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Abstract

In this paper, we propose a consistent nonparametric test for linearity in a large dimensional
panel data model with interactive fixed effects. Both lagged dependent variables and conditional
heteroskedasticity of unknown form are allowed in the model. We estimate the model under the
null hypothesis of linearity to obtain the restricted residuals which are then used to construct the
test statistic. We show that after being appropriately centered and standardized, the test statistic is
asymptotically normally distributed under both the null hypothesis and a sequence of Pitman local
alternatives by using the concept of conditional strong mixing that was recently introduced by Prakasa
Rao (2009). To improve the finite sample performance, we propose a bootstrap procedure to obtain
the bootstrap p-value. A small set of Monte Carlo simulations illustrates that our test performs well
in finite samples. An application to an economic growth panel dataset indicates significant nonlinear

relationships between economic growth, initial income level and capital accumulation.
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1 Introduction

Recently there has been a growing literature on large dimensional panel data models with interactive
fixed effects (IFE hereafter). These models can capture heterogeneity more flexibly than the traditional
fixed /random effects models by the adoption of time-varying common factors that affect the cross sectional
units with individual-specific factor loadings. It is this flexibility that drives the models to become one
of the most popular and successful tools to handle cross sectional dependence, especially when both
the cross sectional dimension (N) and the time period (T') are large. For example, Pesaran (2006)
proposes common correlated effect (CCE) estimation of panel data models with IFE; Bai (2009) proposes
principal component analysis (PCA) estimation; Moon and Weidner (2010, 2013) reinvestigate Bai’s
(2009) PCA estimation and put it in the framework of Gaussian quasi maximum likelihood estimation
(QMLE) framework; Su and Chen (2013) consider testing for slope homogeneity in panel data models
with IFE. For other developments on this type of models, see Ahn et al. (2001, 2013) for GMM approach
with large N and fixed T, Kapetanios and Pesaran (2007) and Greenaway-McGrevy et al. (2012) for
factor-augmented panel regressions, Pesaran and Tosetti (2011) for estimation of panel data models with
a multifactor error structure and spatial error correlation, Avarucci and Zafaroni (2012) for generalized
least squares (GLS) estimation, to name just a few.

Panel data models with IFE have been widely used in economics. Examples from labor economics
include Carneiro et al. (2003) and Cunha et al. (2005), both of which employ a factor error structure
to study individuals’ education decision. In macroeconomics, Giannone and Lenza (2005) provide an
explanation for Feldstein-Horioka’s (1980) puzzle by using IFE models. In finance, the arbitrage pricing
theory of Ross (1976) is built on a factor model for assets returns. Bai and Ng (2006) develop several
tests to evaluate the latent and observed factors in macroeconomics and finance. Ludvigson and Ng
(2009) investigate the empirical risk-return relation by using dynamic factor analysis for large datasets
to summarize a large amount of economic information by few estimated factors. Ludvigson and Ng
(2011) use factor augmented regressions to analyze the relationship between bond excess returns and
macroeconomic factors.

All of the aforementioned papers focus on the linear specification of regression relationship in panel
data models with TFE. Recently nonparametric panel data models with IFE have started to receive
attention; see Freyberger (2012), Su and Jin (2012), Jin and Su (2013), and Su and Zhang (2013).
Freyberger (2012) considers identification and sieve estimation of nonparametric panel data models with
IFE when N is large and T is fixed. Su and Jin (2012) extend the CCE estimation of Pesaran (2006)
from the static linear model to a static nonparametric model via the method of sieves. Jin and Su (2013)
construct a nonparametric test for poolability in nonparametric regression models with IFE. Su and
Zhang (2013) extend the PCA estimation of Bai (2009) to nonparametric dynamic panel data models
with IFE. Despite the robustness of nonparametric estimates and tests, they are usually subject to slower
convergence rates than their parametric counterparts. On the other hand, estimation and tests based on
parametric (usually linear) models can be misleading if the underlying models are misspecified. For this
reason, it is worthwhile to propose a test for the correct specification of the widely used linear panel data

models with interactive effects.



In this paper we are interested in testing for linearity in the following panel data model
Yie = m (Xu) + FYN) + ea, (1.1)

where it = 1,...,N, t =1,...,T, X;; is a p X 1 vector of observed regressors that may contain lagged
dependent variables, m () is an unknown smooth function, FY is an R x 1 vector of unobserved common
factors, )\? is an R x 1 vector of unobserved factor loadings, ¢;; is an idiosyncratic error term. When
m (X)) = X/,8° almost surely (a.s.) for some 8° € RP, (1.1) becomes the most popular linear panel
data model with IFE, which is investigated by Pesaran (2006), Bai (2009), and Moon and Weidner
(2010, 2013), among others. These authors consider various estimates for 8 and (\;, F}) in the model.
Asymptotic distributions for all estimators have been established and bias-correction is generally needed.

To motivate our test and study of the nonparametric model in (1.1), we take the economic growth
model as an example. Prior to the middle 1990s, almost all empirical cross-country growth studies were
based on the assumption that all countries obey a parametric (commonly linear) specification as required
by the Solow model or its variants. Several studies conducted in the mid to late 1990s question the
assumption of linearity and propose nonlinear alternatives for growth model. For example, in a cross
sectional study Liu and Stengos (1999) employ a partially linear model to uncover the nonlinear pattern
that initial income and schooling levels affect growth rates. Recently Su and Lu (2013) and Lee (2014)
study economic growth via a dynamic panel data model and find significant nonlinear patterns. The
former paper considers the traditional panel data model with only individual fixed effects when N is
large and T is fixed; the latter considers large dimensional panel with both individual and time effects
when both N and T are large. Given the fact that the linear dynamic panel data model is rejected in

either paper, we can consider the following nonparametric panel data model
Yie = m (Xit) + i + fr + €t (1.2)

where a; and f; are the usual individual and time fixed effects, Yj; is the growth rate of GDP per capita
in country ¢ at time period ¢, X;; is a vector that may include the last period economic growth rate
(Y;1—1) as well as some economic growth determinants such as initial income level, human capital, and
investment as a share of GDP. Obviously, employing the panel data model in (1.2) to growth allows us
to control not only the country-specific effects but also the time-specific effects, but its limitation is also
apparent. Loosely speaking, (1.2) assumes that the common shocks such as technology shocks, oil price
shocks, and financial crises enter the equation through the time-specific effects f; and have the same
effects on all individual countries. This is certainly not the case in reality as a small economy tends to
be more vulnerable to such shocks than a large economy. This motivates the use of nonparametric panel
data models with IFE in (1.1) in the growth literature. We shall examine whether we can continue to
find evidence of nonlinear patterns when the usual additive fixed effects is replaced by the IFE.

More generally, although economic theory dictates that some economic variables are important for the
causal effects of the others, rarely does it state exactly how the variables should enter a statistical model.
Models derived from first-principles such as utility or production functions only have linear dynamics
under some narrow functional form restrictions. Linear models are usually adopted for convenience. A

correctly specified linear model may afford precise inference whereas a badly misspecified one may offer



seriously misleading inference. When m (-) is a nonlinear function, the previously reviewed parametric
methods generally cannot provide consistent estimates for the underlying regression function, and the
estimated factor space would be inconsistent too. As a result, tests based on these estimates would be
completely misleading. For example, it is very important to determine the number of common factors
in factor analysis (e.g., Bai and Ng (2002), Onatski (2009), and Lu and Su (2013)) and to test for
additivity versus interactivity in panel data models (e.g., Bai (2009)). But both are generally invalid if
they are based on the estimation of a misspecified model. Therefore, to avoid the serious consequence of
misspecification, it is necessary and prudent to test for linearity before we embark on statistical inference
about the coefficients and factor space.

There have been many tests for linearity or more generally the correct specification of parametric
models in the literature. The RESET test of Ramsey (1969) is the common used specification test for the
linear regression model but it is not consistent. Since Hausman (1978) a large literature on testing for
the correct specification of functional forms has developed; see Bierens (1982, 1990), Wooldridge (1992),
Yatchew (1992), Héirdle and Mammen (1993), Hong and White (1995), Fan and Li (1996), Zheng (1996),
Li and Wang (1998), Stinchcombe and White (1998), Chen and Gao (2007), Hsiao et al. (2007), and
Su and Ullah (2013), to name just a few. In addition, Hjellvik and Tjgstheim (1995) and Hjellvik et al.
(1998) derive tests for linearity specification in nonparametric regressions and Hansen (1999) reviews the
problem of testing for linearity in the context of self-exciting threshold autoregressive (SETAR) models.
More recently, Su and Lu (2013) and Lee (2014) consider testing for linearity in dynamic panel data
models based on the weighted square distance between parametric and nonparametric estimates and
individual-specific generalized spectral derivative, respectively; Lin et al. (2014) propose a consistent test
for a linear functional form in a static panel data model with fixed effects. Nevertheless, to the best of
our knowledge, there is no available test of linearity for panel data models with IFE.

In this paper, we propose a nonparametric test for linearity in panel data models with TFE. We
first estimate the model under the null hypothesis of linearity and obtain the parametric residuals that
are used to construct our test statistic. The parametric residual contains no useful information about
the regression function when the linear model is correctly specified; it does otherwise. As a result, the
projection of the parametric residual to the regressor space is expected to be zero under the null and
nonzero under the alternative. This motivates our residual-based test, like many other residual-based tests
in the literature (e.g., Fan and Li (1996), Zheng (1996), Hsiao et al. (2007), and Su and Ullah (2013)).
We show that after being appropriately centered and standardized, our test statistic is asymptotically
normally distributed under the null hypothesis and a sequence of Pitman local alternatives. We also
propose a bootstrap procedure to obtain the bootstrap p-value. Clearly, in the case of rejecting the null
hypothesis, the linear panel data models with IFE cannot be used, and one has to consider nonlinear
or nonparametric modelling. We apply our test to an economic growth panel dataset from the Penn
World Table (PWT 7.1) and find significant nonlinear relationships across different model specifications
and periods. This suggests the empirical relevance of our test and calls upon nonparametric or nonlinear
modeling of panel data models with IFE.

In comparison with the existing tests for other models in the literature, the major difficulties in

analyzing our test lie in three aspects. The first one is due to the slow convergence rate of the estimates



of factors and factor loadings. In the papers mentioned above, the parametric residuals converge to the
true random error terms under the null at the usual parametric rate and thus the parametric estimation
error does not play a role in the asymptotic distribution of the test statistic under either the null or
nontrivial Pitman local alternatives. In contrast, for panel data models with IFE, the factors and factor
loadings can only be estimated at a slower rate than the slope coefficients, and their estimation error
plays an important role and complicates the asymptotic analysis of the local power function substantially.
The second major difficulty is due to the allowance for dynamic structure in the panel data models.
The test statistic (see (2.4) below) itself possesses the structure of a two-fold V-statistic where double
summations are needed along both the individual and time dimensions. The asymptotic analysis of
such a statistic becomes extremely involved with the presence of lagged dependent variables when the
first-stage parameter estimation errors enter the asymptotics. The third major difficulty arises because
the observations are typically not independent across the cross sectional units or strong mixing over
time in dynamic panel data models with IFE. This occurs in dynamic panel data models when we
allow both the unobserved factors and factor loadings to be stochastic. Nevertheless, conditional on the
unobserved factors and factor loadings, we may have independence across cross sectional units and strong
mixing over time. Fortunately, the classical central limit theorem (CLT) for second-order degenerate U-
statistics for independent but nonidentically distributed (INID) observations (see, e.g., de Jong (1987))
can be extended straightforwardly to the case of conditionally independent but nonidentically distributed
(CINID) observations. The classical Davydov’s and Bernstein’s inequalities for strong mixing processes
also have their analog for conditional strong mixing processes which were formerly introduced by Prakasa
Rao (2009). The study of the asymptotic properties of our test statistic relies on these innovations.

The rest of the paper is organized as follows. In Section 2, we introduce the hypothesis and the test
statistics. The asymptotic distributions of our test are established both under the null hypothesis and
the local alternatives in Section 3. In Section 4 we conduct a small set of Monte Carlo experiments to
evaluate the finite sample performance of our test and apply our test to an economic growth data set.
Section 5 concludes. All proofs are relegated to the Appendixes and additional proofs for the technical
lemmas are provided in the supplement.

NOTATION. Throughout the paper we adopt the following notation. For an m x n real matrix
A, we denote its transpose as A’, its Frobenius norm as ||A| (= [tr(AA’)]l/2), its spectral norm as
Al (= Vpq (A’A)), where = means “is defined as” and 4 (-) denotes the largest eigenvalue of a real
symmetric matrix. Let p;, (1) denote the minimum eigenvalue of a real symmetric matrix. More
generally, we use p, (-) to denote the sth largest eigenvalue of a real symmetric matrix by counting
multiple eigenvalues multiple times. Let P4 = A (A’ A)f1 A" and My = I,, — P4 where I,, denotes
an m X m identity matrix. We use “p.d.” and “p.s.d.” to abbreviate “positive definite” and “positive
semidefinite”, respectively. For symmetric matrices A and B, we use A > B (A > B) to indicate that
A—DBisp.d. (p.s.d.). The operator L denotes convergence in probability, L convergence in distribution,
and plim probability limit. We use (N,T) — oo to denote the joint convergence of N and T when both
pass to the infinity simultaneously.



2 Basic Framework

In this section, we first formulate the hypotheses and test statistic, and then introduce the estimation of

panel data models with IFE under the null restriction.

2.1 The hypotheses and test statistic

The main objective is to construct a test for linearity in model (1.1). We are interested in testing the
null hypothesis
Ho : Pr [m (Xit) = X/,8°] = 1 for some B° € R?. (2.1)

The alternative hypothesis is the negation of Hy:
H, : Prim (Xu) = X[,0) <1 for all B € RP. (2.2)
To facilitate the local power analysis, we define a sequence of Pitman local alternatives:
Hy (vnp) i m (X)) = XL8° + ynrA (X)) as. for some 50 € RP (2.3)

where A (-) = Ayt (+) is a measurable nonlinear function, v, — 0 as (N,T) — oo, and the rate is
specified in Theorem 3.3 below.

Let e = Yis — X/,6° — F\). Let f; () denote the probability density function (PDF) of X;;. In view
of the fact that e;; = g;+ and F (e;+|X;:) = 0 under Hp, we have

J=FEleqsE (ei|Xit) fi (Xi)| = E {[E (eit| Xit)]? fi (Xit)} =0

under Hy. Nevertheless, under H; we have e;; = ;¢ + m (X)) — X{tﬁo. So E (e;| Xit) = m (X)) — X{tﬁo
is not equal 0 a.s., implying that F [e;F (€| Xit) fi (Xit)] > 0 under H;. Below we propose a consistent
test for the correct specification of the linear panel data model based on this observation.

To implement our test, we need to estimate the model under Hy and obtain the restricted residuals

&; = (&1,...,&r) for i =1,..., N. Then one can obtain the following sample analogue of J

N N T T

Ir= s 3y

i=1 j=1 t=1 s=

E21‘/5]5‘[{11 it ]s = NTQZZ ’CZJEJ (24)
1 i=1 j=1

where Kj, (z) = I7_ hy 'k (z;/h), k (-) is a univariate kernel function, h = (hy, ..., h,) is a bandwidth
parameter, and KC;; is a T' x T' matrix whose (¢, s)th element is given by K;j+s = Kp (Xit — Xjs) .

2.2 Estimation under the null

To proceed, let X;; ; denote the kth element of X;; for k = 1,...,p. Define

Vi = (Y, Yr), Xi= X, Xir)', &= (a,ar), e =(ea, - ,eir),
/

FO = (FO,-- F2)', X0 = (M, 0%)" Xik = Xk oo Xirp)s, Y=(Y1,.0 Vo),

Xi = X1k Xnk), €=(e1,.en), and e = (eq, ..., en)".



Clearly, Y, X, € and e all denote N x T matrices.
As mentioned above, we need to estimate the model under the null hypothesis (2.1). Under Hp, we

can rewrite the model in vector and matrix notation as

Y; = XiB% + FON + ¢ (2.5)
and
p
Y =) X+ NFY te, (2.6)
k=1

where ° = (ﬁ[lj, ...,Bg)/.
Following Moon and Weidner (2010, 2013), the Gaussian quasi-maximum likelihood estimator (QMLE)
(B, A, 13’) of (B, A\, F) can be obtained as follows

(B, A, F) = argminLyr (6, A, F) (2.7)
(BN F)

where

(2.8)

/
1 P
Lnr (B, A, F) = otr KY Zﬁka —\F ) (Y - ;gkxk - AF’)
8= (,61, ...,Bp)/ is a p x 1 vector of parameter coefficients, F' = (F}, ..., Fr) and \ = (/\1,...,)\N)'. In
particular, the main object of interest 8 can be estimated by

N

8= arggninLNT 8) (2.9)
where the negative profile quasi log-likelihood function Lyt () is given by

LNT (B) = I?,II?ENT (ﬁvAuF)
= min %tr KY - Zﬁkxk> Mp (Y - Zﬂkxk> 1
k=1 k=1
1 T P ! P
= NT Z H l(Y - Zﬁkxk> (Y - Zﬁkxkﬂ ~ (2.10)
k=1 k=1

t=R+1

See Moon and Weidner (2010) for the demonstration of the equivalence of the last three expressions.

As (2.9) and (2.10) suggest, it is convenient to compute the QMLE: one only needs to calculate the
eigenvalues of a T' x T' matrix at each step of the numerical optimization over 5. For statistical inference,
one also needs to obtain consistent estimates of A\’ and F° under certain identification restrictions.

Following Bai (2009), we consider the following identification restrictions
F'F/T = Ig and \'\ = diagonal matrix. (2.11)

Upon obtaining 3, the QMLE (X, F) of (), F) are given by the solutions of the following set of nonlinear

restrictions:

N
Ni Z (Y; = X, B)(Y; — XiB)' | F = FVyr, (2.12)



and
N=0u o dy) =11 [F’(Yl — X4B), o B (Y — XN )], (2.13)

where V7 is a diagonal matrix that consists of the R largest eigenvalues of the bracketed matrix in
(2.12), arranged in decreasing order.
After obtaining (B, A, F‘), we can estimate ¢; by & = Y; — X, — F\; under the null. It is easy to
verify that
i = Mpei — MpX;(B — %) + MaFOX) + My (m; — X;8°) (2.14)
where m; = (m(X;1),m (Xi2), - ,m(XZ-T))/. &; is then used in constructing the test statistic Jyr
defined in (2.4).

3 Asymptotic Distribution

In this section we first study the asymptotic behavior of 3 under H, (vn7) and then the asymptotic
distribution of our test statistic under Hy (yxr). We also propose a bootstrap method to obtain the

bootstrap p-values for our test.

3.1 Asymptotic behavior of 5 under H; ()

Let C](\}%« and Cj(\?)T denote p X 1 vectors whose kth elements are respectively given by

CNTk ~tt (Mo X Mpoe') and (3.1)
1
C](\?%“,k: = “NT [tr (eMFoe M)\oXk(P ) + tr (e’MAoeMFoX;CIIﬁ) + tr (e’MAoXkMFerPl)] , (3.2)

where ®; = \Y (/\0')\0) ! (FO’FO)f1 FY. Let Dy denote a p x p matrix whose (k1, k2)th element is given
by

DNT,krlkz (M)\UXklMFUX]g ) (33)

1
NT
Let o1 = )\?/ ()\()’)\O/N)71 )\2 and X; = MpoX; — % Zj\;l a;; MpoX;. It is easy to see that an alternative

expression for Dy is given by

N N N N

Dyt = Dyt (F°) = % ZXZ{MFoXl- <N2 Zkz MFoXkaik> = % ZlX’X
which is used by Bai (2009). Following Moon and Weidner (2013) we refer to C’](\})T + CJ(\?)T and Dy
as the approximated score and Hessian matrix for the profile quasi-likelihood function. Let dyr =
min(v/N,VT). Let A; = (A (Xa), ..., A(Xpr)) and A = (Aq, ..., Ay)".

To study the asymptotic behavior of B under Hj (vyy7), we make the following assumptions.
Assumption A.1. (i) N=IAY)\° L 5\ > 0 for some R x R matrix X as N — oc.

(i) T-2FYFO £ $p > 0 for some R x R matrix Sp as T — oo.

(iii) |e]| = Op (max (\/N \/T)) .



(iv) | Xk| = Op (\/NT) fork=1,...,p.
(v) Dyt £ D > 0 for some p X p matrix D as (N,T) — oc.

Assumption A.2. (i) (NT) ?tx(Xye') = Op (1) for k=1,...,p.
(i) Let X() = >h_; ax Xy, such that ||| = 1 where v = (a1, ..., ;) . There exists a finite constant

C > 0 such that . lei‘n” . Zf:2R+1 1y (X’(Q)X(a)) > C with probability approaching 1 (w.p.a.1).
a€ERP:||a||=

Assumption A.3. (i) |A|| = Op(VNT).
(ii) As (N, T) — oo, Yy — 0.

Assumptions A.1-A.2 are also made in Moon and Weidner (2010). A.1(i), (ii) and (iv) can be easily
satisfied and A.1(iii) can be met for various error processes. A.1(v) requires that D7 be asymptotically
positive definite. A.2(i) requires weak exogeneity of the regressors X and A.2(ii) imposes the usual
non-collinearity condition on Xy. Note that A.2(ii) rules out time-invariant regressors or cross-sectionally
invariant regressors, but it can be modified as in Moon Weidner (2013) to allow for both with more
complicated notation and special treatment. A.3(i)-(ii) specify conditions on 7,; and A. Note that we

only require that the deviation from the null hypothesis is of local nature.

The following theorem states the asymptotic expansion of 3 under Hy (yyr) -
Theorem 3.1 Suppose Assumptions A.1-A.3 hold. Then under Hy (1)
; 0_ p-1 (1) (2) 2 -1 -3 —511/2
B—=p"=Dyr (Cnr +Cnr) +Op{ Vi1 (On7 + 1) + YnrdNT + O8] :

Remark 1. The result in Theorem 3.1 is comparable with that in Corollary 3.2 of Moon and Weidner
(2010). Let C_’](\}%« and C_'](\?%« denote p x 1 vectors with kth elements respectively given by

~1 1
Ve = ~tt (Mo Xy Mpoe') and (3.4)
Oore = — 77 b1 (eMpoe/ Myo Xy @) + tr (' Mo e Mpo X, @1) + tr (€' Myo X Mpoe'®1)] . (3.5)

Following the proof of the above theorem, we can show that under Hy, the asymptotic representation for
B—pB%is given by

B— 8= D3k (Ch1 +C%r) +0r (0337) -
Let syt = [Yir (5]7\,17« +NT) + YNTO N + 5&‘3«] "2 To see the effect of the local deviation from the null

hypothesis on the asymptotic expansion of B— B, we apply the fact that e = e+~ NrA under Hy (yy7)

and make the following decomposition under Hy (yy) :

B-8" = D3k (CVr+C%Y) + Dy (C) — CR1) + Dk (691 — CFY) + Or (kne)
= Ainr+ Aont + Asnt + Op (knT),



where

hr = D3} (G061
Aovr = Dy (CR) = O ) = DR Lt (Myo X Mo A)
Asyt = Dyb (Cﬁ%—éﬁ%)

= _DX’%W?Z/\TL;: {[tr (eMpo A’ Mo X ®)) + tr (AMpoe’ Myo X ®)) + v nyptr (AMpo A’ Myo X )]
+ [tI‘ (EIM/\O AMFOX;C(I)l) + tr (A/M/\OEMFOX;C(I)I) + vyt (A/M)\o AMFOX;C(I)l)]

+ [tr (E/MAOX]CMFO Alq)l) + tr (A/M)\OXkMFOE/(I)1) + yYnrtr (A/MAOXkMFOA/q)l)]} .
Apparently, A;n7 denotes the dominant term in the expression of B — % under Hy, Asnr and Asnr

signify the effect of the local deviation from the null hypothesis on the asymptotic expansion.
Remark 2. In view of the fact that under Assumptions A.1-A.3(i)

1 _
C](\}%“k = ’;\JTV;U (Myo X MpoA') + NT T (MyoX;Mpo€') = Op (yn7) + Op (6 37) (3.6)

and that C’](\?)T = Op (057 + V), we have under Hy (vy7)

B B » 5 a1/2
B—-p" = Dyn (C’](\})T + C’](\?)T) +Op{[var (5N1T +vn7) + YNTOny + 5N5T] }
= Op(Ynr +0N7)-

As expected, the convergence rate of 3 to 8° depends on yyp and Sy jointly under Hy (yyp) . If
Sng = O (yyr), then the local deviation from the null model controls the convergence rate of Bto 8°. In
the following study, we consider Hj (yy7) with vy = N=Y2T=1/2(h1)=1/4 and restrict 57 = o(Yy7)
(see Assumption A.7(i) below). The latter condition implies that C}. and the second term in C{). in

(3.6) are asymptotically smaller than the first term in C’](\}gp Then we have
p—p = VNTDX/;HNT +O0p (5N2T + V?VT) = ’YNTD]T/;HNT +op (Ynr) 5 (3.7)
where IIy7 is a p x 1 vector whose kth element is given by!
Hnre = (NT) ' tr (MyoXpMpoA') = Op (1). (3.8)
Note that we do not require N and T diverge to oo at the same speed, nor do we require that one diverge

to oo faster than the other.

3.2 Asymptotic distribution of the test statistic

First, we introduce the concept of conditional strong mixing.
Definition 1. Let (9, A, P) be a probability space and B be a sub-o-algebra of A. Let Pg(-) =
P (:|B). Let {&,,t > 1} be a sequence of random variables defined on (2,A, P). The sequence {&;,t > 1}

1 Using the notation X;, one can also write Iy = ﬁ Ef;l X{Ai.

10



is said to be conditionally strong mizing given B (or B-strong-mizing) if there exists a nonnegative B-

measurable random variable o (t) converging to 0 a.s. as t — oo such that
|Ps (AN B) — Pg (A) Ps (B)| < 8 (t) as. (3.9)

Jorall Ac o (&y,..,6), B€o (&40 &ppigprs-) and k> 1, 6> 1.

The above definition is due to Prakasa Rao (2009); see also Roussas (2008). When one takes o (¢) as
the supremum of the left hand side object in (3.9) over the set {4 € 0 (&, ...,&) s B € 0 (Epps Epptgrs ) »

k > 1}, we refer it to the B-strong-mixing coefficient.

Let go and ¢; be as specified in Assumption A.5 below. Let g2 € (1,4/3) and G2 = q1¢2/ (1 + g2) - Let
g3 > 0 be such that 1 — & = L + = Let h! = I[}_ hy. Let |A], = {E |A]|9}9 for any random scalar
or vector A. Let D =0 (F 0, )\0) , the o-field generated by (F 0, )\O) . To study the asymptotic distribution

of the test statistic, we add the following assumptions.

Assumption A.4. (i) For each i = 1,..., N, {(Xy, &) : t =1,2,...} is conditionally strong mixing
given D (or D-strong-mixing) with mixing coefficients {aj,,; (t),1 <t <T —1}. ap () = agp () =
maxj<;<n a%T,i (-) satisfies Y o ap (s)l/q3 < Cy <ooas. and Y00 ap (7_)1”7/(1+1”7) < C, < o0 a.s.
for some 7 € (0,1/3). In addition, there exists 7 € (1,Th!) such that Th!/7 > T" for some n > 0 and
(NT) /9 ()L g (7) = 04.4. (1) as (N, T) — oc.

(ii) (g4, X;), @ = 1,..., N, are mutually independent of each other conditional on D.

(iif) For each i = 1,..., N, E(eit|Fnr¢-1) = 0 as. where Fnrs1 = o({FO, N, Xo, Xiv 1,061,
Xit—2,€it—2, -} 7).

(iv) For each ¢ = 1,...,N, let f;: (z) denote the marginal PDF of X;; given D, and f;+s (z,Z) the
joint PDF of X;; and X;, given D. f;; () and f; s (+,-) are continuous in their arguments and uniformly

bounded by C'y < oco.

Assumption A.5. (i) maxi<i<n HXithO < Cx < oo for some qg > 4.

(i) maxi<i<n [leitll,, < C= < oo for some q1 > 4.

(ifl) max; << [|A7]], < Cx < o0 and maxy<i<r || FY||, < Crp < .

(iv) Either A (-) is uniformly bounded or there exists a function Da (-) such that |A (z + Z) — A (2)] <
DA (z) ||Z]| for all z € X and & = o(1), and (NT)f1 Zfil 23:1 E[(HFtOH + ||)\?||)(|DA (Xit)|4 +
A (Xi)[H]=0(1).

(v) (NT) T S, S BAER + M0k = 0 (1) and (NT) 'S5, S0, B R IX0)) 23] =
0(1).

Assumption A.6. (i) The kernel function k(-) : R — R is a symmetric, continuous and bounded PDF.
(ii) For some Cf < oo and L < oo, either &k (u) = 0 for |u| > L and for all w and @ € R, |k (u) — k (@)] <
Cy |u — |, or k(u) is differentiable, sup,, [(9/0u)k (u)| < Ck, k(u) < Ck|u|™™ and [(9/0u)k (u)| <
Cy |u|™" for |u| > L and for some v > 1.
Assumption A.7. (i) As (N,T) — oo, ||h|| — 0, NTS x5 (h!)l/2 — 0, Th! — o0, and Nh! — .
(i) As (N,T) — oo, NT=L(hl) [(h)2F79)/ 22 (p1)=20/ (U012 _, g and N27-2 (p))732)/ e _, ¢,
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A.4(i) requires that each individual time series {(X;, €)1t = 1,2, ...} be D-strong-mixing with an
algebraic mixing rate. Prakasa Rao (2009) extends the concept of (unconditional) strong mixing (a-
mixing) to conditional strong mixing. It turns out that several well-known inequalities for strong mixing
processes also have their conditional versions. See Lemmas E.1-E.3 in the supplementary appendix. As
Su and Chen (2013) notice, even if {(6it,Ft0) St > 1} is strong mixing, the simple panel AR(1) model
with IFE, Yi; = poYi -1 + )\?/Fto + &+, usually does not yield a strong mixing process {Y;;, ¢ > 1} unless
one assumes that A\!’s are nonstochastic. For this reason, Hahn and Kuersteiner (2011) assume that the
individual fixed effects are nonrandom and uniformly bounded in their study of nonlinear dynamic panel
data models. They also suggest that when the fixed effects are random, one should adopt the concept of
conditional strong mixing where the mixing coefficient is defined by conditioning on the individual fixed
effects. Lee (2013) follows this suggestion and demonstrates that under suitable conditions a nonlinear
panel AR(1) process with random fixed effects is S-mixing and thus a-mixing by conditioning on the
individual fixed effects. Gagliardini and Gouriéroux (2012) assume conditional S-mixing by conditioning
on the factor path in a nonlinear dynamic panel data model with common unobserved factors. Here
we define the conditional strong mixing processes by conditioning on the sigma-field D. For the above
panel AR(1) process, through the conditioning, we can treat )\?/Fto as an intercept term, so that the
D—strong mixing property simply follows from that of the usual AR(1) process which essentially requires
that |py] < 1 and that €;; have nontrivial absolutely continuous component in additional to some moment
condition on ;.

A.4(1), in conjunction with A.4(ii)-(iii), facilitates our asymptotic analysis. We assume that ap (+) =
%7 (1) = maxj<;<n agT’i (-) satisfies some summability condition. With more lengthy argument, it
is possible to relax this condition, say, by assuming that + Ziil Yooy a%Tﬂ- (s)l/ij3 < C, < o0 a.s.
The dependence of the mixing rate on ¢3 and 7 in A.4(i) reflects the trade-off between the degree of
dependence and the moment bounds of the process {(X;t,e;t), t > 1}. If the process is D-strong-mixing
with a geometric mixing rate, the conditions on ap (-) can easily be met by specifying = |C; log T
for some sufficiently large C;, where |a| denotes the integer part of a. A.4(ii) requires that (g;, X;) be
conditionally independent across ¢ but does not rule out cross sectional dependence among them. When
Xit = Y1 and g;; exhibits conditional heteroskedasticity (e.g., e = 0o (Yit—1) €ix where €;’s are
independently and identically distributed (ITD) with mean zero and variance one and oy (+) is an unknown
smooth function in the above panel AR(1) model), (X;;,e;:) are not independent across ¢ because of the
presence of common factors irrespective of whether one allows /\? to be independent across ¢ or not.
Nevertheless, conditional on D, it is possible that (X;,e;) is independent across ¢ such that A.4(ii) is
still satisfied. Here the cross sectional dependence is similar to the type of cross sectional dependence
generated by common shocks studied by Andrews (2005). The difference is that Andrews (2005) assumes
IID observations conditional on the o-field generated by the common shocks in a cross-section framework,
whereas we have conditionally independent but non-identically distributed (CINID) observations across
the individual dimension in a panel framework. A.4(iii) requires that the error terms ¢;; be a martingale
difference sequence (m.d.s.) with respect to the filter Fnr+—1, which allows lagged dependent variables
in X;; and conditional heteroskedasticity, skewness or kurtosis in €;;. Of course, if one assumes that

X is strictly exogenous, then the proofs for the following theorems can be greatly simplified. In sharp
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contrast, early literature on panel data models with IFE typically assumes that ¢;; is independent of )\?
and FY for all i,j,t,s; see, e.g., Pesaran (2006), Bai (2009), Moon and Weidner (2010, 2013), and Bai
and Li (2012). In particular, Moon and Weidner (2010, 2013) and Bai and Li (2012) assume that both
the factors and factor loadings are fixed constants and treat them as parameters to be estimated. A.4(iv)
imposes conditions on the conditional densities f;; and f; ;. The uniform boundedness condition can be
relaxed at the cost of more complicated proofs.

A.5 mainly specifies moment conditions on &;;, )\(Z-), F?, Xit, A(X;) and Da (Xi) as well in the case
where A (+) is not uniformly bounded. A.6 specifies conditions on the kernel function k (-) which, in
conjunction with A.4(i) and A.5(i) are mainly used to demonstrate that maxi<; j<n T ||K;;|| = Op (1)
in Lemma D.1 in Appendix D. A.7 specifies conditions on the bandwidth in relation to the sample sizes
(N, T). Note that NTd 7 (h!)l/2 — 0 is equivalent to (NT—! + N~1T) (h!)l/2 — 0, which restricts the
relative speed at which N and T diverge to oo in relation with Al

Let
(W)? &
Binr = NT ZséMFOICiiMFOSiv (3.10)
=1
1 oo ' S
Bavr = oo > (Mo = XiDRETvr) Kis(Mpod; = X;D5lIne),  (311)
1<i,j<N

2h! T T
Vvt = Y DD o (Kiaciel), (3.12)

1<i#j<N t=1 s=1

As will be clear, Byy7 and V7 stand for the asymptotic bias and variance of our test statistic,
respectively; Bsnr contributes to its asymptotic local power. The following theorem states the asymptotic

distribution of the test statistic Jyr under Hy (vy7) -

Theorem 3.2 Suppose Assumptions A.1-A.7 hold. Then under Hy (y np) with vy = (NT)_l/2 (h!)_1/4 ,
NT (h)"? Inr = Biny 2 N (Ba, Vo)

where By = plim(n 1)—ccBant and Vo = plim(n 1y VNT-

Remark 3. The proof of the above theorem is tedious and is relegated to Appendix B. The idea is simple
but the details are quite involved. We can show that NT (h!)1/2 JnT — BinT — BanT = AnT 4+ 0p (1)
under H; (yyp), where Ay = Zl§i<j§N Wt (wisug), W (us,uj) = 2 (h!)l/2 Zlgt,ng €ithCijts€js
and u; = (Xj,e;). Noting that Axp is a degenerate second order U-statistic, we apply a conditional
version of de Jong’s (1987) central limit theorem (CLT) for independently but nonidentically distributed
(INID) observations to show that Ay EN (0,Vp) under Assumptions A.1-A.7.2

In view of the fact Boy7 = 0 under Hy, an immediate consequence of Theorem 3.2 is

NT (M)? Jyr — Binr 2 N (0,Vp) under H.

2The CLT in de Jong (1987) works for second order U-statistics associated with INID observations. A close examination

of his proof shows that it also works for conditionally independent but nonidentically distributed (CINID) observations.
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To implement the test, we need to estimate the asymptotic bias B;yr and asymptotic variance Vyr

consistently under Hy. We propose to estimate Byyp and Vi respectively by

R (h|)1/2 N , ) ) Qh' , s

Binr = E €i/Cu'€i and Vyr = 3 E E ]Cz'j t5€itE s
NT o (NT)™  S3%r \<iZj<N

= Stssd It AIS

Then we define a feasible test statistic

Dyr = (NT (W)Y Ty — BlNT) A V. (3.13)
The following theorem establishes the asymptotic distribution of 'y under Hy (vy1) -
Theorem 3.3 Suppose Assumptions A.1-A.7 hold. Then under Hy (yy7), Cnr BN (Bg/\/vo, 1) .

Remark 4. The above theorem implies that the test has nontrivial asymptotic power against local
alternatives that converge to the null at the rate vy, = (NT)fl/2 (h!)71/4 . The local power function is
given by

Pr (fNT >z | Hy (nyT)) —-1-0 (z - B2/\/70) as (N,T) — oo,

where @ () is the standard normal cumulative distribution function (CDF). We obtain this distributional
result despite the fact that the unobserved factors Fy and factor loadings )\? can only be estimated at a
slower rates (N—1/2 for the former and T—'/2 for the latter, subject to certain matrix rotation). Even
though the slow convergence rates of these factors and factor loadings estimates do not have adverse
asymptotic effects on the estimation of the bias term Bjyr, the variance term Vi, and the asymptotic
distribution of I’ ~NT, they may play an important role in finite samples. For this reason, we will also
propose a bootstrap procedure to obtain the bootstrap p-values for our test.

Again, under Hy, B, = 0, and I'yr is asymptotically distributed N (0,1). This is stated in the

following corollary.
Corollary 3.4 Suppose the conditions in Theorem 3.3 hold. Then under Hy, Inr BN 0,1).

In principle, one can compare I y7 with the one-sided critical value z,, the upper ath percentile from

the standard normal distribution, and reject the null hypothesis when Dnr > 24 at a significance level.

Remark 5. Theorem 3.1 says nothing about the asymptotic property of the QMLE B under the global
alternative Hj. In this case, we can define the pseudo-true parameter 3* as the probability limit of B
Then

A(Xit) =m (Xit) — B Xu

does not equal 0 a.s. Let A be analogously defined as A but with the local deviation A (X;;) replaced
by the global one A (X;). In this case, we can show that under the additional assumption ||A|| =
or((NT)'?),

B —B* = DybTinr +op (1)
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where IIyr is a p X 1 vector whose kth element is given by 7 = (NT)_ltI‘<M)\0XkMFoA/) . In
addition, following the proof of Theorem 3.2, we can show that
1 Y. S
It = ——— > (Mo = XiDRlvr) Kiy (Mpod; = X; D4 lInt ) +op (1)
(NT) 1<4,j<N

= Bant +op (1),

which has a positive probability limit. This, together with the fact that Bint = Op ((h!)*l/ 2) and Vyr
has a well behaved probability limit under H;, implies that our test statistic I Nt diverges at the usual
nonparametric rate NT(h!)'/2 under H;. That is

Pr (fNT > byt ‘ Hl) — 1 as (N,T) — 00

for any nonstochastic sequence by = o (N T(h!)l/ 2) . So our test achieves consistency against any fixed

global alternatives.

Remark 6 (Test under strict exogeneity). Up to now we assume the existence of lagged dependent
variables in the panel regression and rely on the notion of conditional strong mixing to study the asymp-
totic properties of our test statistic. To avoid dynamic misspecification of the model and to facilitate
the asymptotic analysis of our test statistic, we assume certain m.d.s. condition in Assumption A.4(iii)
which unfortunately rules our serial correlation among the idiosyncratic error terms. If the panel data
model is static and the regressors are strictly exogenous as in Pesaran (2006) and Bai (2009), we can
rely on the usual notion of strong mixing and allow serial correlation in the error terms. In this case, we
can replace Assumption A.4 by Assumption A.4* in the supplementary appendix and demonstrate that
Theorems 3.2 and 3.3 continue to hold under some modifications on Assumption A.5. To save the space,

we relegate the discussions to the supplementary Appendix F.

3.3 A Bootstrap version of the test

Despite the fact that Corollary 3.4 provides the asymptotic normal null distribution for our test statistic,
we cannot rely on the asymptotic normal critical values to make inference for two reasons. One is inherited
from many kernel-based nonparametric tests, and the other is associated with the slow convergence rates
of the factors and factor loadings estimates as mentioned above. It is well known that the asymptotic
normal distribution may not serve as a good approximation for many kernel-based tests and tests based
on normal critical values can be sensitive to the choice of bandwidths and suffer from substantial finite
sample size distortions. The slow convergence of the estimates of factors and factor loadings plays an
important role in the determination of the asymptotic null distribution of our test statistic and may
further lead to some finite sample size distortions; this also occurs in Su and Chen’s (2013) LM-test for
the slope homogeneity in a linear dynamic panel data models with IFE. Therefore it is worthwhile to
propose a bootstrap procedure to improve the finite sample performance of our test. Below we propose

a fixed-regressor wild bootstrap method in the spirit of Hansen (2000). The procedure goes as follows:

1. Obtain the restricted residuals &; = Y — X{tB — F{;\z where B, Ft and 5\% are estimates under the
null hypothesis of linearity. Calculate the test statistic I'yr based on {&it, Xt}
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2. Fori=1,..,Nand ¢t =1,2,...,T, obtain the bootstrap error €}, = &;:1;, where n,, are indepen-
dently and identically distributed (IID) N (0, 1) across ¢ and ¢. Generate the bootstrap analogue Y
of Y;; by holding (X, Ft, 5\%) as fixed: Y = B/Xit—&-}\;ﬁt—i—s;‘t fori=1,2,...,Nandt=1,2,...,T.3

3. Given the bootstrap resample {Y5, X;:}, obtain the QMLEs B*,Ft* and 5\: . Obtain the residuals
g, =Y - XuB — Ft*';\: and calculate the bootstrap test statistic I, based on {&},, X/} .

. B
4. Repeat Steps 2-3 for B times and index the bootstrap statistics as {FET7b} . The bootstrap

p-value is calculated as p* = B~! Zle 1(IA1*NT7b > I'nr), where 1(-) is the usual indicator function.

It is straightforward to implement the above bootstrap procedure. Note that we impose the null
hypothesis of linearity in Step 2. Following Su and Chen (2013), we can readily establish the asymptotic

validity of the above bootstrap procedure. To save space, we only state the result here.

Theorem 3.5 Suppose the conditions in Theorem 3.3 hold. Then f}‘VT EN (0,1) conditionally on the
observed sample Wyt = {(X1,Y1), ..., (XN, YN)}-

The above result holds no matter whether the original sample satisfies the null, local alternative or
global alternative hypothesis. On the one hand, if Hy holds for the original sample, 'y also converges in
distribution to N (0, 1) so that a test based on the bootstrap p-value will have the right asymptotic level.
On the other hand, if H;y holds for the original sample, as we argue in Remark 4, I'nr diverges at rate
NT (h!)l/ ? whereas f}‘VT is asymptotically N (0, 1), which implies the consistency of the bootstrap-based
test.

4 Simulations and applications

In this section, we first conduct a small set of Monte Carlo simulations to evaluate the finite sample

performance of our test, and then apply our test to an economic growth panel dataset.

4.1 Monte Carlo Simulation Study
4.1.1 Data generating processes

We consider the following six data generating processes (DGPs)

DGP 1: Yiy = pY; -1+ A F) + e,

DGP 2: Yi, = 31 Xit,1 + B3 Xir,2 + N FY + e,

DGP 3: Yy = p"Yi o1 + BYXi1 + B5Xira + A FY + €,

DGP 4: Yiy = 6® (V; 1-1) Yig1 + A FP + €,

DGP 5: Yy = BYXie1 + B9Xit2 + 0@ (Xisn1 Xiv o) + A F2 + €3t

DGP 6: Yy = 26® (Yis—2) Yigo + B X1 + B9Xit2 + 0Xi 1@ (Xjr2) + A FP + e41,

3This is the case even if X;; contains lagged dependent variables, say, Yit—1 and Y _o.
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where i =1,2,...,N,t=1,2,...,T, (0° 8,85 = (0.6,1,3), 6 = 0.25, gy ~~ IID N(0,1), and ® (-) is the
standard normal CDF. Here Y = (A%, \,)’, F? = (F9, F%)’, and the regressors are generated according
to
— 07 120 _ 07 120
Xitq = py + Ay Fy + 1m0 and Xipo = pig + 2N Fy + 149,

where the variables )\?j, Ftoj,
and independent of {&;;}. Clearly, the regressors X;; 1 and X;; » are correlated with /\? and Fto. We set
pq =c1 =0.25 and py = co = 0.5. Note that DGPs 1-3 are used for the level study and DGPs 4-6 for the

power study. For the dynamic models (DGPs 1, 3, 4 and 6), we discard the first 100 observations along

and 7, 5, j = 1,2, are all IID N(0, 1), mutually independent of each other,

the time dimension for each individual when generating the data.

Note that the idiosyncratic error terms in the above six DGPs are all homoskedastic both conditionally
and unconditionally. To allow for conditional heteroskedasticity, which may be relevant in empirical
applications, we consider another set of DGPs, namely DGPs 1h-6h which are identical to DGPs 1-6,
respectively in the mean regression components but different from the latter in the generation of the
idiosyncratic error terms. For DGPs 1h and 4h, we generate the error terms as follows: e;; = o€,
o = (0.1+0.2Y2_ )% ¢ ~IID N(0,1). For DGPs 2h-3h and 5h-6h, the errors are generated as
follows: €5 = oipesr, oi = [0.1+ 0.1(X7 | + X2 5)]"/2, € ~1ID N(0,1).

As a referee kindly pointed out, it is important to allow serial dependence in the error process. So we

consider the following two additional error generating processes :

MA(l) i = 0-5Ci,t71 + Cit with Cit ~ IID N(O, 1), (41)
AR(1) : ey =0.3ci4_1 +C; with ¢;y ~ IID N(0, 1). (4.2)

Then we consider another four DGPs as follows:

DGPs 7 and 8: Vi = 81 Xir1 + 09Xt + AN E? + e,

DGPs 9 and 10: Vi, = 8YXi1 + B9Xir0 + 00 (Xip1 Xir0) + N F2 + g4,

where ¢;;’s are generated according to (4.1) in DGPs 7 and 9 and (4.2) in DGPs 8 and 10; X1 1, Xt 2,
M), F? are generated as in the previous DGPs. As before, we set (69, 53) = (1,3) and § = 0.25. DGPs
7-8 and 9-10 are for level and power studies, respectively. Clearly, in these DGPs we allow for exogenous

regressors and weakly serially dependent errors.

4.1.2 Implementation

To calculate the test statistic, we need to choose both the kernel function and the bandwidth parameter
h = (h1,....,hp) where p = 1 in DGPs 1, 4, 1h, and 4h, = 2 in DGPs 2, 5, 2h, 5h, and 7-9, and = 3 in
DGPs 3, 6, 3h and 6h. Let X;; denote the collection of the observable regressors in the above DGPs.
For example, X;; = (Yi¢—1, X1, Xir2) in DGPs 3, 6, 3h, and 6h. It is well known that the choice
of kernel function is not crucial for nonparametric kernel-based tests. So we adopt the Gaussian kernel
throughout: k (u) = (2r) "/ exp (—u?/2) . As to the bandwidth, a common feature of the kernel-based
tests is the involvement of a single bandwidth, which creates two limitations: one is that the tests can
be sensitive to the single bandwidth used, and the other is that these tests are consistent against local

alternatives of form (2.3) only when ~yp is at the rate of (NT)fl/2 (h!)71/4 or larger. Therefore it is

17



worthwhile to consider different choices of bandwidths. Generally speaking, there are at least four ways
to choose the bandwidth for a nonparametric smooth test. One is based on Silverman’s rule of thumb,
which is simple but does not have any optimality property. The second is to choose the bandwidth
by certain cross-validation methods (typically leave-one-out least squares cross-validation). The chosen
bandwidth may be optimal for the estimation purpose but does not have any optimality property for the
kernel-based test. The third one is the adaptive-rate-optimal rule proposed by Horowitz and Spokoiny
(2001, HS hereafter). The fourth one is based on the idea of maximizing the local power while keeping
the size well controlled; see, e.g., Gao and Gijbels (2008).

In this paper we consider two choices of bandwidth sequences, one is based on Silverman’s rule
of thumb (ROT), and the other on HS’s adaptive test procedure. The former is used to examine the
sensitivity of our test to the bandwidth and the latter is intended to improve the power performance of our
test. We choose the ROT bandwidth sequences according to: h; = cos; (IV T)_l/ (4+p) , where s; stands for
the sample standard deviation for the lth element in X;; and ¢g = 0.5, 1, and 2. HS propose an adaptive
test that combines a version of the Hirdle-Mammen test statistics over a set of bandwidths. The test is
called adaptive and rate optimal if it adapts to the unknown smoothness of the local alternative hypothesis
and is able to achieve the optimal order in the minimax sense. To ensure the adaptive rate-optimality,
HS have to impose some strong assumptions on the underlying DGP: the observations are IID and the
regressors, random or not, are uniformly bounded with continuous distributions. Chen and Gao (2007)
relax the IID assumptions and show that the results established by HS are valid for weakly dependent
observations. We conjecture that these results can also be extended to our dynamic panel data models
with IFE, but the formal study is beyond the scope of the current paper. Instead, we just apply their
adaptive test procedure to our test and consider its finite sample performance. Following HS and Chen
and Gao (2007), we use a geometric grid consisting of the points hj s = w/$s;hmin (s =0,1,..,.N —1;j =
1,...,p), where A is number of grid points, w = (hmax/hmin)l/(N_l), hmin = 0.4 (NT)_l/(Q‘lp) and
hmax = 3 (N T)_l/ 1000 1 is easy to verify these bandwidths also meet our theoretical requirements on
the bandwidth when N o T'. Like HS, we choose N according to the rule of thumb N = |log(NT)| + 1
where |-| denotes the integer part of -. Let h(®) = (hyg,....;h, ), s = 0,1,..., N — 1. For each h(), we
calculate the test statistic in (3.13) and denote it as Ty (h(s)) . Define

supLyr = 0<sER—1 Py (h(S)) '

Even though 't (h(s)) is asymptotically distributed as N (0, 1) under the null for each s, the distribution
of sup Dyr is generally unknown. Fortunately, we can use bootstrap approximation. Based upon the
same bootstrap resampling data {Y;5, X;;} as in Section 3.3, we construct the bootstrap version sup f}‘\,T.
We repeat this procedure B times and obtain the sequence {sup f?VTVb}le. We reject the null when
p* = B! Zle 1(sup f}kVT,b > sup ) is smaller than the given level of significance.

For the (N,T) pair, we consider (N,T) = (20,20), (20,40), (20,60), (40,20), (40,40), (40,60),
(60,20), and (60,40). For each scenario, we use 500 and 250 replications for the size and power studies,
respectively, and use 200 bootstrap resamples in each replication.

To implement the testing procedure, we need to obtain the estimators under the null hypothesis of

linearity. We first obtain the initial estimators of (50, N F 0) using Bai’s (2009) principal component
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approach, and then calculate the bias corrected QMLE estimator (B , 5\, 13') following Moon and Weidner
(2010) (see their section 3.3 in particular). We then calculate the bootstrap test statistic 1%, and

sup fj‘VT, based on the bias corrected QMLE estimators.

4.1.3 Test results

Table 1 reports the empirical rejection frequencies of our [ n7 test at 1%, 5%, and 10% nominal levels for
different ROT bandwidth sequences and our sup I'n7 test for DGPs 1-6. We summarize some important
findings from Table 1. First, when the null hypothesis holds true in DGPs 1-3, Table 1 suggests that
the level of our test behaves reasonably well across all DGPs and sample sizes under investigation; more
importantly, the level of our test is robust to different choices of bandwidth and HS’s adaptive test
procedure seems to yield well-controlled size behavior too. Second, when the null hypothesis does not
hold in DGPs 4-6, Table 1 suggests expected power behavior for our test: (i) as either N or T increases,
the power of our test generally increases very rapidly; (ii) the choice of bandwidth appears to have some
effect on the power of our test and a larger value of ¢y tends to yield a larger testing power; (iii) the
power of our test based on HS’s adaptive test procedure behaves quite well, is much larger than tests
based on ROT bandwidth with ¢y = 0.5 and 1, and slightly outperforms tests based on ROT bandwidth
with ¢ = 2.

Table 2 reports the simulation results for DGPs 1h-6h when the idiosyncratic errors are conditionally
heteroskedastic. To a large extent the results are similar to the homoskedastic case, although there are
some slight differences. For pure dynamic panels (DGP 1h), the levels of our test in the heteroskedastic
case oversize in some scenarios. For example, when (N,T) = (20,40), (20,60), (40,20), ¢ = 1 and 2,
there are slightly more size distortions of our test at the 5% and 10% nominal levels in the heteroskedastic
case than in the homoskedastic case; however, for DGPs 2h-3h, the levels of our test in the heteroskedastic
case generally perform similarly or slightly better than the corresponding homoskedastic cases in DGPs
2-3. In addition, the power of our test continues to perform well in the case of heteroskedasticity.

Tables 3 reports the simulation results for DGPs 7-10 when the idiosyncratic errors are serially cor-
related. For DGPs 7 and 8, the level of our test using the ROT bandwidth with ¢y = 0.5 and 1 works
reasonably well. However, there is moderate size distortion when the ROT bandwidth with ¢y = 2 or the
HS’s adaptive test procedure is applied. The results for DGPs 9 and 10 indicate that the power of our

test still works well when there is serial correlation in the errors.

4.2 An application to the economic growth data

In this application we consider nonparametric dynamic panel data models for the economic growth data

which incorporate common shocks. We consider the model
Yie =m (Yigo1, . Yig—s, Xat) + FYA) + e, (4.3)

where Y;, = log(GDP;;) — log(GDP,; 1—1) denotes the growth rate of GDP for country 4 in year ¢, and
GDP;; is the real GDP per worker of country ¢ over year t. We set s = 1,2, 3 to allow for different time

lags in the regressor. F; denotes common shocks, e.g., technological shocks and financial crises, and \;
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Table 1: Finite sample rejection frequency for DGPs 1-6 (homoskedastic case: level study for DGPs 1-3
and power study for DGPs 4-6)

DGP N T co=0.5 co=1 co =2 sup 'y
1% 5% 10% 1% 5%  10% 1% 5%  10% 1% 5% 10%
1 20 20 0.010 0.054 0.108 0.020 0.068 0.108 0.010 0.070 0.118 0.012 0.068 0.114
20 40 0.008 0.022 0.084 0.010 0.042 0.086 0.014 0.042 0.086 0.010 0.036 0.076
20 60 0.014 0.052 0.110 0.012 0.056 0.110 0.010 0.046 0.108 0.016 0.050 0.108
40 20 0.020 0.064 0.104 0.024 0.072 0.108 0.026 0.064 0.114 0.022 0.062 0.098

40 40 0.018 0.060 0.106 0.018 0.050 0.110 0.018 0.064 0.120 0.016 0.056 0.108
40 60 0.014 0.062 0.112 0.016 0.050 0.106 0.014 0.044 0.096 0.016 0.054 0.112

60 20 0.012 0.048 0.112 0.010 0.058 0.108 0.012 0.060 0.118 0.012 0.068 0.110
60 40 0.012 0.056 0.100 0.008 0.050 0.088 0.004 0.040 0.092 0.008 0.036 0.082
2 20 20 0.002 0.058 0.108 0.016 0.046 0.094 0.018 0.056 0.108 0.010 0.048 0.106
20 40 0.014 0.062 0.110 0.012 0.050 0.108 0.016 0.064 0.106 0.014 0.066 0.112
20 60 0.020 0.046 0.096 0.020 0.042 0.088 0.020 0.042 0.090 0.020  0.046 0.078
40 20 0.018 0.052 0.094 0.010 0.044 0.102 0.008 0.052 0.108 0.014 0.058 0.104
40 40 0.010 0.044 0.090 0.006 0.048 0.094 0.006 0.040 0.080 0.008 0.040 0.086
40 60 0.008 0.040 0.100 0.010 0.060 0.096 0.016 0.064 0.116 0.018 0.048 0.108
60 20 0.020 0.050 0.106 0.020 0.064 0.102 0.020 0.052 0.122 0.014 0.054 0.098
60 40 0.016 0.046 0.106 0.012 0.052 0.098 0.010 0.070 0.112 0.014 0.048 0.092
3 20 20 0.010 0.052 0.090 0.016 0.040 0.074 0.006 0.050 0.102 0.012  0.054 0.090
20 40 0.006 0.046 0.084 0.018 0.058 0.098 0.012 0.058 0.110 0.008 0.054 0.098
20 60 0.016 0.068 0.110 0.018 0.060 0.116 0.010 0.058 0.126 0.010 0.054 0.120
40 20 0.024 0.064 0.118 0.008 0.060 0.104 0.012 0.056 0.104 0.010 0.060 0.100
40 40 0.016 0.062 0.090 0.010 0.062 0.104 0.012 0.052 0.100 0.016  0.060 0.116
40 60 0.014 0.082 0.138 0.022 0.056 0.112 0.010 0.054 0.112 0.014 0.068 0.126
60 20 0.012 0.044 0.104 0.006 0.048 0.100 0.008 0.036 0.078 0.006 0.042 0.098
60 40 0.012 0.056 0.098 0.012 0.046 0.096 0.006 0.056 0.108 0.004 0.050 0.116
4 20 20 0.112 0.268 0.400 0.168 0.372 0.484 0.172  0.420 0.580 0.288 0.484 0.600
20 40 0.316 0.548 0.676 0.460 0.664 0.780 0.548 0.756 0.868 0.644 0.836 0.896
20 60 0.532 0.792 0.864 0.676 0.864 0.944 0.752  0.936 0.972 0.884 0.952 0.980

40 20 0.256 0.544 0.692 0.380 0.700 0.844 0.440 0.784 0.888 0.644 0.808 0.864
40 40 0.792 0.944 0.972 0.876 0.992 1.000 0.960 1.000 1.000 0.972  1.000 1.000
40 60 0.936 0.988 0.996 0.984 0.996 1.000 0.992 1.000 1.000 0.992  1.000 1.000

60 20 0.496 0.788 0.872 0.668 0.876 0.936 0.732 0.916 0.956 0.844 0.916 0.956
60 40 0.952 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000
5 20 20 0.052 0.140 0.220 0.092  0.220 0.332 0.164 0.364 0.464 0.208 0.380 0.472

20 40 0.076 0.228 0.352 0.156 0.464 0.616 0.280 0.688 0.820 0.344 0.700 0.804
20 60 0.132 0.352 0.432 0.328 0.576 0.732 0.560 0.844 0.920 0.612 0.876 0.920
40 20 0.052 0.220 0.316 0.168 0.424 0.576 0.388 0.692 0.816 0.496 0.748 0.824

40 40 0.212 0.492 0.600 0.580 0.768 0.840 0.702 0.932 0.976 0.744 0.952 0.968
40 60 0.424 0.692 0.796 0.680 0.912 0.956 0.776  0.992 1.000 0.792  0.996 1.000
60 20 0.140 0.384 0.492 0.388 0.664 0.768 0.620 0.884 0.916 0.692 0.892 0.924
60 40 0.372 0.656 0.812 0.760 0.956 0.984 0.904 1.000 1.000 0.932  1.000 1.000
6 20 20 0.012 0.060 0.152 0.032 0.216 0.348 0.100 0.424 0.568 0.228 0.408 0.548
20 40 0.060 0.196 0.288 0.224 0.448 0.544 0.432 0.780 0.876 0.640 0.812 0.888
20 60 0.116 0.240 0.352 0.360 0.644 0.760 0.812 0.952 0.972 0.908 0.972 0.984
40 20 0.080 0.180 0.280 0.176 0.456 0.560 0.348 0.752 0.872 0.524 0.804 0.872

40 40 0.140 0.348 0.484 0.588 0.844 0.900 0.812  0.988 0.996 0.872  1.000 1.000
40 60 0.248 0.556 0.664 0.832 0.964 0.984 0.960 1.000 1.000 0.972  1.000 1.000
60 20 0.092 0.220 0.384 0.312 0.632 0.756 0.572  0.928 0.988 0.708 0.952 0.980
60 40 0.256 0.480 0.608 0.764 0.968 0.988 0.864 1.000 1.000 0.888 1.000 1.000

Note. For the first three test statistics, the bandwidth is chosen as h =(hy, ..., h,,) where by = cos; (]\/'T)_1 (4+p)
and s; is the sample standard deviation of the [th element in X;.
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Table 2: Finite sample rejection frequency for DGPs 1h-6h (heteroskedastic case: level study for DGPs
1h-3h and power study for DGPs 4h-6h)

DGP N T co=0.5 cp=1 co=2 sup 'yt

1% 5%  10% 1% 5% 10% 1% 5%  10% 1% 5% 10%

1h 20 20 0.018 0.084 0.134 0.018 0.078 0.154 0.028 0.072 0.140 0.018 0.070 0.134
20 40 0.024 0.080 0.136 0.020 0.072 0.142 0.012 0.072 0.150 0.008 0.056 0.128

20 60 0.022 0.058 0.124 0.018 0.072 0.124 0.020 0.072 0.128 0.020 0.068 0.112

40 20 0.008 0.060 0.126 0.010 0.068 0.142 0.014 0.078 0.146 0.012 0.064 0.126

40 40 0.010 0.074 0.146 0.018 0.092 0.154 0.028 0.088 0.144 0.024 0.082 0.124

40 60 0.028 0.068 0.122 0.030 0.076 0.126 0.024 0.080 0.126 0.020 0.064 0.122

60 20 0.022 0.070 0.122 0.020 0.064 0.118 0.022 0.064 0.130 0.020 0.068 0.114

60 40 0.020 0.066 0.134 0.026 0.062 0.124 0.026 0.064 0.116 0.020 0.058 0.118

2h 20 20 0.006 0.042 0.106 0.010 0.050 0.106 0.014 0.050 0.102 0.014 0.044 0.084
20 40 0.010 0.056 0.110 0.018 0.060 0.108 0.022 0.060 0.094 0.018 0.072 0.104
20 60 0.016 0.048 0.102 0.014 0.046 0.088 0.012 0.038 0.096 0.016 0.038 0.090
40 20 0.012 0.046 0.094 0.014 0.054 0.094 0.016 0.052 0.100 0.016 0.048 0.098
40 40 0.010 0.054 0.102 0.016 0.056 0.094 0.014 0.042 0.108 0.012 0.034 0.088
40 60 0.010 0.032 0.106 0.010 0.060 0.094 0.010 0.060 0.102 0.010 0.040 0.108
60 20 0.014 0.064 0.110 0.018 0.066 0.108 0.020 0.058 0.128 0.010 0.052 0.098
60 40 0.018 0.048 0.108 0.026 0.056 0.108 0.010 0.054 0.114 0.010 0.056 0.096

3h 20 20 0.008 0.048 0.104 0.016 0.052 0.116 0.004 0.072 0.118 0.014 0.056 0.094
20 40 0.008 0.058 0.092 0.016 0.044 0.092 0.010 0.070 0.122 0.010 0.036 0.096
20 60 0.010 0.050 0.106 0.020 0.070 0.126 0.014 0.072 0.126 0.018 0.066 0.106
40 20 0.016 0.062 0.128 0.016 0.056 0.132 0.018 0.054 0.116 0.016 0.080 0.126
40 40 0.018 0.046 0.080 0.022 0.058 0.104 0.022 0.056 0.122 0.020 0.056 0.120
40 60 0.010 0.048 0.098 0.008 0.034 0.086 0.004 0.046 0.094 0.006 0.046 0.090
60 20 0.010 0.044 0.080 0.006 0.044 0.112 0.006 0.050 0.098 0.006 0.036 0.080
60 40 0.008 0.046 0.088 0.014 0.054 0.108 0.008 0.052 0.100 0.012  0.048 0.094

4h 20 20 0.184 0.364 0.484 0.304 0.496 0.624 0.376 0.576 0.684 0.436 0.628 0.680
20 40 0.500 0.704 0.796 0.600 0.808 0.892 0.676 0.888 0.932 0.784 0.904 0.928
20 60 0.760 0.900 0.920 0.848 0.928 0.960 0.880 0.956 0.976 0.912 0.968 0.980
40 20 0.436 0.680 0.780 0.556 0.744 0.856 0.624 0.852 0.928 0.764 0.904 0.940
40 40 0.896 0.956 0.976 0.928 0.980 0.992 0.964 0.988 0.988 0.980 0.996 1.000
40 60 0.956 0.988 1.000 0.984 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000
60 20 0.712 0.888 0.940 0.788 0.956 0.988 0.848 0.972 0.992 0.912 0.980 0.992
60 40 0.972 0.992 1.000 0.984 0.996 1.000 0.984 1.000 1.000 0.992 1.000 1.000

5h 20 20 0.216 0.428 0.568 0.484 0.712 0.820 0.696 0.868 0.920 0.688 0.852 0.904
20 40 0.520 0.764 0.880 0.812  0.960 0.992 0.884 0.984 1.000 0.898 0.988 1.000
20 60 0.732 0.920 0.968 0.764 0.992 0.996 0.780 1.000 1.000 0.784 1.000 1.000
40 20 0.576 0.812 0.892 0.880 0.980 0.988 0.940 0.996 1.000 0.940 0.992 1.000
40 40 0.924 0.996 1.000 0.972 1.000 1.000 0.972 1.000 1.000 0.976 1.000 1.000
40 60 0.948 1.000 1.000 0.952 1.000 1.000 0.956 1.000 1.000 0.968 1.000 1.000
60 20 0.776 0.920 0.968 0.908 0.992 1.000 0.928 0.998 1.000 0.936  0.996 1.000
60 40 0.980 1.000 1.000 0.980 1.000 1.000 0.984 1.000 1.000 1.000 1.000 1.000

6h 20 20 0.124 0.276 0.416 0.424 0.672 0.796 0.652 0.932 0.968 0.720 0.892 0.956
20 40 0.320 0.544 0.676 0.800 0.944 0.976 0.948 1.000 1.000 0.976 1.000 1.000
20 60 0.544 0.740 0.840 0.956 1.000 1.000 0.972 1.000 1.000 0.976 1.000 1.000
40 20 0.360 0.596 0.720 0.768 0.964 0.984 0.828 0.996 1.000 0.848 0.996 1.000
40 40 0.816 0.940 0.964 0.980 1.000 1.000 0.960 1.000 1.000 0.984 1.000 1.000
40 60 0.952 0.996 1.000 0.976 1.000 1.000 0.976 1.000 1.000 0.980 1.000 1.000
60 20 0.596 0.864 0.924 0.832  0.992 1.000 0.848 0.992 1.000 0.872  0.992 1.000
60 40 0.948 1.000 1.000 0.952  1.000 1.000 0.956 1.000 1.000 0.960 1.000 1.000
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Table 3: Finite sample rejection frequency for DGPs 7-10 (serial correlation case: level study for DGPs
7-8 and power study for DGPs 9-10)

DGP N T
7 20 20
20 40

20 60

40 20

40 40

40 60

60 20

60 40

8 20 20
20 40

20 60

40 20

40 40

40 60

60 20

60 40

9 20 20
20 40

20 60

40 20

40 40

40 60

60 20

60 40

10 20 20
20 40

20 60

40 20

40 40

40 60

60 20

60 40

cog = 0.5 cp=1 cp =2 sup I'nr

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0.006 0.040 0.066 0.006 0.046 0.084 0.016 0.056 0.104 0.016 0.062 0.094
0.016  0.056  0.100 0.016  0.056  0.084 0.020 0.062 0.120 0.026  0.062 0.128
0.020 0.040 0.104 0.028 0.048 0.100 0.026  0.064 0.120 0.028 0.072 0.132
0.012  0.060 0.112 0.018 0.072 0.112 0.020 0.074 0.122 0.014 0.056 0.110
0.006  0.044 0.098 0.012 0.038 0.086 0.024 0.060 0.100 0.028 0.074 0.114
0.020 0.060  0.096 0.018 0.060 0.120 0.024 0.068 0.124 0.024 0.078 0.144
0.010 0.044 0.084 0.014 0.038 0.092 0.018 0.050 0.100 0.022  0.050 0.106
0.010 0.032 0.102 0.024 0.062 0.110 0.030 0.076  0.128 0.034 0.072 0.106
0.018 0.056 0.094 0.016 0.054 0.114 0.020 0.078 0.138 0.020 0.076  0.124
0.012 0.056 0.100 0.001 0.046 0.108 0.014 0.072 0.116 0.014 0.066 0.122
0.016  0.038 0.100 0.010 0.038 0.088 0.016  0.058 0.100 0.016  0.048 0.104
0.004 0.042 0.094 0.006 0.032 0.074 0.010 0.054 0.090 0.022  0.052 0.108
0.006 0.040 0.086 0.010 0.050 0.092 0.024 0.066 0.114 0.020 0.078 0.132
0.014 0.058 0.110 0.022 0.074 0.122 0.014 0.064 0.120 0.022 0.074 0.136
0.002 0.036  0.082 0.006 0.038 0.086 0.010 0.054 0.104 0.014 0.054 0.094
0.006 0.048 0.092 0.018 0.064 0.110 0.030 0.082 0.132 0.036 0.072 0.130
0.036  0.096 0.156 0.068 0.136  0.252 0.100 0.228 0.332 0.136  0.236  0.328
0.076  0.192 0.264 0.144 0.328 0.444 0.228 0.464 0.556 0.256  0.452  0.556
0.040 0.268 0.384 0.112 0.456  0.608 0.208 0.660 0.748 0.248 0.652 0.720
0.064 0.208 0.300 0.140 0.352  0.432 0.228 0.440 0.592 0.284 0.440 0.548
0.160 0.396 0.524 0.388 0.608 0.712 0.584 0.860  0.896 0.664 0.848 0.904
0.272  0.512 0.624 0.536 0.812 0.848 0.652  0.920 0.958 0.712 0.932 0.952
0.048 0.200 0.316 0.212 0.444 0.564 0.400 0.636 0.744 0.432 0.676 0.732
0.268 0.564  0.640 0.532 0.820 0.852 0.804 0.948 0.972 0.840 0.972 0.988
0.056 0.112 0.184 0.096 0.196 0.272 0.136 0.296  0.396 0.172  0.300 0.396
0.072  0.200 0.292 0.172 0.388 0.488 0.272 0.520 0.616 0.284 0.524 0.636
0.084 0.308 0.444 0.164 0.524 0.652 0.264 0.708 0.780 0.284 0.716 0.784
0.064 0.216 0.372 0.180 0.368  0.460 0.276  0.556  0.640 0.308 0.500 0.580
0.208 0.428 0.540 0.424 0.664 0.776 0.660 0.888 0.928 0.704 0.892 0.924
0.320 0.564 0.672 0.564 0.828 0.880 0.692 0.960 0.984 0.764 0.964 0.976
0.088 0.260 0.352 0.272 0.484 0.616 0.428 0.700 0.804 0.496 0.724 0.788
0.344 0.612 0.700 0.640 0.852  0.908 0.880 0.972  1.000 0.920 0.988 1.000
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represents the heterogeneous impact of common shocks on country i. We are interested in examining the
relation between a country’s economic growth and its initial economic condition as well as the relation
between a country’s economic growth and its capital accumulation. X,; thus includes two variables, a
country’s initial economic condition (X; 1), which is defined as the logarithm of country 4’s real GDP
per worker in the initial year, and its investment share (X 2), which is defined as the logarithm of the
average share of physical investment of country ¢ over its GDP in the tth year.

Different economic models predict different relations between economic growth and its initial condi-
tion. For example, Solow (1956) finds a negative relation between the two and Barro (1991) reinforces
Solow’s prediction using a cross country data in the period of 1960 to 1985. On the other hand, the
endogenous growth model (see Romer (1986) and Lucas (1988) for references) predicts that the initial
economic conditions do not affect the long run economic growth. The relation between a country’s eco-
nomic growth and its capital accumulation is not conclusive either. Solow (1956) argues there is no
association between the two and Jones (1995) confirms this point empirically. The endogenous growth
model predicts a positive relation and the argument is reinforced by Bond et al. (2010)’s empirical find-
ings. Most of the empirical studies above use linear models despite the fact that there are no economic
theories suggesting the two relations are linear. In view of this, Su and Lu (2013) apply a new nonpara-
metric dynamic panel data model and find nonlinear relations between economic growth and its lagged
value and initial condition.

The models we use are clearly different from Su and Lu (2013) who consider a short panel with
additive fixed effects. Our model incorporates cross sectional dependence and allows for IFE using a
large dimensional panel dataset. We use data from the Penn World Table (PWT 7.1). The panel data
covers 104 countries over 50 years (1960-2009). Following Bond et al. (2010), we exclude oil production
countries and Botswana, because of the dominant role of mining. We also drop Nicaragua and Chad for
their negative record of gross investment in some years. China has two versions of data and we choose
version one. The results are similar if we use version two instead.

We try different model specifications: pure dynamic models with s = 1, 2, and 3 respectively in (4.3),
and dynamic models with 1-3 lags, and X 1, Xj 2, or both as exogenous regressors in (4.3). Therefore
we have the following twelve models in total.

Model 1: Yi = m (Y ;1) + FYN) + e,

Model 2: Vit = m Vi1, Xi1) + FYA) + i,

Model 3: Vit = m (Yi¢_1, Xio) + FYN + e,

Model 4: Yis = m (Yis—1, Xi1, Xit2) + FON) + eu,
Model 5: Vi = m (Yiy—1,Yie—2) + FON + eat,

Model 6: Yis = m (Yii_1,Yii 2, Xi1) + FYA + ein,
Model 7: Yy = m (Yii—1, Yig—2, Xit2) + FYA) + e,
Model 8: Y =m (Yis-1,Yis—2, Xi1, Xir2) + FYA] + €,

Model 9: Yy = m (Yig—1,Yis—2, Yie—3) + FA] + i,

Model 10: Yy = m (Yis—1,Yii—2, Yii—3, Xi1) + FYN) + e,
Model 11: Yy = m (Y p—1, Y12, Vit—3, Xir2) + FA] + e,
Model 12: Yiy = m (Yis—1,Yis—2, Yis—3, Xii1, Xit2) + FOA) + €.
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In all these models, the number of factors has to be determined although it is assumed to be known
in the theoretical development. Following Bai and Ng (2002), we use the following recommended criteria

to choose the number of factors:*

PCu(R) = V (R, FR) + R&? <NN+TT> In <NN+TT> )
PCa(R) = V ( R FR) - R? (NN+TT> InC% 7,
1C4(R) = In (V (RFR) ‘R (NN+TT) In (NN+TT) ;
[Cp(R) = In (v (R,FR)) IR <NN+TT> In C%7,

where C2p = min {N, T}, V(R FF) = LN ST (B2 B =y, — x/,8" — BRA], B, BF and
<R
.

, are estimates under the null hypothesis of linearity when R factors are used, and 52 is a consistent

estimate of = Zil Zthl E(£%) and can be replaced by V(Ruyax, Fex) in applications. Following Bai
and Ng (2002) we set Rmax to be 8, 10 and 15, and recognize explicitly that PCp1 (R) and PCps (R)
depend on the choice of Ry, .y through 62 and that different criteria may yield different choices of optimal
number of factors R*. Therefore we choose the number of factors that have the majority recommendations
from these four criteria and three choices of Ry.x. Where there is a tie, we use the larger number of
factors. For example, in Model 4 the optimal number of factors is 1 for all four criteria when Ry = 8,
both PCp; and PC)y suggest R* to be 7 and both IC),; and IC), suggest 1 when Ryax = 10, PCy,; and
PC)o suggest 5, and IC,; and IC)3 suggest 1 when Ry, = 15. So our choice of R* will be 1 for Model
4.

Table 4 presents the number of factors determined for each model by using the above procedure and the
bootstrap p-values for our linearity test based on the ROT bandwidth and HS’s adaptive test procedure.
For the purpose of comparison, we fix the list of 104 countries that have observations during the time
period 1960-2009 and consider the test results by varying the time periods from 1960-2009 to 1970-2009
and 1980-2009, respectively. Table 4 reports the bootstrap p-values based on 1000 bootstrap resamples.
For the time period 1960-2009, the number of chosen factors is either 1 or 2 and the bootstrap p-values
are very small in almost all cases. The latter suggests that the relation between a country’s economic
growth rate and its lagged values is nonlinear, and that the relation between a country’s economic growth
rate and its initial economic condition as well as its investment share may be nonlinear too. Interestingly,
for the time periods 1970-2009 and 1980-2009, Bai and Ng’s (2002) information criteria tend to choose
three or four factors in many scenarios; the bootstrap p-values are all very small except for Model 1 in
the period 1970-2009. So in general we find strong evidence of nonlinearity in the panel data.

To conduct a robustness check, we do the same analysis using different sample periods for different

sets of countries available in PWT 7.1. Table 5 presents the corresponding bootstrap p-values for our

4Note that Bai and Ng (2002) study the determination of number of factors in purely approximating factor models.
Following Moon and Weidner (2010) their method can be extended to linear dynamic panel data models with interactive
fixed effects. Such an extension is also possible under the local alternative considered in this paper. To conserve space we
do not report the details.
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linearity test based on the ROT bandwidth and HS’s adaptive test procedure. There are N = 52, 104,
147, and 148 countries in PWT 7.1 that have observations for the periods 1950-2009, 1960-2009, 1970-
2009, and 1980-2009, respectively. The results for the period 1960-2009 were reported above. So Table
5 only reports the bootstrap p-values based on 1000 bootstrap resamples for the other three periods in
conjunction with the number of factors determined by Bai and Ng’s (2002) information criteria. The
bootstrap p-values are very small in most cases in Table 5 except Models 4, 9, 10, and 12 for the period
1950-2009. In these cases, we are not able to reject the null of linearity at the 5% level for some choices
of bandwidths. Nevertheless, if we uses the sup Iy statistic, we fail to reject the null of linearity at 5%
level only for Models 4 and 12 for the period 1950-2009. In addition, when N = 52 is small in Table 5,
Bai and Ng’s method tends to yield a larger number of factors than when N is large. In sum, our results

are generally in favor of strong degree of nonlinearity in the panel dataset.

5 Concluding remarks

In this paper we propose a nonparametric consistent test for the correct specification of linear panel
data models with IFE. After we estimate the model under the null hypothesis of linearity, we obtain the
residuals which are then used to construct our test statistic. We show that our test is asymptotically
normally distributed under the null hypothesis and a sequence of Pitman local alternatives and propose a
bootstrap procedure to obtain the bootstrap p-value. Simulations suggest that our bootstrap-based test
works well in finite samples. We illustrate our method by applying it to an economic growth dataset. We
find significant nonlinear relationship in the dataset.

We only consider homogenous panel data models in this paper. As a referee kindly remarks, the
assumption of common regression functions may be inappropriate in some applications. In this case,
one can consider panel data models with heterogenous function forms m; (-) and then test whether the

commonly used heterogenous linear specification is correct or not; that is, the null hypothesis is
Ho : m; (Xi¢) = X[, 8] a.s. for some 3 € R? and for all i = 1, ..., N.

Given the very recent contributions by Chudik and Pesaran (2013) and Song (2013) in linear dynamic
panel data models with IFE, one can obtain estimates of the heterogenous slopes under the above null
restrictions and then extend the asymptotic theory in the current paper to this framework. We leave this

for future research.
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Table 4: Bootstrap p-values for the application to economic growth data (1960-2009, 1970-2009, 1980-
2009, N=104)

Number of factors co=0.5 cp=1 co=2 sup'nr

1960-2009

Model 1 2 0.006 0.004 0.005 0.005
Model 2 1 0.000 0.000 0.000 0.000
Model 3 1 0.000 0.000 0.000 0.000
Model 4 1 0.000 0.000 0.000 0.000
Model 5 2 0.022 0.025 0.030 0.037
Model 6 1 0.000 0.000 0.000 0.000
Model 7 1 0.000 0.000 0.000 0.000
Model 8 1 0.000 0.000 0.000 0.000
Model 9 2 0.041 0.040 0.054 0.062
Model 10 1 0.000 0.000 0.000 0.000
Model 11 1 0.000 0.000 0.000 0.000
Model 12 1 0.000 0.000 0.000 0.000
1970-2009

Model 1 1 0.224 0.207 0.218 0.268
Model 2 1 0.000 0.000 0.000 0.000
Model 3 1 0.000 0.000 0.000 0.000
Model 4 1 0.000 0.000 0.000 0.001
Model 5 4 0.008 0.008 0.008 0.009
Model 6 2 0.000 0.000 0.000 0.000
Model 7 1 0.000 0.000 0.000 0.001
Model 8 2 0.001 0.001 0.002 0.003
Model 9 4 0.011 0.017 0.027 0.026
Model 10 3 0.000 0.001 0.003 0.005
Model 11 3 0.000 0.000 0.000 0.000
Model 12 3 0.003 0.002 0.005 0.004
1980-2009

Model 1 3 0.004 0.004 0.004 0.005
Model 2 3 0.008 0.007 0.009 0.010
Model 3 3 0.010 0.009 0.010 0.010
Model 4 3 0.010 0.010 0.011 0.011
Model 5 3 0.013 0.013 0.013 0.014
Model 6 3 0.003 0.005 0.005 0.010
Model 7 3 0.002 0.005 0.007 0.008
Model 8 3 0.008 0.008 0.009 0.009
Model 9 3 0.006 0.007 0.013 0.012
Model 10 3 0.001 0.003 0.006 0.008
Model 11 3 0.003 0.003 0.005 0.007
Model 12 4 0.087 0.066 0.086 0.086
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Table 5: Bootstrap p-values for the application to economic growth data (1950-2009, N=52; 1970-2009,
N=147; 1980-2009, N=148)

Number of factors co=0.5 cp=1 cop =2 sup'nr

1950-2009 (N = 52)

Model 1 3 0.030 0.029 0.178 0.057
Model 2 3 0.036 0.014 0.011 0.017
Model 3 3 0.036 0.038 0.044 0.066
Model 4 3 0.166 0.108 0.158 0.174
Model 5 2 0.030 0.025 0.050 0.041
Model 6 1 0.000 0.000 0.000 0.000
Model 7 3 0.009 0.019 0.016 0.020
Model 8 1 0.033 0.000 0.000 0.000
Model 9 4 0.014 0.042 0.130 0.039
Model 10 3 0.225 0.019 0.014 0.017
Model 11 3 0.062 0.027 0.010 0.018
Model 12 3 0.136 0.071 0.091 0.114
1970-2009 (N = 147)

Model 1 1 0.000 0.000 0.000 0.000
Model 2 2 0.000 0.000 0.000 0.000
Model 3 2 0.000 0.000 0.000 0.000
Model 4 2 0.000 0.000 0.000 0.000
Model 5 2 0.000 0.000 0.000 0.000
Model 6 2 0.000 0.000 0.000 0.000
Model 7 2 0.000 0.000 0.000 0.000
Model 8 2 0.000 0.000 0.000 0.000
Model 9 2 0.000 0.000 0.000 0.000
Model 10 2 0.000 0.000 0.000 0.000
Model 11 2 0.000 0.000 0.000 0.000
Model 12 2 0.000 0.000 0.000 0.000
1980-2009 (N = 148)

Model 1 1 0.000 0.000 0.000 0.000
Model 2 1 0.000 0.000 0.000 0.000
Model 3 1 0.000 0.000 0.000 0.000
Model 4 1 0.000 0.000 0.000 0.000
Model 5 1 0.000 0.000 0.000 0.000
Model 6 1 0.000 0.000 0.000 0.000
Model 7 1 0.000 0.000 0.000 0.000
Model 8 1 0.000 0.000 0.000 0.000
Model 9 1 0.000 0.000 0.000 0.000
Model 10 1 0.000 0.000 0.000 0.000
Model 11 1 0.000 0.000 0.000 0.000
Model 12 1 0.000 0.000 0.000 0.000
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APPENDIX

Let C signify a generic constant whose exact value may vary from case to case. Let |a] denote
the integer part of real number a. Let 7 = min(v/N,+/T). Let Ep (-) and Varp (-) denote the condi-
tional expectation and variance given D = {FO, )\0}, respectively. Let oy, = )\?' ()\0/)\0 /N )71 )\2 and n,, =
FY (FYFO/T) ™' FO. Let &, =\’ (A2 T (O FO) T RO By = FO (FYFO) T (AYA%) T (FOFO) Y
and @3 = A’ (AY2A%) 7 (FOFO) ™ (AVA0) T A,

A Proof of Theorem 3.1

The proof follows closely from the proofs of Theorems 2.1 and 3.1 in Moon and Weidner (2010, MW
hereafter). So we only outline the difference. By allowing local deviations from the linear panel data
models, the consistency of 3 can be demonstrated as in MW. Let Xy = (VNT/ ||e|)e, € = |le|| /VNT,
and ¢, = (5 — B, for k = 1, ..., p. Note that under H,; (yy) , conditions (A.6) and (A.7) in MW continue
to hold for sufficiently large (N, T) as

vm—Zwk 5 DL Ll — o0 (1) +.0p (535 + ) = 0r ()

under Assumptions A.1(iii) and (iv) provided ||[30 B|| = o(1). This enables us to apply Lemma A.1(iii)
of MW to obtain

1 p p
LNT (ﬁ) = ﬁ Z Z EklekgL(Z) ()\O,FO,Xkl,XkQ)
k1=0 k2=0
1 p p p
+ﬁ Z Z Z €kq €ky €Ly 3) ()\0 FO Xk17Xk27Xk3) —+ OP (UlNT)

where for any integer g > 1,

1 -
L@ (X, FO Xy, Xy, = = > L& (A FO Xy oo Xi, )
9 all g! permutations of (k1,...,kq)
g
LO (N FO Xy, Xy,) = Y (-1 3 tr {S(ml’%(ﬁT?S(m2) . g(mz)T@éjS(mm)} 7
=1 v1+tve+-tv=g

my+--+myp=i—1
2>v;>1, m; >0

SO = —My, St = o, TV = NFUX) + X FOA” for k = 0,1,..,p, and T,0) = X, X}, for
ki,ko =0,1,...,p.> By straightforward calculations, one verifies that
L@ (X, FO Xy, Xy,
- tr {S(O)’Tk(le S(O) {S(I)T(l)s(o (1)5(0 + S (1)S (1)5 0) + S(O)T 1)S(O)T(1)S(1 } }
1R2
= tr (Myo Xy, X, Myo — MyoXy, FOAY @30\ FUX] Myo)
= ftr (M)\UXklMFUX;CZM)\O)

5The subscript indices in ’Z'k(fl) or T(Ukl) may contain either one (e.g., k1 or kg) or two elements (e.g., (k1,k2) or

(kg—1,kq)) depending on whether vy or v; takes value 1 or 2.
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where we use the fact that 5(0)776(1)5(0) =0 and FOAY®3\°FY = Ppo. Similarly,

LO (X FO, Xy, , Xy, Xy )
- tr{_[5(1)7;6(11)5(0)%(221235(0) + S(O)Tk(ll)g(l)f];(jzgs(O) + 5(0)716(12’225(1)7;6(31)5(0) + 5(0)7;@(121225(0)%(31)5(1)]
_~_[S(1)77€(11)5(0)7;(21)5(1)7;(31)5(0) +S(O)Tk(ll)5(1)7;(21)5(1)7;(31)5(0) +5(0)7;(11)5(1)7;(21)S(O)%(gl)su)]}
= tr{—[qHX;ﬁ M)\OXkZX;ch,\O + MyoXy, (I>/1sz 23 + MyoXy, 22¢1X§€3 + M/\DX]CIX%QM)\OXI%(I)/I]
+®1 X Myo X, Pro Xy Myo + Myo Xy, (94 Xy, Pro + PpoXj, ®1) X, + Myo Xy, Ppo Xy, Myo Xy, &}
= —tr (M)\oxkl <I>/1Xk2 MFOX;% + MyoXy, MFOX;Q(IHX;C?’)
where we use the additional fact that (1)37;(1)M/\0 = O, X Mo, M/\O'Tk(l)@g, = Mo X1, M/\o’Z;(l)(I)l =

Myo Xy, Ppo, & TN Myo = PpoXj Myo, ®,T V@) = PpoX,®y + @, X, Ppo, and that My®, = 0. It
follows that

L@ (A F° Xy, Xy,) = tr (MyoXy, MpoX),, Myo) = tr (MyoXg, MpoX], ), and

LO (X FO, Xy, , Xy, X)) = 1 > tr (Mo X, Mpo X, ®1X), Myo) .

all 6 permutations of (k1,k2,k3)

Furthermore, we have

Lyt (8) = Lyt (B°) + Lint (B) + Lant (B) + Ry + Op (Ving — €3)

where
9 p p
Lint (8) = 7 D ekeol® (X, F, X, Xo) + Z ereoeoL® (X0, F0, Xy, X0, Xo) ,
k=1 =1
1 p p
Lont (B) = NT Z Z e, L (N, FO Xy, X, )
k1=1 ko=
3 P P
Ryt (B) = N—Z > erereoL® (X, PO Xy, X, X0)
k1=1ko=1

2|>—A
H M“ﬁ

p p
Z Z klekzeksL(g) (/\0 FO Xklan27Xk3)

Clearly, Linr and Loyt are linear and quadratic in €, = ,62 — B, k= 1,...,p, respectively, and Ryr
reflects the terms in the third order likelihood expansion that are asymptotically negligible (argued below).
Noting that L) ()\0, FO Xy, Xy oons ng) is linear in the last g elements and €,Xy = e, we have

3
Linr (B) = €k {L P (A F X e) + LY (X FO X e, e)}

3l

Il
Z‘N)
B fMﬁ M-

1
tr (Myo Xz Mpoe') — 5 Z tr (Myo Xy Mpoe'®ye')

all 6 permutations of (Xj,e,e)

Y (o)
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where the p x 1 vectors C’J(\})T and C’J(\?)T are defined in (3.1) and (3.2), respectively. Next,

/4
LonT (ﬂ) = NL Z Z €k, €y BT (M)\OXklMFOXk. ) (ﬁ BO) Dyt (5 BO)

?T

where Dy is defined in (3.3). As in MW, noticing that
1 9=7 7(9) (0 10 ~\ T -1 g-r
ﬁ(eo) L (A 7F an17"'7Xkr7X0-"7X0) :OP (HeH/ NT) :OP ((6NT+’YNT) ) )

we can readily determine the probability order of Ry : Ryt = Op (HB 8° H (6NT + 'YNT) + HB _ Bo”g) .
It follows that

Lyr (B) = Lnt (8°) = 2vwr (6= 8") (C1 + CRF) + (8= 8°) D (8= 8°) + e (8) (A1)

where
Rr (8) = 0p {18 = 81" (0% +vwr) + 18— 8°1° + 18- 8°ll (03 +%r) ) (A2)
by the fact that

4 a4 Xkl el el
UVINT 0 (;mk 5k|\/— \/—> (\/W)

- e - 1 (S ) )

18— 8°] = 0(1), and that [le] /VNT = Op (55t +nr) = 0r (1)
Under Assumptlons A.1-A.3(i), we can readily show that under Hy (),

0 (Hﬂ O+ 15— 2

0% 1
CNry = ]\IIVIT tr (Mo X Mpo A') + = tr (Myo X Mpoe')
= YNT (NT)il tr (M)\DXkMFOAI) + Op ((5&271) =0p (’YNT) + Op ((5&271) ,

and similarly C’](\?gp w = Op (Var +057) . Let Oy = DNT(CI(\})T + CJ(\?)T) where Dyt is asymptotically
invertible by Assumption A.1(v). In view of the fact that LNT(B) < LnT (BO + 19NT), we apply (A.1) to
the objects on both sides to obtain

. / .
(5 -B°- 19NT) Dyt (5 -8 - ?9NT)
Ryt (B° +9nr) — Ry (ﬁ)
Or {(Var + 0n7) Onr + 1) + (V7 +687) + (Ywr + 0n7) (O +7%r) } — B (ﬂ)

Op [var (5E1T +vn7) + YNTONT + 5]7\757’] — Ryt (B)

IN

where the first equality follows from (A.2) and the fact that |[On7| = Op(yng + dn%)- Then by As-
sumption A.1(v) and the bound on RNT(,B) via (A.2) we can readily show that 3 — 8% = Inp +
Op{[’ﬁVT (6NT + VNT) + 'yNTé + 6NT} /2} by contradiction. This completes the proof of the the-

orem. W
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B Proof of Theorem 3.2

Following MW, we can readily show that

p
Mﬁ' _ MFU + Z (62 . Bk) MIEO) +M(1) +M(2) + ]\4(7"@771)7 (Bl)
k=1
where
MO = —MpoX)®; — &\ X Mpo for k=1,...,p,
MY = —Mpoe'®, — &jeMpo,
M@ = Mpoe'®e'®) + B ed'eMpo — Mpoe' Myoe®y — Boe’ MyoeMpo — Mpoe' ®se Mpo + B eMpoe' @y,
and the remainder M (e™) gatisfies
N ~ B 3
o] = 00 (ot e+ 3= ) 5= 2]+ VD) e (VEVT) 03
= Op (Onryne +0n7) = Op (OnrnT) (B.2)

by (3.7), (3.8), and Assumption A.7(i). It is straightforward to show that
|0 = 0p @ for k=1,p, MO =0p (N72), and |M®| =0p(53F). (B3

Combining (B.1) with (2.14) yields
P
& o= Mpo(eite)ty (,62 - Bk) MO (e, + FOX + ;) + MO (g, + FOA! + ;)
k=1

+ (M(2> + M(Tem)) (25 + FOA? + c;)
= dy; + da; + d3; + dy;, say, (B.4)
where ¢; = X;(8° — B) + (mi — X;°) . It follows that

NT (h!)1/2 JNr = anr Z (dyi + do; + ds; + dag) Kij (dij + doj + dzj + daj)

= any Y {dKijdy + dbKijday + di;Kijds; + diyKijdag + 2d5,Kida;
1<ij<N
+ 2dy; Kijd; + 2dy;, Kijdag + 2d5;,Kijda; + 2do;, Kijdag + 2d5,Kijday}
= A+ Ay+ A3+ Ay +2A5 + 246 + 2A7 + 245 + 249 + 24,0, say,

where ayr = (h)'/? / (NT). We complete the proof by showing that under Hy (vy7), (i) A1 = Ay —
BinT — B271NT g N (0, ‘/0) s (11) Ay = BQ72NT +op (1) s (111) As = B273NT “+op (1) , and (IV) A, =op (1)
for s = 3,4,6,...,10, where By is defined in (3.10),

Byinr = (NI)7? 3 (A= XiDyhInr) MpoKiyMpo(A; — X; DIy,
1<i,j<N

Byayr = (NT)™? ) (DyyTinr) XKy X, (DRLTInr) +op (1),
1<i,j<N

B273NT = (NT)_2 Z (Az — XZD]:[]THNT)/ MFOICUXJ (D;,%WHNT) 5
1<i,j<N
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and X; = N1 Zl]\il ;i Mpo X;. This is true because in view of the fact that

N
MpoA; = Mpo X; Dy XIny + XiDyhbllyy = Mpol; — (MFoXi - N1 ZaﬂMFUXl> DTN
=1
= MpoA; — X;Dybllnr,

we have B2,1NT+B2’2NT+2.BQ’3NT = W 21§i,j§N(MF° Az‘_XiDXz%WHNT)IK:ij (MFU Aj—XjDX[;HNT)
= Bonr, where By is defined in (3.11). We prove (i), (ii), and (iii) in Propositions B.1, B.2, and B.5,
respectively. (iv) is proved in Propositions B.3, B.4, and B.6-B.10 below.

Proposition B.1 A4; 2N (0, Vo) under Hy (yn) -

Proof. Noting that Biy7 = anT Z e MpoKi; Mpog;, we have

i=1%i

A, = anr Z (ei +¢i) MpoKijMpo (¢j + ¢j) — BinT — BainT
1<i,j<N

’ ’
= anT E EZ-MFOICUMFOEJ' + | anT E CZ-MFOIC”‘MFOCJ- — BQ71NT
1<i#j<N 1<i,j<N

+2aNT Z é‘gMFOICijMFOCj
1<i,j<N
= A1q+ A2+ 2413, say.

We complete the proof by showing that: (i) A; 1 BN (0,Vb), (i) A1 2 =o0p (1), and (iii) A13 =o0p (1).

First, we show (i). Using Mpo = I7 — Pro and the fact that K; = K;; we can decompose Aj 1
as follows A1 1 = anr Zlgi;&jgN eilije; —2anT ZlSi#SN eiPpolCijej +ant ZlSi#SN € PpolCi; Proe;
= Ay 11— 241 12+ A 13. By Lemmas D.3(i) and (ii), A112 = op (1) and A 13 = op (1) . So we can prove
(i) by showing that A 11 5N (0,Vh) . To achieve this goal, we rewrite A 11 as follows

(h)"? :
A = Z gKijej = Z Wij
1<i#j<N 1<i<j<N

where W;; = W (u,u;) = 2 (h!)l/2 (NT)~! Zl<t’S<T Kijs€jscar and u; = (X;,¢€;). Noting that A; 11
is a second order degenerate U-statistic that is “clean” (Ep Wnrt (ui,u)] = Ep [Wnr (u,u;)] = 0 a.s.
for each nonrandom u), we apply Proposition 3.2 in de Jong (1987) to prove the CLT for A; 11 by
showing that (i1) Varp(Ai11) = Vo +op (1), (i2) G = 301, j<n Ep (W) = op (1), (3) Gir =
Zl§i<j<k§N Ep (WleW W I/V2 —I—W W2> = op (1), and (14) Grir = Zl§i<j<k<l§N ED(WZ']'
WiaWi; Wi + Wiy Wy Wi ;Wi + Wszlejijl) =op(1).

For (il1), noting that Ep(A1,11) = 0 by Assumptions A.4(ii)-(iii), by the same assumptions, we have

4h!

Varp(Ai11) = (NT')Q Z ZZZZED ij,t151KCij ta82 ity Eita€jsy Ejsa)

1<Z<j<Nt1 lto=1s1=1s2=1

4h!

N (NT)2 Z ZZED U ts 1t5j5) =Vo+op (1)

1<i<j<N t=1 s=1
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(i2) follows from the Markov inequality and the fact that

16 (h)?
E(Gr) = ( )4 > Y E[Bp (Git,CitsCitsCitr 11814 toE 15 Kt 12K 1514 K 516 K r15)]
(NT) 1<i<j<N 1<ty,...,tg<T
12 X
= 0 [V (T T T 0] = O [N TR N T
= o(1),

where we use the fact that the term inside the last summation takes value 0 if either #{t1,t3,t5,t7} = 4
or #{t2,t4,t6,ts} = 4 by Assumptions A.4(ii)-(iii). For (i3), we write G11 = 33, ;- p<n ED(WiW},
—l—WZQkWZQJ + WJ-QijQi) = G]],l + GII’Q + G”73' Then

16 (h!)?
E(Grr1) = ( )4 Z Z E[Ep (E?tlE?t2EktngmEkt5Ekte/Cik,tltg/Cik,tlt4’Cjk,t2t5/Cjk,t2t6)]
(NT)" i 55k n 1<ty to<T

2

- o) [N3 (T5(h!)—1 + T4 (h!)’2>] —O(TN"'h!+ N1 =o(1),
(NT)

where we use the fact that the term inside the last summation takes value 0 if #{t3,t4,t5,t6} = 4 by As-

sumptions A.4(ii)-(iii). It follows that Grr1 = op (1) by the Markov inequality. Similarly, Grrs = op (1)

for s = 2, 3. Thus we have G = op (1) . For (iv), we write Grir = 32 <; i 1< v [ED (Wi Wi, Wi; Wiy, ) +

Ep(Wi;WuWiiWii)+ Ep(WiuWaWiuW;i)]l = Grira+Grrr2+Grrrs. Then by Assumptions A.4(ii)-(iii)

16 (h!)?
E(Grira) = E g Eleit, €its€jtn€ jtoE kit Ehts Ets Elts Kij b1 ta Fik 452 ICU st Kolk trts)
( 1<i<j <k<I<N 1<ty . ts<T

_ ! 2 2 2 2 , 4
= E E Eleit, €51, €t 1ts it ta it 14 K 560 Kok 514

1<i<j<k<I<N 1<ty ,to,ts,ts<T

_(nY _ 2\
_ (NT)40 (N*T%) = 0 ((h!) ) =o(1).

So Grrr,1 = op (1) . By the same token, Gyrr s = op (1) for s = 2,3. It follows that Grrr = op(1).

Next we show (ii). Let & = vy7 (A; — X;DypIlnr) . Then by (3.7)
¢i = Ynr (A — XiDNpIInT) + Op(637) Xi = & + Op(On7) X (B.5)

Noting that ant Y1, 1oy GMpoKijMpoc; = (NT) 22 ooy (A = XiDypllny) MpoKij Mpo (A,
—X;Dytlnr) = BoinT, we have Ay 5 = ant do<ijen (Ci— &) MpoKi;Mpo (¢j — &;)+2anT doi<ij<N
EMpolCijMpo (c; — &) = A1,21+2A1 22, say. Let cx = maxi<; j<n [|Kij]| . Then cx = Op (T') by Lemma
D.1. By (B.5), the fact that ZZI\LI | X;|| = Op (NT'/?) by the Markov inequality, and the fact that
[Mpol| =1,

[Arznl < anr Y [Mpol® 1K llei — @l lle — &l = anrexOp(yy) D I1Xll 1]

1<i,j<N 1<4,j<N
= Op(antdn3T)Op (N?*T) = Op(NTS 7 (h1)/?) = op (1).
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Similarly, we can show that Ay 22 = op (1) . This completes the proof of (ii).

Now we show (iii). Note that A1,3 = yyrant D 1<, j<n EMpoKiiMpoAj+ant 1< <y E:MpoKij
MpoX;(8° — B) = ynp A1z + A132(8° — B), say. In view of the fact that [|8° — 5]| = Op (yy7) , we can
prove A; 3 = op (1) by showing that (iiil) yy7pA1,31 = op (1) and (iii2) yy7A1,32 = op (1). The last two
claims are proved in Lemma D.2(i) and (ii), respectively. This completes the proof. m

Proposition B.2 Ay = By onr+op (1) underHy (yyr) , where By oyt = (J\/'T)f2 Zléi,jSN (Dg,lTHNT)I
X!Ki; X; (DypIInT) -

Proof. First, we decompose As as follows

P
(5k Bk) Z (5? - Bz) anNt Z (e + A'F” +¢)) MOk MO (g5 + FON) + ¢;)

p
k=1 =1 1<i,j<N
p

(ﬁ% - Bk) i (ﬁ? — Bl) aNT Z )\?’FOIMIEO)ICZ_]_MZ(O)FO)\?

Ay =

k=1 1=1 1<i,j<N
P . P
+Z(ﬁ2—ﬁk>2( /Bl)aNT Z {6MO)IC M(O)e +CMO)/C M(O)
k=1 =1 1<4,5<N

+ 26l MO Ky MUV FOXO + 265 M Iy MV e + 2X FY MO Ky M ¢}
= Ag,l + AQ’Q, say.

We prove the proposition by showing that (i) A21 = Ba oyt +op (1) and (ii) A2 = op (1). (i) follows
because

As1 = anr

(B% Bk)i(ﬁl Bl) > NP X ) Mpo K Mpo X 1 FON)

=1 1<4,j<N

ko
S| =
—

p
N -1 —1
— anr (B k) 3 (,6? - ,@’l) 3 AV (YA TN Mo Ky Mo XA (AYA) T A
k=1 =1 1<i,j<N
- ZLkDNTHNTZLlDNTHNT 3 AT (VA0 TN Mo Ky Mo Xy (AYA%) A2
(NT =1 1<ij<N
+op (1)
1 p ~ p ~
= 5 > > DTN Xp Ki Y Dyt X+ op (1)
(NT) 1<i,j <N k=1 =1
1 _

= (NT)2 Z (D&%HNT), X;IC”X (DNTHNT) +op ( ) = BoonT +0pP (1) ,
1<i,j<N
where ¢ is a p x 1 vector with 1 in the kth place and zeros elsewhere, and X; = N—! Zi\il ajiMpo X is
a T x p matrix whose kth column is given by X; j = ()\?’ ()\0/)\0)_1 AOIXkMFo>I .
To show (ii), we assume that p = 1 for notational simplicity. In this case, we can write X; and
P (BY — B )M simply as X and (8° — B)M©®), respectively, where M(©) = — Mo X'®; — &, X Mpo.
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Then

A\ 2
AQ,Q = (ﬁo — ﬁ) aNT Z {E;M(O)ICZ‘]‘M(O)E]‘ + C;M(O)’CijM(O)Cj + QEQM(O)K:MM(O)FOA?
1<4,j<N

+ 26l MO MO ¢ + 2N FY MO MO ¢y}
N2
(50 — 5) {Az21 + Az 20 +2A2 23 + 242 24 + 24255}, say

Noting that HBO fBH = Op (yyr), we prove (ii) by showing that Asss = Y4 74225 = op (1) for
s=1,2,..,5.
Noting that ||[M (|| = Op (1) by (B.3) and

HM(O)@H = [(MpoX'®; + @, XMjo) || = Op (T*W) |F2%,|| + Op (N*1/2T*1/2) IX'sill, (B.6)
we have by Assumptions A.4(iii) and A.5 and Lemma D.1,

(Ao = (NT) 30 Iyl | M@= 10|

1<i,j<N
< oxOp (N72772) 1%:@ (0p (T72) | PV + 0p (N7V2T71/2) X' |
x |0p (T72) | FV%)|| +0p (N72T742) |X/s,
= TOp (N*T7%)Op (N2)—op (T7') =op(1),
Ao < ac(NT)?||MOF|| S [0p (T712) P[4+ 0p (N712T712) X2 |27

1<i,j<N
= T(NT)20p (T1/2> Op (N?) = Op (T‘1/2> =op (1),
and ’AQ 24} < CK:")/NT (NT HM(O)H Zl<l]<N [OP ( 1/2) HFOISiH + Op (N_l/QT_l/Q) ||X151H] (HX]H
+1451) = Tynr (NT) ™ *0p (N2T1/2) Op (T7'2yyr) =0p (1).
In addition, by (B.3) and ( ’A2 2| < exOp (Ya7) (NT) 72 || M || dor<ijen (Xl + 114D

(1511 + 14]1) = TOp (Yir) (N ) 20p (1) Op (N?T) = Op (viir) = op (1) and |As 25| < cxyr (NT) ™
||M(O)H 219‘,]‘31\7 HFOA?H (”XJ” + HAJ”) =Tynr (NT)_2 Op (1) Op (NQT) =0p(yyr)=o0p(1). m

Proposition B.3 A; = op (1) under Hy (yy7) -

Proof. Recall M) = —Mpoe'®; — ®eMpo and &5 = A° (A”A") ™ (FUF?) " FY. Noting that
Oy Mpo =0 and py (Mpo) = 1, we have
2
HM(I)@HF — tr [e; (Mpo€'®, + e Mpo) (Mpoe'®; + &\eMyo) 1]
= (s’@'lsMFoe/élsz) < 2tr (e, @ ee’ P1g;)
— ot { (FUF) ™ (AX0) 7 A X0 (A7) T (FUFY) T PVl PO
< 2r [ (A"A%) 7 (FFO) T (FUFO) AN T tr (Aee\°) tr (FVeiel F)

— 0p ((NT)™2) Op (NT) tr (F”;,F°) = Op (NT) 1) || Fsi?,
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where we have repeatedly used the rotational property of the trace operator, the fact that
tr (AB) < py (A)tr (B) (B.7)

for any symmetric matrix A and p.s.d. matrix B (see, e.g., Bernstein, 2005, Proposition 8.4.13), and the
fact that
tr (AB) < tr (A) tr (B) (B.8)

for any two p.s.d. matrices A and B (see, e.g., Bernstein, 2005, Fact 8.10.7). It follows that

=

= Op ((NT)"12) | F%| (B.9)
By the fact that [|[M®)| = Op (N=1/2) (see (B.3)) and (3.7),

e

< MO leill = 0p (N7 2y2) (1l + Al (B.10)
Combining (B.9) and (B.10) yields

HM<1> (ei + i)

= 0p ((NT)72) |F&i]| + Op (N7 ) (IX] + 1A (B.11)

We will use these results frequently.

Now, we decompose A3 as follows.

Az = anr Y (G+NFY+¢) MOK;MD (g + FOX) +¢))

= anr Y {eiMWK;MWe; + N FOMWEC; MO FON) + G MOK;MDe;
1<i,j<N
+2e MWK MO FON + 26 MWK, MW ey + 20 FY MUK MW e}

= Az +Azo+ Azs+2A34 4+ 2435 + 2436, say.

We prove the proposition by demonstrating that As ¢ = op (1) for s =1,2,...,6. By (B.9)-(B.11), (B.3),
Assumptions A.4(iii) and A.5, and Lemma D.1, we have |43 1| < cxanrOp ((NT)_l) Zlgi,jSN ’ Fo'ei’
|F”;|| = TOp (ant(NT)™)) Op (N?T) = Op ((h))'/?) = op (1), |As 3] < cxantOP(N"V3p) Y1<ijen
(Xl + 1A D (151 + 1451 = TOp(antN~'9%7)0p (N?T) = Op (N7') = op (1), |As5] < cxant
Op (N2 (NT)V2) S o 1FY| (15 + 1A ]) = TOp (anoyngN-1T1/2) Op (N2T) =
Op(N~Y2 (M) = 0p (1), and | A3 6| < cxantOp (N"Y2yng) Op (TVPNTY2) 30 o [ KRl
+[1A1) = TOp (anryypTY2N"1) Op (N2TV2) = Op(TY/2N-12 (M)/*) = 0p (1)

By Lemmas D.3(jii)-(iv) and the fact that Mpo = Ir — Ppo, Az2 = ant Y 1<; i<y Ay (AO’AO)’1 AV
eMpoKyy Mpoe' X’ (AYA°) ™' A0 = op (1). By Lemma D.4(i), Az4 = an Sicijen MWK MM FOX)
= op (1). This completes the proof. m

Proposition B.4 Ay = op (1) under Hy (yn7) -

Proof. Noting that HM(2) + M(rem)H =Op (5]7\,2T) by (B.2) and (B.3), we have by Assumption A.5
Al < excanr [|M® + MO|PT oy (et FON 4| [leg + FOX) + )| = TanzOp (337) Op (N?T)
= Op (NTSyp(M)/?) =op (1). m
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Proposition B.5 A5 = Byanr + op (1) under Hy (yyr), where Bygnr = (NT) 23 ;o y(Ai—
XiDpInt) MpoKij X; (DyrlnT) -

Proof. First, we decompose As as follows

A5 =

NE

(ﬂg_ﬁk) anrt Z (524‘62) MFO’CijM,gO) (&‘j—l—FO)\?—l—cj)
1<ij<N

El
Il
—

|
NE

(82— B ) anr 3 ciMpokis MY FONS

1<i,j<N

=
Il
—_

p

+ Z (ﬁg — 6k> aNT Z {(E; + C;) MFOICijM]gO) (gj + Cj) + E;MFOK:Z'J’MIEO)FO)\?}
k=1 1<i,j<N

= A5+ Asp, say.

We prove the proposition by showing that (i) As; = Bz syt +op (1), and (ii) As2 = op (1). (i) follows
because by (3.7)

p
A571 = —aNT Z (,Bg — Bk) Z C;MFOICijMFOX;C(DlFOA?
k=1 1<i,j<N
p
~ -1
= —anr Y (B B) Y AMpoKy MpoXia? (A7X%) A
=1 1<ij<N
SR _
= 5 Z L;CDR];HNT Z (Al — XlD;é«HNT)I MFOICZ‘]‘MFOX;G)\O ()\0/)\0) ! )\? +op (1)
(NT)” = 1<i,j<N
1 _ kL, .
= B Z (Az 7XiDN;HNT)IMFOK:UZL;DN;HNTXk,.j +op (1)
(NT 1<i,j<N k=1
1 _ S _
- 5 Y (A= XiDyhlng) MpoKy; X (Dyplng) + op (1) = Basgyr +op (1).
(NT) 1<ij<N

To show (ii), again we assume that p = 1 for notational simplicity. As before, we now write X;, and
2:1(52 — Bk)MIEO) simply as X and (3° — B)M(O), respectively. Then
A5,2 = (ﬁo 73) aNT Z {EQMFOICUM(O)EJ‘ +€2MF0]CUM(O)C]' +C;MFOICMM(O)6]‘
1<i,j<N
+ M poKig M e + & Mpo Ky MO FOX)}

= (50 - B) (As21 + As 00 + A5 23 + As.04 + As.25) .

We prove the proposition by showing that fl‘ms = ynrAs2s = op (1) for s = 1,2,...,5. By Lemma
D.3(iv), 4521 = op (1). By Lemma D.2(iii), A525 = op (1). So we are left to show that A5 25 = op (1)
for s =2,3,4.

For Ajs 22, we have A0 = ynranT doi<ij<n e MO e; — yyrant doi<ij<n el Prokiy M ©¢; =
As 924 — As 205 Using (B.3) and (B.5), Lemma D.1, Assumptions A.4(iii) and A.5, and the fact that
||Prog;]| = Op (T*1/2) HFO/EiH, we can bound 215,221, directly: |A5722b| < Op (’)/NTT’l/Q) CKYNTONT
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doi<ij<n HFO'Eiﬂ (11Xl + [1A41) = Op (T*1/2) =op (1). For A5 22,, we can easily show that A5 22a =

As 220 +0p (1) where A5 920 = YN7aONT D1<izjen eliCi; M(V¢;. Noting that E H21<2¢3<N
Zlgil;éjlgN Zlgiz;éjng Z1§t1,...,t4gT E (5i1t1’Ciljl7t1t2’CJ2Z27t2t3512t3AJ2t4A31t4) =0 (NJTS) » We have
|Sicisen Aseis | = Op (N¥/279/2) . Similar result holds when A; is replaced by X;Dy;llyr.
Then by Cauchy-Schwarz’s and Minkowski’s inequalities

|As224] = yyranr |tr | M@ Z ¢jeikCij S'ﬁVTaNTHM(O)HF Z (&; = X;Dypllne) €Ki
1<iAI<N 1<iAT<N

= Op (N2T72) Op (N*2T%2) = Op (N"V2T71/2) = o0p (1).

F

It follows that A5 22 = op (1). By (B.5), (B.6) and (B.3), <ijen (IXGll+ 1Aq)
[Op (T7Y2) ||[FY;|| + Op (N7YV2T=1/2) | X'e;|]] = THArantOp (N?TY?) = Op (T71/?) = 0p (1),
and |A524] < cxrdpant MO < jon UK+ 18D (X5 +1A51) = TyiranrOp (N?T) =
Op (yn7) = 0p (1) . This completes the proof. m

Proposition B.6 Ag = op (1) under Hy (yy7) -

Proof. First, we decompose Ag as follows

As = anr Y. (e +c) MpoKiyMD (g5 + FOA + ¢;)
1<4,j<N
= anT Z {EQMFOICZ']‘M(I)E]‘+€2MFOICZ']‘M(1)FO)\?+€2MFOICZ‘]‘M(1)CJ
1<ij<N

+ C;MFOKijM(l)Ej + C;MFDICZ‘]‘M(I)FO)\? + CQMFOICZ']‘M(I)CJ'}
= Ag1+As2+ A3+ Asa+ Ass + As .

By Lemma D.4(ii), A¢,1 = op (1) . By Lemmas D.3(vi)-(vii), A¢,2 = op (1) and Ag 3 = op (1) . By Lemma
D.2(iv), Ag5 = op (1) . We finish the proof of the proposition by showing that A¢ s = op (1) for s = 4, 6.

By (B.9)-(B.10) and LemmaD.1, |46 4| < ant >21<; j<n 1Ki || | Mpoci|| |MPej|| < exOp (vyp(NT)~1/?)
ant Y<i jen 1Kl + 126 [|[F5]| = TOp (vy7(NT)72/2) Op (N*T) = Op((h!)'/*) = 0p (1), and
[As sl < ant Y1« jon 1Kol IMpoci|| [|MMe;|| < exOp (NTV293%p) ant Yoy« i< (1Kl + 12611 (11Xl
+[|A;]) <TOp (N=V2y3%rant) Op (N?*T) = Op (N~1/2) = op (1) .This completes the proof. m

Proposition B.7 A; = op (1) under Hy (yy7) -
Proof. First we decompose A7 as follows

A7 = anT Z g + C MFO’C’LJ (M(Q) + M(TeWL)) (Ej + FO)\? + cj)
1<i,j<N

= ant Y {MpoKij(MP+MT™) (6,4 F°N)+¢;) + eiMpoKij M Pe; + i Mpo Ky M FOX]
1<i,j<N

+ €;MF0/C1‘]‘M(2)CJ‘ =+ é‘gMFOICijM(rem)Ej =+ €;MF0]CijM(rem)F0>\? =+ é‘éMFOICijM(Tem)Cj}
= A1+ Ao+ Ars+Ara+ Ars+ Are + A7z
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By Lemma D.5(i), A7r2 = op(1). By Lemma D.4(iii), A73 = op(1). We complete the proof of the
proposition by showing that A7 s = op (1) for s =1,4,5,6,7.

By (B.5), (B.2), (B.3), and Lemma D.1, [A71]| < cxOp (Ynp) ant [|[M® + MTem)|| > 1< j<n (1G]]
A (sl + [FOX2Y + llesll) = TOp (vyrantdny) Op (N*T) = op (1), [Ara| < cxOp (yxr) ant
MO sen el (X1 +1A51) = TOp (vyrantdyy) Op (N*T) = op (1), and |Arq| < cxan
Op (vnr) [MT™ || 1< sen leill (X5 + 1A51) = TOp (antdnyryar) Op (NT) = op (1).

Next, A7s = ant Y 1<; jen €K MT™e; —ane Yo o; i<y €1ProKigM"e™e; = A7 51 — Az 50. Not-
ing that || Prog;|| = Op(T~1/2) ||F¥¢;]| , we have by (B.2), | A7 52| < cxantOp(T~?)Op (5 5y nT) > i<ij<N
|F || lle;ll = Op(antT 205y nr)Op (N?T) = op (1). By (B.2), [A75| = anpltr(MTe™ 32, o
ejeikiy)| < anp || Mrem|| HZ1§¢,;‘§N g;€ikij o = anTOp (6nrynr) Op (N3/2T53/2) = op (1) where
we use the fact that F HZléiJSN S i =0 (N3T3) . Thus A7 5 =op(1).

Now, write A7 = ant Y 1<; j<n €Ki MT™FON] —ant 37 o oy €1 ProKig MM FON) = Az 61 —
A7 62. As in the study of Az 52, we can bound Az g2 by op (1) . Similarly, as in the study of A7 51, we have by
(B.2) and Chebyshev’s inequality |A7 61| = anp|tr(M ™) FO doi<ij<N A?sglCijN < anr ||M(T€m)F0||F
Hlei,jSN )\(;EglCij = antOp (5;\,1T'yNT\/T) Op (N3/2T) =op (1). It follows that A7 =op(1). m

Proposition B.8 Ag = op (1) under Hy (yy7) -

Proof. Again, assuming p = 1, we can decompose Ag as follows

Asg ([30 - [3) ant Y {(e+¢) MWK MO (5 + FOX) + ¢;)
1<i,j<N

+ AV FYMDKC ;M Oe; + XY FOMOK ;MO FOX) + N FYMWOK,; MO ¢;}
= (50 - B) (Ag1+ Ago + As s+ As4).
We prove the claim by showing that As s = yyrAss = op (1) for s = 1,2,3,4. By Lemma D.3(viii),

Aga =op (1). By Lemma D.2(v), Ag 3 = op (1). By (B.11), (B.5), and Lemma D.1, we can readily show
that

IN

[4s.1]

nrane |MO| 30 1l | MO i+ )| [leg + FOX +

SIS

IN

CKYNTANT HM(O)H D e +FOA +c|
1<i,j<N

< {0p ((NT)7172) [F%|| + 0p(N ) (1] + 1A }

— TyypantOp (N3/2T1/2> = Op ((h!)1/4) = op (1),

and similarly, 14_1874‘ < cxOp (’Y?VTGNT) HM(l)FOH Zlgi,jgN H/\?H (1X;11 + 1A,]) = N=2T~'0p (N_1/2T1/2)

Op (N?T'/?) = op (1). This completes the proof. m

Proposition B.9 Ag = op (1) under Hy (yy7p) -
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Proof. Again, we assume that p = 1. By the fact that |[8° — 3| = Op (Yn7), (B.2)-(B.3), and Lemma
D.1, we have |Ag| < ckanT Hﬁo -8B ||M(0)H HM(Q) + M(’"”")H Zlgi,jSN (||€z|| + HFO/\?H + Hcl||) (1l
+ HFO)\?H + HCJH) = TOP (GJNT’YNT(SI_V?T) Op (NQT) = op (1) .

Proposition B.10 A1g = op (1) under Hy (ynr) -
Proof. First we decompose Aig as follows

A = anr Y {(E+ ) MODK;; (M + M) (g5 + FOA) + ¢;)
1<i,j<N
FAYFOMOE M (5 + FON) + ¢;) + A FY MO, MPe,
AN FY MO MO FOX? + XY FO MWK ;M@ e}
= Aioq+ A2+ Aoz + Aroa + Aros.

By Lemma D.5(ii), A10,3 = op (1). By Lemma D.4(iii), A1p4 = op (1). We complete the proof of the
proposition by showing that A1 s = op (1) for s =1,2,5.
By (B.2), (B.3), (B.11), and Lemma D.1

ioal < awr [M® a5yl MO e+ ]| (el + [FOA] + llesl)

1<4,j<N

IN

exOp (axtoyy) § Op (VD)) 37 (%] (sl + [ EOXS)) + llesl)
1<i,j<N

+O0p(N" ) > (Xl + 1) (el + [[FOA]] + lles )
1<i,j<N

= TOp (aNTJJ_\,%,ﬂ) OP(N3/2T1/2 + N71/27NTN2T) =op(1).

Similarly, |A1o,2| < exany |[MOFO|| |[MTem|[ 32 oy (A (el + [FOAT ]| + llesll) < TanrOp(N-Y/2
T'2)0p (Ox7ynt) OP(N*T'?) = 0p (1), and [Asgs] < exOp (Yng) ant [MDFO| [MP|| 3, o n
||)\?|| (X511 + |14,11) = TyyranTOp (N~Y2TY2) Op (§5%) Op(N?T*/2) = op (1). This completes the
proof. m

C Proof of Theorem 3.3

By Theorem 3.2, it suffices to prove the theorem by showing that (i) Bint = BinT + 0op (1) and (ii)
Vit = Ve + op (1) under Hy (7). For (i), we apply (B.4) to obtain
N
Bint = anr Z (dii + do; + dg; + da;) Kii (dv; + do; + ds; + dai)
1;1
= anr Y {d};Kiidyi + dy;Kiidai + dy;Kiids; + diKCiidai + 2d}, Kisdoi + 2d',Kiids;
i=1

+2d; Kiidai + 2d5; Kiids; + 2d5,Kiida; + 2d5; Kiidai
/11 + AQ + /13 + 1214 + 2/15 + 2A6 + 2A7 + 21218 + 2/19 + 2/110, say,
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where ayr = (h')l/ > /(NT) . Following the proof of Theorem 3.2, it is straightforward to show that under
Hy (Yyr) s Ay = BinT + 0p (1) and A, =0 for s = 2,3, ...,10. For example, for A; we have

N
A1 = ant Z (67; + Ci)/ MpoKCi; M po (Ei + Cl‘)
i=1
N N N
= apnNT Zé‘;;MFOIC“MFOFJi +anT Z C;MFOIC“MFOQ' + QCENT Z E;MFOIC“MFOCi
=1 =1 =1

Ay 4+ Ao+ 24, 3, say.

The first term is Bynr. By (B.5), Lemma D.1, and Assumptions A.5 and A.7(i), the second and third
terms are respectively bounded above by anr Yon, [|Ki|| [|Mpoci||* < Op (Vi) ant ey Kall (1 X
A = Op (Vapant) Op (NT2) = Op (N-1) = op (1) and any SN, [Kull | Mpos | | Mpoci| <
Op (Ywr) ant Yiey 1Kl lledll (1X: ] + 1Aill) = Op (yxrant) Op (NT?) = Op (TY2N=H2(R)V/4) =
op (1) . It follows that A1 = Binr +op (1).

To show (ii), we decompose Vnr — Vi as follows

Vnr —Vanr = 2h(NT)~ Z Z [’CZQJ ts zts - (IC’LQJ ts€ zt52 )]

1<t,s<T 1<i#j<N

F2RL(NT)™2 Y > K3, (8585, — ehels) = Vine + Vanr, say.
1<t,s<T 1<i#j<N

Noting that Ep (Viyr) =0 and Ep (V12NT) =0Op (N_l) by the independence of (g;4, X;1) across ¢ given
D under Assumption A.4(ii), we have Viy1 = op (1) by the Chebyshev inequality. Now, write Vo =
2R (NT) ™ oy s Srciian Koies (B3 — €8) (€ — %) +2R (NT) ™2 X1y sar oncijan Ko Gl
_61'275)6?5 + 2h! (NT)_2 D 1<ts<T 2A1<iAj<N K?j,tssgt (éis - s) = 2Vanta + 2Vant2 + 2VanT 3. Noting
that Vanrs = Vanr2 as Kijts = Kjise by the symmetry of K under Assumption A.6(i), we prove
Vont = op (1) by showing that (iil) Vanr,1 = op (1), and (ii2) Vanr,2 = op (1).

To show (iil), we use ) _, , to denote SN ST Let K = sup,, [k (u)]” . By the uniform boundedness
of the kernel function K by K under Assumption A.6(i), and Cauchy-Schwarz inequality,

[Vanra| < K2 (W)™ (NT)? (é?s - 5?5)‘
it 7,8
2
= KQ (h')_l (NT)_lzKézt *Eit) (ézt +5it)‘
it
S I_(Q (h')_l (NT)_lz(é‘it —z’:‘z't)Q 12 5zt+51t
2,t 2,t

s

In view of the fact that -, , g3 < Dt ¢2 and by Markov inequality, (NT) ™" D Bt i)’ <2(NT)™!
Zi,t (éft + sft) <4 (NT)_1 Zi’t 2, = Op (1). So we can prove Von7,1 = op (1) by showing that Vanr 11 =
(RN (NT) ', (Bt —ea)” = op (1). By (BA), & —&; = di; +da; +ds; + da; where dy; = dy; — ;. It
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follows that

2

. 2
Vontin = (h!)fl (NT)fl Z Hdu‘ + do; + d3i + du;
i=1 F

IN

4(h)~L(NT) N {Hdh

i=1

.+ il + il
= 4Vont11a + Vont,i1o + VonT 11 + VanT, 114, SaY.

. _ 2
Noting that ||Ppoci[|7 = Op (T71) ||| and [|[Mpocil|7 < lleillz = O (Vier) (Xl + 12417, we
have by Assumptions A.4(iii) and A.5 and Markov inequality

N
Vantata = (W)™ (NT)™Y [|Ppoci + Mpoci| 7
i=1
N
< 207 WND) Y (IProilly + | Mocil ;)

1

.

N

= 2(a) {op z||F0'sl||F+op Yz Z(nxin%ﬂmin%)}
i=1

= op((T* + %) ()7

Similarly,

N
M| ()~ (NT) ! Z e + FOX + i3 = Op (v (W) 7)

Vonranw <

Vovrne < [MO] ZumFOAOmHF—op( Ly,
1=1
2) (rem)||® (1111 i 040 2 4t
Vanriia = ||[M® +M HF(h!) (NT) ;Heiw )\Z—+Ci||F:Op(5NT(h!) )

It follows that Vonri1 = Op((T~' + N71 +4%,) (B)™") = op (1) by Assumption A.7(i) and thus
Vonr,1 =op(1).

For (ii2), we use the fact when K is a symmetric PDF under Assumption A.6(i), there exists an-
other symmetric PDF K° such that K can be written as a two-fold convolution of K : K (u) =
JK°(v) K° (u —v) dv. Define K} analogously as Kj. By Minkowski inequality, the fact that K;j s =
K, (th - X;s) = [ K (Xit — x) KJ) (X5 — «) dz, Fubini theorem, and Cauchy-Schwarz inequality,

|‘/2NT72| S Z ZKU ts ‘Ezzt - g?t‘ E?s
it j,8
— W(NT) / / S8 — 2| KD (Xt — 2) KD (X —3) 32 K9 (X — @) KY (X, — ) dodz
7,t 7,8
< {VQNT,21V2NT,22}1/
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2
where Vanro1 = h! (NT) ™2 [ [ { — 2| KO (Xiy — ) KO (X0 — gj«)] dzdz and Vanp.oo = bl (NT) >

I [ { s 3K (Xjs — ) K (X5 — :f)] drdZ. Again, by the relationship between K and K, the study
of Vanr,1, Markov inequality, and Assumption A.7(i), we have Vonrp o1 = h! (NT)~ ZZ . ZJ s n it|
|A2. —e2 | [Kn (Xit = Xjo)]? = Op(T7 N1 493) (W) 1) = 0p (1), and Vanrg = B (NT) 232, 3.
js A [Kh (Xt st)]2 = Op (1). It follows that Vonro = op (1). Thus we have shown that Voyy =

op (1). This completes the proof of (ii).

D Some Technical Lemmas

In this appendix we provide some technical lemmas that are used in the proof of Theorem 3.1. We only
prove the first lemma, and the proofs of the other lemmas are provided in the supplementary appendix,

which is not intended for publication but will be made available online.
Lemma D.1 Suppose Assumptions A.4-A.7 hold. Then cx = maxi<; j<n ||[Kij|| = Op (T).

Proof. Noting that [[KCil|° < Kyl IKijllo. where [KCill, = maxicser Sy [ Kn (Xie — Xjs)|
and |[ICi]|., = maxici<r oy [Kn (Xir — Xjs)|, it suffices to prove the lemma by showing that (i)
maxi<; j<n 71| Kijll; = Op (1) and (i) maxi<; j<n 71Kyl = Op (1). We only prove (i) as the
proof of (ii) is almost identical.

Let cyp = (NT)V/%® Mirgs = T Yoy Kn (Xis = Xjs) , and Mirgs = T ey K (Xi = Xj5)
x1{||X;s|l < enr}. Then by Markov inequality, dominated convergence theorem, and Assumption A.5(i),
for any €* > 0

max 1max N | > €
1<z]<N1<5<T}ThT’]S mT’”}_ )

1<i,j<N 1<s<T

IN

T
= Pr ( max max 177! ZKh (Xit — Xjo) L{| Xjs|| > enr} > e*)
t=1

N T

SHRATHEEE

1ggxmglsa<x |XJS|>cNT>__1 POl > )
j=1s=

<

3s[* LA™ > eFp)] = o (1)
j 1s=1

It follows that we can prove (i) by showing that Lyr = maxi<;<y Lint = Op (1), where Liny =
Max| g <cyr I " Zle K, (X3 — x) . By the Minkowski inequality

Lint < 1ZK;, Zt—:I? ED[Kh(Xit—Ji)] +  max

T
TN Ep K, (X —x
leli<en ; p K (Xt =)

= LinT1+ LiNT,Qa say. (D.1)

H17||<CNT

By the change of variables and Assumptions A.4(iv), A.6(i) and A.7

T
T*lz/fl,t (@ +houw K (u)du
t=1

<Cy, (D.2)

max L;nyT2 = max max
1<i<N 1§z‘§N lzl|<enr
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where ® denotes the Hadamard product. If {X;;,t =1,2,...} is strictly stationary and strong mixing,
then one could replace Ep [K}, (X;: — «)] by its unconditional version and then apply Theorems 2 and 4
in Hansen (2008) so show that L;n71 = op (1) for each i. Here, {X;;, ¢ =1,2,...} is conditionally strong
mixing given D so Hansen’s (2008) results are not applicable. We complete the proof of (i) by showing
that

1I<I18%}§v LzNT 1 =0p (1) (D3)

Take any small € > 0 and cover the compact set {||z|| < cnr} with @ = O(Kp (A!)™ LeP) balls of
the form A; = {s : |z — =] < € (h!)l/p}. The main step in the proof of (D.3) is to show that for any
finite C7 > 0,

Pp <1r<nli>§vlilllp lpir (x1)] = 601> =o(1), (D.4)
where Pp () = P (:|D), p;r (z) = (Th!)~! Zle Zii(z)and Z; 4 (x) = hM{ K}, (X — x)—Ep [Kp, (X — 2)] -
Let K = sup, [k (u)]” . Noting that max<;<ny maxj<¢<7 sup, |Z;+ (r)| < K and maxi<;<y maxj<;<7 sup,
Ep|Z; 4 (x)]* < Csh! for some Cy < oo, we can apply Boole’s inequality and the exponential inequality
for conditional strong mixing processes (see Lemma E.2 in the supplemental appendix) to bound the left
hand side of (D.4) from above by

T

T 7 (a1)

t=1

TC2e? (h!)?
< — _
s 2NQ lT P ( 17 Coh 12K Crenirgz ) T T (™)

N Q
ZZPD loir ()] > eC1) < NQ@Q max sup PD<

1SN
i1 =1 =rsi=e

2 C16h'>

C?e>Th!
< 2N — ! _ T
- @ [T eXP ( 4CyT + 2ClKe7'/3> +lap (T)}
— 0as (N,T) — o0

provided that 7 € (1,Th!) such that Th!/r > T for some > 0 and (NT) /%) ()™ ap (1) =
0Oa.s. (1). Assumption A.4(i) ensures the existence of such a 7. As a result, (D.4) holds and one can
complete the rest of the proof for (D.3) following similar arguments as used in Hansen (2008). Combining
(D.1), (D.2), and (D.3) yields Ly = Op (1). This completes the proof. m

Lemma D.2 Suppose the conditions in Theorem 8.2 hold. Then
(i) D11 = ynraNT Zlgi,jSN eiMpoKijMpoAj = op (1);
(Z’L) DLQ = YNTANT Zlgi,jSN EQMFOICUMFOXJ- = op (1) 5
(iii) D13 = YnNranT Yo1<; i<y EMpo KK MO FONY = 0p (1) ;
(iv) Dya = ant Y 1< i<y GMpolCiy M) JFOX) = op (1) ;
(v) D15 = Ynrant Y 1<i jen Ad FOMWK; MO FOX) = op (1).

Lemma D.3 Suppose the conditions in Theorem 8.2 hold. Then
(i) D2y = ant Y21 <izjan iR Kije; = op (1)
(Z’L) D2,2 = anNT Zlgi;ﬁjSN EQPFDICZ'J'PFO&?]- = op (1) ;
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(iii) Da3 = ant Y 1<i jan M (A729) T AYek A0 (AYA0) T A =op (1);
(iv) Doy = ant Yoy jen AV (AYAY) T AYEK; Proea% (AYA%) T A0 = 0p (1) ;
(v) D25 =vyrant Zlgi;ﬁjSNE;MFO’CijM(O)Ej =op(1);

('Ui) D276 = anNT Zlﬁi,jSN EQMFOICZ']'M(I)FO)\? = op (1) 5

(Uii) D2,7 = aNT Zlgi?éjSN E/Z-MFOICijM(l)Cj =0op (l) 4

(viii) Dag = anT Y1 <ipjen N FOMWIC; Mg = op (1).

Lemma D.4 Suppose the conditions in Theorem 3.2 hold. Then
(i) Ds1 = ant Y <; jon EMOD Ky MO FON] = 0p (1) ;
(1) D32 = ant Y 1 <izicn elMpoKi;MWe; = op (1);
(i1i) D3 3 = anr Zléi,jSN E;MFOICZ']‘M(Q)FO)\? =op(1);
(iv) D3.a = ant Y oy MFOMWK ;M@ FOX) = op (1).

Lemma D.5 Suppose the conditions in Theorem 3.2 hold. Then
(Z) D4’1 = aNT Zlgi;éjgN E;MFOICZ‘]‘M(Q)E]‘ =op (1) N
(i) Dy2 =anr 21§i¢j§N )‘?/FO/M(I)’CUM(Q)EJ' =op(1).
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