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Abstract

In this paper we propose a nonparametric test for cross-sectional contemporaneous depen-
dence in large dimensional panel data models based on the Ly distance between the pairwise
joint density and the product of the marginals. The test can be applied to either raw ob-
servable data or residuals from local polynomial time series regressions for each individual to
estimate the joint and marginal probability density functions of the error terms. In either
case, we establish the asymptotic normality of our test statistic under the null hypothesis by
permitting both the cross section dimension n and the time series dimension 7' to pass to in-
finity simultaneously and relying upon the Hoeffding decomposition of a two-fold U-statistic.
We also establish the consistency of our test. We conduct a small set of Monte Carlo sim-
ulations to evaluate the finite sample performance of our test and compare it with that of
Pesaran (2004) and Chen, Gao, and Li (2009).
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1 Introduction

In recent years, there has been a growing literature on large dimensional panel data models
with cross-sectional dependence. Cross-sectional dependence may arise due to spatial or
spillover effects, or due to unobservable common factors. Much of the recent research on
panel data has focused on how to handle cross-sectional dependence. There are two popular
approaches in the literature: one is to assume that the individuals are spatially dependent,
which gives rise to spatial econometrics; and the other is to assume that the disturbances
have a factor structure, which gives rise to static or dynamic factor models. For a recent and
comprehensive overview of panel data factor model, see the excellent monograph by Bai and
Ng (2008).

Traditional panel data models typically assume observations are independent across in-
dividuals, which leads to immense simplification to the rules of estimation and inference.
Nevertheless, if observations are cross-sectionally dependent, parametric or nonparametric es-
timators based on the assumption of cross-sectional independence may be inconsistent and
statistical inference based on these estimators can generally be misleading. It has been well
documented that panel unit root and cointegration tests based on the assumption of cross-
sectional independence are generally inadequate and tend to lead to significant size distortions
in the presence of cross-sectional dependence; see Chang (2002), Bai and Ng (2004, 2010),
Bai and Kao (2006), and Pesaran (2007), among others. Therefore, it is important to test for
cross-sectional independence before embarking on estimation and statistical inference.

Many diagnostic tests for cross-sectional dependence in parametric panel data model have
been suggested. When the individuals are regularly spaced or ranked by certain rules, several
statistics have been introduced to test for spatial dependence, among which the Moran-I
test statistic is the most popular one. See Anselin (1988, 2001) and Robinson (2008) for more
details. However, economic agents are generally not regularly spaced, and there does not exist
a “spatial metric” that can measure the degree of spatial dependence across economic agents
effectively. In order to test for cross-sectional dependence in a more general case, Breusch and
Pagan (1980) develop a Lagrange multiplier (LM) test statistic to check the diagonality of the
error covariance matrix in SURE models. Noticing that Breusch and Pagan’s LM test is only
effective if the number of time periods T is large relative to the number of cross sectional units
n, Frees (1995) considers test for cross-sectional correlation in panel data models when n is
large relative to 7" and show that both the Breusch and Pagan’s and his test statistic belong to
a general family of test statistics. Noticing that Breusch and Pagan’s LM test statistic suffers
from huge finite sample bias, Pesaran (2004) proposes a new test for cross-sectional dependence
(CD) by averaging all pair-wise correlation coefficients of regression residuals. Nevertheless,
Pesaran’s CD test is not consistent against all global alternatives. In particular, his test has no

power in detecting cross-sectional dependence when the mean of factor loadings is zero. Hence,



Ng (2006) employs spacing variance ratio statistics to test cross-sectional correlations, which is
more robust and powerful than that of Pesaran (2004). Huang, Kao, and Urga (2008) suggest
a copula-based tests for testing cross-sectional dependence of panel data models. Pesaran,
Ullah, and Yamagata (2008) improve Pesaran (2004) by considering a bias adjusted LM test
in the case of normal errors. Based on the concept of generalized residuals (e.g., Gourieroux
et al. (1987)), Hsiao, Pesaran, and Pick (2009) propose a test for cross-sectional dependence
in the case of non-linear panel data models. Interestingly, an asymptotic version of their test
statistic can be written as the LM test of Breusch and Pagan (1980). Sarafidis, Yamagata,
and Robertson (2009) consider tests for cross-sectional dependence in dynamic panel data
models.

All the above tests are carried out in the parametric context. They can lead to mean-
ingful interpretations if the parametric models or underlying distributional assumptions are
correctly specified, and may yield misleading conclusions otherwise. To avoid the potential
misspecification of functional form, Chen, Gao, and Li (2009, CGL hereafter) consider tests for
cross-sectional dependence based on nonparametric residuals. Their test is a nonparametric
counterpart of Pesaran’s (2004) test. So it is constructed by averaging all pair-wise cross-
sectional correlations and therefore, like Pesaran’s (2004) test, it does not test for “pair-wise
independence” but “pair-wise uncorrelation”. It is well known that uncorrelation is generally
different from independence in the case of non-Gaussianity or nonlinear dependence (e.g.,
Granger, Maasoumi, and Racine (2004)). There exist cases where testing for cross-sectional
pair-wise independence is more appropriate than testing pair-wise uncorrelation.

Since Hoeffding (1948), there has developed an extensive literature on testing indepen-
dence or serial independence. See Robinson (1991), Brock et al. (1996), Ahmad and Li
(1997), Johnson and McClelland (1998), Pinkse (1998), Hong (1998, 2000), Hong and White
(2005), among others. All these tests are based on some measure of deviations from inde-
pendence. For example, Robinson (1991) and Hong and White (2005) base their tests for
serial independence on the Kullback-Leibler information criterion, Ahmad and Li (1997) on
an Lo measure of the distance between the joint density and the product of the marginals, and
Pinkse (1998) on the distance between the joint characteristic function and the product of the
marginal characteristic functions. In addition, Neumeyer (2009) considers a test for indepen-
dence between regressors and error term in the context of nonparametric regression. Su and
White (2003, 2007, 2008) adopt three different methods to test for conditional independence.
Except CGL, none of the above nonparametric tests are developed to test for cross-sectional
independence in panel data model.

In this paper, we propose a nonparametric test for contemporary “pair-wise cross-sectional
independence” , which is based on the average of pair-wise Lo distance between the joint density
and the product of pair-wise marginals. Like CGL, we base our test on the residuals from local

polynomial regressions. Unlike them, we are interested in the pair-wise independence of the



error terms so that our test statistic is based on the comparison of the joint probability density
with the product of pair-wise marginal probability densities. We first consider the case where
tests for cross-sectional dependence are conducted on raw data so that there is no parameter
estimation error involved and then consider the case with parameter estimation error. For
both cases, we establish the asymptotic normal distribution of our test statistic under the null
hypothesis of cross-sectional independence when n — oo and T' — oo simultaneously. We also
show that the test is consistent against global alternatives.

The rest of the paper is organized as follows. Assuming away parameter estimation error,
we introduce our testing statistic in Section 2 and study its asymptotic properties under both
the null and the alternative hypotheses in Section 3. In Section 4 we study the asymptotic
distribution of our test statistic when tests are conducted on residuals from heterogeneous
nonparametric regressions. In Section 5 we provide a small set of Monte Carlo simulation
results to evaluate the finite sample performance of our test. Section 6 concludes. All proofs
are relegated to the appendix.

NOTATION. Throughout the paper we adopt the following notation and conventions. For
a matrix A, we denote its transpose as A’ and Euclidean norm as ||A|| = [tr (AA’ )]1/ % where =
means “is defined as”. When A is a symmetric matrix, we use Amin(A) and Apax(A) to denote
its minimum and maximum eigenvalues, respectively. The operator 2L, denotes convergence in
probability, and A convergence in distribution. Let PL = T!/(T—1)! and CL = T/ [(T — 1)!!]
for integers [ < T. We use (n,T) — oo to denote the joint convergence of n and 7" when n

and T pass to the infinity simultaneously.

2 Hypotheses and test statistics

To fix ideas and avoid distracting complications, we focus on testing pair-wise cross-sectional
dependence in observables in this section and the next. The case of testing pair-wise cross-

sectional dependence using unobservable error terms is studied in Section 4.

2.1 The hypotheses
Consider a nonparametric panel data model of the form
vit = gi (Xit) tuge, i =1,2,....n; t=1,2,...,T, (2.1)

where y;; is the dependent variable for individual ¢ at time ¢, X;; is a dx 1 vector of regressors in
the ith equation, g; (+) is an unknown smooth regression function, and wu; is a scalar random
error term. We are interested in testing for the cross-sectional dependence in {u;}. Since
it seems impossible to design a test that can detect all kinds of cross-sectional dependence
among {u;}, as a starting point we focus on testing pair-wise cross-sectional dependence

among them.



For each ¢, we assume that {uit}thl is a stationary time series process that has a probability
density function (PDF) f;(-). Let f;;(-,-) denote the joint PDF of u;; and uj;. We can for-
mulate the null hypothesis of pair-wise cross-sectional independence among {u;;,i =1,...,n}

as

Hy : fij (wig, uje) = fi (uie) fj (uje) almost surely (a.s.) for all4, j=1,...,n, and i # j.
(2.2)
That is, under Hy, u;; and wj; are pair-wise independent for all ¢ # j. The alternative
hypothesis is
H; : the negation of Hy. (2.3)

2.2 The test statistic

For the moment, we assume that {u;} is observed and consider a test for the null hypothesis
n (2.2). Alternatively, one can regard g;’s are identically zero in (2.1) and testing for potential
cross-sectional dependence among {y;;} . The proposed test is based on the average pairwise

Lo distance between the joint density and the product of the marginal densities:

e ¥ / / i (,0) — £ () f; ()] dudo, (2.4)

1<z7£j<n

where 37, i, stands for Y710, 370, ;. Obviously, I'; = 0 under Hp and is nonzero
otherwise.

Since the densities are unknown to us, we propose to estimate them by the kernel method.
That is, we estimate f; (u) and fi; (u,v) by

~ T
fiw) = T3 B (i —w) /1), and
~ T
fij(wo) = Ty B2k ((uie —u) /h) k ((uje =) /),
where h is a bandwidth sequence and k (-) is a symmetric kernel function. Note that we use
the same bandwidth and (univariate or product of univariate) kernel functions in estimating

both the marginal and joint densities, which can facilitate the asymptotic analysis to a great

deal. Then a natural test statistic is given by

P =y % //muv ~ R @) dudv. (2.5)

1<17£]<n

Let E;‘L,ts = h 'k ((us — wis) /h), where k (- f k(u — u) du is the two-fold convolution

of k(-). It is easy to verify that we can rewrite FlnT as follows:

i-—‘\1nT = ﬁ Z % Z kh Jts <kh ts + kh rq 2kh tr) ’ (26)

1<i#j<n 1<t,s,r,q<T



_ <7 T T T
where E1§t,s,r,qu =D i1 Dose1 Dot Zq:l :
The above statistic is simple to compute and offers a natural way to test Hy. Nevertheless,

we propose a bias-adjusted test statistic, namely

frmres ¥ 43 % R (Bt B —a) o @D
1<i#j<n |~ T 1<t£s#r£¢<T
where PE =T!/[(T —4)!] and > 1<tzsirzq<r denotes the sum over all different arrangements
of the distinct time indices t,s,r, and ¢g. In effect, ', removes the the “diagonal” (e.g.
t = s,r = q,t = r) elements from flnT, thus reducing the bias of the statistic in finite
samples. A similar idea has been used in Lavergne and Vuong (2000), Su and White (2007),
and Su and Ullah (2009), to name just a few. We will show that, after being appropriately
centered and scaled, fnT is asymptotically normally distributed under the null hypothesis of

cross-sectional independence and some mild conditions.

3 Asymptotic distributions of the test statistic

In this section we first present a set of assumptions that are used in deriving the asymptotic
null distribution of our test statistic. Then we study the asymptotic distribution of our test

statistic under the null hypothesis and establish its consistency.

3.1 Assumptions

To study the asymptotic null distribution of the test statistic with observable “errors” {w;},

we make the following assumptions.

Assumption A.1 (i) For each i, {uj, t =1, 2, ...} is stationary and a-mixing with mixing
coefficient {c; (-)} satisfying a; (1) = O (pl) for some 0 < p; < 1. Let p = maxi<i<, p;. We
further require that 0 <p < 1.

(ii) For each ¢ and 1 <[ < 8, the probability density function (PDF) f; 4, .+, of (wit,, ..., ust,)
is bounded and satisfies a Lipschitz condition: |f;, ¢ (wi+v1, ..., wv)—fis 6w, ..., u)l
< Diyy,..;,(w)|[v][, where u = (w1, ...,w), v = (v1,...,v), and D, is integrable and satis-
fies the conditions that [p; Dy, .1, (1) |[u][2349)du < Cy and Szt Dityty () figy,.y(w)du <
C for some C1 < oo and 0 € (0,1). When [ = 1, we denote the marginal PDF of w;; simply
as f;.

Assumption A.2 The kernel function £ : R — R is a symmetric, continuous and
bounded function such that k (-) is a yth order kernel: [k (u)du = 1, [w/k (u)du = 0 for
j=1,...,7—1 and [u"k (u)du = ky < 0.

Assumption A.3 As (n,T) — oo, h — 0, nT?h? — oo, nhi_;g /T — 0.



Remark 1. Assumption A.1(i) requires that {u;, ¢ = 1, 2,...} be a stationary strong
mixing process with geometric decay rate. This requirement on the mixing rate is handy
for our asymptotic analysis but can be relaxed to the usual algebraic decay rate with more
complications involved in the proof. It is also assumed in several early works for stationary
f-mixing processes such as Fan and Li (1999), Li (1999), and Su and White (2008), and can
be satisfied by many well-known processes such as linear stationary autoregressive moving
average (ARMA) processes, and bilinear and nonlinear autoregressive processes. Here we
only assume that the stochastic process is strong mixing, which is weaker than [-mixing.
Assumption A.1(ii) assumes some standard smooth conditions on the PDF of (uj,, ..., ui, ).
Assumption A.2 imposes conditions on the kernel function which may or may not be a higher
order kernel. The use of a higher order kernel typically aims at reducing the bias of kernel
estimates, which is common in the nonparametric literature (see Robinson, 1988; Fan and
Li, 1996; Li, 1999, and Su and White, 2008). Assumption A.3 imposes restrictions on the
bandwidth, n, and 7. These restrictions are weak and can be easily met in practice for a wide
combinations of n and 7. In addition, it is possible to have n/T" — ¢ € [0, 0] as (n,T) — oc.

By the proof of Theorem 3.1 below, one can relax Assumption A.1(i) to:

Assumption A.1(i*) For each i, {uy, t = 1, 2,...} is stationary and a-mixing with
mixing coefficient (). Let a (s) = maxi<i<n a5 (8). Doy T (1) < Cy for some Cy < 00
and ¢ € (0,1). There exists m = m (n,T) such that

)

max <n1T4h%,T4hﬂf%52,T2hl—$> Q™ (m) — 0 (3.1)

and max (m4h4,m3h2) — 0 as (n,T) — oc.

For the result in Corollary 3.2 to hold, we further need m and « (-) to meet the following
condition.

Assumption A.1(i**) For the m and a/(-) defined in Assumption A.1(i*), they satisfy
that 1 57 TaTHs (m) + h?m* — 0 as (n,T) — .

Clearly, under Assumption A.1(i), we can take m = | LlogT'| (the integer part of LlogT")
for a large positive constant L such that both Assumptions A.1(i*) and A.1(i**) are satisfied.

For notational simplicity, we continue to apply Assumption A.1(i).

3.2 Asymptotic null distributions

To state our main results, we further introduce some notation. Let E; denote expectation with
respect to variables with time indexed by ¢ only. For example, E; [E;L,ts] =/ F}MS fi (uis) duge,
and E FEs [E,;L,ts] = f [f E;L,tsfi (u%t) duis fz (ult) dut. Let Pits = E;L,ts - Et[E;L,ts] — Es [E;L,ts] +



EEq [E;z,ts]- Define!

1 h
BnT = m Z ﬁ Z E [QOZ"tS] FE [@j’ts] s and (32)
1<i#j<n 1<t#£s<T
5 4h? 1 —i —j
Onr = Ty =) Z ) Z Var (kh,ts) Var (k‘ms) . (3.3)
1<i#j<n 1<t#s<T

We establish the asymptotic null distribution of the fnT test statistic in the following theorem.

Theorem 3.1 Suppose Assumptions A.1-A.8 hold. Then under the null of cross-sectional

independence we have
nThT,r — Bur 4N (0, a%) as (n,T) — oo,

2 _ 1 2
where o = lim(, 7)—00 Ty

Remark 2. The proof of Theorem 3.1 is tedious and is relegated to Appendix A. The idea
underlying the proof is simple but the details are quite involved. To see how complications
arise, let V745 = Yor (W 1) = p% Zlgt;és;ér;équEZh,ts(EiL,ts + Egz,rq - QEiL,tT) where u; =
(W1, .., ugr)'. Then we have Ly = m > 1<izj<n Ynr (Wi 1;) . Clearly, for each pair (4, j)
with ¢ # J, ¥,,7,; is a fourth order U-statistic along the time dimension, and by treating ~,,p
as a kernel function, fnT can be regarded as a second order U-statistic along the individual
dimension. To the best of our knowledge, there is no literature that treats such a two-fold
U-statistic, and it is not clear in the first sight how one should pursue in order to yield a
useful central limit theorem (CLT) for fnT. Even though it seems apparent for us to apply
the idea of Hoeffding decomposition, how to pursue it is still challenging.

In this paper, we first apply the Hoeffding decomposition on +,,p;; for each pair (4, j) and
demonstrate that v, ;; can be decomposed as follows

_ (2) (3) 4
Yntyij = 0Gp 5 +4Gar,; + G7(’L'1)—',’ij

where, for [ = 2, 3,4, G = P Zlgtl;é...;étlgT 9%

T = by (Zijtrs o Zij,) is an I-th order degener-

ate U-statistic with kernel 19%) being formerly defined in Appendix A, and Z;;; = (wir, ujt).

Then we can obtain the corresponding decomposition for fnT:

Tor = 662 +4G%) + G¥)
where GS)T = n(n;_l) > i<iti<n Ggg,,’ij for [ = 2, 3, 4. Even though for each pair (i,7), Gg%ryz-j

is an [-th order degenerate U-statistic with kernel 192(-? along the time dimension under Hy,

'The notation can be greatly simplied under identical distributions across individuals. In this case, Brr =
_ _ —1
n(T =1 A suenB(r o)), and oy = 4[T(T = D] 7 RS0 o [Var (k)]



Gg)T is by no means an [-th order degenerate U-statistic along the individual dimension under
Hy. Despite this, we can conjecture as usual that the dominant term in the decomposition of
I’nT is given by the first term 6G(T), and the other two terms 4G(T) and G( ) are asymptot-
ically negligible. So in the second step, we make a decomposition for 6G(2) 6F [Gf:,)ﬂ] and

demonstrate that

nTh {GGST) - 6E[G£LQ%]} = Z wyr (w5, u5) +op (1)
1<i<j<n

where wy,r (0;,u;) = 22 Do i<tas<T PitsPisr and o 1o = 04— E [©i.45] - Despite the fact that
WnT,ij = WnT (u;, uj) is a non-degenerate second order U-statistic along the time dimension
any more, » ;- j<n WnT (u;,u;) is a degenerate second order U-statistic along the individual
dimension. The latter enables us to apply the de Jong’s (1987) CLT for second order degener-
ate U-statistics with independent but non-identical observations. [Under the null hypothesis
of cross-sectional independence u;’s are independent across 7 but not identically distributed.]
The asymptotic variance of Zlgi <j<n WnT (u;,u;) is given by 02 defined in Theorem 3.1 and
6nThE [GS}] delivers the asymptotic bias By,r to be corrected from the final test statistic. In
the third step, for | = 3,4 we demonstrate nT’ hGg)T = op (1) by using the explicit formula of
94

Remark 3. The asymptotic distribution in Theorem 3.1 is obtained by letting n and T
pass to oo simultaneously. Phillips and Moon (1999) introduce three approaches to handle
large dimensional panel, namely, sequential limit theory, diagonal path limit theory, and joint
limit theory, and discuss relationships between the sequential and joint limit theory. As they
remark, the joint limit theory generally requires stronger conditions to establish than the
sequential or diagonal path convergence, and by the same token, the results are also stronger

and may be expected to be relevant to a wider range of circumstances.

To implement the test, we require consistent estimates of U%T and B,r. Noting that

= e 3 3 E|(5.)]E[(F)] e

1<z7éj <n 1<t#£s<T

4R(

- T DT Z Z /fztsuudu/fjtsvvdijo()

1<z;£g <n 1<t#s<T

where R ( ) Jk( k(u du, then we can estimate U%T by
52
onT = n — 1 Z Z fz],ft Uit ujt)
1<z;éj<n =

where fij ¢ (wit, wje) = (T=1)" 30 2 B2k ((wis — i) /B) k ((wjs — wje) /B, ey fij—o(wit,
uj¢) is the leave-one-out estimate of f;;(us, uj¢). One can readily demonstrate GZT is a con-



sistent estimate of aiT under the null. Let

T
Bur =79 2 ok Elei1n] B @jar]
r=2 1<i#j<n

- _ —1 ~T—r+1 70 - -1 74
where E [@i,lr] = (T'—-r+1) Zt:lr+ k;z,t,tJrrfl - YT -1 Zlgt;ﬁng kz,ts‘ We es-
tablish the consistency of B,r for B,r in Appendix B. Then we can define a feasible test

statistic: R R
=~ TLTthT — BnT
ITLT = ~ 9
OnT

which is asymptotically distributed as standard normal under the null. We can compare fnT to
the one-sided critical value z,, the upper a percentile from the standard normal distribution,
and reject the null if fnT > 2. The following corollary formally establishes the asymptotic

normal distribution of fnT under Hy

Corollary 3.2 Suppose the conditions in Theorem 3.1 hold. Then we have

-~

A N (0,1) as (n,T) — oc.

3.3 Consistency

To study the consistency of our test, we consider the nontrivial case where 4 = lim, o I'yy >
0, where

I'n

m Z //[fij(uvv)_fi(u)fj(v)]2dudv.

1<i#j<n
We need to add the following assumption that takes into account cross-sectional depen-

dence under the alternative.

Assumption A.4 For each pair (4, j) with ¢ # j, the joint PDF f;; of u; and w;; is bounded
and satisfies a Lipschitz condition: |fi;(u1 +v1,us +v2) — fij(u1, u2)| < Dij(ur, u2)|| (v1,v2) ||,
and D;; is integrable uniformly in (i,7): [ [ Djj(u,v) fij(u,v)dudv < Cs for some C3 < oo.

The following theorem establishes the consistency of the test.

Theorem 3.3 Suppose Assumptions A.1-A.4 hold and pi4 > 0. Then under Hy, P <fnT > dnT>

— 1 for any sequence dp,r = op(nTh) as (n,T) — oc.

Remark 4. Theorem 3.3 indicates that under H; our test statistic fnT explodes at the
rate nT'h provided p14 > 0. This can occur if f;; (u,v) and f; (v) f; (v) differ on a set of positive
measure for a “large” number of pairs (7, j) where the number explodes to the infinity at rate
n?. It rules out the case where they differ on a set of positive measure only for a finite fixed

number of pairs, or the case where the number of pairwise joint PDFs that differ from the

10



product of the corresponding marginal PDFs on a set of positive measure is diverging to
infinity as n — oo but at a slower rate than n?. In either case, our test statistic fnT cannot
explode to the infinity at the rate nTh, but can still be consistent. Specifically, as long as
A1l — py and Ayp/ (nTh) — 0 as (n,T) — oo for some diverging sequence {\,r}, our

test is still consistent as fnT now diverges to infinite at rate (nTh) /\,r.

Remark 5. We have not studied the asymptotic local power property of our test. Unlike
the CGL’s test for cross-sectional uncorrelation, it is difficult for us to set up a desirable
sequence of Pitman local alternatives that converge to the null at a certain rate and yet
enable us to obtain the nontrivial asymptotic power property of our test. Once we deviate
from the null hypothesis, all kinds of cross-sectional dependence can arise in the data, which

makes the analysis complicated and challenging. See also the remarks in Section 6.

4 Tests based on residuals from nonparametric regressions

In this section, we consider tests for cross-sectional dependence among the unobservable error
terms in the nonparametric panel data model (2.1). We must estimate the error terms from
the data before conducting the test.

We assume that the regression functions g; (+), i = 1,...,n, are sufficiently smooth, and
consider estimating them by the pth order local polynomial method (p = 1, 2, 3 in most
applications). See Fan and Gijbels (1996) and Li and Racine (2007) for the advantage of
local polynomial estimates over the local constant (Nadaraya-Watson) estimates. If g; (-) has

derivatives up to the pth order at a point z, then for any X;; in a neighborhood of x, we have
1 s .
9i(Xit) = gi(z) + = D9lgi () (X — @) + o (| Xiy — z|I7)
|
1<]jl<p™’

Y Big(0) (Xie —2) /b)Y + o (| Xt —2|).

0<j|<p

Here, we use the notation of Masry (1996a, 1996b): j = (j1,...,74), il = 22:1 Ja, 2 =

d ja _ l l j _ g, R ST
Ha:lxgl ) ZO§|_]|§1) - Z:;):() Zjlzo Zjd:07 DIJ'QZ (JT) - 83‘1%1?.52%[17 ﬂz,.] ($, b) - J_ID‘Jlgl (x) )
Jite+ia=l
where j! = ngl Ja! and b = b (n,T) is a bandwidth parameter that controls how “close” X

is from 2. With observations {(yit,Xit)}thl, we consider choosing 3;, the stack of 3, ; in a
lexicographical order, to minimize the following criterion function
- 2
Qr(zB) =T ' |uu— > Bi((Xi—2)/0) | wy (X —2), (4.1)
t=1 0<ljl<p
where wy, (z) = b~%w (2/b) , and w is a symmetric PDF on R?. The pth order local polynomial

estimate of g;(x) is then defined as the minimizing concept in the above minimization problem.

11



Let N; = (I+d—1)!/(I!(d—1)!) be the number of distinct d-tuples j with |j| = I. It denotes
the number of distinct [-th order partial derivatives of g;(z) with respect to x. Arrange the
N d-tuples as a sequence in the lexicographical order (with highest priority to last position),
so that ¢;(1) = (0,0, ...,1) is the first element in the sequence and ¢;(N;) = (1,0, ...,0) is the
last element, and let qbl_l denote the mapping inverse to ¢;. Let N = Y7 Nj. Define S;7(x)

and W;p(x) as a symmetric N x N matrix and an N x 1 vector, respectively:

Sit00(x) Sito1(x) - Sirop () W.ro(z)

Si x) S; x) - S; x W,
Sir (z) = zT,le( ) zT,ljl () | zT,ljp( )  Wip(s) = 71(2)
| Sitpo (®) Sirpa1(z) - Sitpp(2) | Wirp(2)

where S;7; () is an N; x Nj, submatrix with the (/,r) element given by

it — &
Siris@, = 7 z &

and Wz ;(z) is an IN; x1 subvector whose r-th element is given by

#;(r)
— T J
[ ’LT,_] ,,« = f Zyzt ( L > Wy (th - $) .

Then we can denote the pth order local polynomial estimate of g;(z) as

(D +¢p(r)
) wy (Xo — ),

Gi(x) = ) [Sir ()] Wir (2)

where e; = (1,0,---,0) is an N x 1 vector.
For each j with 0 < [j| < 2p, let y; = Jpa @ Jw(x)dz. Define the N x N dimensional matrix
S by

8070 8071 SO,p
S S .. S

S e (4.2)
| Spo Sp1 - Spp |

where S; ; is an N; x N; dimensional matrix whose ({,7) element is 14 +6,(r)- Note that the
elements of the matrix S are simply multivariate moments of the kernel w. For example, if
p =1, then

)

S Jw(z)de [2'w(z)dx ]_[ 1 01x4

Jaw (z)dz [ z2'w(z)dx 04x1 [ zz'w(x)dx

where O,x. 1s an a X ¢ matrix of zeros.
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Let uyy = yir — i (Xi) for ¢ = 1,...,m and ¢t = 1,...,T. Define fnT, EnT, and 5%T
analogously to fnT, EnT, 3,21T but with {u;} being replaced by {%; }. Then we can consider
the following “feasible” test statistic

nT =

f nThfnT — EnT

onT
To demonstrate the asymptotic equivalence of :fnT and fnT, we add the following assumptions.

Assumption A.5 (i) Foreach i =1,...,n, {X;, t =1, 2,...} is stationary and a-mixing

)50/(2"‘50) < Cy for some Cy < o0,

with mixing coefficient {a; (-)} satisfying >222, j"a (j
ko > 60/(2 + d9), and dg > 0, where a (j) = maxi<i<n a; (j).

(ii) For each ¢ = 1,...,n, the support X; of X;; is compact on R?. The PDF p; of
X, exists, is Lipschitz continuous, and is bounded away from zero on X; uniformly in
i miny<j<pinf,,ex, pi (x;) > Cs for some Cs > 0. The joint PDF of X;; and Xjs is uni-
formly bounded for all ¢ # s by a constant that does not depend on 4 or |t — s|.

(iii) {ui,t=1,2,...,t =1,2,...} is independent of {X;,i =1,2,...,t =1,2,...}.

Assumption A.6 (i) For each i = 1,...,n, the individual regression function g;(-), is
p + 1 times continuously partially differentiable.

(ii) The (p + 1)-th order partial derivatives of g; are Lipschitz continuous on &;.

Assumption A.7 (i) The kernel function w : R? — R* is a continuous, bounded, and
symmetric PDF; S is positive definite (p.d.).

(i) Let w (z) = ||J:||2(2+5°)pw (). w is integrable with respect to the Lebesgue measure.

(iif) Let Wj(z) = xdw(z) for all d-tuples j with 0 < |j| < 2p + 1. Wj(z) is Lipschitz
continuous for 0 < [j| < 2p + 1. For some Cs < oo and C7 < oo, either w (-) is compactly
supported such that w (z) = 0 for ||z|| > Cs, and ||[Wj(z) — W;(Z)|| < Cr|lz — z|| for any =,
z € R? and for all j with 0 < |j| < 2p+ 1; or w(-) is differentiable, [|0Wj(z)/dz| < Cg, and
for some 1o > 1, |0Wj(z)/0z| < Cg ||z||~*° for all ||z| > C7 and for all j with 0 < |j| < 2p+ 1.

Assumption A.8 (i) The kernel function k& is second order differentiable with first order
derivative k" and second order derivative k”. Both uk (u) and uk’ (u) tend to 0 as |u| — oo.
(ii) For some ¢j, < oo and Ay < oo, |k” (u)| < ¢ and for some v > 1, |k” (u) | < ¢ |u|~ 7 for
all Ju| > Ag.

Assumption A.9 (i) Let n = T 104402+t As (n,T) — oo, Th® — oo, T%2b%h5 — oo,
and nTh(n? + h=*n3 + h=8n*) — 0.

(ii) For the m defined in Assumption A.1(i*), max(nhmb?®+t1) nmT =16~ n2T—4mbh=2,
n2m2h =202 Pt nhm? /T, nh=3m? /T2, m3/T) — 0.

Remark 6 Assumptions A.5 (i)-(ii) are subsets of some standard conditions to obtain

the uniform convergence of local polynomial regression estimates. Like CGL, we assume the
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independence of {u;} and {Xj} for all 4, j, ¢, s in Assumptions A.5(iii), which will greatly
facilitate our asymptotic analysis. Assumptions A.6 and A.7 are standard in the literature on
local polynomial estimation. In particular, following Hansen (2008), the compact support of
the kernel function w in Masry (1996b) can be relaxed as in Assumption A.7(iii). Assumption
A.8 specifies more conditions on the kernel function k£ used in the estimation of joint and
marginal densities of the error terms. They are needed because we need to apply Taylor
expansions on functions associated with k. Assumption A.9 imposes further conditions on
h, n, and T and their interaction with the smoothing parameter b and the order p of local
polynomial used in the local polynomial estimation. If we relax the geometric a-mixing rate
in Assumption A.1(i) to the algebraic rate, then we need to add the following condition on
the bandwidth parameters, sample sizes, and the choices of m and p :

Assumption A.1(i***) For the m, a (+), and 0 defined in Assumption A.1(i*), they also
satisfy that

max {n2T2h7371%5,T2h74712_f5, T2h75712_féb4(p+1)} ot (m) —0as (n,T) — oo.

Theorem 4.1 Suppose Assumptions A.1-A.3 and A.5-A.9 hold. Then under the null of cross-
sectional independence
Inp — N (0,1) as (n,T) — .

Remark 7. The above theorem establishes the asymptotic equivalence of fnT and fnT.
That is, the test statistic fnT that is based on the estimated residuals from heterogeneous local
polynomial regressions is asymptotically equivalent to I,r that is constructed from the gener-
ally unobservable errors. If evidence suggests that the nonparametric regression relationships
are homogeneous, i.e., g; (X;;) = g (Xj) a.s. for some function g on R? and for all 4, then one
can pool the cross section data together and estimate the homogeneous regression function
g at a faster rate than estimating each individual regression function g; by using the time
series observations for cross section ¢ only. In this case, we expect that the requirement on
the relationship of n, T, h, b, and p becomes less stringent. Similarly, if g; (X;) = Bo; + 81 Xt
a.s. for some unknown parameters 3, and 3;;, then we can estimate such parametric regres-
sion functions at the usual parametric rate T71/2, and it is easy to verify that the result in
Theorem 4.1 continue to hold by using the residuals from time series parametric regressions

for each individual.

The following theorem establishes the consistency of the test.
Theorem 4.2 Suppose Assumptions A.1-A.9 hold and pi4 > 0. Then under Hy, P <TnT > dnT>
— 1 for any sequence d,r = op(nTh) as (n,T) — oc.

The proof of the above theorem is almost identical to that of Theorem 3.3. The main differ-

ence is that one needs to apply Taylor expansions to show that (nTh)~!I,r is asymptotically
equivalent to (nT’ h)_lfnT under H;. Remark 4 also holds for the test fnT.
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5 Monte Carlo simulations

In this section, we conduct a small set of Monte Carlo simulations to evaluate the finite sample
performance of our test and compare it with Pesaran’s and CGL’s tests for cross-sectional

uncorrelation.

5.1 Data generating processes

We consider the following six data generating processes (DGPs) in our Monte Carlo study.
DGPs 1-2 are for size study, and DGPs 3-6 are for power comparisons.
DGP 1:
yit = o + B; Xt + wit,

where across both ¢ and ¢, X;; ~ IID U (-3,3), a; ~IID U(0,1), 8; ~ IID N (0,1), and they
are mutually independent of each other.
DGP 2:
yir = (1+ 0:) exp(Xie) /(1 + exp(Xar)) +

where across both i and ¢, X;; ~ IID U (-3,3), 6; ~ IID N (0,0.25), and they are mutually
independent of each other.

In DGPs 1-2, we consider two kinds of error terms: (i) u; ~ IID N (0,1) across both 4
and ¢ and independent of {«y, 5;, Xit}; and (ii) {w;} is IID across @ and an AR(1) process
over t: wui = 0.5u;¢—1 + €i¢, where ;4 ~ IID N (0,0.75) across both ¢ and ¢ and independent
of {a;, B;, Xit}. Clearly, there is no cross-sectional dependence in either case.

In terms of conditional mean specification, DGPs 3 and 5 are identical to DGP 1, and
DGPs 4 and 6 are identical to DGP2. The only difference lies in the specification of the error

term uj. In DGPs 3-4, we consider the following single-factor error structure:
wir = 0.5 N Fy + et (5.1)

where the factors F; are IID N (0,1), and the factor loadings A; are IID N (0, 1) and indepen-
dent of {F;} . We consider two configurations for €;; : (i) €+ are IID N (0,1) and independent
of {Fi, A\i}, and (ii) €+ = 0.5¢;4—1 + n;; where n;, are IID N (0,0.75) across both i and ¢, and
independent of {F}, \;}.

In DGPs 5-6, we consider the following two-factor error structure:
Ui = 0.3A13F7 + 0.3 Fop + €41 (5.2)

where both factors Fi; and Fy are IID N (0,1), Ay; are IID N (0,1), Ag; are IID N (0.5,1),
Fit, Foi, A1, and Ag; are mutually independent of each other, and the error process {e;} is

specified as in DGPs 3-4 with two configurations.
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5.2 Bootstrap

It is well known that the asymptotic normal distribution typically cannot approximate well
the finite sample distribution of many nonparametric test statistics under the null hypothesis.
In fact, the empirical level of these tests can be sensitive to the choice of bandwidths or highly
distorted in finite samples. So we suggest using a bootstrap method to obtain the bootstrap
p-values. Note that we need to estimate E (¢,,) in By, and that the dependence structure in
each individual error process {uit}z;l will affect the asymptotic distribution of our test under
the null. Like Hsiao and Li (2001), we need to mimic the dependence structure over time.
So we propose to apply the stationary bootstrap procedure of Politis and Romano (1994) to

each individual ¢’s residual series {ﬂit}tT:l . The procedure goes as follows:
1. Obtain the local polynomial regression residuals u;; = Y — g; (x;¢) for each i and ¢.

2. For each ¢, obtain the bootstrap time series sequence {u;f‘t}thl by the method of station-

ary bootstrap. 2

3. Calculate the bootstrap test statistic TZT = (nThf;*LT - E;‘;T) /oy, where f;sza E;‘;T and

o, are defined analogously to fnT, EnT and 0,7 but with u; be replaced by w,.

4. Repeat steps 1-3 for B times and index the bootstrap statistics as {T;;T j }?:1. Calculate
the bootstrap p-value p* = B~} Z}B:l 1(TZTJ > I,7) where 1(-) is the usual indicator
function, and reject the null hypothesis of cross-sectional independence if p* is smaller

than the prescribed level of significance.

Note that we have imposed the null restriction of cross-sectional independence implicitly
because we generate {u},} independently across all individuals. We conjecture that for suf-
ficiently large B, the empirical distribution of {T;;T j}Jle is able to approximate the finite
sample distribution of I,7 under the null hypothesis, but are not sure whether this can have
any improvement over the asymptotic normal approximation. The theoretical justification for

the validity of our bootstrap procedure goes beyond the scope of this paper.

5.3 Test results

We consider three tests of cross-sectional dependence in this section: Pesaran’s CD test for

cross-sectional dependence, CGL test for cross-sectional uncorrelation, and the fnT test pro-

2A simple description of the resampling algorithm goes as follows. Let p be a fixed number in (0,1).
Let uj; be picked at random from the original T residuals {u;1, ..., W}, so that uj; = wr,, say, for some
Ty € {1,...,T}. With probability p, let uj, be picked at random from the original T residuals {w;1, ..., Uir};
with probability 1 — p, let ujy = U;, 1, +1 so that ujp would be the “next” observation in the original residual
series following w;r, . In general, given that uj; is determined by the Jth observation u;; in the original residual
series, let u; ;11 be equal to u; s11 with probability 1—p and be picked at random from the original 7' residuals

with probability p. We set p = T~Y3 in the simulations.
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Table 1: Finite sample rejection frequency for DGPs 1-2 (size study, nomial level 0.05)

DGP n T (i) ug ~ ID N (0,1) (i) wy = 0.5ui4_1 + &4t
P  CGL SZ P CGL  SZ

1 25 25  0.040 0.044  0.054 0.092 0.060  0.082
50  0.060 0.044  0.048 0.130 0.062  0.082

100 0.056  0.058  0.064 0.126 0.080  0.066

50 25 0.060 0.044  0.062 0118 0.066 0.128

50  0.070 0.052  0.080 0.112 0.076  0.074

100 0.034 0030 0048 0.124 0.066 0.064

2 25 25 0.038  0.044 0.052 0.088  0.050 0.090
50 0.056  0.062 0.060 0.122  0.062 0.082

100  0.058  0.044 0.064 0.128  0.068 0.070

50 25 0.054  0.042 0.058 0.076  0.078 0.120

50 0.064  0.060 0.060 0.110  0.050 0.084

100  0.038  0.052 0.052 0.108  0.068 0.060

Note: P, CGL, and SZ refer to Pesaran’s, CGL’s and our tests, respectively.

posed in this paper. To conduct our test, we need to choose kernels and bandwidths. To
estimate the heterogeneous regression functions, we conduct a third-order local polynomial
regression (p = 3) by choosing the second order Gaussian kernel and rule-of-thumb bandwidth:
b=s XT_I/ 9 where sy denotes the sample standard deviation of {Xit} across ¢ and t. To es-
timate the marginal and pairwise joint densities, we choose the second order Gaussian kernel
and rule-of-thumb bandwidth h = s37~6, where s; denotes the sample standard deviation
of {u;;} across i and ¢. For the CGL test, we follow their paper and consider a local linear re-
gression to estimate the conditional mean function by using the Gaussian kernel and choosing
the bandwidth through the leave-one-out cross-validation method. For the Pesaran’s test, we
estimate the heterogeneous regression functions by using the linear model, and conduct his
CD test based on the parametric residuals.

For all tests, we consider n = 25, 50, and 7" = 25, 50, 100. For each combination of n and
T, we use 500 replications for the level and power study, and 200 bootstrap resamples in each
replication.

Table 1 reports the finite sample level for Pesaran’s CD test, the CGL test and our test
(denoted as P, CGL, and SZ, respectively in the table). When the error terms wu; are IID
across t, all three tests perform reasonably well for all combinations of n and T" and both DGPs
under investigation in that the empirical levels are close to the nominal level. When {u; }
follows an AR(1) process along the time dimension, we find out the CGL test outperforms

the Pesaran’s test in terms of level performance: the latter test tends to have a large size
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distortion which does not improve when either n or T increases. In contrast, our test can be
oversized when n/T is not small (e.g., n = 50 and T' = 25) so that the parameter estimation
error plays a non-negligible role in the finite samples, but the level of our test improves quickly
as T' increases for fixed n.

Table 2 reports the finite sample power performance of all three tests for DGPs 3-6. For
DGPs 3-4, we have a single-factor error structure. Noting that the factor loadings \; have zero
mean in our setup, neither Pesaran’s nor CGL’s test has power in detecting cross-sectional
dependence in this case. This is confirmed by our simulations. In contrast, our tests have
power in detecting deviations from cross-sectional dependence. As either n or T increases,
the power of our test increases. DGPs 5-6 exhibit a two-factor error structure where one of
the two sequences of factor loadings have nonzero mean, and all three tests have power in
detecting cross-sectional dependence. As either n or 1" increases, the powers of all three tests

increase quickly and our test tends to more powerful than the Pesaran’s and CGL’s tests.

6 Concluding remarks

In this paper, we propose a nonparametric test for cross-sectional dependence in large di-
mensional panel. Our tests can be applied to both raw data and residuals from heterogenous
nonparametric (or parametric) regressions. The requirement on the relative magnitude of n
and T' is quite weak in the former case, and very strong in the latter case in order to con-
trol the asymptotic effect of the parameter estimation error on the test statistic. In both
cases, we establish the asymptotic normality of our test statistic under the null hypothesis of
cross-sectional independence. The global consistency of our test is also established. Monte
Carlo simulations indicate our test performs reasonably well in finite samples and has power
in detecting cross-sectional dependence when the Pesaran’s and CGL’s tests fail.

We have not pursued the asymptotic local power analysis for our nonparametric test in
this paper. It is well known that the study of asymptotic local power is rather difficult
in nonparametric testing for serial dependence, see Tjgstheim (1996) and Hong and White
(2005). Similar remark holds true for nonparametric testing for cross-sectional dependence.
To analyze the local power of their test, Hong and White (2005) consider a class of locally
j-dependent processes for which there exists serial dependence at lag j only, but j may grow
to infinity as the sample size passes to infinity. It is not clear whether one can extend their
analysis to our framework since there is no natural ordering along the individual dimensions
in panel data models. In addition, it may not be advisable to consider a class of panel data
models for which there exists cross-sectional dependence at pairwise level only: if any two of
Wit, Uje, and ug (i # j # k) are dependent, they tend to be dependent on the other one also.
Thus we conjecture that it is very challenging to conduct the asymptotic local power analysis

for our nonparametric test.
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Table 2: Finite sample rejection frequency for DGPs 3-6 (power study, nomial level 0.05)

DGP n T (i) ey ~ 1ID N (0,1) (ii) i = 0.5e5_1 + 1y
P CGL S7 P CGL SZ

3 25 25 0040 0.046 0.446 0.092 0.052  0.590

50 0.060 0.058  0.778 0.130 0.060  0.860

100 0.056 0.074  0.950 0.126  0.038  0.984

50 25  0.060 0040  0.772 0.118 0.070  0.866

50 0.070 0.060 0.972 0.112 0.074  0.992

100 0.034 0.064 0998 0.124  0.068  1.000

4 25 25 0.038  0.074 0.446 0.098 0.044 0.616
50 0.056  0.052 0.772 0.206  0.066  0.858

100 0.058  0.062 0.954 0234 0.044 0.984

50 25 0.0564  0.046 0.772 0.148 0.086  0.870

50 0.064  0.068 0.970  0.190  0.072  0.990

100 0.038  0.062 0.998 0.270  0.068 1.000

S 25 25 0.326  0.248 0.208 0.410 0304 0.418
50 0.412  0.332 0.444 0486  0.350  0.672

100 0.584  0.446 0.740 0.594 0424 0910

50 25 0.550  0.442 0.456 0.626  0.508  0.680

50 0.720  0.620 0.812 0.754  0.640  0.918

100 0.842  0.742 0.988 0.888  0.776  0.996

6 25 25 0.304  0.232 0.250 0.420 0.292  0.406
50 0.428  0.330 0.424 0488 0.348 0.634

100 0.568  0.426 0.762 0.588  0.402  0.908

50 25 0.548  0.454 0.424 0.624 0.516  0.662

50 0.724  0.636 0.814 0.760  0.636  0.908

100 0.838  0.746 0.980 0.888  0.794 1.000

Note: P, CGL, and SZ refer to Pesaran’s, CGL’s and our tests, respectively.
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APPENDIX

Throughout this appendix, we use C to signify a generic constant whose exact value may vary

from case to case. Recall PL =T!/(T —1)! and CL. =T/ [(T — )NI!] for integers [ < T.

A Proof of Theorem 3.1

Recall @, ;, = E;ts—Et [Eﬁl,ts]*Es [E27ts]+EtEs [Eﬁl7t8} where Eﬁms = kp, (uit — u4s) and E, denotes expec-
tation taken only with respect to variables indexed by time s, that is, F (E27ts) = [k (wie — u) f; (u) du.
Let ¢; s = E(p;45), and cis = (n — 1)71 St cits- We will frequently use the fact that for ¢ # s,

o
Civs < Ch™TH QI (|t — s|) (A.1)

as by the law of iterated expectations, the triangle inequality, and Lemma E.2, we have |¢; 15| = |E [Ez’ts]
—i —i —i —i —i s 25

—EyEslky, p]| = |E{E[kp, gsluit] — Eslkp 1]} < E|E[kp p5|uit] — Eslkp15]] < Ch™ 50" (|t — s[) . Let

a(j) = maxi<i<n ;i (j). Let m = [LlogT| (the integer part of LlogT) where L is a large positive

constant so that the conditions on m in Assumption A.1(i*) are all met by Assumption A.1(i). In

addition, it is obvious that Y7 aths (7) = O (1) under Assumption A.1(i). . .

Let Ziji = (i, uje) and Sijrarg = < (Zijit: Zijoss Zijirs Zija) = FsFnss + Khyvg — 2kp4)- Let
Sijtsrg =S (Zij,u Zijisr Lijrs Zij,q) = % 24! Sij,tsrq, Where 24! denotes summation over all 4! different
permutations of (¢,s,7,q). That is, ;j terq is a symmetric version of ¢;; srq by symmetrizing over the
four time indices and it is easy to verify that

_ Loz g el - - el el
Sijitsrq = E{kh,ts(Zkh,ts + 2kh,7‘q - kh,tr - kh,sr - kh,tq - kh,sq)
—i o R R B
+kh,tr(2kh,tr + 2k’ih,qs - kh,ts - kh,sr - kh,tq - kh,rq)

- —J =J =7 77 =J 7J
+kh,tq(2kh,tq + 2kh,sr - kh,tr - kh7qr - kh,ts - kh7sq
i = =7 =J =J =J =J
+kh,sr(2kh,sr + 2kh,qt - kh,st - kh,rt - kh,sq - kh,r
i =7 v =7 =7 =7 =7
+kh,s (2kh,sq + 2kiz,'rt - kh,st - kh,qt - kh,sr - kh,qr

(

- = =J 77 7J =J 7.
+kh,rq 2k"h,rq + Qkh,st - kh,rt - kh,qt - kh,rs - kh,qs

q

Then we can write I',,7 as

~ 1 1
Lnr = m Z 2 Z Sijtsrq

1<i#j<n = T 1<t#s#r#q<T

1 1 ~
- m Z cL Z Sij,titatsts- (A3)

1<i#j<n 1 1<t;<to<ts<t4<T

Let 0;; = E\ExE3E4[S(Zija, Zija, Zij3, Zija) and Sije(21,...,2c) = Eep1 -+ Ea[S(21,. .., 2e,
Zijet1,---,Zij4)] for nonrandom z1,...,2. and ¢ = 1,2,3,4. Let 192(]1-) (z1) = Sija(z1) — 05 and
19§jc-) (%15 2e) =Sije (215, 2¢) — 22;11 () ﬂgf)(ztl, ooy 21,) — 045 for ¢ = 2,3, 4, where the sum
Z(c,k) is taken over all subsets 1 <t; < --- <t <cof {1,2,...,c}. It is easy to verify that 6;; =0,
19571-) (Zijt) =0, and

1
2 _
9D (Zijas Zijs) = Siz2 (Zijas Zijis) = G ¥itsPita: (A4)
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Similarly, straightforward but tedious calculations show that

9 (Zija, Zijor Zijr)
= $ij3 (Zijt, Zijs, Zijwr) —Sij2 (Zijits Zij,s) — Sij2 (Zijt, Zijr) — Sij.2 (Zij,ss Zijr)

1
= *ﬁ [‘pz’,ts (‘pj,tr + (pj,sr) + gpi,tr (Spj,ts + <pj,s7") + Spi,sr ((pj,st + wj,rt)} (A5)

and
4
9 (Zijas Ziziss Zijuos Zigg)
= S(Zijs Zij,ss Zijyrs Zijug) = Sig2 (Zijs Zij,s) — Sij2 (Zigits Zigir) — Sig2 (Zijots Zij.q)
—Sij,2 (Zij,ss Zijr) — Sig2 (Zigyss Zigag) — Si,2 (Zijyrs Zijg) — Sij,3 (Zigits Zijyss Zijyr)
i3 (Zijt, Zijus: Zijg) — Sij3 (Zijits Zijors Zigag) — Sij,3 (Zijyss Zigurs Zijog)
1
= 6 {‘pi,tssoj,rq + Soi,tr(pj,sq + wi,rq@j,ts + (pi,sqsoj,tr + (lpi,tq(pj,sr + (pi,srsoj,tq} ’ <A6)
where (A.5) and (A.6) will be needed in the proofs of Propositions A.4 and A.5, respectively.
k k
Let Ggﬂz = m ZlSi#Sn Z(T,k) 195]-) (Zijtrs-- -y Zijg,) for k =1,2,3,4, where Z(T,k) de-

notes summation over all Px permutations (¢1, ..., %) of distinct integers chosen from {1,2,..., T} (See
Lee (1990), Ch 1). Then by the Hoeffding decomposition, we have

Tor = 6G2) +4G%) + G, (A7)

- 9 . -
Let Ty = 6G). Noting that nThE(Tnr) = 2 Si<injcn Si<tcscr B [insPias) = Bur
under Hy, we complete the proof of the theorem by showing that: (i) nTh[Lyr—FE (Tpr)] 4N (0,03),
(ii) nThGS% = op (1), and (iii) nThGSl% = op(1). These results are established respectively in
Propositions A.1, A.4, and A.5 below.

Proposition A.1 nTh[T,r — E (T,r)] 4N (0,03).

Proof. Let OS5 = Pits — E(¢; 45)- Then we have Tor —E(T,r) = fnT’l + fnT)g, where

_ 2 1
F’H,T,l = N ~2 @f) sgpc', ERl a'nd
n(n—1) 13%@ Ct 1gt<zng e
_ 1 1
Cpre = m Z z Z {@f,tsE [@j,ts} + @5 s E [%‘,ts] }

1<i#j<n T 1<t<s<T
We prove the proposition by showing that
nT

— d 9
ThTry = ——2 W0 % N(0,02), A8
e A DY ) R (0.07) (A-8)
and
?’LThfnTg = o0op (1) 5 <A9)
where Wor = Y1 oicicn Wijs Wij = Woriy = wor (W, wy) = ARST 0f, 05, and w; =

(W1, oy uyr)’. Noting that nT/[(n — 1)(T — 1)] — 1, the proof is completed by Lemmas A.2-A.3
below. =
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Lemma A.2 W, 4N (0,0‘(2)) under Hy.

Proof. W,r is a second order degenerate U-statistic that is “clean” (i.e., E [wyr (u;,u;) [u]
= E[wyr (u;,u5) |u;] = 0 for i # j) under Hy, we can apply Proposition 3.2 of de Jong (1987) to
prove (A.8) by showing that

72y = Var(Wyr) =027 +0(1), (A.10)
G = > Eluwj]=0(1), (A.11)
1<i<j<n
G = Z E [w’?jw’?k + wjzzwjzk + wilwiﬂ =o(1), (A.12)
1<i<j<k<n
Gy = Z E [w;jwipwijwi + Wi WiWej Wi + wixwgw;gw;)] = o (1) . (A.13)
1<i<j<k<I<n

Step 1. Proof of (A.10). First, notice that

— 16h2 c e
OnT = n2T2V8I Z Z @i,tsgpj,ts
1<i<j<n 1<t<s<T
_ e ) 3 E 051066 1ae] E [0 000 @]
T op272 Pitits Pitaty Pj itz Pjtatal -

1<i<j<n 1<t <t <T, 1<t3<t4<T

We consider three cases for the summation in the last expression: the number of distinct indices in
{t1,t2,t3,t4} are 4, 3, and 2, respectively, and use (a), (b), and (c) to denote these three cases in
order. In cases (a)-(b), we can apply similar arguments to those used in the proof of (A.11) below and
demonstrate the corresponding sum is o (1) . It follows that

16h2
Tor = T Z Z Var (¢ ,,) Var (cp;ts) +o(l)=0c2; +0(1).
o <igi<n1<t<s<T

Step 2. Proof of (A.11). We prove a stronger result: G; = o(n™') by showing that maxj<;zj<, Gi;r
= o(n™?) where Gy;; = E(wy;). For i # j, we have that under Ho,

4
C
H Pito—1tar
=1

256h4
Giji = —=r > E E

1<tor—1<tor <T, k=1,2,3,4

4
C
H Pjtor_1tar | -
=1

We consider five cases inside the summation: the number of distinct elements in {t1,ts,...,tg} are 8,
7,6, 5, and 4 or less. We use (A), (B), (C), (D), and (E) to denote these five cases, respectively, and
denote the corresponding sum in Gy;r as Gijr,4, Gij1.B, Gij,c, Gij1,p, and Gyjr1.g, respectively (e.g.,
Gijr,a is defined as G;;; but with the time indices restricted to case (A)).

For case (A), we consider two different subcases: (Aa) there exists kg € {1,...,8} such that,
|t; — ti,| > m for all I # ko; (Ab) all the other remaining cases. We use Gjj1,4q and Gjr,ap to denote
Gijr,a but with the time indices restricted to subcases (Aa) and (Ab), respectively. Let 1 < 7 <
... <rg < T be the permutation of ¢y, ..., ts in ascending order. Denote A; (71, ...,75) = H?Zl OF 11 1tor-

Then it is easy to see that |E[A; (71,...,78)]| < C uniformly in j.
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For subcase (Aa), without loss of generality (WLOG) we assume t, = t;. We consider two sub-
subcases: (Aal) t; =11, (Aa2) ¢ty =y, for lp € {2,...,7}. In subsubcase (Aal), by splitting variables
indexed by t; from those indexed by to,...,ts, we have by Lemma E.1 that

BT R i
|E[A; (11, ...,78)]| < ’E {Et1 (cp‘;tltz) @f)t3t4<pf7t5t6cpf7t7t8}’ + Ch™TH aTH (m).
To bound the first term in the last expression, we apply Lemma E.2 to obtain

}Etl (@f,tm)’ = ‘EtlEtQ (Eﬁz,t1t2) - E(Ez,tltz)

E ‘Etz (Ez,mz) - E(Ez,tlwlum)

= ’E[EtQ (E;L,htg) - E(E;L,tltz |u”it1)]

< Ch™ T o™ (m). (A.14)

IN

Consequently, we have |A; (t1,...,ts)] < Ch™ 15 oTH (m). In subsubcase (Aa2), noting that to €
{Tlg+1, ---, rs } we split first variables indexed by ry, ..., r;,—1 from others and then variables indexed by

T, (= t1) from {ry,41,...,78} to obtain

|EA; (r1,0me)]l < [E{E1, o1 [Ai (T1,.,78)]} + Ch™ 5 q
< |E[Ey {E1, . 1g—1[4i(r1,...,m8)]}]| + Ch™

_5
T+3 m)
45 o T4 (m) + Ch™T45 o T4 (m).

Now we can apply Fubini theorem and (A.14) to bound the first term in the last expression by
Ch™TH TH (m) . Consequently, we have |E [A; (r1,...,78)]| < Ch™ T aTH (m) uniformly 4 in case
(Aa). Tt follows that
4
Gijr,aa < %Tshffl_féa% (m)=0 (n74T4hﬁa% (m)) =o0 (n73) , (A.15)
where here and below o0 (n~3) holds uniformly in (4,5). In case (Ab), the number of terms in the
summation for Gz ap is of order O (T4m4) and each term is uniformly bounded by a constant C. It

follows that 4
AT T*m* = O (n~*h*m*) = o (n7%). (A.16)

Gijr,ap <

Now, we consider case (B). WLOG we assume tg = tg and consider two subcases for the indices
{t1,...,t7}: (Ba) there exist two distinct integers ki, ke € {1,...,7} such that |¢; — tx,| > m for all
l # ks and s = 1,2 ; (Bb) all the other remaining cases. We use G;jr . and Gjjr gy to denote Gyj1,p
but with the time indices restricted to subcases (Ba) and (Bb), respectively. In case (Ba), at least one
(say tk,) of the two time indices satisfying the condition in (Ba) is not tg so that we can apply the
same argument as used in case (Aa) to obtain the bound for Gy g, as

Ch* _4s 5 Y I I s
Gij1.Ba < WTWL T+ T (m) = O (n AT3hTH T (m)) =o(n?%). (A.17)
In case (Bb), the number of terms in the summation for Gj1, s is of order O (T4m3) and each term
is uniformly bounded by a constant C. It follows that
4

L T'm? =0 (n~*h*'m®) = o (n7%). (A.18)

G < —
1.Bb < 5

For case (C), we consider two subcases for the indices {t1,...,tg}: (Ca) there exists four distinct
integers ki, ko, ks, k4 € {1,...,8} such that |[t; —tr | > m for all | # ks and s = 1, 2, 3, 4 (note that
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some of the t; indices coincide here so that the total number of distinct indices among {t1,...,ts} is
six); (Cb) all the other remaining cases. We use Gjjr.cq and Gyjr.cp to denote Gy but with the
time indices restricted to subcases (Ca) and (Cb), respectively. In case (Ca) we can follow the same
arguments as used in case (Aa) to bound Gjjr,cq as
Ch* . 2145 s 7 2 8 —
Gijr,ca < WT(’h T+ T (m) = O (n AT2hT T (m)) =o(n?). (A.19)
In case (Cb), the number of terms in the summation for G;jr,cp is of order O (T4m2) and each term
is uniformly bounded by a constant Ch~2. It follows that
Ch*

Gijr,ob < ——
VRN _TL4

T T*'m?h=? =0 (n"*h’m?®) =0 (n?). (A.20)

For case (D), we consider two subcases for the indices {t1,...,ts}: (Da) for all distinct integers
k€ {1,...,8} such that |t; — tg| > m for all [ # k with ¢; # tx; (Db) all the other remaining cases. We
use Gij1,pq and Gyjr,py to denote Gijr,p but with the time indices restricted to subcases (Da) and
(Db), respectively. In case (Da) we can follow the same arguments used in cases (Ca), (Ba), and (Aa)

to bound Gjjr1,p, as

Ch*
nAT4

_ 2448 5
o

GijI1,pa < T5h™ T4 aT+ (m) = O (n*4Th1_i6a$5 (m)) =o(n7?). (A.21)

In case (Db), the number of terms in the summation for G;;, py is of order O (T 4m) and each term is
uniformly bounded by Ch~=2. It follows that
4

h T*mh™2 =0 (n*4h2m) =o(n?%). (A.22)

Gijr,pp <
194, — n4T4

In case (E), it is straightforward to bound G;j1 g as
Ch* 4, 4 3 —4 2, -6 —4 —4—27 —2 -3

In sum, combining (A.15)-(A.23) yields

= =3
| Jnax Gijr=o0(n"?). (A.24)

Step 3. Proof of (A.12). By the Jensen inequality and (A.24), G;; < Zl§i<j<k5n[{E(w?j)
3
< B(wii )} + {E(wi) E(wi)}'7? + {E(wi,) E(wi)}'?] < %5 maxi<izj<n B(w;) = o0(1).

Step 4. Proof of (A.13). Write Gy = > {E [wijwipwijwig]+E [w;jwiwi;wig |+ Elwig
1<i<j<k<l<n

_ . _ 4
wywjpwil} = Grvi + Grve + Grvs. Recalling wij = 27 D0 oo oo 95 1595 155

G = > E Wi i, Wiy i Wi s Wigis)
1<i1<i2<i3<ta<n
256h*
= — E E ¢ ¢ ¢ ¢
T pAT4 E [(pll,tlt2(p117t3t4] E [@1271;11629012,7&5156]

1<i1 <ia<iz<ia<n 1<tap_1<t2x<T, k=1,2,34

xE [<p§37tat4wg37t7ts] E [9054,t5t690zg4,t7t3] :
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Like in the analysis of G, we consider five cases inside the above summation: the number of distinct
elements in {t1,to,...,ts} are 8, 7, 6, 5, and 4 or less. We continue to use (A), (B), (C), (D), and
(E) to denote these five cases, respectively, and denote the corresponding sum in Gyy1 as Grvi,a,
Grvi,B, Givi,c, Grvi,p, and Gy, g, respectively (e.g., Gry1,4 is defined as Gyyq but with the time
indices restricted to case (A)). For case (A), we consider two different subcases: (Aa) there exists
ko € {1,...,8} such that, |t; —tg,| > m for all [ # ko; (Ab) all the other remaining cases. We use
Grvi,4e and Gry1 ap to denote Gry1,4 but with the time indices restricted to subcases (Aa) and
(AD), respectively. In case (Aa) we can follow the same argument as used in case (Aa) in Step 2 to

bound Grv1 44 8 Grvi,ae < nc;’}i nATSh ™ 45 o T (m) = O(T4h2(12r66) aths (m)) =o0(1). In case (Ab),

the number of terms in the summation for Gy, 4 is of order O (T 4m4) and each term is uniformly

bounded by a constant C. It follows that Gy1 ap < ﬁ’;i n*T*m* = O (k*m*) =o(1).
For case (B), we consider two different subcases: (Ba) there exists kg € {1,...,,8} such that,
|t — ti,| > m for all | # ko with ¢; # t,; (Bb) all the other remaining cases. For subcase (Ba), we

consider only two representative subcases: (Bal) tg = t; or tg = ta, (Ba2) t5 = t5 or tg = tg since the

other cases are analogous. For subsubcase (Bal) WLOG we assume tg = ¢1. Noting that all the four
time indices in each of the four expectations E[¢f ;¢ 0%, 1ir.]s 05, 116,95 tatels ElP5s tataPhs trtr)s
and E[¢f, 1,95, -1, are different from each other, we can easily get the bound for Grv1 p (with the
restriction tg = t1) as O(T3h%1%62a1+ﬂ5 (m)) = o(1). For subsubcase (Ba2) we assume tg = t5 and
consider bounding the following objects: E[pf ;1,05 1o0,]s ElP5, 116,95 tate)s ELP5 t5ts Pl tnts)> and
BE[p5, 1.t5%5, tot5)- Note that the indices in the last expectation E[pf, ; , ¢f, ;... ] are not all distinct.
Despite this, since all the four indices in each of the other three expectations are distinct, we can
continue to bound Gy, p (with the restriction tg = t5) as O(T?’h% atH (m)) = o(1). For subcase
(Bb), it is easy to tell Gry1,p is bounded by T—*h*O (T*m?) = O (h*m?) = o(1). It follows that
Grvi,B = o(1). For case (C), analogous to the study of case (C) in Step 2, we have

125 &

4
Grvic = %0 (TGh_ QT (m) + T4m2h_1> =0 (Tzh%a% (m) + h3m2) =o0(1).

Similarly, in case (D) we have

& ;
Grvip < 70 (Tsh_l_%aﬁ (m) + T4mh_1) =0 (Th%gal;‘& (m) + h3m) =o(1).
In case (E), it is straightforward to bound Gy, g as
G < Ch 4 T2+ T3h 3+ T ) =0 (R +T'h4+T72) =0(1
IV1,E_WN( + + )— ( + + )—0().

In sum, Gry1 = o(1). Similarly we can show that Gyys =0 (1) for s =2,3. =
Lemma A.3 nThl,r2 =op(1).

Proof. Let ny =n—1and T3 =T — 1. Recalling that ¢;;s = F (Lpi)ts) and ¢y = nfl Yo Citsy
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we have

_ 2h ) T t—1
nThTyurs = S0 T D (65 0sChns + 5 sCits]
m 1<j#i<n t=2 s=1
9% T t—1 A, T t—1
- n ZZTllzZ ‘pztscjt5+(pjtsclt5 - ZTllzZ‘pltscltS
L3 5=t t=2 s—1 t=2 s—1
T t—1 T t—1
= 4hZT 1ZZ(pztSCtS*—ZT 1zz<pzteclt$
t=2 s=1 t=2 s=1

= 4V1nT — 4Voyr, say.

We complete the proof by showing that Vi,r = op (1) and Va,r = op (1). We only prove the first

claim since the proof of the second one is similar.
Let v;; = Zt_l h1/2<pl +sCts and v; = T1 Zt_ v;¢. Then we can write Vi, = h1/2 Yo v
Note that E (v;) = 0 and {v;},_, are independently distributed under Hy, we have E[(Vi,r)?] =
)

h"%  Var(v;). For Var(v;), we have

T T t-1
Var (v;) = ZU” = — ZE [”1‘2,75] + % Z Z E [v;4,vi1,] = Vii + Vay, say.
Tf t=2 1 $1=3t,=2
For Vi;, we have
p Lol gp, L. =11
Vi = T—fgzlE[ zts s 12 ;ZQEE %ts%om CesCer = Vi1 + Va2, say.

y (A.1) and Assumption A.1, || = [n7 ' Y0, Elp; 4]l < ChT¥5 T (t — s). Thus uniformly in ¢

T t-1
Viia < T12 ;;MH (t—s) 1<I£éasx<T{hE [53:] }
< ¢ max max_{hE [ }}hf_ﬁ > aths (r)=0 (T_lhl%g)
= Ty 1<i<n 1<t#s<T uts —~ '
For V4,2, we have that uniformly in ¢
t—1 s—1 =25 T t—1s—1
C’hhl+<S 5
Viial = ZZZUE 6 185 n) | letsl o] < Z— D" 3> "™ (= 5)aT (- 7)
t=3 s=2r=1 t=3 s=2r=1

ChiFs 5 5 q, 18
< GEY Y atme -0 W) -
T1=172=1
It follows that Vy; = O(T‘lhl%g + T‘lh%) uniformly in 4.
For V5;, we have

T t1—1t1—1ts—1

Voo = Z Z Z Z E (pz 15 P, t2t4] Ct1t3Ctaty

t1=3ta=2t3=11t4=1
T t1—1ta—1

= Z Z Z E Lpl t1t3 P, t2t3} Ctrt3Ctots

t1=3ta=21t3=1
T ti1—1 t1—1 to—1

Z Z Z Z E % Jt1ts P, t2t4] CtytsCtaty = Vi1 + Vai2 say,

1 41=3t=2¢t3= 1,t3Fty,ta ta=1
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where the first term is obtained when t3 = ¢4 or t2 as ¢, ;; = ¢; . Following the analysis of V1; 2,
we can show that |[Va; 1] < C’Tl_lhifg DD D a™H (71) aTH (13) = O(T‘lh%g) uniformly in
i. For Va; 2, we consider three cases: (a) 1 <t3 <ty <to <t1 <T;(b) 1<ty <t3<te <t <T;(c)
1<ty <ty <tz <ty <T, and use Vo; 24, Vi 2p, and Vo; 2. to denote the summation over these three
cases of indices, respectively. In case (a), by separating variables indexed by t3 from those indexed by
t4,t2, and t; and Lemma E.1, we have
—25 28 s
}E [% t1ts P, t2t4] } < ’E [Etg (‘Pz tltg) Pi t2t4] | + ChT ™ (ta —t3) = ChTH5 T+ (g —t3),

where the equality follows from the fact that F,(¢f,,) = EtEs (E;ts) —-F (E;ts) is a constant and that
E(p5 ) = 0 for t # s. It follows that uniformly in

T ti1—1to—1t4—1

|V2i’2a| < Z Z Z Z |E 901 tats P, 752754” ‘ct1t3‘ |Ct2t4|
t1= 3t2 2t4 1t3 1
—45 T ;-1 t1—1 to—1
Chh 1+ o =25 =2
S X X Y e lti-t)a™ (h-t)aT (- t)
t1=3to=2t3=1,t37#ts,t2 ta=1
Ch%
T+ as
< T Z Z Z 05#55 (7’1) a#jé (7'2) 041;4‘-6 (7-3) =0 (T71h11+35 ) .
T3:1 T2:1 T1:1
By the same token, we can show that |V, o¢| = (T—lh%) uniformly in 7 for & = b, . Hence Va; 9 =

oT ~1p T ) and Vo, = O(T 1hi+§) +O(T~'h 1+55) = O(T‘lh%) uniformly in i. Consequently
E|(Vinr)?] = hz (Vi + Vai) = O (nh (T—lh% n T—lhﬂ’—f’f)) -0 (nh%‘?/T) =o(1).
Then Vi,r = op (1) by the Chebyshev inequality. m

Proposition A.4 nThGY) = op (1).

Proof. By the definition of G** T and (A.5), we have

—12nThGS) = oD > S0 05 (Ziges Zigos Zigr)
T 1<i#j<n1<t<s<r<T

= n Z Z [@i,tsgpj,tr + <pi,ts<pj,sr + @i,tr‘pj,ts + gpi,tr@j,sr
107 1<ij<n 1<t<s<r<T

+(pi,sr§0j,st + (pi,s’r‘@jﬂ‘t]

Urnt + U2nt + Usnr + Usnt + Uspr + Usnr, say,

where, e.g., Uipr = % Doi<isti<n 2oi<t<s<r<T PitsPjur- 1t suffices to show that U.nr = op (1) for
r=1,2,..,6.

For Ui, we have

Unr = Z Z ©OF 155 e T Z Z Ci,ts 5 tr

n
T 1<z;£j<n 1<t<s<r<T T 1<27$j<n 1<t<s<r<T
§ § c E §
TL Qoi,tscjatr CitsCjtr
1 T 1<i#j<n 1<t<s<r<T T 1<i#j<n 1<t<s<r<T

Uinr,1 +Urnr2 + Urnr 3 + Urnt 4, 52y,
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where recall ¢, = ¢; 45 — E(<pz-7ts) and ¢; 15 = F (gpi’ts) . We further decompose Uy, 7,1 as follows

UlnT,l = Z Z @its‘p‘ih‘ Z Z (p(i:,ts(p;,tr

mC} 1<i<j<n 1<t<s<r<T 1<J<Z<n 1<t<s<r<T

= Uinria + UinT,10-

Noting that E (Uinr,14) = 0 under Hy, we have

T2h?
_ § : § : c c c c
Var (UlnT,la) - C3 2 E [¢i17t1t2¢i2,t1t3¢ilat4t5§0i27t4t6]
(n1 T) 1<iy <ig<n 1<ty <to<t3<T
1<ty<ts<te<T
T2h?
= - E E ¢ ¢ ¢ ¢
- ( 03)2 E [(pll,tltz(pll,t@s] E [(1012,t1t3(p22,t4t6} .
N1CT) 1<ii<ia<n 1<t <ta<t3<T
1<ty <ts<te<T

Analogously to the proof of (A.13), we can show
CT?h?
(mC3)*
OCﬂm%m%@m+T*Mmﬂﬂ“ﬁ=ouy

Var (U1n7,14) {nQTGhl__Qg aTH (m) +n*T3m> + n2T3h*2}

Hence Uinri1qa = op (1) by the Chebyshev inequality. Similarly, Uinri1p = op (1). It follows that

Uinr,1 = op (1).
For Uyp1,2, write

n n n
C Th C
UlnT,Z = T A3 E : E : E CjtsPitr — 3 E § : CitsPi tr
?’L1C ?’L1CT .
i=1 j=11<t<s<r<T i=1 1<t<s<r<T
Th <
C C j—
= Z Z CtsPitr = 703 Z Z CitsPi tr = UtnT,2a — UrnT,20,
i=1 1<t<s<r<T YT 521 1<t <s<r<T
where recall ¢;5 = ng ot iy Cigs- Noting E (Urnr,2q4) = 0, we have
°h% &
J— C C
Var (UlnT,Qa) - Cd 2 E E Ct1t20t4t5E I:(pi,tltg(lpi,t4t6:|
i=1 1<ty <ta<t3<T
1<ty <ts<tg<T
°h% &
— C (&
= iy E CtytyCtyts B [@i,t1t3¢i7t4t6] +0(1)
(Cy)" = 1<t; <ta<t3<T,

1<t4<t5<te<T,
t1,...,te are all distinct

n

2 ;—45 00 oo )
Ch; - Z Z Z Z aTH (1) T (15) a7 (75) + 0 (1)

i1=1 13=1712=171=1

:(ﬂmﬁﬁﬁymmzwu

IN

So Uinr2¢ = 0op (1). By the same token Ui,y = op (1). Thus Uynp2 = op (1) . Similarly we can
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show that Uy,r,s = op (1) For UlnT 4, we have

\UtnT,al < - Z Z |cies|cj,tr]
1C 1<i#j<n 1<t<s<r<T
CThhT i i
< W Z Z Oélé(S*t)Oélé(’l"*t)

1<i#j<n 1<t<s<r<T
Cnhiss 5 s 1-s
< =Y Y et (m)am (1) =0 (nh1+6 /T) =o0(1).
Consequently, Uy, = op (1). Analogously we can show that U.,r = op (1) for r = 2,3,...,6. This
completes the proof of the proposition. W
Proposition A.5 nThGY). = op (1).

Proof. By the definition of G(4% and (A.6), we have

6nThG') = > S 9D i Zije Zirs Zijg)
mCr T 1<iZj<n 1<t<s<r<q<T

= — ) > ARitsPirg + PirPisg T PiraPists T PissqPitr
1Cp 1<itj<n 1<t<s<r<q<T
6
+§0i,tq<pj,sr + gpi,sr(pj,tq} = § anTa say,
=1

where e.g., Qi = % doi<igti<n 2oi<t<s<r<q PitsPirq- 1t suffices to show Quur = op (1) for | =
2,...,6. We only show that Q1,7 = op (1) since the other cases are similar. Write

anT = Z Z Lp?,ts@?,rq Z Z cl’tswiTq

n
1Cp 1<1¢J<n 1<t<s<r<q<T Cr 1<7,7$]<n 1<t<s<r<q<T
n E E P 1sCirq + § , E : CitsCj,rq
1Cp 1<iZj<n 1<t<s<r<q<T Cr 1<i£j<n 1<t<s<r<q<T

= Qunr1+ Qunt2 + Qinr,s + Qint 4, SAY.

Analogously to the determination of the probability orders of Uin7,1, Uinr,2, and Ui,r,3 in the proof
of Proposition A.4, we can show that Q1,7,s = op (1) for s = 1,2,3. For Q1,,1,4, we have

Q4] < CThh i 3 S o™ (s— )™ (g—r) = 0@hIT T) =0 (1).

1<i#j<n 1<t<s<r<q<T
It follows that Q1,7 =o0p(1). ®

B  Proof of Corollary 3.2

Given Theorem 3.1, it suffices to show: (i) Dipr = GZT —o2, =o0p (1), and (ii) Doy = Byr — B =
op (1). For (i), we write

i = ey L 2 B|(Fe)]E[(F)] e

1<17éj<n 1<t#s<T

4R(E)2
B n(n—1)T(T-1) Z Z /fztsUU/dU/thsvvdv—l—o()

1<i#£j<n 1<t#s<T
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Then

— 2 T
~ 4R (k —~
DlnT = ( ) § E fj,—t uztau]t)

n(n—l e

_ 4R)(; Z Z /fztsuudu/fjtsvv )dv — o(1)
(1).

n{n —
( 1<7,7$]<n 1<t#s<T

= Dipr—o0

4R .
where Dipr = % Doi<iticn 2<tts<T AR ek ps— [ Fits (w,u) du [ fies (v,0) dv}. Tt is easy

to show that E (Di,r) = O (hY) = 0(1) and Var(D1n7) = 0 (1). Consequently, Dynr = op (1)
. . T .
Now we show (ii). Noting that B, = Z_}Z > 1 <itj<n Dr=2 Tt p [¢i1r] B [goj’lr] , we have

- 2h T —
BnT - BnT - ’fl_ T Z {E LIO’L 1r [Lp] 17“} ) [Lpi,lr} E I:ijvlr}}
1 r=2 1<i#j<n
Oh T — 7+ 1 .
= n_1 - T_1 1<Z E [‘Pi,lr] {E [%‘,17«} - F [%‘,17«]}
r= <i#j<n
M- T —r+1 N
+TL_1 T _1 Z {E [902',17"] -F [sz’,lr] } E [(pj,h’]
r=2 1<i#j<n
MeT —7+1 . R
. Z Ti 1 Z {E [‘Pi,lr] -F [‘P@h]} {E [@j,lr] -FE [‘Pj,lr]}
) 1<i£j<n

= 2Dou71 +2Doyr2 + 2D2y7 3, say.

Recalling ¢; s = F [(pl ts] and ¢y = nfl >oi, Cits, we have Doypq = hZf 5 TTTH Yo clr{E [Lpz 1T}

T
_E [gpmr]} 7% ST, TTr+1 S i { [goz | —E [¢j71r}} = Dopr1a — Danr b, say. We only
show that Da,114 = op (1) as the proof that Day,r 15 = op (1) is analogous. Noting that

T—r+1

~ 1 — —i
E [@i,lr] K [%’,n] = T——r+1 Z {kh7t,t+r—1 [kh,t7t+r 1 Z {kh ts — ErE ’[kh,ts]}’
t=1 T 1<t<s<T
(B.1)
we have
n T 1 Tr+1 . )
Donriia = hZZEITT 1 Z {kh,t,t+r71 _E[kh,t,tJrrfl}}
i=1r=2 r t=1
—i —i
_hz ZClT 2 Z {kh,ts — BB [kh,ts]}
i=1r=2 T 1<t<s<T
= Donr1a1 — Dont 142, s2y, (B.2)



where €1, =¢1,, (T —7+1) /(T'—1) and T, = T — r. Noting that E (Dap1,141) = 0, we have

(DQnT lal)
n Toy+1Ty+1

T
= ZZ Z 17z (T,, +1 L) Z Z Cov(khttJrrl 17khss+r2 1)

n T T 1 Try+1 Trp+1 A 4
= h Z Z T2 Z Cov (E;"LttJrr 717%2584'7‘ 71)
i=1r1=2 2=2 Tm + 1)(T7’2 +1) t=1 s=1,s#t,s#t+r1—"2 1 :
+o(1). (B.3)

We consider three cases for the summation in the last expression: (a) t <t+r; —1<s<s+ry—1
ors<st+ro—l<t<t+ri—1,(b)t<s<s+ro—1l<t+r—lors<t<t+ri—1<s+ry—1,
and (c)t<s<t+r —1<s+ro—lors<t<s+ry—1<t+r —1,and use VDoyra, VDonrs,
and V Da,7. denote the summation in (B.3) corresponding these three cases, respectively. In case
(a) we can apply the fact that Z;LQ 1 < Ch™ ™% and the Davydov inequality to obtain V Do, 1q <
C’nhQ_%/T = O(nhﬂl%sl/T) =0(1). In case (b), WLOG we assume t < s < s+719— 1 <t+7r; — 1.
Then we apply Lemma E.1 by first separating ¢ from (s,s 4+ 19 — 1,£ 4+ 71 — 1) and then separating
t+mr — 1 from (s,s+ 73 — 1) to obtain

‘COV (Eh,t,t-&-h—l’ Ehvsvs“z—l) ‘
—i -1 7t i
‘E { |:k:h7t7t+r1—l - E(kh,tﬂf-i-rl—l)} [kh,s7s+w—1 - E(khx&s“rﬁ] H

—i —i —i 2 s
‘E {Et [kh,t,wmq - E(kh,t,terfl)] [kh,s,sw%l - E(kh,s,s+r2fl)} H + Ch™ 75 aT (s — t)
Ch™ T T4 (t+r —s—rq)+ Ch™ T T4 (s—1t).

IN

IN

Then we have

T, +1 Tyy+1

T _ ' B
h? Z Z Ciry Z (TTI_FSW Z Z )COV (k;z7t,t+r1—17kh,s,s-i—rz—l))

t=1 s=1,s#t,s#t+r1—ro
t<s<s+ro—1<t+r;—1

n T T - = Ty Tratd
C1r,C s o
Saamrmy 2 {emernosorratieon)
=2 1 T2

t=1 s=1,s#t,s#t+r1—ra
t<s<s+rg—1<t+r;—1

IA
=
3

i

M

= 0 (nh i /T) =o(1).
It follows that V Da,rp = 0(1) . Similarly, we have V Dayre = 0(1). Hence Var(Dayr.141) = 0 (1) and
Dsy1r101 = op (1) by the Chebyshev inequality.

To study Danr 142 in (B 2), let Xits = Ef’z,ts — B\ E, [Efms}, and X7 = Xigs — (Xi,ts)' Noting
that |E X@ ts } < ChT+s 75 T (|s —t|), we can readily show that DgnT la2 = BgnT 1a2 + op (1), where
DgnT a2 =hd>" ZT 5 Clrar CQ Zl<t<5<T X§ 15~ By construction, E(DznT 1a2) = 0 and

B | (Baran) |

n T T
1
h? Z Z Ciry Z Cir, © Z Z E (Xatlthatgm)

212
i=1 =2 ra=2 T)" 1<t <te<T1<ticta<T
_2 3
Cnh /T =0(1).

IN
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Consequently, l_))gnT)ltﬂ = op (1) and Dapri14a2 = op(1). Hence Daoyri1a = op (1). Analogously

Doy = op (1) and hence Do,r1 = o0p (1).
By the same token we can show that Da,r2 = op (1). To show Da,r 3 = op (1), by (B.1) we can

decompose Dy, 3 as follows

n T, T

DQnT,B = n_l Z Z % Z (k27t,t+r - E[Ez,t,t-i-r}) (E{L,S,SJ’-T - E[Ei7s,s+r})

1<z7$j<n T t=1s=1
T,
h ST, & - i —i
_n_l E ﬁ E E E kh,tl,t1+r _E[kh,tl,t1+r] Xj tots
= 1<i7£j<n =11<ty<ts<T
T . .
7.7 7
z :Tl § : T z : § : Xi,tats (k‘h’thtﬁrr - E[kh,thtﬁrr])
r=1 1<i#j<n 1=11<to<t3<T

TL_1 Z Z (02) Z Z Xi,t1ta Xj,tata

L y<izi<n 1<ty <ta<T 1<t3<t4<T

= D2nT,3a — Dopt3p — Dont3c + Dant 34, say

It suffices to show Da, 1 3¢ = op (1) for £ = a, b, ¢, and d. We only sketch the proof of Day,r 34 = op (1)

—
since the other cases are simpler. First note that Doy 3a = Donr3a+op (1) by a simple application of

il
Lemma E.1, where Danr 34 = (Cz m(Cc2)’ Zr 1 T1 Di<ici<n 2u1<t <ty <T1<ts<ts<T Xitrts X5, tats - SCON,

noting that E(BQHT73d) =0, we can write

- 2 16h2 LA .. .
E [(D2nT,3d) } = W Z = Z Z Z E [Xi,t1t2Xi,t3t4] E [Xj,tstGXj,t7t8] .

T;
r=1 1) 1<i<j<n 1<t <t2<T 1<ts<tc<T,
1<ts<t4<T I<tr<ts<T

Now, following the same arguments as used in the proof of (A.13) and applying Lemmas E.1 and

— 2(1-5) 5
E.2 repeatedly, we can show that E[(Danr34)?] = O(h™ 7 T?a™5 (m) + h®m?) = o(1). Hence

BgnT73d = op (1). This completes the proof of the corollary.

C Proof of Theorem 3.3

It suffices to show that under Hy,(i) Ty = py + op (1), (i) (nTh) ™' Bur = op (1), and (iii) 62, =
0% + op (1), because then (nTh)_1 I = gnT ("T}Z_)T”T P Af; > 0. Using the expression of Tor
n (2.7), we can easily show that E[l,7] = s + o (1) and Var(T'nr) = o(1). Then (i) follows by the
Chebyshev inequality. Next, it is easy to show that (nTh) ' B,y = Op (T~') = op (1) and thus (ii)

follows. Lastly one can show (iii) by the Chebyshev inequality.

D Proof of Theorem 4.1

Let flnT, fnT, EnT, and 5iT be analogously defined as flnT, fnT, EnT, and cAfiT but with {u;}
being replaced by the residuals {@;;} in their definitions. We prove the theorem by showing that: (i)
nTh(Cpr — Tpr) = op (1); (i) Go7 = 627 + op (1); and (iii) Bur — Bur = op (1).
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To show (i), let AnT = FlnT — I‘nT and Apr = Dipr — Dor. By straightforward but tedious
calculations, we have AnT = AnT 1 +AnT o, where AnT 1 =R (E) [T}IQ (1+ %) - n%h Z?:l f I7 (u) dul
and

-~ 1 1 1 6 2 -
Aurp = — (———+—+—) Fi 1B 1
n (n — 1) Z T2 P% P,14_' Pj?: 1<I#ZS<T h,ts™h,t

1 2 2 4 o
— - "
+n (n — 1) Z <P% T3 + P,;l_‘) Z h,ts"h,tr

1<i#j<n 1<t#s,t#r<T

+ﬁ 1<Z (% — P%) ST Fniknrg (D.1)
<i#j<n 1<t£s,r£q<T

Similarly, AnT = AnT’l “rﬁnT’Q, where AnT’l and EnT,g are analogously defined as ﬁnT,l and AHT’Q but

with {u;;} being replaced by {@;;} in their definitions. It follows that nT h(f‘nT - fnT) = nTh(flnT -

fmT) —nTh(FﬁnT’l—ﬁnm)—nTh(ﬁnT,g—AnTg). We prove (i) by establishing that: (il) nTh(flnT—

flnT) =op (1), (i2) nTh(EnTA —ﬁnT’l) =op (1), and (i3) nTh(ﬁnTg—ﬁnT’g) = op (1), respectively

in Propositions D.1, D.4 and D.5 below.

For (ii), we have

- R 4R (k
U?LTfo—iT = ﬁl<# . X:: [fw —t ultyu]t) fz] —t (Uztvujt)
— 2
4R (k:) 4
- ke, (Wit — Wis) ki (Wge — Ujs) — ki k)
n(nil)T(Til) <;<n1<t7fzs<’r|: h<Ut u ) h(u]t U ) h,ts"h,ts

(k)2 —27.1 /
(T ) Z Z {h kh,tskj,ts (Aujt — Au”)

1<i#j<n 1<t#s<T

n(n— 1)
T2k ke (A — Augg)} +op (1)

where f” _¢ is analogously defined as f” _¢ with {u;; } being replaced by {w; }, kl rs = K (uie — wgs) /h)
and Auj; = U;— ui. Then following the proof of Lemma D.3 below, one can readily show that the

dominant term in the last expression is op (1) by the Chebyshev inequality.
For (iii), letting F [¢i1,] be analogously defined as E [¢i1,] but with {u;} being replaced by
{;:}, we have

- ~ [ - -
Byt —Bpyr = — Z Z {E @i, 1) [%,n] E [‘Pi,lr] E [@j,lr]}
n r=2 1<i#j<n
h =T — .
= ’fl_ Z T Z E SD’L 1r { [‘pj,lr] E [‘pj,lr] }
L= 1<i#j<n
h < T - + 1 - . ~
+n_ : Z {E [%,h«] -E [%,h«] } E [‘Pj,lr]
e 1<i£j<n
h T—r+1 ~ ~ ~ ~
+n_ Z T—il Z {E [%’,w] —-FE [%’,w]} {E [%’,17’} —F [@j,lr]}
1= 1<iZj<n

DnT,l + DnT,2 + DnT,3a say.
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Analogously to the proofs of Lemmas D.2-D.3 below, we can use the expression E [ger] —FE [ger]

= L Z:lr{ﬁh (g — ﬁivtﬂ)—E;’t’HT}—ci% Zl§t<s§T{Eh (s — ﬁis)—Ez,ts}, the Taylor expansions,

and the Chebyshev inequality to show that D, s = op (1) for s =1,2,3.
Proposition D.1 nTh(flnT - IA“MT) =op(1).

Proof. Noting that 22 — y2 = (z —y)> + 2 (z — y) y, we have

Tinr —Tinr = Z / i (u,v) ? dudv

1<z7£]<n

Z / ij (u,v) flj (u,v) — fz( )fj( )} dudv =Ty +Tnr2,

( 1<z;£j<n

where R;; (u,v) = ﬁj (u,v) — fi (u) fj (v) — ﬁ-j (u,v) + f; (u) ]?] (v), f; and ﬁ-j are analogously de-
fined as f; and fij with {u;t,uji}{_, being replaced by {u;,u;:}i—,. Expanding kj (Ui —u) =

h=Yk ((u;r — u)/h) in a Taylor series around u; — u with an integral remainder term, we have
1
o (G — ) = h=Vksy (u) + B2k, (u) Augg + h=2 Ausg / K (u, ) d, (D.2)
0

where Auy = Uiy — Uig, ke (W) = k ((wie —u)/h), Ky (u) = K ((wie —u)/h), k (u,\) = K ((uir — ut
Mu)/h) — kL, (u), and &’ denotes the first order derivative of k. It follows that

R;j (u,v) = Z (kn (Wie — w) kp (Wje — v) — kp (uie — ) kn (uje — v)]
17 T T 8
—m 2 D> o (e = w) b (s = 0) = on (i — ) o (wjs = )] = Y Brij (u,v)
t=1 s=1 r=1
where
; Ir
Riij (,0) = 2 375 e (0) — Ry (0)) bl (1) v,
t=1 s=1
1 LT
Roij (w,0) = s 375 i (1) — bis ()] K, (0) A,
t=1 s=1
1 T T 1
Ry (u0) = s 303 e (0) — by ()] vt /0 K+ (u, ) d,
t=1 s=1
1 T T 1
Ry;j (u,v) = T2 Z Z [kir (u) — Kys (u)) Aujt/o kjt (v, A) dA,
t=1 s=1
AN
Rsij (w,v) = g SO Kl () Aug [K, (v) Aujy — K (v) Ay,
t=1 s=1
1 T T 1
Reij (w,v) = 7oy SO K (0) Auge — K (v) A Auzt/o kf (u, \) dA,
t=1 s=1
1 T T 1
Rz (u,v) = T Z Z [kly (w) Auge — ki (u) Aug) Aujt/ k]"; (v, \) dA,
t=1 s=1 0
1 LI 1 1 1
Rsij (u,0) = Zm > ) [Auit / kit (u, A) dX — A, / ki (u, \) dA] Aujy / K, (v, A) dA.
t=1 s=1 0 0 0

34



By the C, inequality, it suffices to prove the theorem by showing that:

mT_ Z / rij (U, ) % dudv = op () for r =1,2,...,8, (D.3)

1<1;£]<n

and

SpnT = Ih Z Ryij (u,v) [ﬁj (u,v) — f; () fj (v)]dudv = op (1) for r =1,2,...,8. (D.4)

M <izicn
We prove (D.3) in Lemma D.2 below and (D.4) in Lemma D.3 below. ®

To proceed, let 7 ((X;s — x) /b) be the stack of ((Xi —z) /b)Y, 0 < |j| < p, in the lexicograph-
ical order such that we can write S;r (z) = = Z;‘F:l T (Xt — ) /) 7 (Xit — 2) /) wy (Xi¢ — ) .
Let Vir(z) = % Zthl Vit (@) uge, and Byr (z) = % 23:1 vir () gi (X3t) — gi (x), where vy (z) =
7 ((Xit — ) /b) wy (X3 — @) . By Masry (1996b), we have sup,c v, |[|Bir (2) || = Op (0P™1) , sup,ex, || Vir
(2) || = Op(T-/2-4/\/Tog ), 7 (2) = fi () Sl| = Op(b+T~1/24/2 /g T), where
S is defined in (4.2). Following Chen, Gao, and Li (2009, Lemma A.1), we can show that

wax sup ISiz () — fi () S]] = op (1) (D.5)

1<i<n gex

Then by the Slutsky lemma and Assumptions A.5(ii) and A.7(i), we have

s sup [ (Sir (2] = [mn miy J, 2 )] D )] 400 (1). (D.6)

By the standard variance and bias decomposition, we have
uip — Uit = i (Xit) — gi (Xit) = €1[Sir (Xit)] ™ Vir (Xit) + €1 [Sir (Xit)] ' Bir (Xit)]
= Vi +Ba. (D.7)
Let
Nies = € [Sir (Xi)| ™' Vis (Xit) - (D.8)
We frequently need to evaluate terms associated with 7, ,, and By :

q

I (1
;Z 2 Y niasl] =0p(1), ¢=1,2,3 (D.9)
i=1 1<t,s<T
q
I~ 1
gz s Yo el ] =0p (1), ¢=1,2, (D.10)
i=1 1<t,s,r<T

and

n T q
%Z (% > “Bit) =Op (bq@’“)) ,q=1,2,34. (D.11)
i=1 t=1

(D.9) and (D.10) can be proved by using (D.6) and the Markov inequality. For (D.11), we first need
to apply the fact that [S;7 (X;t)]"'Sir (Xst) = In and expanding g; (X;s) in a Taylor series around

X+ with an integral remainder to obtain



where Ajs () = gi (Xis) —gi (v)— fi=1 7099 (2) (Xis = ) = 305121 7 D76 (2) (Xis — 2) + (0 + 1)
Dlil=pt1 Jl, (Xis —2) [ [(Digi) (& 4+ A (Xis — ) — Dig; (x)] (1 = )’ dA. Then we can apply (D.6),
the dominated convergence theorem, and the Markov inequality to show that (D.11) holds. Let
X={Xy,i=1,...,n,t=1,.., T} and E* (-) denote expectation conditional on X.

Lemma D.2 R,,r = % doi<iti<n [ Ryij (u, v)* dudv = op (1) forr =1,2,...,8.

Proof. We only prove the lemma for the cases where » = 1, 3, 5, 6, and 8 as the other cases can
be proved analogously. By (D.7) and the Cauchy-Schwarz inequality, we have

2

T
2
RlnT < m Z / Z [kjt (’U) - k’js (’U)] k;t (U) Vit dudv
1<i#j<n 1<t#s<T
2
2 T
/
s 5 [ | D @) ki 0Ky (B | dud
1<i#j<n 1<t#s<T

9 T T
— , .  Wip T )
i D SID SED DD DD DL TR ORI R RN s

1<i#j<n 1<t1 #ta<T t3=1 1<ty #t5<T te=1
2 7
+TL T3}3 E : § : E : lij7t1t2t3t4k i,t1t3Bit1Bit3
! 1<i£j<n 1<t £t <T 1<ts#t4<T
= 2Rin71 +2R1n72,

where %/ is a two-fold convolution of &/, and
Kjtsrq = Kjtr — Kjtg = Kjor + Kjosq. (D.12)

Noting that Ri,r., 7 = 1,2, are nonnegative, it suffices to prove Ri,r, = op (1) by showing that

EX[Ri,7.r] = op (1) by the conditional Markov inequality. For Ri,r1, we can easily verify that
—

E*[Ripr1] = Rinr + op (1), where

TélnT,l = ﬁ Z Z Z E(Hj,t1t2t4t5)

1<i#j<nty,ta,ts are distinct t4,t5,te are distinct

XE(Fi,tltzxuitguits)771'7t1t377i7t4t6' (D.13)
We consider two different cases for the time indices {t1, ..., tg} in the above summation: (a) for at least
four different k’s in {1,...,6}, |t; — tx| > m for all [ # k; (b) all the other remaining cases. We use
]_%)1nT,1a and ]_%)mT,lb to denote Ri,7,1 when the summation over the time indices are restricted to
these two cases, respectively. In case (a) we can apply Lemmas E.1 and E.2 repeatedly and show that
either |h™1E (Kt t5t48,)| < ChiFs a7 (m) or |R E(K 1, ¢, it Uit )| < Chi¥5 T4 (m) must hold.
It follows that

Ch™ T aTH
]_'ilnT,la < n1;5h (m) Z Z Z \ni,tltsni,t4tﬁ|

1<i#j<nty,ta,ts are distinct t4,t5,t6 are distinct
2

IN

n
CnTh™ 5% o7 (m) n_lz T-? Z 15 5]
i=1 1<t,s<T

1426 o)

= Op (nThiWam (m)) =op (1),
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where we have used the result in (D.9). In case (b) noting that we have O(n*T%m?) terms in the
summation in (D.13) and A7 E (k)4 tat4t5) and h=3E(K; 4,4, uit,Uir,) are bounded uniformly in all
indices (as k’ behaves like a second order kernel by Lemma E.3), we can apply (D.9) and show that
Rinr1o = Op (nhm?/T) = op (1).

For Ri,7.2, we can show that EX[Ry,r2] = 1—%>1nT72 +op (1), where

— 1

_ . /. . .

RlnT,? = i T3h3 E E E (’%],tltzt:su) E(kj 2’t1t3)Blt1Blt3'
1 1<i#j<nty,ta,ts,ts are distinct

We consider two cases for the time indices {¢1, ..., t4} in the above summation: (a) for all ¥’sin {1, ..., 4},
|t; — ti| > m for all I # k; (b) all the other remaining cases. We use ]—{>1nT72a, and ﬁlnT)gb to denote
]_%)mT,Q when the summation over the time indices are restricted to these cases, respectively. In case (a)
we can use the fact that [h ™ E (k)4 t504t, )| < ChiFs a7 (m) , the fact that h™E(K; 4,+,) < Ch? (by
Lemma E.3) and (D.11) to obtain ]_%>1nT72a = Op(nThTH V2Pt (m)) = op (1) . In case (b), note
that E (Kt t,t5¢,) cannot be bounded by a term proportional to KT QT (m) in the cases where one
of the index-pair {(t1,t3), (t1,%4), (t2,%3), (t2,t4)} has elements that do not fall from each other at least
m-apart. But we can apply the fact that | E (k) 4,15t5t,)| < C, |W " E(K;4,6,)| < Ch?, and (D.11)
to obtain ﬁlnT)gb = Op(nmth(pH)) = op (1). Hence we have EX[Ry1,712] = op (1). Consequently,

RlnT = op (1) .

For Rs,r, write

1
Rgpr = TR > >, D Ritatatets At At

1<i#j<n 1<t1#t><T 1<t3#t4<T
1 1
X // / kjt_1 (U, /\1) d/\lkjt_g (u, /\2) d)\gdu
0 0

As argued by Hansen (2008, pp.740-741), under Assumption A.8 there exists an integrable function k*
such that

|k;’; (u, )\)| = |k ((uit — u + Nug) /h) — kliy (w)] < MY Ay | K* ((wge — w) /R). (D.14)

It follows that

1 — 2 2
E* (R3TLT) < An, T3h5 Z Z Z |E<Hj,t1t2t3t4)| Ex{k i,t1t3 (Auitl) (Auit3) }
! 1<i#j<n 1<t Ao <T 1<ts #14<T
1 —
S n1T3h5 Z Z Z |E (Kjatlt2t3t4>‘ Ex{k*iytlt3 [Vzgtlvlztg + IB’thlBZZtg

1<i#£j<n 1<t1#t2<T 1<t3#ta <T
2 2 2 2
+VitlIBit3 =+ Eit1Vit3]}
= FERsnry + ERsyr2 + ER3pr3 + ERspr o4,

where k*; ;5 = k* ((uiy — wis) /h) and k* is the two-fold convolution of k*. It is easy to show that
— P

E%T,l = ER3"T71 +op (1) , where ER3"T71 = an—17h5 Zlgi;ﬁjgn Ztl,...,tg are all distinct ‘E (vat1t2t3t4)‘

E(K* i 1y b5 Wits Wit Wity Wity ) NitytsMi 1yt Miststs i t5ts- YV consider two cases for the time indices {t1,....,ts}

in the last summation: (a) for at least 4 distinct k’s in {1, ...,8}, |t; — tx| > m for all I # k; (b) all the

other remaining cases. We use FR3,7,14, and FRs3,7,15 to denote ER3,7,1 when the summation over
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the time indices are restricted to these cases, respectively. In case (a), we have ’h_lE (/fj,tmtam)’ <
) — s
Chi%s o755 (m) or |hilE(k’*i’tltsuitsuitﬁ.umuits)| < ChT%5 T4 (m), and thus by (D.10)

2
) s n
CThT™5 o+ (m) 1
|ER3nT 10l < B Z s Z i385 703 1t |
=1 1<t1,t5,t6<T
< Op (nTh_g_%a#sS (m)) =op(1).

In case (b), noting that A=" [E (k1 tye5t0)| < C and b= |E(K*; 4,1, ity Wit Uit tirs )| < C, we have by
(D.10)

3 n
m 1 _
ERswrnl < m5s D (7 Do Wil ¢ =Op (nm®h™2/T?) = 0p (1).
j=1 1<ty,t5,t6<T
. . - R

Consequently ER3,71 = op (1). Next, it is easy to show that ERs,r2 = ERs,r2 + op (1), where
— -

ERsnr2 = W Zlgi;&jgn Ztl,.“7t4 are all distinet |1£ (R titatats)] E(k*i,tlts)B?tlB?tg- Then we can
show that

ﬁgnT’Q = Op (nTh_?’_%éa% (m) b4(p+1) + nTh_3b4(p+1)) = op (1) .
Hence ER3,12 = op (1) . Similarly, we can show that ERs,r, = op (1) for r = 3, 4.

For Rs,7, note that

T 2
1
Rsyr < 2ny'Th Z // THA Z Ky (u) Akl (v) Auge | dudv
1<i£j<n t=1
2
_ 1
+2n7'Th Z // Tand Z ki (u) Auiklss (v) Aujs | dudv = Rspra + Rsnt,2-

1<ij<n 1<t,s<T

By (D.9) and (D.11) and the fact that &’ behaves like second order kernel (see Lemma E.3), we can
show that

2
E*(Rsnra) = —Z D Y B (Wi Duie, Auiy] B [F) 0,0, Auji, Ay, |
1 1<i#j<n 1<ty t2<T

= @{ﬂ%@”ﬁ“+wﬁﬂ):@uy

It follows that Rs,71 = op (1). By the same token, Rs,72 = op (1). Consequently Rs,7 = op (1).
For Rg,r, write Rg;j (u,v) = 71 Zle Ky (v) AugiAugy fol ki (u,A) dX — 73 Zle ST K (v)

s=1"gs
AujsAugy fol kL (u,\)d\ = Re;j1 (u,v) — Re;j,2 (u,v) . Define Rgnr,1 and Re,7,2 analogously as Renr

but with Rg;; (u,v) being replaced by Re;j,1 (u,v) and Re;j2 (u,v), respectively. Then

1 _ 1 1
RGnT,l = m Z Z k/j,tSAuthujsAuitAuis //0 k);: (U, )\1) d)\l/o ]{);; (U, )\2) d)\gdu

1<i#j<n 1<t,s<T
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Using (D.9) and (D.11), we have

1 _
E*(Renr1) = TS Z Z E* (K s Aujr Auy, |
1 1<iAtj<n 1<t,s<T

1 1
><£;X {AultAu“ // k’:; (u, )\1) d/\l / k’j; (U, /\2) d/\gdu
0 0
1 - 2
A, ThHY Do > EF [Fiaelugeug || EFE b (AuisAugs) ™}
1<i#j<n 1<t,s<T

= Op (nTh™* (T3~ 4+ 4040} ) = 0p (1),

IN

Similarly, we can show that E* (Rg,r1) = Op (nTh_7 (T_4b_4d + bg(p+1))) =op(l). m
Lemma D.3 S,,r =05 . [ Reij (u,0) [fij (u,0)—Ji (u) J; (v)]dudv = op (1) forr = 1,2, ...,8.

Proof. We only prove the lemma for the cases where r = 1, 3, and 5 as the other cases can be

proved analogously. Decompose

S = g Y 2 5 [ [ @)= b @) ) ey ()

1<i#j<n 1<t1#t2<T 1<t3#t4 <T
XKy (w) kigy (w) Augy, dudv

ity

1
- - . + .
= Tz E E E  RjittatataKi g 1 A,

1<i#j<n 1<t1 #t2<T 1<t3#ta <T

T
1 it
- T4n1h2 Z E : E : E : Rjtrtatataly ¢y 45 Wits ity ts

1<i#j<n 1<t1#t2<T 1<t3#t4<T t5=1

1
— +
+T3n1h2 Z Z Z Hj,t1t2t3t4ki7t1t3Bit1

1<i#j<n 1<t; #t<T 1<t3£t4<T
= Sint1 + Sint2,
where k. = kT ((uy — uis)/h h=Y [ KL (u) kis (v) du, and K; rerg is defined in (D.12). To show
1,ts it J,t8Tq

Sinr1 = op (1), we can first show that S1,71 = g)lnTJ +op (1), where ?MTJ is analogously defined
—

as Sinr,1 but with all distinct time indices inside the summation. Second, we can decompose S 1,,7,1
— — — —
as Sipr1+ SinT,12 Where S 1,711 is analogously defined as S 1,7,1 but with only ¢ < j terms in
— — —
. o o B
the summation and SlnT,lQ = SlnT,l - SlnT,ll- Let Citsr = ki)tsuirv ef,tsr = Citsr — E (ei,tsr)v and
—
H;,t1t2t3t4 = Kjtitotaty — E(Hj,t1t2t3t4)' Then we can decompose S 1nT,11 &S follows
— 1
Sl”Tall = E : E : RjtitatstaCi,titsts?i ¢ty +op (1)

T4nh?
1 1<i#j<nti,...,t5 are all distinct

1
p— c C C )
= —T4n1h2 E E {“j,t1t2t3t4ei,tltgtsni,tlts + Hj,t1t2t3t4E (67/7t1t3t5) Mitrts
1<i#j<ntiy,...,t5 are all distinct

+E(Hj,t1t2t3t4)e?,t1t3t5ni,t1t5 + E(Hj’t1t2t3t4)E (ei,t1t3t5) ni,tlts} +op (1)

— — — —
= Sinran+ Sinrai2+ Sieri13 + Sieria +op (1)

—
For SlnT,llla we have

- 1
E* [(S1nT,111)2} = T2 Z Z Z Ni,t1tsMistotro
1

1<i<j<nty,...,t5 are all distinct tg,...,t10 are all distinct

C C C C
xE [ez’,tltatsei,tatstm] B[54, 1150455 totrtsto)-
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We consider two cases for the time indices {¢1,...,t10}: (a) for at least six different k’s, |t; — tx| > m

for all I # k; (b) all the other remaining cases. We use ES1 1114 and ESi 1115 to denote the summation

n

—25
corresponding to these two cases, respectively. In the first case, £S51 1114 < CT2hTHs 0T (m)> 0,

{T—2 Zlgt;ﬁng |ni’ts|}2 = Op(T2h17T2§a%5 (m)) =op (1). In the second case,
2
ESy 1115 < CT oy tm? Z T2 Z |17i7ts| =0p (m3/T) =op(1).
i=1 1<t#s<T
— —

It follows that S1,7111 = op (1). Analogously, we can show that S 1,711, = op (1) for r = 2,3,4.
So §)1nT,11 = op(1). Also §17zT,12 = op (1) by the same argument. Thus g)lnT,l = op (1) and
Sinr1 = op (1). Analogously, we can show that Si,12 = op (1). Consequently, S1,7 = op (1).

For S3,1, we have

Sspr = ﬁ > > > / [kt (v) = Kjto (V)] [Kjes (v) = Kje, (0)] dvAugy,

1<i#j<n 1<ty £t <T 1<t3#t4<T

1
X/kit3 (u)/ ki (u, A) dhdu
0
1 1
= > > > Ejittatats Attir, / Eit, (u) / ki (u, \) dAdu
0

1<i#j<n 1<t1#t2 <T 1<t3#t4<T

1 1
= m Z Z Z E [ﬁj,t1t2t3t4] Aum /kitg (u)/o k‘;l (u, )\) d\du

1<i#£j<n 1<t1,t2 <T 1<t3,t4<T

1 . !
+W Z Z Z Hj,t1t2t3t4Au’it1 /kitg (’LL)/O k;tl (’LL, )\) d)\du

1<i#j<n 1<t1,t2<T 1<t3,t4<T

Ssnr1 + S3nT2-

Noting that A=K 1 tatats = Pjitrts = Pjitrta — Piitats T Pjitats» We can decompose Ssnr,r = Ssprr1 —
Sznrr2 — S3nT,r3 + S3nT,ra, Where Ssprr1, SsnTr2, S3nT,r3, and Sz,7 -4 are defined analogously as
SanT,r With E [Kj ¢,4,t4¢,] (for r = 1) or KS trtatsta
hE |:<pj7t1t4:| ’ hE [Spj}tﬁa] ’ and hE [(pj7t2t4] (fOI‘ = 1)’ or by hgo;,hts’ hgp;,htax’ hgp;,tzts’ and h(p;tztax
(for r = 2). WLOG we prove Ss,r, = op (1) by showing that Sz,r,1 = op (1) for r = 1,2. For

SsnT,11, noting that

(for r = 2) being respectively replaced by hE [goj’tltg] ,

’ / kis (u) /0 1 k% (u, \) dA\du

1 1
< 5 1Bual b k(s = 0 /WK (i =) /1) = 5 D K

where k:its = k¥ ((uit — uis) /) and k* (u) = [k* (u — v) |k (v)| dv, we have
[Sanra1] < 5 Th Z Z ’E(<pj,ts)’ (Auiy) ki i

1<i#j<n1<t,s<T

2n11Th Yoot > > B (),

1<i#£j<n |t—s|>m 1<i#j<n 0<|t—s|<m

= Ssnri1a + S3nT,110-
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By the fact that |E(¢, )| < Ch™TH T (|t — s]) (see (A.1)), we have

n

T
1,L L
Sznrite < Ch™ T aTHs g (Augy)? i,s

z:l t=1

= K lTHaTe (m)Op (nT (Tﬁlbfd + b2(p+1))) =op(1).

For Sz,7115 we can apply (D.9) and (D.11) and the Markov inequality to show that Ss,7,115 = Op(nm
(T~ 10=4 4+ p*P+D)) = 0p (1) .. It follows that Ss,711 = op (1).

For S3p,1,21, write Sznr 21 = ﬁ{Zgiqgn T2 i<icicnt 2ty o<t Pitats Dtity [ Kit, (u fo it
(u, )\)d)\du = S3nT7211 + S3nT7212- Note that EX [SgnT’Qll} =0, and EX [(SgnT)gll)z] = S3+op (1),

where

1
% (anh2)2 Z Z Z E (<)0§7t1t2 (‘0§7t3t4)

1<iiAia<j<n 1<ty ,ta<T 1<t3,t4<T

1
x B% [Auml / Ei e, () / ki, (u,A) d)\du] EX [Auim / Kiyt, () / ki, (u, ) d)\du}
0 0
1 c c X . i
4 (i Th?)? Z Z Z | {65 01005 tatu Y| B {(Auml) ki, tm}

1<i1 #i2<j<n 1<t1,t2<T 1<t3,t4 <T

x B [(Aumg)Q k!

i2,t3t4} :

IN

It is easy to show that the dominant term on the r.h.s. of the last equation is given by S3 =
(”1Th2)_2 Z1§i1¢i2<j§n Ztl,tg,t3,t4 are all distinct |E(90§,t1t290§7t3t4)| EX[(AUiltl)%Z t1t2}EX[(Au7;2t3)2 k;g,tgt4]'
We consider two cases for the time indices {t1,...,t4} in the last summation: (a) there exists at least
an integer k € {1,...,4}, |t; — ty| > m for all | # k; (b) all the other remaining cases. We use Ssq,
and S3;, to denote S3 when the summation over the time indices are restricted to these cases, respec-
tively. In case (a), WLOG we assume that ¢; lies at least m-apart from {t2,t3,t4}. Then by Lemma
Bl B9 1,005 000, } S [E{B (95,1,0,) 5 00, }| + CRTF QT (m) = ChTR a5 (m) as B, (65,0, s

nonrandom.

IN

=28 3 n
S Ch;j;—;h‘;(m) > 3 EX{(Aum) h %fm}

i=1 1<t #t2<T

5 (m) Op ( 72b72d+b4(p+1)) =op(1).

_ 5
= nT?h? 1+<50z

In case (b), noting that the total number of terms in the summation is of order O (r3T?m?), we
can easily obtain |§3b| =0 (anh’2) Op (T’Qb*Qd + b4(p+1)) = Op (nm2h*2(T*2b*2d + b4(”+1)))
= op (1). Consequently S3 = op (1) and Ss,7.211 = op (1) by the conditional Chebyshev inequality.

Next we study S5, Write Ssur = 2 (5010 cn + Srejiza) S Roig (w,0) [y (w0)= i (u) F5 (0)]
dudv = Ss,7,1 + Ssnr,2. It suffices to show that Ss,71 = op (1) and Ss,7,2 = op (1). We only prove
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the former claim as the latter one can be proved analogously. It is easy to show that

1
Ssnra = T30 Z // Z Z it (U)Auitl[k’}tl (U)Aujtlfk’}tg (v) Ay, ]

1<i<j<n 1<ty A <T 1<ta 7, <T
Xkjty (V) [Kit (1) — Kit, (u)] dudv
1
= W Z Z Z (k;'r,tlta - kg,t1t4)Auit1(k;,tltgAujtl - k},tth,Aujtz)

1<i<j<n 1<t1#t5<T 1<t3#t4<T

-
= Ssara+op(1),

where k:;ts = kT ((uit —uis) /), kT (u) = [k (u— )k (v)dv,
[ pp——— (B, =kl ) A, (6, Ay, — kD, Augy,)
L T T3 RS Z Z itats — ititg ) S Wits R gy g Sty = Ky g4, S UGto )

1<i<j<nty...t4 are all distinct

and the op (1) terms arises when the cardinality of the set {t1,2,t3,¢4} is 3 or 2. In particular, by the
standard bias-variance decomposition (for Au;, and Awje,) and the conditional Chebyshev inequality,
we can show that

1 i t t t
n T3h5 Z Z (ki,t1t3 - ki,t1t4)Auit1 (kj,t1t3Aujtl - kj,tQtsAujt2)
! 1<i<j<n it ta#ts
#{t14..t4}:3 or 2

- Op (iﬁ (T’l + T*3/2b*d) + nhb2(”+1)) = op(1).

— — —
Decompose Ssnr1 = Ssnr,11 + S 501,12, Where

— 1
Senra1 = i T3h° Z Z (kj,tlg - kj,tlm)Auih(k;,tlts - k;,t2t3)Aujt17 and

1<i<j<n ty...t4 are all distinct

— 1
Sonr12 = s > > (B iy = kL) B, K] 4y (Aue, — Augy).

1<i<j<n t;...t4 are all distinct

We prove ?;mTJ = op (1) by showing that §5nT’11 = op (1) and §5nT’12 = op (1). We only prove
the former claim as the latter can be proved analogously. Let

S (A7 B) = ﬁ Z Z Z (kj,t1t3 - kj,nn) Ait1 (k;,t1t3 - k;,t2t3> Bjt2~

1<i<j<n 1<ty £t <T 1<t3#t4<T

By (D.7), we have Ssuri1 = S (Au,Au) = S(V,V) + S (B,B) + S (V,B) + S (B, V). It suffices to
show that each term in the last expression is op (1) .

First, we consider S (V,V). It is easy to verify that
S(V,V)=51+o0p(1)

where

1
51 = W Z Z (kj,tltg - kj,t1t4) Wity (k;,tlts - k;,tth) WjteMityts i tote

1<i<j<nt;...tg are distinct

Let %T,ts =k _Et(k‘T )_Es(kg,ts)+EtEs(kZ,ts)~ Then kT,tltg _k;,tlm = gp;,tltg _‘P;,tlm +Et1(k;,t1t3)_

1,ts 1,ts J

By (ky ) and B, — kD, =0l =l By (k) — Be (k] ,,,). With these we can de-
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compose S as follows:

1
Sl = W Z Z {[‘p;tlts - ¢I7t1t4][¢;,t1ta - w;,hta}

1<i<j<nti...tg are distinct
Pl ity = Pl B (K] 1100) = Brg (k] 1) + 1By (B 11 1) = By (B 1o D0S 11t — 05 1t0)
+[Et, (kj,tlt;;) — By, (kg,tlm)HEts(k},tltg) - Etz(k},tgtg)]}uitsuﬁeni7t1t5nj,t2t6

= S11+ Si2 + Si3 + S14, say, (D.15)

where the definitions of Sy, r = 1,2, 3,4, are self-evident. We further decompose S1; as follows:

1

_ E E I T T T T T
Su = nyT5h? {@i,t1t3(pj,t1t3 T Pitrts Pitats — PitrtaPjtats
1<i<j<nt;...tg are distinct

T T A .
FPi 114 Pjtats it Pt WiteTitrts ] tatg

= S — Sz — Sz + Siua

o — o 4 T . T 4 T .
To analyze Si11, let A;,j, inj, (t1, - t10) = Piq trts Wirta Py 145 Wirts iy b1, M1 tats Pio,tets Winto Py tets Uiztio

Mig toto Mz trt10° Then
EX {(5111)2}

B (77,1T1h5)2 Z Z Z Z EX [Ai1j1,i2j2 (t17 ey th)}

1<i1<j1<n 1<ia<ja<n ty...ts are distinct tg...t10 are distinct

1
T (T 2 > > E* [Aiyjy inga (t1, 1 10)]

1<i1<51<n,1<i9<j2<n, t1...t5 are distinct tg...t10 are distinct
i1,i2,51,j2 are all distinct

1
i (1 T4h5)? 2 > > E* [Aiyjy ings (t1, 1 10)]

1<i1<j1<n,1<i9<j2<n, t1...t5 are distinct tg...t10 are distinct
#{i1,42,51,52}=3

+m Z Z Z EX [Aij,ij (tla () tl())]

1<i<j<n ty...ts are distinct tg...t10 are distinct

= FESuii+ ESie+ ESis,

We prove EX[(S111)2] = op (1) by showing that ES111,, = op (1) for 7 = 1,3 as one can analogously
show that ES111,2 = op (1). Write ES111,1 as

1
ESi1iq1 = W Z Z Z E(@;,tlt3uilt4>

1<i1<j1<n,1<ia<jo<n, t1...t5 are distinct tg...t10 are distinct
i1,42,j1,j2 are all distinct

T ) T ) T .
XE(@jl,tltsuhts E Pis tets Wiato E Piotets Yiztio | Miq t1ta g1 tats Nia tete Nz trtio

Let Gy = {t1,t3,t4}, Go = {t1,t3,t5}, G3 = {t6,ts,t0}, and G4 = {ts,ts,t10} . We consider two cases:
(a) there exists at least one time index that belongs to either one of these four groups and lies at least
m-apart from all other indices within the same group, (b) all the other remaining cases. Noting that
we can bound [B(¢], 1, it E(2], 1113i1t5) B, 100 tinte) E(PL, 10 iztso)| by CHT- T3 a7 (m) in
case (a) and by Ch® in case (b), and the total number of terms in the summation is of order O (n*T*mS)
in case (b), we can readily obtain FS1111 = Op<n2T2h_3_1L+5041;i5 (m) +n*T~*m°h=2) = op (1). So

ESi111 =op(1).
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For E/S111,3, we have

1
_ 3 3 3 i i
o = (R T*h?)>? E [@i’tlku“‘*‘pivtﬁtsu“g

1<i<j<n ty...ts are distinct tg...t10 are distinct

T A )
xE [Wj,tltsuats@j,tgtsuﬁlo Nistrta g tatsistoto g trt10

Let G5 = {t1,t3,t4,t6, s, to}, Gs = {t1,13, 5,6, ts, t10} and G = GsUGs. We can consider five cases: the
number of distinct time indices in G are 8, 7, 6, 5, and 4, respectively, and use (a)-(e) to denote these
five cases in order. Also, we use ES111,3¢ to denote ES111,3 when the time indices in the summation
are restricted to these five cases in order for £ = a, ...,e. Following the arguments used in the analysis
of S111,1, we can show that £S111 3, = Op(T2h74712_+660¢% (m) + T~ 4mSh=2) = op (1) . Similarly we
can show that ESi113¢ = op (1) for £ = b,c,d. For ESq11,3., noting that the sets {ti,t3,t4,t5} and
{t6,ts,to,t10} must coincide, we have |ESi11,3.] = Op (T2h™®) = op (1). Hence ES111,3 = op (1),
and we have shown that E*[(S111)?] = op (1), implying that S111 = op (1). Similarly, we can show

that S11, = op (1) for r = 2, 3, 4. It follows that S1; = op (1).
For S12 defined in (D.15), we decompose it as follows:

1
512 - W Z Z [(pjytlt?) - (pjyt1t4]uit5 [Et3 (k;1t1t3) - Et3(k;7t2t3)]ujteni,t1t577j,t2t6
1 1<i<j<nty...tg are distinct
1
= m Z Z {(p;'r7t1t3 [Et3 (k‘;hts) o Cj] o @27“*11‘/4 [Et3 (kjl[,tlt3) o C;L]

1<i<j<nty...tg are distinct
—o! i [Eo (k. ) =+ o, By (K, ) — el i ug
Pitrty Wits [t3 K 1,1, G1 T Pitrta 3R tot, 313 Wits UjteTi 18575, ¢t
= Sia1 — S122 — Si23 + Si24,

where c} = EtEs(/ij»,ts) Analogously to the analysis of S111, we can show EX[(S12,)?] = op (1) for

r =1, 2, 3, 4. It follows that Si12 = op (1). By the same token, S113 = op (1) . For Sy14, we have

1
S = TS Z Z {[Eh(kg,tltg) - CIHEts(k;,n@) - C}]
1<i<j<n t;...tg are distinct
~[By, (k] 1, 00) = B (k] ) = ] = (B (K] 4,0 — B (k) — ]
+[Et, (klm) - CIHEta (k;,tgtg) - c;r']}uitsujteni7t1t577j7t2t6

S1a1 — S142 — S143 + S144.

Then we can show that EX[(S14,)%] = op (1) for 7 =1, 2, 3, 4. Tt follows that S14 = op (1). Hence we
have shown that S (V,V) =51 +o0p (1) =0p(1).

Now, we consider S (B,B). We have

1
S (B’B) = m Z Z {((pjytlts - (pjyhtz;)(sp;r}tlta - Sp;r}hta)

1<i<j<n ty...t4 are distinct
T T T T T T T T
+(<pi7t1t3 - <pi7t1t4)Et3 (kjatlt.’i - kj»t2t3) + Etl (ki7t1t3 - ki,t1t4)(<pj7t1t3 - <‘0j7t2t3)
+Et1 (k’j,tm - kg,tlu)Ets (k’;,tm - k;‘,tztg)}BitlBjtz

Sa1 + Sa2 + S23 + Sa4, say.
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. _ 1 T T T T T T T
Write Sy = T T3R8 Zl§i<j§n Ztl...t4 are distinct{%,tltg%,tltg = PititsPitats — PititaPitrts T Pijtrta
X(p;tztS }Bitlﬁjtg = 5211 — 5212 - 5213 + 5214. It is easy to show that 5211 dominates Sglr forr = 2, 3, 4
and

EX [(5211)2} = Op(n2T2h 3 T3 0™ (m) + n2m2h~2 + T2h 5T o™ (m)) (b4<p+1>) = op(1).

Hence S211 = op (1) and S21 = op (1) . Similarly, by decomposing Ey, (k;ﬂtlt3 - k;[7t1t4) as [Py, (kj,t1t3) -
cfl - [Etl(kg,tm) —cf] and Et3(k;7t1t3 - k;,tztg) as [Ets(k;,tltg) - C}] - [Ets(k;‘,mg) - C}L we can show

Sar = 0op (1) for r = 2,3,4 by the conditional Chebyshev inequality. Consequently, S (B,B) = op (1).
Analogously, we can show that S (V,B) = op (1) and S (B, V) = op (1) . It follows that Ss,71 = op (1) .
|

Proposition D.4 nTh(ﬁnT,l — ﬁnTJ) =op(1).

Proof. By the definitions of ﬁnT,l and EnT’l, we have —nTh(ﬁnT,l — ﬁnTJ)/ [2R (E)] =
S I (w) = F2 (w))du = Uppy + 2Uspr, where Upyp = S0 [1fi (w) — fi (w)]2du, and Usyyp =
S [1fi (w) = fi (w)]fi (w) du. Then it is straightforward to show that Ui, = op (1) and Uspr =

op (1) by arguments similar to but simpler than those used in the proof of Proposition D.1. m

Proposition D.5 nTh(EnTQ - AHTQ) =op(1).

Proof. Let AnTvgl, ﬁnﬂgg, and ﬁnT723 denote the three terms on the right hand side of (D.1).
Define ﬁnﬂgl, ﬁnﬂgg, and 3,1123 analogously with the estimated residuals replacing the unobservable
error terms. Then it suffices to show that nTh(ﬁnTygT — EnTQ»,‘) =op (1) for r = 1,2,3. Each of them
can be proved by the use of Taylor expansions and Chebyshev inequality. We omitted the details to

save space. |

E Some technical lemmas

This appendix presents some technical lemmas that are used in proving the main results.

Lemma E.1 Let {W;} be a strong (a-) mizing process with mixing coefficient « (t) . For any integer
I > 1 and integers (t1,...,t;) such that 1 <t; <ty < --- <ty let 0 be a Borel measurable function such
that

/\9 (wr, ooy w))| " AF D) (wy, ey wi) AF® (wjyq, ywy) < M

or some o > 0 an > 0, where =ry, ...t an = Fy.. ..., are the distribution functions o
f §>0and M >0, where FY =F,, , and F® =F, . he distribution functions of
(Wiys ooy We, ) and (W .y Wh,), respectively. Let F' denote the distribution function of (Wy,, ..., Wy,) .
Then

i1
‘/9 (w1, ..oywy) dF (w1, ...;wy) — /0 (w1, ooy w) AFD (w1, oy wy) dF® (wjyy, oywy)
< AN (1, — 1)/ 050

Proof. See Lemma 2.1 of Sun and Chiang (1997). m
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Lemma E.2 Let {W;}, 0, 6, and M be defined as above. Let Vi = (Wy,,...,Wy,) and Vo =

Wity Ws)). Then E|E[0(Vi,Va)|Vi] — O(V1)| < AMY W+ q (¢, — )0 where O(vy) =
i+ 1 J J

E[e(’l)l,‘/g)]

Proof. See Yoshihara (1989) who proved the above lemma for S-mixing processes by using
an inequality in Yoshihara (1976). The analogous result holds for a-mixing processes by using the
Davydov inequality or Lemma E.1. =

Let £ : R — R be a differentiable kernel function, and %’ be its first derivative. Define k (v) =
[k(u)k(v—u)du, K (v) = [k (u)k (v—u)du, and k¥ (v) = [k (u) k(v —u)du. The following

lemma states some propertles of k, k/, and kT that are used in the proof of our main results.

Lemma E.3 Suppose k : R — R is a symmetric differential ~v-th order kernel function such that
lim, oo v'k (v) =0 for 1 =0,1. Then

(i) [k(w)dv = 1, [k(w)vldv = 0 for I = 1,...4 — 1, and [k(v)vVdv = 2k, where k, =
[k (uw) wdu;

(i) [ K (v) ldszforlelandfFvv2dv:2;

(ii) [ kT (v)dv =0, and [vk™ (v)dv=—

Proof. (i) [k(w)dv= [ [k(u)k(v—u)dudv = [k (u)du [k(s)ds=1,
(v)vldv:Zi 0CF [ k() usdu [k ()t =*dt =0for l=1,...,7—1, and
()vVdv =370 C2 [k (u)udu [ k() t7"*dt =2 [k (u)du [k (t)t"dt = 2.
(i) [k (v)dv= [ [K (u)K (v—u)dudv = [k (u)du [k (s)ds =0,

[& (v)vdo =2 [k (u udufk’ )dt = 0 by the fact [ (u)du =0, and
JK (v)v?do= [ [K (u)K (t) (u® + 2ut + t?) dudt =2 [ [ K (u udu] =2.
(iil) [ & (v dv—fk' (u) [k (u—v)dvdu = [k (u)du=0, and
Jokt (v)dv= [k(u)k (s)(s+u)dsdu= [k (s)sds+ [k (s)ds [uk(u)du=—1. m
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