transformed programs (Table 2) by applying transformations

to each eligible location in methods separately resulting in 2, 822, 810 transformed methods; e.g.,

if a method has three eligible locations for a transformation, we would generate three distinct

methods by transforming each individual location separately. The types and number of applicable

transformations vary from a method to another. Therefore, in our approach, different methods,

based on the language features that they use, produce a different number of transformed programs.

In total, the number of transformed programs generated from the programs with incorrect initial

predictions is much higher (4.2x and higher) than the number of transformed programs generated

from the programs with correct initial predictions, which may suggest that programs with correct

predictions may be smaller and simpler.

Artifacts. The source code of the transformation tool and transformed datasets used in this paper

are publicly available at https://github.com/mdrafiqulrabin/tnpa-generalizability/.

5.5. Research Questions

In this paper, we seek to answer the following research questions.

4https://github.com/javaparser/javaparser
5This total number is different from the numbers in Table 1 because a method in the testing dataset may contain

code elements eligible for multiple types of transformations and be counted multiple times.

13

https://github.com/mdrafiqulrabin/tnpa-generalizability/

Table 2: Prediction Change Percentage (PCP) across all models, datasets, and transformations.

Transformation Dataset # Original methods # Transformed methods
Prediction change (%) (PCP)

code2vec code2seq GGNN

Variable Renaming

Java-Small 31113 123123 54.92 57.16 28.17

Java-Med 235961 771208 46.55 48.75 35.96

Java-Large 252725 916565 42.06 47.04 31.92

Weighted Average = 44.85 48.46 33.39

Boolean Exchange

Java-Small 1158 1519 53.85 54.31 29.37

Java-Med 6407 8840 50.35 44.71 33.74

Java-Large 8868 12107 47.80 51.43 31.98

Weighted Average = 49.21 48.98 32.50

Loop Exchange

Java-Small 3699 5160 59.38 52.54 31.66

Java-Med 17107 23533 62.77 45.29 36.67

Java-Large 35565 49665 46.52 42.51 31.75

Weighted Average = 52.25 44.01 33.22

Switch to If

Java-Small 246 259 68.73 61.78 31.45

Java-Med 3312 3839 59.91 41.60 43.73

Java-Large 10478 11165 30.33 29.08 45.50

Weighted Average = 38.42 32.78 44.82

Permute Statement

Java-Small 3397 9169 72.80 57.32 26.36

Java-Med 16150 44711 65.44 42.64 34.09

Java-Large 21956 74973 64.38 41.93 26.32

Weighted Average = 65.35 43.27 29.02

Unused Statement

Java-Small 44426 44426 39.97 45.60 28.34

Java-Med 351621 351621 35.80 40.25 42.79

Java-Large 370927 370927 31.21 37.44 35.67

Weighted Average = 33.82 39.20 38.51

RQ1 How do the transformations impact the predictions of neural program models in the single-

place transformed dataset?

RQ2 When do the transformations affect neural program models the most?

RQ3 How does the method length impact the generalizability of neural program models?

RQ4 What are the trends in types of changes?

RQ5 How do the transformations affect the precision, recall and F1-score of the neural program

models?

6. Results

6.1. RQ1: Impact of Transformations on the Predictions of Neural Program Models

Table 2 shows the prediction change percentage (PCP) of the neural program models for each

transformation and dataset. In this table, “# Original methods” denotes the number of methods

eligible for the corresponding transformation, “# Transformed methods” denotes the number of

14

methods generated as the result of applying the corresponding transformations on the original

methods, and “Prediction change (%)” denotes PCP as defined in Section 4. “Weighted Average”

provides the weighted average of PCP for each transformation and neural models. The bold values

in the Table 2 highlight the minimum value of PCP for the transformations. Since a transformation

can be applied in more than one place separately in a method body, the number of transformed

methods can be larger than the number of original methods.

As Table 2 depicts, all neural program models are likely to susceptible to semantic-equivalent

transformations; however, the impact of transformations on PCP differs among different neural

networks and datasets. Overall, GGNN seems less prone to prediction changes; in 14 out of 18

cases, PCP in GGNN is significantly less than code2vec and code2seq . Moreover, in four out of six

transformations, the weighted average of PCP for GGNN is lower than the rest.�
�

�

Observation 1: In most cases, GGNN seems less susceptible to prediction changes under

semantic-preserving transformations, compared to code2vec and code2seq .

Within code2vec, code2seq , and GGNN , the PCP trend varies for different transformations and

datasets. code2vec is comparatively most sensitive to Permute Statement on all datasets. On the

other hand, code2seq is most vulnerable to Switch to If in Java-Small, Variable Renaming in

Java-Med, and Boolean Exchange in Java-Large. In GGNN , Switch to If is the most powerful

transformation on all datasets. In most cases, for code2vec and code2seq , the PCP for Unused

Statement is comparatively less than the other transformations, except for code2seq in Java-Large

where Switch to If is less sensitive. In GGNN , Permute Statement is a comparatively less powerful

transformation than others on all datasets. Overall, based on the weighted average, it is likely

that, code2vec is most sensitive to Permute Statement and least sensitive to Unused Statement ,

code2seq is most sensitive to Boolean Exchange and least sensitive to Switch to If , and GGNN is

most sensitive to Switch to If and least sensitive to Permute Statement .

Based on the weighted average, GGNN performs worst for Switch to If and Unused Statement

transformations. These two transformations add some additional nodes and paths in the AST. For

code2vec and code2seq , if models give less attention to those new paths, then the change can less

effective. However, GGNN works by using a message passing mechanism among the nodes with a

limited number of passing steps. In Unused Statement , because there is some irrelevant information

added into the code, the passing steps in GGNN can capture this information and ignore other

useful information, thus having a strong impact on the prediction results. In Switch to If , because

15

the structure of the AST is modified by adding and removing nodes, and GGNN is a node-based

method, i.e., combining node information with message passing, thus the GGNN can sensitive to

node modification in the AST for Switch to If .

Table 2 also supports that, in most cases, Permute Statement is more powerful than Variable

Renaming in code2vec model whereas Variable Renaming is more powerful than Permute Statement

in code2seq model. This is probably caused by the real-value embeddings of AST paths are different

for code2vec and code2seq . In code2vec, an embedding matrix is initialized randomly for paths and

learned during training, that contains rows that are mapped to each of the AST paths. On the

other hand, in code2seq , each node of a path comes from a learned embedding matrix, and then a

bi-directional LSTM is used to encode each of the AST paths separately. The bi-directional LSTM

reads the path once from beginning to the end (as original order) and once from end to beginning

(in reverse order). Therefore, the order changes by Permute Statement may become less sensitive

to code2seq than code2vec.

Another observation is that, in most cases of code2vec and code2seq , the PCP of the transfor-

mations in Java-Small is high, and it is significantly lower on larger datasets, i.e., Java-Med,

and Java-Large. In GGNN , the PCP of the transformations shows a different trend: lowest in

Java-Small, in most cases, and highest in Java-Med.�
�

�

Observation 2: In most cases, the effect of prediction change for code2vec and code2seq is

reduced as the dataset size increases, compared to GGNN .

6.2. RQ2: When Transformations Affect Neural Program Models the Most?

6.2.1. Single-place transformation vs. All-place transformation

In our analysis, thus far, if a program has multiple candidates for a transformation, say n

candidates, for transformation, we only apply them one at the time and end up with n distinct

transformed programs. We call this single-place transformation. Alternatively, we can apply the

transformations to all candidate locations in the program simultaneously to create only one trans-

formed program. We call this all-place transformation. We evaluate the generalizability of neural

program models under all-place transformation for the following transformations: Variable Renam-

ing , Boolean Exchange, Loop Exchange, and Switch to If . Note that the all-place transformation

is not applicable to Permute Statement and Unused Statement transformations, as we apply the

Permute Statement on a pair of statements and the Unused Statement on a random block.

16

(a) code2vec (b) code2seq (c) GGNN

Figure 2: Prediction Change Percentage (PCP) in single-place vs. all-place transformations.

Figure 2 compares the impact of single-place transformation and all-place transformation on

the prediction changes in all neural program models. For the code2vec model, the percentage of

prediction change for the all-place transformation is higher than the single-place transformation by a

good margin for all the cases. Similarly, for the code2seq model, the percentage of prediction change

for the all-place transformation is higher than the single-place transformation by a good margin

except for the case (Switch to If , Java-Small). After a closer examination of Java-Small dataset

and Switch to If transformation, we observe that the number of transformed methods for all-place

is only 13, which is too low to provide comparative insight. For the GGNN model, the difference

between all-place transformation and single-place transformation is relatively very small compared

to the code2vec and code2seq models. Even for (Boolean Exchange, Java-Small + Java-Med),

(Loop Exchange, Java-Med + Java-Large), and (Switch to If ,Java-Large), the percentage of

prediction changes for the single-place transformation is higher than the all-place transformation.

The results may suggest that the performance of GGNN under single-place transformations and

all-place transformations is almost consistent.�

�

�

�
Observation 3: While all-place transformations are more likely to induce prediction changes

in code2vec and code2seq than single-place transformations, the performance of GGNN re-

mains relatively similar under both types of transformations.

6.2.2. Correctly predicted methods vs. Incorrectly predicted methods

We also evaluate the generalizability of neural program models under correctly and incorrectly

predicted methods. Figure 3 compares the impact of correctly predicted methods and incorrectly

predicted methods on the prediction changes in all neural program models. In the code2vec model,

the percentage of changes in predictions after transformation in the correctly predicted methods

17

(a) code2vec (b) code2seq (c) GGNN

Figure 3: Prediction Change Percentage (PCP) on correctly vs. incorrectly predicted methods.

ranges from 10.45% to 42.86%, while, in the incorrectly predicted methods, a larger portion of trans-

formations, 38.18% to 76.00%, change the prediction of code2vec. Similarly, in the code2seq model,

the percentage of changes in predictions after transformation in the correctly predicted methods

and in the incorrectly predicted methods ranges from 9.19% to 36.36% and 46.66% to 62.90%,

respectively. However, in the GGNN model, while the percentage of changes in predictions after

transformation on the correctly predicted methods ranges from 1.90% to 8.58%, the percentages

range from 31.05% to 62.01% in the incorrectly predicted methods.�

�

�

�
Observation 4: It is likely that GGNN is more stable than code2vec and code2seq in the

originally correct methods, and the changes in prediction happen more frequently in the

originally incorrect methods for all models.

6.2.3. The Effect of X%-Transformation

In this section, we evaluate the generalizability of neural program models under X%-

transformation for the following transformations: Variable Renaming , Boolean Exchange,

Loop Exchange, and Switch to If . Note that we apply the Permute Statement on a pair of

independent statements and the Unused Statement on one randomly selected block in a method,

and thus X%-transformation is not suitable for them. If a transformation t is applicable to n

locations in a method body, X%-transformation randomly picks bn∗X100 c of those locations and

applies t to create a new transformed program. The number of all X%-transformed programs

grows exponentially with the number of locations; therefore, to manage the complexity, in

X%-transformation we randomly pick the locations in a method body, instead of considering all

possible combinations, to create transformed programs. We study the X%-transformation with

X = {25, 50, 75}. For each transformation t, we first create a dataset d4t that contains methods

18

Table 3: The PCP for X%-transformations across different datasets and models.

Dataset Transformation # Transformed
methods

25% Transformation 50% Transformation 75% Transformation

code2vec code2seq GGNN code2vec code2seq GGNN code2vec code2seq GGNN

Java-Small

Variable Renaming 15937 63.29 54.36 29.56 71.88 65.89 29.87 75.18 70.57 30.36

Boolean Exchange 75 80.00 63.00 37.70 79.67 64.67 36.07 79.66 64.66 32.79

Loop Exchange 302 81.95 65.90 32.44 81.87 65.98 32.44 81.38 65.56 34.73

Switch to If 0 - - - - - - - - -

Java-Med

Variable Renaming 101003 54.07 46.51 37.18 62.65 57.77 38.91 66.51 63.20 37.88

Boolean Exchange 428 69.66 48.20 31.37 70.50 48.60 30.97 70.91 47.49 31.17

Loop Exchange 1292 86.01 55.11 28.72 86.11 57.37 26.29 85.37 57.62 29.01

Switch to If 98 82.91 43.62 55.42 84.44 44.90 50.00 89.03 45.16 57.08

Java-Large

Variable Renaming 114748 45.62 43.23 33.37 53.32 53.99 35.75 56.98 58.83 34.59

Boolean Exchange 642 71.81 59.03 28.18 71.09 62.76 31.76 71.93 62.03 30.40

Loop Exchange 2899 79.77 56.00 25.96 79.02 56.79 27.41 78.57 56.92 27.05

Switch to If 125 69.00 56.00 34.78 73.60 56.40 32.36 73.60 56.60 34.95

with four or more possible locations, so that the transformation t is applicable to each method

for each X = {25, 50, 75}, e.g., methods with at least four variables for Variable Renaming . To

account for the randomness, we run each setting five times and report the average results, except

for the GGNN that we run only three times due to the longer graph construction and processing

time.

Table 3 shows the results of the X%-transformations. In each X%-transformation, GGNN

has a much lower PCP value than the code2vec and code2seq models for all the transformations

across the three Java datasets. Moreover, in GGNN models, the differences of PCP under different

X are relatively small (mostly a few percentage points) and do not yield a clear trend. On the

other hand, in code2vec and code2seq models, with the Variable Renaming transformation, the PCP

tends to increase as X grows, but with other transformations expect Variable Renaming , the PCP

shows modest changes only. Note that in X%-transformation, compared to Variable Renaming ,

the numbers of transformed programs for other transformations are much lower, which might be

too low to provide statistical significance or comparative insights.�

�

�

�
Observation 5: The performance of GGNN in terms of PCP remains similar in all cases

under X%-transformation, but the PCP of code2vec and code2seq for Variable Renaming

increases as X grows.

6.3. RQ3: Impact of Method Length on Generalizability

An important metric of interest might be the generalizability in terms of the number of state-

ments in the methods. Figure 4 depicts the relation between the length of methods and the pre-

diction changes percentage (i.e., PCP) in the single-place transformed data. In the figure, the

19

(a) code2vec (Java-Small) (b) code2vec (Java-Med) (c) code2vec (Java-Large)

(d) code2seq (Java-Small) (e) code2seq (Java-Med) (f) code2seq (Java-Large)

(g) GGNN (Java-Small) (h) GGNN (Java-Med) (i) GGNN (Java-Large)

Figure 4: Prediction Change Percentage (PCP) across the number of statements in methods.

“Number of statements in method” denotes the number of executable lines in the body of methods

before the transformation.

As shown in Figure 4(a-f), in most cases, the code2vec and code2seq models exhibit notable in-

creases in PCP for all the transformations and datasets as the number of lines in methods increases.

However, looking at Figure 4(g-i), it seems that GGNN is less sensitive to the number of lines in

methods compared to code2vec and code2seq with respect to the transformations.�
�

�

Observation 6: The code2vec and code2seq show notable increases in PCP as the length

of methods grows, but PCP in GGNN seems to be less sensitive to the length of methods.

20

Table 4: The detailed PCP across all models, datasets, and transformations.

Dataset Transformation
CCP CWP WWSP WCP WWDP

code2vec code2seq GGNN code2vec code2seq GGNN code2vec code2seq GGNN code2vec code2seq GGNN code2vec code2seq GGNN

Java-Small

Variable Renaming 2.32 3.75 15.76 1.18 1.65 0.59 42.76 39.09 56.08 0.57 1.21 0.54 53.17 54.30 27.03

Boolean Exchange 3.88 4.54 22.25 0.72 2.57 0.43 42.26 41.15 48.38 1.38 1.65 0.58 51.76 50.09 28.36

Loop Exchange 1.86 4.24 16.23 0.74 0.74 0.89 38.76 43.22 52.11 0.72 1.10 0.62 57.92 50.70 30.15

Switch to If 1.54 2.70 26.61 1.16 1.54 1.61 29.73 35.52 41.94 0.00 1.93 0.40 67.57 58.31 29.44

Permute Statement 4.64 3.96 16.86 1.35 1.28 0.80 22.57 38.72 56.78 1.93 1.27 0.27 69.51 54.77 25.29

Unused Statement 8.08 10.40 20.97 1.73 3.20 0.82 51.96 44.00 50.69 0.60 1.40 0.79 37.63 41.00 26.73

Java-Med

Variable Renaming 7.56 9.41 20.39 2.81 3.90 1.18 45.89 41.85 43.65 0.80 1.54 1.22 42.94 43.30 33.56

Boolean Exchange 12.76 13.90 27.83 1.79 1.91 1.00 36.89 41.39 38.42 1.45 1.97 1.03 47.11 40.83 31.72

Loop Exchange 6.61 7.62 20.93 2.21 1.71 1.09 30.62 47.09 42.40 1.22 1.33 1.23 59.34 42.25 34.35

Switch to If 11.15 17.90 31.28 5.99 2.94 2.93 28.94 40.51 24.99 2.45 2.27 1.85 51.47 36.38 38.95

Permute Statement 11.53 14.55 25.47 4.31 1.57 1.09 23.03 42.81 40.44 2.05 1.57 1.29 59.08 39.50 31.71

Unused Statement 16.90 21.58 25.07 3.24 5.22 1.83 47.30 38.18 32.13 0.79 1.41 1.67 31.77 33.61 39.30

Java-Large

Variable Renaming 15.40 14.54 14.57 3.25 4.69 0.77 42.55 38.42 53.51 1.40 2.32 1.13 37.40 40.03 30.02

Boolean Exchange 11.33 10.14 13.97 2.09 2.92 0.79 40.87 38.42 54.06 2.00 2.92 1.13 43.71 45.60 30.05

Loop Exchange 19.81 18.87 13.29 3.00 2.49 0.28 33.67 38.62 54.96 2.13 2.30 1.13 41.39 37.72 30.34

Switch to If 48.30 52.23 9.30 5.63 5.28 0.27 21.37 18.68 45.20 4.09 2.80 0.68 20.61 21.01 44.55

Permute Statement 11.13 13.35 21.89 6.66 2.17 1.27 24.49 44.72 51.79 2.89 2.82 0.96 54.83 36.94 24.09

Unused Statement 24.31 26.57 22.28 3.75 5.95 1.19 44.47 35.99 42.05 0.85 1.81 1.24 26.62 29.68 33.24

21

6.4. RQ4: Trends in the Types of Changes

Table 4 shows the full breakdown of the proportion of different types of changes after the

transformation of methods. In this experiment, we use the same single-place transformed data that

have been used for the PCP in Table 2. In code2vec and code2seq , the value of CCP increases with

increase in the size of datasets. It may suggest that with a larger dataset the neural program model

can generalize the correct predictions better.

In addition, we calculate CWP
CCP+CWP to approximate the ratio of cases that the neural pro-

gram model’s prediction switches from correct to wrong after transformations with respect to all

the cases whose initial predictions are correct. The ratio helps us to simplify the comparison of

(in)generalizability across different models. On average, 23% and 20% of cases, the neural program

model switches from a correct prediction to a wrong one in code2vec and code2seq , respectively. In

GGNN , on the other hand, this switch happens in less than 5% of transformations.

Similarly, WCP
WWSP+WWDP+WCP approximates the ratio of cases switching from a wrong pre-

diction to a correct prediction after transformations with respect to all the cases whose initial

prediction are wrong. In code2vec and code2seq , a transformation switches from a wrong prediction

to correct prediction in less than 3% of cases, however, this switch happens in around 1% of trans-

formations for GGNN . Higher CWP
CCP+CWP than WCP

WWSP+WWDP+WCP implies that transformations

are likely to reduce the overall performance of the neural program models.�

�

�

�

Observation 7: Transformations are likely to decrease the overall performance of neural

program models, and they are more likely to change the correct prediction in code2vec and

code2seq than GGNN , while the generalizability of code2vec and code2seq can be compen-

sated by larger datasets more than GGNN .

6.5. RQ5: Impact of the Transformations on Precision, Recall, and F1-Score

The performance of neural program models in the literature are often measured in classic met-

rics, such as precision, recall, and F1-score. In particular for the method name prediction task

trained for code2vec, code2seq and GGNN , subtoken-level comparison is used to calculate the

metrics; i.e., the method names in both predicted results and ground-truth names are split into

individual tokens for the measurements (cf. the definitions in Section 4.3).

We also study the impact of the program transformations on the performance of

neural program models in terms of these classic metrics. Table 5 shows the changed preci-

sion, recall, and F1-scores for the programs transformed by different transformations. In this

22

Table 5: The precision, recall and F1-score for subtokens across all models, datasets, and transformations.

Dataset Transformation # Transformed
methods

Precision Recall F1-Score

code2vec code2seq GGNN code2vec code2seq GGNN code2vec code2seq GGNN

Java-Small

Variable Renaming 123123 9.79 38.01 40.64 5.05 28.99 23.78 6.66 32.89 30.00

Boolean Exchange 1519 8.97 33.58 41.19 5.36 26.94 25.93 6.71 29.90 31.83

Loop Exchange 5160 9.08 34.52 39.50 5.22 26.08 23.40 6.63 29.71 29.39

Switch to If 259 7.01 30.78 38.32 4.99 26.41 30.16 5.83 28.43 33.75

Permute Statement 9169 11.21 33.11 45.73 5.64 25.52 22.95 7.50 28.82 30.56

Unused Statement 44426 21.26 50.99 44.37 13.63 41.12 31.36 16.61 45.53 36.75

Weighted Average = 12.60 40.76 41.77 7.16 31.65 25.59 9.11 35.62 31.66

Java-Med

Variable Renaming 771208 20.90 43.57 39.71 10.89 28.98 22.24 14.32 34.81 28.51

Boolean Exchange 8840 22.29 40.72 42.26 13.95 29.02 24.72 17.16 33.89 31.19

Loop Exchange 23533 18.29 39.25 42.00 10.06 26.55 23.10 12.98 31.67 29.81

Switch to If 3839 30.24 51.49 47.67 20.89 39.56 34.65 24.71 44.74 40.13

Permute Statement 44711 24.29 38.75 39.79 12.99 28.26 23.35 16.93 32.68 29.43

Unused Statement 351621 32.87 55.79 44.11 21.56 43.15 30.03 26.04 48.66 35.73

Weighted Average = 24.51 46.88 41.09 14.12 33.08 24.63 17.87 38.74 30.74

Java-Large

Variable Renaming 916565 35.17 48.79 32.80 20.83 38.14 20.46 26.16 42.81 25.20

Boolean Exchange 12107 27.30 42.90 23.82 15.83 33.19 16.54 20.04 37.43 19.52

Loop Exchange 49665 37.60 46.79 25.28 23.91 37.91 18.75 29.23 41.88 21.53

Switch to If 11165 69.34 72.75 22.68 57.06 66.18 21.81 62.60 69.31 22.24

Permute Statement 74973 25.56 43.88 32.56 14.62 33.28 21.37 18.60 37.85 25.80

Unused Statement 370927 44.96 61.57 45.43 30.40 52.44 29.93 36.27 56.64 36.09

Weighted Average = 37.48 51.90 35.64 23.32 41.75 22.87 28.72 46.25 27.85

experiment, we use the same single-place transformed data that have been used for the PCP in

Table 2.

In comparison with Table 1, we can see the average precision, recall, and F1-score in Table 5

have obvious decreases for all the three neural program models across the three Java datasets, that

may indicate the (negative) impact of the transformations on the neural program models.

We also find no obvious correspondence between the PCP shown in Table 2 and the changes

in precision, recall, and F1-score; high PCP does not necessarily lead to high changes in precision,

recall and F1-score and vice versa.'

&

$

%

Observation 8: Neural program models seem susceptible to semantic-preserving transfor-

mations with respect to the classic metrics of precision, recall, and F1-score as well. While

our new metric of Prediction Change Percentage (PCP) shows the impact of the transforma-

tions from a different and more fine-grained perspective, the changes in the classic metrics

are not correlated with PCP.

7. Discussion

In this paper, we study the current state of generalizability in neural program models built on

code2vec, code2seq , and GGNN . Although limited, it provides interesting insights. In this section,

23

we discuss why neural networks have become a popular, or perhaps the de-facto, tool for processing

programs, and what are the implications of using neural networks in processing source code.

Neural networks constitute a powerful class of machine learning models with a large hypothesis

class. For instance, a multi-layer feed-forward network is called a universal approximator, meaning

that it can essentially represent any function [25]. Unlike traditional learning techniques that require

extensive feature engineering and tuning, deep neural networks facilitate representation learning.

That is, they are capable of performing feature extraction out of raw data on their own [32]. Given

a sufficiently large dataset, neural networks with adequate capabilities can substantially reduce

the burden of feature engineering. Availability of a large number of code repositories makes data-

driven program analysis a good application of neural networks. However, it is still unknown if

neural networks are the best way to process programs [24] vs. [29].

Although the large hypothesis class of neural networks and feature learning make them very

appealing to use, the complex models built by neural networks are still too difficult to understand

and interpret. Therefore, as we apply neural networks in program analysis, we should develop

specialized tools and techniques to enhance their interpretability, generalizability and robustness.

7.1. Generalizability vs. Interpretability vs. Robustness and Others

Interpretability studied in the literature may help to build more understandable neural networks,

revealing the limits and strengths of the networks, and thus to some extent, it helps to evaluate

and understand the generalizability of the networks. However, our study of generalizability with

respect to program transformation provides a different perspective complement to interpretability;

the approach may have the potential in the future to help identify interpretable code elements by

measuring the impact of certain types of code transformations.

As mentioned in Section 2, there is a substantial line of work on evaluating the robustness of

neural networks especially in the domain of vision and pattern recognition [46]. The key insight in

such domains is that small, imperceptible changes in input should not impact the result of output.

While this observation can be true for domains such as vision, it might not be directly applicable

to the discrete domain of neural program models, since some minor changes to a program can

drastically change the semantic and behavior of the program. Quantifying the imperceptibility and

many other aspects of source code is our future research goal.

24

7.2. Are we there yet?

Are neural program models ready for widespread use in program analysis? The neural program

models in our experiments are brittle to even very small changes in the methods. The semantic-

preserving transformations can change the outputs of the neural program models in 26% to 73%

of cases. Although our findings are limited to only one task, they suggest caution. The literature

lacks techniques for rigorous evaluation of neural program models. The recent line of work by Nghi

et al. [13] in interpretability of neural program models, Rabin et al. [40] in testing them, and Yefet

et al. [56] are much needed steps in a right direction.

7.3. Code Representation

The performance of models used in neural program models, such as ones used in this study, is

relatively low compared to the performance of neural models in domains such as natural language

understanding [42], text classification [31]. To improve their performance, we would need novel

code representations that better capture interesting characteristics of programs.

8. Related Work

Robustness of Neural Networks. There is a substantial line of work on the robustness of

artificial intelligence (AI) systems in general and deep neural networks in particular. Szegedy et al.

[46] is the first to discover that deep neural networks are vulnerable to small perturbations that are

imperceptible to human eyes. They developed the L-BFGS method for the systematic generation

of such adversarial examples. Goodfellow et al. [21] proposes a more efficient method, called the

Fast Gradient Sign Method that exploits the linearity of deep neural networks. Many following up

works [30, 37, 14, 18, 57, 61, 56] further demonstrated the severity of the robustness issues with a

variety of attacking methods and defenses. While aforementioned approaches only apply to models

for image classification, new attacks have been proposed that target models in other domains, such

as natural language processing [33, 27, 62] and graphs [16, 63].

The automated verification research community has proposed techniques to offer guarantees

for the robustness of neural networks by adapting bounded model checking [44], abstract inter-

pretation [20], and Satisfiability Modulo Theory [26]. Amershi et al. [8] study the challenges in

developing AI solutions and Zhang et al. [59] survey testing of machine-learning systems.

Models of Code. Early works directly adopted NLP models to discover textual patterns existed

in the source code [22, 39]. Those methods, unfortunately, do not account for the structural

25

information programs exhibit. Following approaches address this issue by generalizing from the

abstract syntax trees [36, 38, 7, 6]. As Graph Neural Networks (GNN) [43] have been gaining

increasing popularity due to its remarkable representation capacity, many works have leveraged

GNN to tackle challenging tasks like program repair and bug finding, and obtained quite promising

results [4, 53, 17, 34, 12, 17, 47]. Besides, the attention mechanism [9] has been applied into GNNs

to improve the performance further [10, 54, 60]. It is very interesting to see how the attention can

help to explain the output of the neural models [48, 55, 13]. In parallel, Wang et al. developed

a number of models [49, 51, 52] that feed off the run time information for enhancing the precision

of semantic representation for model inputs.

9. Threats to Validity

There are various threats to the validity of our approach.

Limited Data and Evaluation Scope. We only evaluated the generalizability of neural program

models built on code2vec, code2seq , and GGNN , for one task in Java programs. Therefore, our

results may not generalize to other neural program models or other tasks or other programming

languages. We leave the evaluation of the general applicability of our approach as future work.

Transformations. The proposed transformations in this paper impact program ASTs in varying

degrees. Some of the transformations, e.g. variable renaming, are common refactoring techniques.

However, these transformations may not represent many possible transformations in other domains.

We will instantiate and extend our approach with other transformations from other domains.

Internal Validity. Some bugs may exist in the toolchain and neural program models implemented

in this paper. To reduce the probability of bugs, two authors reviewed the code and manually

inspected a sample of transformed programs to ensure the reliability of transformations.

10. Conclusion & Future Work

In this paper, we perform a large-scale, systematic evaluation of the generalizability of state-of-

the-art neural program models built on code2vec, code2seq , and GGNN . In particular, we apply six

semantic-preserving program transformations to produce new programs on which we expect the neu-

ral program models to keep their original predictions. We find that such program transformations

frequently sway the predictions of these neural program models, indicating serious generalization

26

issues that could negatively impact the wider applications of deep neural networks in program anal-

ysis tasks. Although neural program models that encode more program dependency information

and are trained with larger datasets may exhibit more generalizable behavior, their generalizability

is still limited. We believe this work provides a systematic approach and metrics for evaluat-

ing neural program models, and can motivate future research on training not only accurate but

also generalizable deep models of code. Future work that includes more semantic-preserving and

even some semi-semantic-preserving transformations in our approach and adapts more fine-grained

prediction change metrics may further extend the applicability of our approach to various neural

program models designed for different tasks. We also plan to explore using transformed programs

to improve the generalizability of the neural program models.

Acknowledgments

This research is supported by the Singapore Ministry of Education (MOE) Academic Research

Fund (AcRF) Tier 1 Grant No. 19-C220-SMU-002 and the Research Lab for Intelligent Software

Engineering (RISE) Operational Fund from the School of Computing and Information Systems

(SCIS) at Singapore Management University (SMU). We also thank the anonymous reviewers for

their insightful comments and suggestions, and thank the authors of previous related works for

sharing data and models.

References

[1] Allamanis, M., 2019. The adverse effects of code duplication in machine learning models of

code, in: Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software, Association for Computing

Machinery, New York, NY, USA. p. 143–153. URL: https://doi.org/10.1145/3359591.

3359735, doi:10.1145/3359591.3359735.

[2] Allamanis, M., Barr, E.T., Bird, C., Sutton, C., 2015. Suggesting accurate method and class

names, in: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,

Association for Computing Machinery, New York, NY, USA. p. 38–49. URL: https://doi.

org/10.1145/2786805.2786849, doi:10.1145/2786805.2786849.

27

https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3359591.3359735
http://dx.doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2786805.2786849
http://dx.doi.org/10.1145/2786805.2786849

[3] Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C., 2018a. A survey of machine learning for big

code and naturalness. ACM Comput. Surv. 51. URL: https://doi.org/10.1145/3212695,

doi:10.1145/3212695.

[4] Allamanis, M., Brockschmidt, M., Khademi, M., 2018b. Learning to represent programs with

graphs, in: International Conference on Learning Representations.

[5] Allamanis, M., Peng, H., Sutton, C.A., 2016. A convolutional attention network for extreme

summarization of source code, in: Proceedings of the 33nd International Conference on Machine

Learning, ICML.

[6] Alon, U., Levy, O., Yahav, E., 2019a. code2seq: Generating sequences from structured repre-

sentations of code, in: International Conference on Learning Representations.

[7] Alon, U., Zilberstein, M., Levy, O., Yahav, E., 2019b. Code2vec: Learning distributed repre-

sentations of code. Proc. ACM Program. Lang. 3, 40:1–40:29. URL: http://doi.acm.org/

10.1145/3290353, doi:10.1145/3290353.

[8] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B.,

Zimmermann, T., 2019. Software engineering for machine learning: A case study, in: Proceed-

ings of the 41st International Conference on Software Engineering: Software Engineering in

Practice, IEEE Press. p. 291–300. URL: https://doi.org/10.1109/ICSE-SEIP.2019.00042,

doi:10.1109/ICSE-SEIP.2019.00042.

[9] Bahdanau, D., Cho, K., Bengio, Y., 2015. Neural machine translation by jointly learning

to align and translate, in: Bengio, Y., LeCun, Y. (Eds.), 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings.

[10] Beck, D., Haffari, G., Cohn, T., 2018. Graph-to-sequence learning using gated graph neural

networks, in: Proceedings of the Association for Computational Linguistics (ACL), Association

for Computational Linguistics. pp. 273–283.

[11] Bielik, P., Vechev, M., 2020. Adversarial robustness for code. Proceedings of the International

Conference on Machine Learning (ICML) .

28

https://doi.org/10.1145/3212695
http://dx.doi.org/10.1145/3212695
http://doi.acm.org/10.1145/3290353
http://doi.acm.org/10.1145/3290353
http://dx.doi.org/10.1145/3290353
https://doi.org/10.1109/ICSE-SEIP.2019.00042
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00042

[12] Brockschmidt, M., Allamanis, M., Gaunt, A.L., Polozov, O., 2019. Generative code modeling

with graphs, in: 7th International Conference on Learning Representations, ICLR 2019, New

Orleans, LA, USA, May 6-9, 2019.

[13] Bui, N.D.Q., Yu, Y., Jiang, L., 2019. Autofocus: Interpreting attention-based neural networks

by code perturbation, in: 2019 34th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), pp. 38–41. doi:10.1109/ASE.2019.00014.

[14] Carlini, N., Wagner, D., 2017. Towards evaluating the robustness of neural networks, in: 2017

ieee symposium on security and privacy (sp), IEEE. pp. 39–57.

[15] Compton, R., Frank, E., Patros, P., Koay, A., 2020. Embedding java classes with code2vec:

Improvements from variable obfuscation, in: 17th International Conference on Mining Software

Repositories (MSR) 2020, Seoul, Republic of Korea.

[16] Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., Song, L., 2018. Adversarial attack on

graph structured data. Proceedings of the 35th International Conference on Machine Learning,

PMLR 80.

[17] Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., Wang, K., 2019. Hoppity: Learning graph

transformations to detect and fix bugs in programs, in: International Conference on Learning

Representations.

[18] Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J., 2018. Boosting adversarial attacks

with momentum, in: Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 9185–9193.

[19] Fernandes, P., Allamanis, M., Brockschmidt, M., 2019. Structured neural summarization, in:

International Conference on Learning Representations.

[20] Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M., 2018.

Ai2: Safety and robustness certification of neural networks with abstract interpretation, in:

2018 IEEE Symposium on Security and Privacy (SP), IEEE. pp. 3–18.

[21] Goodfellow, I.J., Shlens, J., Szegedy, C., 2015. Explaining and harnessing adversarial examples,

in: Bengio, Y., LeCun, Y. (Eds.), 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

29

http://dx.doi.org/10.1109/ASE.2019.00014

[22] Gupta, R., Pal, S., Kanade, A., Shevade, S., 2017. Deepfix: Fixing common c language errors by

deep learning, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

AAAI Press. p. 1345–1351.

[23] Hellendoorn, V.J., Bird, C., Barr, E.T., Allamanis, M., 2018. Deep learning type inference, in:

Proceedings of the 2018 26th acm joint meeting on european software engineering conference

and symposium on the foundations of software engineering, pp. 152–162.

[24] Hellendoorn, V.J., Devanbu, P., 2017. Are deep neural networks the best choice for modeling

source code?, in: Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, Association for Computing Machinery, New York, NY, USA. p. 763–773. URL:

https://doi.org/10.1145/3106237.3106290, doi:10.1145/3106237.3106290.

[25] Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal

approximators. Neural networks 2, 359–366.

[26] Huang, X., Kwiatkowska, M., Wang, S., Wu, M., 2017. Safety verification of deep neural

networks, in: Majumdar, R., Kunčak, V. (Eds.), Computer Aided Verification, Springer Inter-

national Publishing, Cham. pp. 3–29.

[27] Jia, R., Liang, P., 2017. Adversarial examples for evaluating reading comprehension systems,

in: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

(EMNLP). URL: https://doi.org/10.18653/v1/d17-1215.

[28] Kang, H.J., Bissyandé, T.F., Lo, D., 2019. Assessing the generalizability of code2vec token

embeddings, in: 2019 34th IEEE/ACM International Conference on Automated Software En-

gineering (ASE), pp. 1–12. doi:10.1109/ASE.2019.00011.

[29] Karampatsis, R.M., Sutton, C., 2019. Maybe deep neural networks are the best choice for

modeling source code. arXiv:1903.05734.

[30] Kurakin, A., Goodfellow, I.J., Bengio, S., 2017. Adversarial machine learning at scale, in:

5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings.

30

https://doi.org/10.1145/3106237.3106290
http://dx.doi.org/10.1145/3106237.3106290
https://doi.org/10.18653/v1/d17-1215
http://dx.doi.org/10.1109/ASE.2019.00011
http://arxiv.org/abs/1903.05734

[31] Lai, S., Xu, L., Liu, K., Zhao, J., 2015. Recurrent convolutional neural networks for text

classification, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,

AAAI Press. p. 2267–2273.

[32] LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436.

[33] Li, J., Monroe, W., Jurafsky, D., 2016a. Understanding neural networks through representation

erasure. arXiv preprint arXiv:1612.08220 .

[34] Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S., 2016b. Gated graph sequence neural

networks, in: Bengio, Y., LeCun, Y. (Eds.), 4th International Conference on Learning Repre-

sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[35] Liu, K., Kim, D., Bissyandé, T.F., Kim, T., Kim, K., Koyuncu, A., Kim, S., Traon, Y.L.,

2019. Learning to spot and refactor inconsistent method names, in: Proceedings of the 41st

International Conference on Software Engineering, IEEE Press. p. 1–12. URL: https://doi.

org/10.1109/ICSE.2019.00019, doi:10.1109/ICSE.2019.00019.

[36] Maddison, C., Tarlow, D., 2014. Structured generative models of natural source code, in:

International Conference on Machine Learning, pp. 649–657.

[37] Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P., 2016. Deepfool: a simple and accurate method

to fool deep neural networks, in: Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 2574–2582.

[38] Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z., 2016. Convolutional neural networks over

tree structures for programming language processing, in: Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, AAAI Press. p. 1287–1293.

[39] Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzilay, R., 2016. sk p: a neural program corrector

for moocs, in: Companion Proceedings of the 2016 ACM SIGPLAN International Conference

on Systems, Programming, Languages and Applications: Software for Humanity, ACM.

[40] Rabin, M.R.I., Wang, K., Alipour, M.A., 2019. Testing neural program analyzers. 34th

IEEE/ACM International Conference on Automated Software Engineering (Late Breaking

Results-Track) URL: https://arxiv.org/abs/1908.10711.

31

https://doi.org/10.1109/ICSE.2019.00019
https://doi.org/10.1109/ICSE.2019.00019
http://dx.doi.org/10.1109/ICSE.2019.00019
https://arxiv.org/abs/1908.10711

[41] Ramakrishnan, G., Henkel, J., Wang, Z., Albarghouthi, A., Jha, S., Reps, T., 2020. Semantic

robustness of models of source code. arXiv preprint arXiv:2002.03043 .

[42] Sarikaya, R., Hinton, G.E., Deoras, A., 2014. Application of deep belief networks for natural

language understanding. IEEE/ACM Trans. Audio, Speech and Lang. Proc. 22, 778–784. URL:

https://doi.org/10.1109/TASLP.2014.2303296, doi:10.1109/TASLP.2014.2303296.

[43] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G., 2009. The graph neural

network model. IEEE Transactions on Neural Networks 20, 61–80. doi:10.1109/TNN.2008.

2005605.

[44] Scheibler, K., Winterer, L., Wimmer, R., Becker, B., 2015. Towards verification of artificial

neural networks., in: MBMV, pp. 30–40.

[45] Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic attribution for deep networks, in:

Proceedings of the 34th International Conference on Machine Learning, pp. 3319–3328.

[46] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.,

2014. Intriguing properties of neural networks, in: ICLR.

[47] Tarlow, D., Moitra, S., Rice, A., Chen, Z., Manzagol, P.A., Sutton, C., Aftandilian, E., 2020.

Learning to fix build errors with graph2diff neural networks, in: Proceedings of the IEEE/ACM

42nd International Conference on Software Engineering Workshops, pp. 19–20.

[48] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y., 2018. Graph

attention networks, in: 6th International Conference on Learning Representations, ICLR 2018,

Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

[49] Wang, K., 2019. Learning scalable and precise representation of program semantics. arXiv

preprint arXiv:1905.05251 .

[50] Wang, K., Christodorescu, M., 2019. Coset: A benchmark for evaluating neural program

embeddings. arXiv:1905.11445.

[51] Wang, K., Singh, R., Su, Z., 2018. Dynamic neural program embedding for program repair,

in: International Conference on Learning Representations.

32

https://doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1905.11445

[52] Wang, K., Su, Z., 2020. Blended, precise semantic program embeddings, in: Proceedings of

the 41st ACM SIGPLAN International Conference on Programming Language Design and

Implementation.

[53] Wang, Y., Gao, F., Wang, L., Wang, K., 2019. Learning a static bug finder from data. arXiv

preprint arXiv:1907.05579 .

[54] Xu, K., Wu, L., Wang, Z., Feng, Y., Witbrock, M., Sheinin, V., 2018a. Graph2seq: Graph to

sequence learning with attention-based neural networks. arXiv preprint arXiv:1804.00823 .

[55] Xu, X., Zu, S., Gao, C., Zhang, Y., Feng, W., 2018b. Modeling attention flow on graphs.

Relational Representation Learning Workshop, NeurIPS 2018 .

[56] Yefet, N., Alon, U., Yahav, E., 2020. Adversarial examples for models of code. Proc. ACM

Program. Lang. 4. URL: https://doi-org.ezproxy.lib.uh.edu/10.1145/3428230, doi:10.

1145/3428230.

[57] Yuan, X., He, P., Zhu, Q., Li, X., 2019. Adversarial examples: Attacks and defenses for deep

learning. IEEE transactions on neural networks and learning systems 30, 2805–2824.

[58] Zhang, H., Li, Z., Li, G., Ma, L., Liu, Y., Jin, Z., 2020. Generating adversarial examples for

holding robustness of source code processing models, in: The Thirty-Fourth AAAI Conference

on Artificial Intelligence, AAAI Press. pp. 1169–1176.

[59] Zhang, J.M., Harman, M., Ma, L., Liu, Y., 2020. Machine learning testing: Survey, land-

scapes and horizons. IEEE Transactions on Software Engineering , 1–1doi:10.1109/TSE.2019.

2962027.

[60] Zhang, S., Xie, L., 2020. Improving attention mechanism in graph neural networks via

cardinality preservation, in: Bessiere, C. (Ed.), Proceedings of the Twenty-Ninth Interna-

tional Joint Conference on Artificial Intelligence, IJCAI 2020, ijcai.org. pp. 1395–1402. URL:

https://doi.org/10.24963/ijcai.2020/194, doi:10.24963/ijcai.2020/194.

[61] Zhang, X., Zitnik, M., 2020. Gnnguard: Defending graph neural networks against adversarial

attacks. Advances in Neural Information Processing Systems 33.

33

https://doi-org.ezproxy.lib.uh.edu/10.1145/3428230
http://dx.doi.org/10.1145/3428230
http://dx.doi.org/10.1145/3428230
http://dx.doi.org/10.1109/TSE.2019.2962027
http://dx.doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.24963/ijcai.2020/194
http://dx.doi.org/10.24963/ijcai.2020/194

[62] Zhao, Z., Dua, D., Singh, S., 2018. Generating natural adversarial examples, in: International

Conference on Learning Representations.

[63] Zügner, D., Akbarnejad, A., Günnemann, S., 2018. Adversarial attacks on neural networks for

graph data, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 2847–2856.

34

	Introduction
	Motivating Example & Definition
	Background
	Evaluation Approach
	Target Downstream Task
	Transformations
	Generalizability Metrics

	Experimental Setting
	Subject Neural Program Models
	Datasets
	Training Models per Datasets
	Population of Transformed Programs
	Research Questions

	Results
	RQ1: Impact of Transformations on the Predictions of Neural Program Models
	RQ2: When Transformations Affect Neural Program Models the Most?
	Single-place transformation vs. All-place transformation
	Correctly predicted methods vs. Incorrectly predicted methods
	The Effect of

	RQ3: Impact of Method Length on Generalizability
	RQ4: Trends in the Types of Changes
	RQ5: Impact of the Transformations on Precision, Recall, and

	Discussion
	Generalizability vs. Interpretability vs. Robustness and Others
	Are we there yet?
	Code Representation

	Related Work
	Threats to Validity
	Conclusion & Future Work

