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ABSTRACT

Developers frequently use APIs to implement certain functionali-
ties, such as parsing Excel Files, reading and writing text files line by
line, etc. Developers can greatly benefit from automatic API usage
sequence generation based on natural language queries for building
applications in a faster and cleaner manner. Existing approaches
utilize information retrieval models to search for matching API
sequences given a query or use RNN-based encoder-decoder to gen-
erate API sequences. As it stands, the first approach treats queries
and API names as bags of words. It lacks deep comprehension of
the semantics of the queries. The latter approach adapts a neural
language model to encode a user query into a fixed-length context
vector and generate API sequences from the context vector.

We want to understand the effectiveness of recent Pre-trained
Transformer based Models (PTMs) for the API learning task. These
PTMs are trained on large natural language corpora in an unsuper-
vised manner to retain contextual knowledge about the language
and have found success in solving similar Natural Language Pro-
cessing (NLP) problems. However, the applicability of PTMs has
not yet been explored for the API sequence generation task. We
use a dataset that contains 7 million annotations collected from
GitHub to evaluate the PTMs empirically. This dataset was also
used to assess previous approaches. Based on our results, PTMs gen-
erate more accurate API sequences and outperform other related
methods by ~11%. We have also identified two different tokeniza-
tion approaches that can contribute to a significant boost in PTMs’
performance for the API sequence generation task.
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1 INTRODUCTION

Developers frequently rely on existing class libraries to implement
particular functionalities by invoking APIs that correspond to the
libraries. It is extremely helpful to identify which APIs to use and
in what order developers should invoke the API-related methods.
For developers, who may need to face a steep learning curve, learn-
ing and becoming acquainted with an unfamiliar library can be
challenging. It is not uncommon for a library as large as JDK to
have hundreds or thousands of APIs, but they are not well docu-
mented regarding the usage patterns of API methods. Our literature
study reveals that inadequate or absent resources cause obstacles
for learning APIs, and a major challenge for API users is to discover
the subset of the APIs that can help complete a task.

Search engines, such as Google and Bing, are commonplace to
discover APIs and their usage sequences. However, the general web
search engines are not designed to cater specifically to program-
ming or code-related tasks, so they are often deemed ineffective
when it comes to assisting with such tasks. Currently, there is no
easy way for developers to learn about APIs and their usage se-
quences from the web pages returned by the search engines, which
the search engines retrieved based on keyword matching without
considering the semantics of natural language queries, making it
more difficult to locate relevant code snippets and APIs associated
with them.


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICPC 2022, May 21-22, 2022, Pittsburgh, PA, USA

Using a statistical word alignment model, Raghothaman et al. re-
cently proposed SWIM, to translate a natural language query into a
list of possible APIs [35]. To retrieve relevant API sequences, SWIM
applies UP-Miner [43], a utility pattern mining toolbox, to a list of
APIs. This method has a critical problem; it ignores the ordering of
the natural language queries as these queries are treated as a bag
of words. Therefore, it cannot recognize a deep semantic meaning
within the natural language queries. This critical problem was ad-
dressed by DeepAPI [13], a deep-learning-based method that trans-
lates a natural language query into relevant API usage sequences.
API learning has been formulated as a machine translation problem:
given a natural language query, the goal is to translate it into an API
sequence. DeepAPI leverages RNN-based encoder-decoder architec-
ture, and also adapts attention mechanism cite(attention paper). It
has demonstrated a deep understanding of natural language queries
in two aspects: learning the semantics of words by embedding them
in context-vector representations of context and understanding the
sequence of words in a natural language query and the associated
APIs instead of focusing on word-to-word alignment.

DeepAPl is trained on a corpus containing pairs of API sequences
and the corresponding natural language queries. The encoder learns
how to encode each query into a fixed-length context vector for
the decoder to use for decoding the API sequence. In the training
phase, the DeepAPI learns the semantics of the queries and the cor-
responding API sequences and accordingly updates its parameters.
After the training phase, DeepAPI can generate the API sequences
given a query describing the functionality of the intended API.

During the training phase , the encoder and the decoder in Deep-
APT is focused on learning: 1) the semantics of the queries in the
input and the corresponding API sequences in the output, and 2) the
correlations between the input and the output sequences. We want
to separate these two tasks and propose to leverage a Pre-trained
Transformer model (PTM). PTM is a model that leverages Trans-
former encoder-decoder architecture( cite transformer paper) that
has been pre-trained using certain techniques on a data-rich cor-
pora in the pre-training phase. Because a PTM has been pre-trained
on a data-rich corpora beforehand, it has a sense of understanding
the semantic meaning of the queries and the corresponding API
sequences. Intuitively, the learning burden of the model can be re-
duced if the model already has such a knowledge in the beginning
of its training. Hence, the model can focus to learn the correlation
between the input and the output sequences in the training phase.

In our study, we aim to answer the following research questions:

RQ1: CanPTMs yield better performance than the prior approaches
for API learning task?

RQ2: Can different tokenization approaches help the PTMs per-
form better?

In the first research question, we explore how the current existing
PTMs perform compared to the other existing tools, such as SWIM
and DeepAPI. The existing tools are based on the curated code-
search and pattern mining algorithms, and also deep learning-based
approaches. Our results shows that PTMs can outperform the prior
approaches by ~3% to ~7% in terms of BLEU score.

The second research question deals with whether we could boost
the performance of PTMs by introducing different tokenization
techniques. Tokenization is a technique to split a piece of text or
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sentence into a smaller unit called token <insert citation here>. To-
kenization may affect the performance of a model because it affects
how the input is represented to the model. We have proposed two
tokenization techniques. Leveraging our customized tokenization
approach, our results demonstrate that the PTMs can outperform
the prior state of the art by ~11% in terms of BLEU Score.

The main contribution of our paper is stated below:

e To the best of our knowledge, we are the first who adapt
PTMs for the API sequence generation task.

e We propose two novel tokenization techniques to help im-
prove the performance of the PTMs in the API sequence
generation task.

e We evaluate the existing PTMs against existing approaches
using a corpus containing 7 million pairs of Java API se-
quences and the corresponding queries used in the prior
study <cite the deep api learning paper here>. Our results
demonstrate that PTMs can outperform the prior approaches
by ~3% to ~7% in terms of BLEU score. Leveraging our to-
kenization technique, PTM can outperforms the prior best
approach by ~11% in terms of BLEU Score.

e We provide a replication package and open source our codes
and dataset to help fellow researchers and practitioners to
reproduce our results. !

Below is an outline of the remainder of this paper. Section 2
introduces background knowledge. Sections 3 and 4 describe the
methodology of our approach followed by the results. Section 5
discusses the interpretations and implications of our findings, along
with the threats to the validity. Section 6 presents the related works.
Finally, we conclude our study and present future work in Section
7.

2 PRELIMINERIES

In this section, we will discuss three different approaches used
for API sequence generation from natural language queries: In-
formation Retrieval Models, Deep Learning Approaches without
Pretrained Knowledge, and Deep Learning Approaches with Pre-
trained Knowledge.

2.1 Information Retrieval Models

2.1.1  Combination of Code Search and Pattern Mining for API Se-
quence generation. Researchers have used code search using infor-
mation retrieval techniques [16, 21, 24, 26] to identify API sequences
in a code corpus that correspond to a given query, followed by the
use of an API usage pattern miner [10, 46, 49] to determine the
best API sequences from the returned code snippets. Following
previous literature, we used Lucene 2 to perform a code search
using a natural language query, while UP-Miner is used to ana-
lyze API usage patterns. A text retrieval engine such as Lucene
treats source code as plain text documents, which is how it builds a
source code index and performs text retrieval. Pattern mining tool
UP-Miner [46] analyzes snippets of codes based on the results of a
Lucene search and finds API sequence patterns . In this procedure,
API sequences extracted from code snippets are clustered and then
frequent patterns are identified. Lastly, it clusters the frequently

!https://github.com/Mohammad-Abdul-Hadi/PTM-API-Learning
2https://lucene.apache.org/
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occurring patterns to reduce redundancy. For this experiment, we
used the same code corpus as those used for evaluating PTMs and
compared BLEU scores to those from PTMs.

2.1.2 SWIM. In [35], Raghothaman et al. transformed natural lan-
guage queries into a list of possible APIs using statistical word
alignment models [2]. Based on the predefined API list, SWIM re-
trieves relevant APIs. Its statistical word alignment model, however,
is based on a bag-of-words assumption that does not consider how
words are arranged in natural language queries and APIs are po-
sitioned in the result. Also, the model does not take contextual
information into account when producing API sequences from nat-
ural language input, and therefore cannot recognize deep semantics
of natural language queries. As an example, the model does not
distinguish between the query ’convert txt to CSV’ and ’convert
CSV to txt’

SWIM uses the statistical word alignment model to extract a list
of relevant APIs based on the keywords in the given natural lan-
guage query [2] and then leverages Lucene to search for related API
sequences from the extracted API list. During our experiment, we
used the same dataset for evaluating SWIM as we did for evaluating
PTMs.

2.2 Deep Learning Approaches without
Pretrained Knowledge

DeepAPI [13] generates API usage sequences relevant to a natural
language query using deep neural networks. It converts the ma-
chine translation problem into the API learning problem. DeepAPI’s
understanding of natural language queries is demonstrated on two
fronts. Firstly, it recognizes semantically related words by embed-
ding them in a vector representation of context instead of matching
keywords. Secondly, DeepAPI learns a language query’s sequence
of words and the associated APIs’ sequence separately instead of
aligning them to each other. Therefore, DeepAPI can distinguish
semantic differences between queries and generate API sequences
accordingly. DeepAPI adapts RNN Encoder-Decoder. Using Deep-
API, a language model is trained that encodes each sequence of
words (annotation) into a fixed-length context vector, and the con-
text vector is used to decode API sequences. The model is then used
to generate API sequences in response to API-related user queries.

2.3 Deep Learning Approaches with Pretrained
Knowledge

A more recently established and widely accepted practice in Nat-
ural Language Processing (NLP) is using Pre-Trained Language
Models (PTM) and then transfer its learned knowledge to various
downstream NLP tasks, such as sentiment analysis, question an-
swering, or classification [33]. In NLP, PTMs (such as BERT) are
large language models that are trained on large natural language
corpora using a deep neural network in an unsupervised manner
[52]. These models are then fine tuned for various downstream
tasks using limited labeled datasets. For example, BERT [7] is a
PTM that is frequently being used for question answering and sen-
timent classification tasks. As PTMs are trained on large general
domain corpora, they learn contextual linguistic information and
eliminate the need to train downstream task models from scratch
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[45]. PTMs reduce the amount of effort (i.e., new model develop-
ment time per task) to build models for each task separately, and
they reduce the amount of required labeled dataset [22]. Conse-
quently, PTMs are used to transfer the learned knowledge to a new
domain or a new task, and in settings where a model has not seen
any example during training (known as zero-shot learning) [47].
Although PTMs are used extensively and led to many advances in
NLP, their applicability for API Learning and Sequence Generation
is barely known [14] but to what extent PTMs can be applied for
API Learning problem is largely unknown.

2.3.1 BERT. Devlin et al. [7] designed Bidirectional Encoder Rep-
resentations from Transformers (BERT) to learn contextual word
representations from unlabeled texts. Contextual word embeddings
designate a word’s representation based on its context by capturing
applications of words across different contexts. BERT employed
a bidirectional encoder to learn the words’ contextual representa-
tions by optimizing for Masked Language Model (MLM) and Next
Sentence Prediction (NSP) tasks. For MLM, 15% of all the tokens
are replaced with a masked token (i.e., [MASK]) beforehand, and
the model is trained to predict the masked words, based on the
context provided by the non-masked words. For NSP, the model
takes sentence-pairs as input for learning to predict whether a pair-
match is correct or wrong. During training, 50% of the inputs are
true consequent pairs, while the other 50% are randomized non-
consequent sentence-pairs. Devlin et al. trained two versions: small-
sized BERTpAsE and big-sized BERT orGe- BERTRASE is a smaller
model with 12 layers and 110 million parameters. BERTLARGE has
24 layers and 340 million parameters. BERT ARGE is more com-
putationally expensive and consumes more memory compared to
BERTgASE- Please note that based on the results reported in the
BERT paper, BERT ArGg always exceeds BERTpasg. Although we
have not used BERT in our study, this is the building block for the
pre-trained models that we are going to discuss in this section.

2.3.2 RoBERTa. Robustly optimized BERT approach (RoBERTa)
outperformed all the state-of-the-art benchmarks upon release [22].
Liu et al. modified BERT’s pretraining steps that yield substan-
tially better performance on all the classification tasks. RoOBERTa
increased the amount of mini-batch sizes, data, and training time
to train the model. RoBERTa is also trained on dataset that includes
longer sequences than before. The masking pattern in RoBERTa
was also modified to be generated spontaneously.

Reason behind choosing RoBERTa: RoBERTa outperforms BERT
on nine different NLP tasks on the GLUE benchmark. Based on
these results, RoOBERTa can present a reasonable choice for PTM in
our study.

2.3.3 CodeBERT. CodeBERT [9] was developed using a multilay-
ered attention-based Transformer model, BERT [7]. As a result of
its effectiveness in learning contextual representation from massive
unlabeled text with self-supervised objectives, the BERT model has
been adopted widely to develop large pre-trained models. Thanks
to the multilayer Transformer [44], CodeBERT developers adopted
two different approaches than BERT to learn semantic connections
between Natural Language (NL) - Programming Language (PL)
more effectively.
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Firstly, The CodeBERT developers make use of both bimodal
instances of NL-PL pairs (i.e., code snippets and function-level com-
ments or documentations) and a large amount of available unimodal
codes [23]. In addition, the developers have pre-trained CodeBERT
using a hybrid objective function, which includes masked language
modeling [7] and replaced token detection [6]. The incorporation
of unimodal codes helps the replaced token detection task, which
in turn produces better natural language by detecting plausible
alternatives sampled from generators.

Developers trained CodeBERT from Github code repositories in
6 programming languages, where only one pre-trained model is
learned for all six programming languages with no explicit indica-
tors used to mark an instance to the one out of six input program-
ming languages. CodeBERT was evaluated on two downstream
tasks: natural language code search and code documentation gen-
eration. The study found that fine-tuning the parameters of Code-
BERT obtained state-of-the-art results on both tasks.

2.34 PLBART. PLBART (Program and Language BART) [1] is a
sequence-to-sequence model capable of performing a broad spec-
trum of Code summarization, generation, and translation tasks. We
have chosen to use PLBART in our study as it is pre-trained on a
vast collection of Java and Python functions and associated NL text.

The motivation behind PLBART was to develop a general-purpose
model that can be used in various Program and Language Under-
standing and Generation (PLUG) applications. A recent develop-
ment in deep learning coupled with the accessibility of large-scale
Programming Language (PL) and associated Natural Language (NL)
data led to the automation of PLUG applications. A fundamental
feature of PLUG applications is that they require a thorough un-
derstanding of program syntax the interdependencies between the
semantics of PL and NL. A few research efforts in learning gen-
eral purposes PL-NL representation encoders, such as CodeBERT,
but that too is pretrained on a small-scale bimodal data (code-text
pairs). Despite the effectiveness of existing methods, they do not
have a pretrained decoder for language generation. Therefore, they
still require a large amount of parallel data to train the decoder.
The unified PLBART includes PL and NL pre-training on unlabeled
data to learn multilingual representations applicable to many PLUG
applications.

Reason for including PLBART: PLBART outperforms state-of-
the-art models for code summarization, code generation, and code
translation in seven programming languages. Furthermore, PLBART’s
effectiveness in program understanding is demonstrated by exper-
iments on program repair, clone detection, and vulnerable code
detection.

3 METHODOLOGY

In this section, we will discuss our dataset, experimental setup, and
evaluation metric to measure the performance of the PTMs against
the prior approaches.

3.1 Dataset

We leverage a large scale API sequence to annotation corpus pro-
vided by Gu et. al. [13], who propos DeepAPI. The description of
the dataset and the collection process is described as the following.
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Gu et. al. curate a large-scale database that contains pairs of API
sequences and natural language annotations. They collect 442,928
Java projects’ last snapshots from GitHub. Each of the project has at
least one star. After the collection, pairs of <API sequence, annota-
tion> are extracted by parsing source code files into Abstract Syntax
Trees (ASTs) using Eclipse’s JDT compiler 3. The dependencies of an
entire project repository is analyzed. All field declarations and type
bindings for all classes are then documented, and all object types
are replaced with the corresponding class types. Subsequently, the
API sequence from each method body is extracted using an AST
traversal.

The authors appended "APIName.new" to the API sequence af-
ter each constructor call, and "APIName.methodName" to the API
sequence after each method call of a JDK class instance. When a
method is called with a parameter, the parameter methods are ap-
pended before the calling method. They derive the API sequence of
a sequence of statements by extracting and concatenating the API
sequence of each statement consecutively. For conditional and loop
statements, the authors sequentially put all the possible branches to
extract APIs from the branch statements, respectively. Based on the
Javadoc guidance 4 the first sentence of a documentation comment
for a method is used as a summary of the corresponding method.
The authors traverse the method’s AST and used the Eclipse JDT
compiler to extract the method summary. The method summary is
then used as the natural language description for the corresponding
API sequence. Following the process, the Gu et. al. obtain a database
consisting of 7,519,907 <API sequence, annotation> pairs. Gu et. al.
do not separate the dataset into training, validation, and testing
sets specifically. So, we randomly selected 10,000 <API sequence,
annotation> out of ~500,000 pairs for the testing set and 7M for
training and validation sets.

3.2 Experimental Setup

3.2.1 Baseline Selection: Following the literature, we select three
prior approaches as the baseline for evaluating the existing PTMs.
These approaches are the Lucene+UPMiner, SWIM, and DeepAPL
We reimplement these three approaches to make sure that all ex-
periments are performed in the same environment and leverage
the same training, validation, and testing set. We believe that our
implementations are correct as the results are slightly different
with the results reported in the prior study [13]. We conjecture
that the difference in performance may have resulted from using
training and testing data sets that are different from the original
implementation.

For Lucene+UPMiner, we perform the following pre-processing
steps. First, we treat the Java codes that are retrieved from GitHub
as plain texts. Subsequently, we remove the new line (i.e., \n’) and
tab (i.e., \t’). Then, we use Lucene to index the pre-processed code
snippets, and apply UPMiner to mine API usage sequences from
pre-preocessed code snippets to find the frequent API usage pat-
terns. Following [13], we do not fine-tune the Lucene+UP-Miner
approach. For SWIM, we train the word alignment model, and sub-
sequently build the API indexes using the training set. Given a
natural language query, SWIM leverage the word-alignment model

Shttp://www.eclipse.org/jdt/
*http://www.oracle.com/technetwork/articles/java/ index-137868.html
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Figure 1: Workflow of our Experiments

to return a list of relevant API sequences, which is used for code
synthesis in the later step. However, we only adapt the word align-
ment model and discard the code synthesis part as we are only
interested in the API sequence generation task. For DeepAPI [13],
we leverage the original implementation provided by the authors.
To train DeepAPI, we set the batch size to 200 and limit the source
and target vocabularies to the top 10,000 words that are appear
most frequently in the queries and API sequences.

We execute all the experiments on a Linux machine with Intel
2.21 GHz CPU and 16GB memory with two NVIDIA Tesla V100
32GB GPU.

3.2.2  Fine-tuning PTMs: With the PTMs, the API sequence genera-
tion task is framed as an NL-to-PL translation problem. The PTM’s
encoder converts a natural language query into a context vector,
and the respective PTM’s decoder leverage the context vector to
generate the corresponding API sequences.

We fine-tune the off-the-shelf available PTMs by freezing two-
thirds of the lower-level layers of the PTMs and unfreezing the
rest of the upper-level layers. For example, for RoBERTa-Large,
we freeze the 16 lower-level layers out of 24 layers following a
similar setting as [2]. All the PTMs are fine-tuned with the same
hyperparameter settings, e.g., the batch_size, learning_rate, and
num_of_epochs are the same for all the PTMs.

As RoBERTa has been used as the codebase of most of the con-
sidered PTMs, we reuse the RoOBERTa model’s parameters as the
starting point. Before feeding the input queries into the model, we
also leverage the corresponding PTM’s tokenizer to preprocess the
input into the format that the model can understand. The PTMs
are then fine-tuned using the preprocessed data and tested on the
held-out test set. We adopt the following values of hyper-parameter
from the literature [52] to fine-tune the PTMs; batch size: 16, and
learning rate (AdamW): 2e-5. Further, we train the PTMs and until
50th epochs. Table 1 shows the details and configuration of each
PTM.

Table 1: PTM Description

Architecture | Used Model | Parameters | Layers | Hidden | Heads
RoBERTa roberta-base 125M 12 768 12
RoBERTa roberta-large 355M 24 1024 16
CodeBERT roberta-base 125M 12 768 12
PLBART bart-base 140M 6 768 12
Code-T5 t5-base 220M 12 768 12

3.3 Evaluation Metrics

We use the following metric to evaluate the performance of PTMs
against the prior approaches.

3.3.1 BLEU: We use BLEU score to evaluate how close are the gen-
erated API sequences with the ground truth. BLEU score measures
the similarity of a candidate sequence to the reference sequence
based on the number of n-gram hits. Equation 1 is used to compute
the BLEU score.

N
BLEU = BP - exp(Z wnlogpn) 1)

n=1

# of n- in the ref 1
. of n-grams appear in e‘re erence +1 . _ LN
# of n-grams of candidate + 1
)
BP = 1 ifc>r 3)
el ife<r

In Equation 1, p, refers the n-gram hits between the candidate
sequence and the reference, and w, equals to 1/Nwhere N is the
number of grams to be considered. We set N equals to 4. Further,
BP is the penalty for short candidate that may yield higher n-gram
precision. BP is calculated using Equation 3. In the Equation 3, r
and c refer to the length of reference and candidate sequences.
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In this paper, we express BLEU score in the percentage. A higher
BLEU score indicates that the candidate sequence is very similar
with the reference sequence. When the candidate sequence matches
exactly the reference sequence, the BLEU score becomes 100%.

4 RESULTS

We aim to answer the following research questions:

RQ1: CanPTMs yield better performance than the prior approaches?
RQ2: Can different tokenization techniques boost the performance
of the PTMs?

4.1 RQ1: Can PTMs yield better performance
than the prior approaches?

We compare PTMs with the three aforementioned approaches as
the baseline. The first is Lucene+UP-Miner; a combination of Code
Search and Pattern Mining where Lucene is used to perform a code
search using a natural language query, and UP-Miner [46] is used to
analyze the API usage patterns. The second is SWIM that leverages
the statistical word alignment model to learn the API usage patterns
and then uses Lucene to search for the relevant API sequences
given a natural language query. The last one is DeepAPI [13]; a
deep learning-based approach that leverages RNN-based encoder-
decoder architecture that models the API sequence generation task
as a machine-translation problem, where natural language queries
are the input and the API sequences are the output.

Table 2 shows the results of our experiments. In Table 2, Deep-
API-Auth is the author’s reported BLEU score in [13], while Deep-
API-Rep is the score from our experiment that leverages the au-
thors’ replication package. Similarly, SWIM and Lucene+UP-Miner
are also the scores that are obtained from our experiment. Table
2 indicates that our results are slightly different from the origi-
nally reported scores in [13]. Moreover, our results also demon-
strate the same trend as the prior study [13]; DeepAPI outperforms
Lucene+UP-Miner and SWIM by a significant margin.

Table 2: Results on the Baselines

Name of the Model | BLEU Score
Deep API - Rep 52.25
Deep API - Auth 54.42
SWIM 17.16
Lucene+Up-Miner 21.73

We compare the BLEU score achieved by the PTMs against the
BLEU score produced by Deep-API-Rep in Table 3. Overall, the
results indicates that the PTMs can outperforms Deep-API-Rep.
Specifically, CodeBERT, RoBERTa-LARGE, CodeT5, and PLBART
perform better than Deep-API-Rep by 3.72%, 5.26%, 5.82%, and 6.93%
in terms of BLEU Score.
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Table 3: PTM’s performance
Name of the Model | Checkpoints | BLEU Score | Improvement
RoBERTa-Large 50/50th epoch 57.88 5.63%
RoBERTa-Base 50/50th epoch 51.76 -0.49%
CodeBERT 50/50th epoch 56.34 4.09%
Deep API - Rep 50/50th epoch 52.25
PLBART 50/50th epoch 59.55 7.3%
Code-T5 50/50th epoch 58.44 6.19 %

Findings of RQ1

Most off-the-shelf PTMs can outperform Deep-API-Rep by
considerable margin, ranging from 3.72% to 6.93% in terms
of BLEU score. The PTM that is pre-trained on natural
language corpora (i.e., RoBERTa) requires bigger architec-
ture (e.g., more parameters, layers, heads) to outperform
Deep-API-Rep.

4.2 RQ2: Can different tokenization techniques
boost the performance of the PTMs?

We implement two tokenization techniques to investigate if they
can possibly help the PTMs perform better. Given an API name,
the default PTMs’ tokenizers break down the API names into a
sequence of subword tokens as illustrated in Figure 2.

C
EE» E

Figure 2: Original Tokenization Approach

In the original tokenization approach as shown in Figure 2, the
decoder tries to learn how to rearrange the tokens S1, S, ..., Sp
to generate valid API names during the fine-tuning. This helps in
Natural Language Processing (NLP), to make sense of the grammar
and different uses of lemma in different contexts. But API names are
constant, and we want to put more focus on the sequence, rather
than API-names. Also, it is difficult for the decoder to ignore all
the information these sliced token already acquired during the
respective PTM’s pretraining.

We decided to try a modified tokenization approach, where the
API-names will be directly injected to vocabulary by averaging their
corresponding token-slices’ embeddings. Here, we let the tokenizer
break down API-Names into slices; we keep track the broken down
token-slices. Later, we add all the API-Names as separate Unknown
embeddings to the Vocabulary, such as < UNK — 1 >, < UNK —
2 >,..., < UNK —n >. The Unknown tokens get initialized with
the average of the embedding values of tracked token-slices. An
illustration of the process is provided in Fig 3.

From Table 4, we observe that the Tokenization Approach 1
(TA1) enhances the performance of the PTMs by a large margin.
Leveraging the default tokenization, ROBERTa-BASE could not
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APl Name 1
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Figure 3: Modified Tokenization Approach 1 (TA1)

outperform Deep-API-Rep as shown previously in Table 3. Af-
ter leveraging our Tokenization Approach TA1, RoBERTa-BASE
along with all the other PTMs can yield better performance than
Deep-API-Rep. Specifically, RoBERTa-BASE, CodeBERT, RoBERTa-
LARGE, CodeT5, and PLBART yield 2.51%, 8.02%, 8.58%, 9.23%,
and 10.46% better BLEU Score than Deep-API-Rep respectively.
Moreover, the performance of ROBERTa-LARGE, RoBERTa-BASE,
CodeBERT, PLBART, and CodeT5 when using Tokenization Ap-
proach TA1 (see Table 4) are better by 3.32%, 3.37%, 4.3%, 3.53%, and
3.41% in terms of BLEU score when compared against the original
tokenization approach (see Table 3).

Table 4: PTM’s performance: Tokenization Approach 1(TA1)
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Figure 4: Modified Tokenization Approach 2 (TA2)

AP| Name 1

APl Name 2
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Table 5: PTM’s performance: Tokenization Approach 2 (TA2)

Name of the Model | Checkpoints | BLEU Score
RoBERTa-Large 50/50th epoch 62.25
RoBERTa-Base 50/50th epoch 55.81
CodeBERT 50/50th epoch 61.51
Deep API - Repl 50/50th epoch 52.25
PLBART 50/50th epoch 63.19
Code-T5 50/50th epoch 62.31

Name of the Model | Checkpoints | BLEU Score
RoBERTa-Large 50/50th epoch 61.2
RoBERTa-Base 50/50th epoch 55.13
CodeBERT 50/50th epoch 60.64
Deep API - Rep 50/30th epoch 52.25
PLBART 50/50th epoch 63.08
Code-T5 50/50th epoch 61.85

The Tokenization Approach 1 (TA1) can introduce a problem as
the subword tokens retain a lot of natural language information
from the pre-training corpora. Such an unrelated information is
later contributes to the embedding representation of the whole API
names, which we conjecture to have induced some noises towards
the representation.

To circumvent the problem, we propose the second Tokenization
Approach TA2, where the tokenizer does not break down the API
names into subword tokens. First, we add all the API-Names (e.g.,
< API-1>,< API-2 >, ... shown in Figure 4) as separate tokens
to the vocabulary. < API — n >. These API names are then con-
verted the corresponding vector representations (<UNK1,2,...,n> in
Figure 4). These representations are one-hot encoded vectors. Intu-
itively, Tokenization Approach 2 (TA2) can help the decoder to put
more focus on the API sequences instead of learning to rearrange
the subword tokens.

From Table 5, the results indicates that Tokenization Approach
2 (TA2) can yield slightly better performance than when using Tok-
enization Approach - 1 (TA1). Specifically, RoOBERTa-BASE, Code-
BERT, RoBERTa-LARGE, CodeT5, and PLBART produced 1.05%,
0.68%, 0.87%, 0.11%, and 0.46% better BLEU Score than their imple-
mentation with TA1, respectively.

Findings of RQ2

Our Tokenization Approaches can help PTMs to better
learn API-Sequences. Both Tokenization Approach 1 (TA1)
and Tokenization Approach 2 (TA2) perform better than
the default tokenization, as shown in Table 4 and Table 5.
Preventing the tokenizer from decomposing API names
into subword tokens can help improve PTMs’ performance,
if handled properly.

5 DISCUSSION

This section details the lessons we learned from our experiments
and discusses threats to their validity.

5.1 Lessons Learned

Reasons behind PTMs generally performing better

The semantic gap between API sequences and natural language
descriptions presents a major challenge for API learning. Generally,
information retrieval approaches assume that the natural language
and code are made up of a bag of words without adequately un-
derstanding the high-level semantics of the language. In contrast,
the existing deep learning-based approaches focus on two distinct
things during pre-training: 1) learning the semantics of natural
language and programming language, and 2) understanding how
the model can correlate between the natural language queries and
the intended API sequences. However, the PTMs have already ac-
cumulated the semantic knowledge of natural and programming
languages in the pre-training phase. Consequently, when PTMs are
finetuned using the (API Sequence, Annotation) pairs, instead of
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focusing on the semantics of natural and programming languages
and how given queries contribute to the generation of the corre-
sponding API sequences at the same time, they can only focus on
the latter task to be more effective.

To achieve better performance, the PTMs rely on three distinct
advantages of deep learning-based models as well as the retained NL
or NL-PL linguistic knowledge from the pre-training phase. These
advantages are: using contextualized word embeddings to make
semantic sense of the natural language queries, understanding the
sequences order of the queries instead of treating it as a bag-of-
words, and generating a translated sequence instead of searching
specific samples for the correct arrangement of output APIs [13].

Fine-tuning PTMs pre-trained on NL corpora with large ar-
chitecture can help to learn API better

From Table 3, we observe that between two PTMs pre-trained on
Natural Language (NL) corpora, i.e., ROBERTa-BASE and RoBERTa-
LARGE, the latter outperforms the baseline Deep-API-Rep, unlike
the BASE model. So, it is recommended that researchers, developers,
or practitioners should go for fine-tuning the larger architecture of
any given NL pre-trained PTM for achieving better performance.
The same performance as the LARGE models can also possibly be
achieved by tweaking the parameters during the pre-training of the
BASE models. Researches in the neural machine translation field
has shown that small mini-batches combined with the appropriate
learning rate and step size [27] can improve the performance of a
deep learning model. Prior study [22] also confirms that RoOBERTa
is also amenable to large batch training and proportionate step size
and learning rate. If tweaking parameters during pre-training of
the smaller models is not an option, we recommend using bigger
architectures instead.

Fine-tuning PTMs pre-trained on NL-PL corpora, with those
with small architecture, can yield better performance than
those that are pre-trained only on NL corpora.

We also found that PTMs pre-trained on NL-PL corpora (e.g.,
CodeBERT, CodeT5, and PLBART) can outperform the other PTMs
that are pre-trained only on NL corpora. We conjecture that this
performance boosts stem from to the bimodal (NL-PL) data and
code-related objective tasks that are used to pre-train the the models
in the pre-training phase.

Different tokenization approaches can possibly boost the per-
formance of the PTMs

As part of the original tokenization approach, the decoder learns
to rearrange predefined tokens to create the API name during the
fine-tuning phase. This approach helps Natural Language Process-
ing (NLP) tasks by making sense of grammatical structure and the
different uses of the lemma in different contexts; however, API
names are invariant in our case, and we prefer to focus on the
sequence generation rather than API names.

Our Tokenization Approach 1 (TA1) lets the tokenizer break
down API names into subword tokens while tracking to which API
names each token belongs. Later, we add all the API names as sepa-
rate Unknown embeddings to the Vocabulary, which get initialized
with the average embedding values of the tracked subword tokens.
Tokenization Approach 1 (TA1) enhances the performance of the
PTMs by a large margin. However, this approach is not completely
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without disadvantages. In Tokenization Approach 1 (TA1), those
subword tokens retain a lot of textual information from their re-
spective pre-training corpora, which later causes some noise in
the API representations. Therefore, we propose a simpler tokeniza-
tion method that initially hides API-Names from the tokenizer and
then adds all API-Names to the Vocabulary as one-hot encoded
embeddings. Overall, the PTMs are marginally can perform better
when using this approach (TA2) than when they use Tokenization
Approach (TA1).

Pre-training and objective tasks of the PTMs play a huge role
in downstream tasks

Our study leverage a dataset containing Java API sequences that
is curated from GitHub. All PTMs are pre-trained on NL-PL corpora,
except for ROBERTa-BASE and LARGE that are pre-trained on only
NL corpora. Our results demonstrate that the PTM pre-trained on
NL-PL corpora can perform better than the PTMs pre-trained on
only NL corpora. Such a finding also aligns with the prior study [1].
Hence, researchers and practitioners should pay special attention
before selecting PTMs that have been pre-trained on unrelated
domains. The closer the pretraining domain is for the PTMs, the
better PTMs can perform for the downstream tasks. Also, not all
readily available PTMs make their decoder open-sourced and not all
PTMs are pre-trained on a machine translation objective task. As we
frame our API Sequence generation task to a machine translation
task from natural language to code, the PTMs that have already
pre-trained on machine translation task can perform better.

Modified tokenization approach help all the PTMs uniformly

With the proposed tokenization techniques, all PTMs gain al-
most equal performance gain for the downstream API learning task.
We can observe that all PTMs shows a general improvement in
their performance and maintained their original ranking, even after
implementing the modified tokenization approach. We hypothe-
size that their underlying common Transformer model, uniform
parameter settings, and architecture are responsible for the almost
consistent increase in performance.

5.2 Threats to Validity

There are several threats to validity identified in this study. As we
have adopted different tools, dataset, approaches, and methods from
the literature, we also assume their latent threats to validity:

A wide range of PTMs not evaluated

According to Microsoft’s CodexGLUE leader-board 3, three other
PTMs can better serve our purpose: Text2Java-BigJavaDataSet, Co-
Text, Text2Java-T5. But due to the lack of open-sourced implemen-
tation, we could not incorporate Text2Java-BigJavaDataSet and
Text2Java-T5. We have contacted the authors of CoText [29], but
we are yet to receive a response.

Narrow API domain

Our paper only incorporated one dataset from a previous study
on Deep-API Learning, which only examined APIs and related
projects from the JDK APIL Consequently, the dataset may lack gen-
eralizability and fair representation of other libraries and program-
ming languages. But it can very well work as a reference to show

Shttps://microsoft.github.io/CodeXGLUE/
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the potential of a designed approach for guiding the researchers
and practitioners.

Annotation quality

Annotations of API sequences are collected from the first sen-
tence of comments in the documentation, which may contain noise.
The dataset curators did not consider the fact that some other sen-
tences may also provide useful information. In the future, we plan
to curate a more comprehensive dataset that will include more
diverse programming languages and more informative annotations.

Size of the PTMs

How large should the PTM be to start seeing improvements over
non-PTM approaches is not studied in our work but this is a great
research question and we plan to investigate this for our future
work. We need to vary the size of the PTM and investigate the
performance for each size change. As the experiment will require a
substantial amount of time, we plan to integrate this in our future
work.

Data Leakage

We have not checked if the <Natural Language Annotation, API
Sequence> test set were ever a part of the considered PTMs’ pre-
training. We only ensured that no test data leaked into the training
dataset that we used to fine-tune the PTMs by cross-checking the
<Natural Language Annotation, API Sequence> pairs. The involved
PTMs have utilized different code sources collected over different
timelines. Although all the papers that proposed the PTMs explicitly
mention the sources, these repositories were not made readily avail-
able. As we need to track, collect, and process these repositories by
going through the research papers and related documentation, this
task will take a lot of time to implement and cross-check. Moreover,
even if some codes or natural language comments associated with
our training dataset were present during the pretraining of these
PTMs, these codes and comments were used to achieve a different
objective task that focused on learning something different from
API learning.

Imbalanced Training and Testing Data

A possible internal validity can be related to the training and
testing split in the dataset. We randomly selected 10,000 <API se-
quence, annotation> out of ~500,000 pairs for testing and 7M for
training and validation data. Due to time and resource constraints,
we did not use stratified k-fold cross-validation to avoid the bias that
might be introduced to the results by the test set. In addition, to mit-
igate threats to the validity of the results, we kept hyper-parameter
values the same for all PTMs in all the steps of experiments. We
ran all the experiments on a single machine, and we reported the
machine configuration to enforce the reproducibility of the results.
Furthermore, we consider the same metrics to compare the PTMs
with prior approaches.

Evaluation metric

We relied on a single evaluation metric, BLEU Score. Although
this evaluation metric has been heavily used in literature to evaluate
machine translation, we could incorporate an evaluation metric
based on manual human validation of the translation tasks. In the
future, we will report different variations of BLEU scores and human
evaluation of API Sequence generation task.
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Construct Validity

The selection of the prior approaches and PTMs can pose a
validity threat to our study. We identified the three most common
approaches as priors by examining the highly practiced methods,
tools, and techniques employed by researchers and application
developers. We chose these methods as PRIORs after conducting
a comprehensive literature review. The PTMs were adopted by
following previous studies that performed Code to Text conversion-
related tasks with PTMs.

6 RELATED WORK

Our work is closely related with code generation and code retrieval
tasks. We describe some related work as follows.

Deep Learning-based Code Generation.

Various deep learning-based approaches have been proposed
to address code generation tasks. Ling et. al. [20] proposed La-
tent Predictor Network (LPN) to translate the natural language
to Java and Python languages. LPN represent the output as code
tokens at the character granularity and applies copy-mechanism
to deal with unknown tokens. A number of studies improve the
performance of LPN by incorporating code structural information.
Some approaches that belong to this category are Abstract Syn-
tax Network (ASN) [34] and Syntactic Neural Model (SNM) [51].
Both approaches represent the output as ASTs instead of sequences
of code tokens. These two approaches can perform better than
LPN because it leverages the grammar of the AST to constraint
the search space of the output. Patois [37] adopts Syntactic Neural
Model [51] and leverages pattern mining technique to improve its
performance. The idea is to generate a frequent pattern (a common
code fragment) at one time step instead of generating it token by
token in several time steps. Moreover, Sun et. al. [41] propose a
transformer-based architecture specialized for code generation task
called TreeGen.

Deep Learning-based Code Search.

Some approaches have been proposed to address code search
task. Gu et. al. [12] proposes DeepCS, a deep-learning approach
that maps natural language and code snippets into a shared vector
space. The main idea of DeepCS is by training the network to map a
pair of relevant natural language descriptions and its code snippet
such that both are mapped close to each other in the vector space.
There are various similar approaches that are proposed with the
same underlying idea, such as UNIF[3], MMAN [11], CDRL [15],
COQIL [18], and CARLCS [39]. The main difference between those
approaches are the code features (e.g., sequence of code tokens,
method names, method signature) used to train the network and
the network architecture.

PTM for Sequence Generation.

[36] proposed a novel Chinese Pre-trained Unbalanced Trans-
former (CPT) that is designed for both natural language under-
standing (NLU) and natural language generation (NLG) tasks. It
consists of three parts: a shared encoder, an understanding decoder,
and a generation decoder. Two specific decoders with a shared
encoder are pre-trained with masked language modeling (MLM)
and denoising auto-encoding (DAE) tasks, respectively. CPT greatly
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accelerates the inference of text generation. [4] tried to help app de-
velopers generate answers that are related to the users’ issues. The
app response generation models use deep neural networks and train
on large amount of user feedbacks for training. [8] examined differ-
ent strategies to integrate pre-trained representations into sequence
to sequence models and apply it to neural machine translation and
abstractive summarization. The study find that pre-trained repre-
sentations are most effective when added to the encoder network
which slows inference by only 14[40] get inspired by the success
of BERT and proposed MAsked Sequence to Sequence pre-training
(MASS) for the encoder-decoder based language generation tasks.
It adopts the encoder-decoder framework to reconstruct a sentence
fragment given the remaining part of the sentence: its encoder
takes a sentence with randomly masked fragment as input, and its
decoder tries to predict this masked fragment so that it can jointly
train the encoder and decoder to develop the capability of repre-
sentation extraction and language modeling. [5] focused on trans-
ferring supervision signals of natural language generation (NLG)
tasks between multiple languages. The study proposed to pretrain
the encoder and the decoder of a sequence-to-sequence model un-
der both monolingual and cross-lingual settings. The pre-training
objective encourages the model to represent different languages
in the shared space, so that it can conduct zero-shot cross-lingual
transfer. [17] is a denoising autoencoder for pretraining sequence-
to-sequence models, which is trained by corrupting text with an
arbitrary noising function, and learning a model to reconstruct the
original text. It uses a standard Tranformer-based neural machine
translation architecture. [48] proposed an enhanced multi-flow se-
quence to sequence pre-training and fine-tuning framework named
ERNIE-GEN, which bridges the discrepancy between training and
inference with an infilling generation mechanism and a noise-aware
generation method. To make generation closer to human writing
patterns, this framework introduces a span-by-span generation
flow that trains the model to predict semantically-complete spans
consecutively rather than predicting word by word. [31] trained
GAN:Ss for language generation that has proven to be more difficult,
because of the non-differentiable nature of generating text with
recurrent neural networks. This study showed that recurrent neural
networks can be trained to generate text with GANs from scratch
using curriculum learning, by slowly teaching the model to gen-
erate sequences of increasing and variable length. [25] introduced
DeltaLM, a pretrained multilingual encoder-decoder model that
regards the decoder as the task layer of off-the-shelf pretrained en-
coders. Specifically, it augment the pretrained multilingual encoder
with a decoder and pre-train it in a self-supervised way. To take
advantage of both the large-scale monolingual data and bilingual
data, DeltalLM adopts the span corruption and translation span
corruption as the pre-training tasks.

PTM for Code Generation and Understanding

[38] categorized approaches to generating source code from nat-
ural language descriptions by their input and output forms. The
study also suggested the future direction of this research domain to
improve automatic code generation using natural language by ana-
lyzing the current trend of approaches. [30] proposes Synchromesh,
a framework to improve the coding reliability of pre-trained models.
Using Target Similarity Tuning, this framework retrieves a few-shot
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example from a training bank. The second stage involves feeding
examples to a pre-trained language model, which samples programs
based on Constrained Semantic Decoding. [19] developed Alpha-
Code, a system for generating code that can create novel solutions to
problems that require deeper reasoning. [28] explores the possibility
of applying similar techniques to a highly structured environment
with strict syntax rules. Based on pre-trained language models, the
study proposes an end-to-end machine learning model for code
generation in Python. [42] has introduced IntelliCode Compose - a
general-purpose multilingual code completion tool that can gener-
ate up to entire lines of syntactically correct code from sequences
of code tokens of arbitrary types. 1.2 billion lines of Python, C#,
JavaScript, and TypeScript source code were used to train a state-of-
the-art generative transformer model. [50] studied the effectiveness
of incorporating two forms of external knowledge: automatically
mined NL-code pairs from the programming QA forums Stack
Overflow and API documentation of programming languages. [32]
presented ProphetNet, a pre-training-based method for generating
English text summaries and questions. ProphetNet was also ex-
tended into other domains and languages to create the ProphetNet
family pre-training models, named ProphetNet-X, where X can be
English, Chinese, Multi-lingual, and so on. Researchers have pre-
trained ProphetNet-Multi, ProphetNet-Zh, ProphetNet-Dialog-En,
and ProphetNet-Dialog-Zh cross-lingual dialog generation models.

7 CONCLUSION AND FUTURE WORK

In this paper, we apply Pre-trained Transformer based Models (PTM)
for constructing API usage sequences for an API-related natural
language query. According to our empirical study, PTMs perform
better, beat the state-of-the-art approaches, and effectively pro-
duce API sequences based on natural language queries. Although
PTMs have shown promise in Natural Language and Programming
Language translation tasks, we are the first to demonstrate their
effectiveness in API learning. Additionally, we investigated differ-
ent tokenization methods that improved the performance of PTMs.
Other software engineering problems such as code search and fault
localization in API sequence may benefit from our findings in this
paper.

For future work, we will empirically study more PTMs and deter-
mine their best performance for APIlearning under different custom
hyper-parameters tuning. We will incorporate more libraries from
different programming languages to ensure a more fair and gener-
alized dataset. Also, we can adopt a more sophisticated approach to
generate annotation than just focusing on the first line of method-
level comments. We will also explore the applications of PTMs to
code search and fault localization in API sequence problems and
investigate the synthesis of sample code from API sequences.
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