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Abstract

In this paper we consider the problem of determining the number of structural changes in multiple

linear regression models via group fused Lasso. We show that with probability tending to one our

method can correctly determine the unknown number of breaks and the estimated break dates are

sufficiently close to the true break dates. We obtain estimates of the regression coefficients via post

Lasso and establish the asymptotic distributions of the estimates of both break ratios and regression

coefficients. We also propose and validate a data-driven method to determine the tuning parameter.

Monte Carlo simulations demonstrate that the proposed method works well in finite samples. We

illustrate the use of our method with a predictive regression of the equity premium on fundamental

information.
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1 Introduction

Since the 1950s a voluminous literature on issues related to structural changes has been developed. As

Perron (2006) remarks, early works were mostly designed for the specific case of a single change. Andrews
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(1993) proposes a supremum-type (sup-type) test for a one-time break in the GMM framework. Andrews

and Ploberger (1994) consider the exponential-type (exp-type) and average-type (avg-type) tests for a

one-time break in linear regression models and investigate their optimality properties under Pitman local

alternatives. Bai (1995) and Bai (1998) consider the median estimation of a regression model with a single

break and multiple breaks, respectively. Bai (1997a) and Bai (1997b) study the least squares estimation

of a regression model with a single break and with multiple breaks, respectively. Bai and Perron (1998)

extend the sup-type test to models with multiple changes and propose a double maximum test against

the alternative under which only the maximum number of breaks is prescribed. They also consider a

sequential test for the null hypothesis of  breaks against the alternative of +1 breaks. Bai et al. (1998)

consider a sup Wald test for a single change in a multivariate system, Qu and Perron (2007) extend the

analysis to the context of multiple structural changes in multivariate regressions, and Kurozumi and Arai

(2006) study inferential problems for multivariate time series with change points, all allowing stationary

or integrated regressors as well as trends. Su and White (2010) consider tests of structural changes

in semiparametric models. As Bai and Perron (2006) show, the multiple structural change tests tend

to be more powerful than the single structural change tests when multiple breaks are present. For a

comprehensive survey on structural changes, see Perron (2006).

Despite the satisfactory power properties of multiple structural change tests, they are subject to some

practical problems. First, one major practical difficulty is that one needs to consider all permissible

partitions of the sample in order to construct the avg- and exp-type test statistics, the number of which

is proportional to  with  and  being the total number of observations in the sample and the

number of breaks under the alternative, respectively. When  ≥ 3 the computational burden can be
prohibitively heavy. For this reason, Bai and Perron (2003a) propose an efficient dynamic-programming-

based algorithm to compute the sup-type test statistic, which requires only 
¡
 2
¢
computations for any

fixed number of breaks. Andrews (1993) and Bai and Perron (1998, 2003b) tabulate the critical values

for the sup-type test for a one-time break and multiple breaks, respectively. Andrews and Ploberger

(1994) tabulate critical values for the exp- and ave-type tests for a one-time break. The critical values

for the last two types of tests in the case of multiple breaks have not been available until Kurozumi

(2012) who tabulates the critical values for the exp-type test for at most three breaks and those for the

sup- and ave-type tests for up to five breaks because the computation for the former test is prohibitively

expensive in the case of  ≥ 3 whereas the latter two tests only require  ¡ 2¢ operations for any given
number of breaks under the alternative. Second, for all tests for structural changes in the literature

one has to apply some trimming parameter, say, by trimming 100 percentage of tail observations, and

by requiring the minimum length of a segment be  , where  typically takes values from 0.05 to 0.25.

Both the asymptotic distribution and the finite sample performance of the test heavily depend on  One

may draw different conclusions for different choices of  and the desirable choice of  heavily depends on
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the underlying data generating process (DGP). See Bai and Perron (2003a, 2006) for discussions on the

importance of the choice of  for the size and power of the test. Third, the asymptotic distributions of the

test statistics depend on the number of regressors in the model. It remains unknown how the presence

of irrelevant regressors affects the performance of the tests. Another undesirable feature of the test of no

break versus a fixed number of breaks is that one has to pick a number of breaks under the alternative,

as practitioners often do not wish to pre-specify a particular number of breaks before making inferences.

In this paper we explore a different approach to the study of structural changes in regression models.

For clarity, we focus on structural changes in a linear regression framework. But our methodology can

be easily extended to the GMM framework, quantile regression, and systems of equations. Unlike the

early literature which tries to test the number of breaks first and then conduct estimation and inference

subsequently, we focus on the simultaneous estimation of the number of breaks and model parameters via

the method of group fused Lasso (least absolute shrinkage and selection operator). See Tibshirani (1996)

for the introduction of Lasso, and Knight and Fu (2000) for the first systematic study of the asymptotic

properties of Lasso-type estimators. Tibshirani et al. (2005) propose a total-variation-based shrinkage

technique, namely, the fused Lasso, a generalization of the Lasso designed for problems with features

that can be ordered in some meaningful way. It penalizes the 1-norm of both the coefficients and their

successive differences and encourages sparsity of both the coefficients and their successive differences.

Friedman et al. (2007) propose a pathwise coordinatewise optimization algorithm to solve the fused

Lasso problem. Rinaldo (2009) considers three interrelated least squares procedures for the fused Lasso

and studies their asymptotic properties in the context of estimating an unknown blocky and sparse signal.

Harchaoui and Lévy-Leduc (2010) apply the idea of fused Lasso to study the change point problem in

one-dimensional piecewise constant signals. Bleakley and Vert (2011) propose fast algorithms to solve

the group fused Lasso (hereafter GFL) problem to detect change points in a signal, and Angelosante and

Giannakis (2012) develop an efficient block-coordinate descent algorithm to estimate piecewise-constants

in time-varying autoregressive models. But they do not study the asymptotic properties of the resulting

estimators of break points or regression coefficients.

We show that under suitable conditions on the tuning parameter, minimum regime length, minimum

break size, and the underlying data generating process (DGP), the GFL procedure can not under-estimate

the number of breaks in the DGP, and when the number of estimated breaks coincides with the true

number of breaks, all break points can be “consistently” estimated as in Bai and Perron (1998). We

further propose a BIC-type information criterion to determine a data-driven tuning parameter that can

yield the correct number of breaks with probability approaching one (w.p.a.1). The limiting distributions

of the break date estimates, the regression coefficients estimates, and their post-Lasso versions are also

derived. We emphasize that we derive all asymptotic results under a set of fairly general conditions. In

particular, the number of observations within each regime may not be proportional to the sample size,
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the break magnitudes may differ across different break points, and the number of breaks may diverge to

infinity as the sample size passes to infinity. Simulations demonstrate that our procedure works reasonably

well in finite samples.

To proceed, it is worth mentioning that our paper contributes to the recent literature on the appli-

cations of Lasso-type shrinkage techniques in econometrics. These include Caner (2009) and Fan and

Liao (2011) who consider covariate selection in GMM estimation; Belloni et al. (2012), Caner and Fan

(2011), García (2011), and Liao (2013) who consider instruments or moment conditions selection in the

GMM framework. In addition, Caner and Knight (2013) and Kock (2013) apply bridge estimators to

differentiate a unit root from a stationary alternative and to study oracle efficient estimation of linear

panel data models with fixed or random effects, respectively; Liao and Phillips (2014) apply adaptive

shrinkage techniques to cointegrated systems; Lu and Su (2013) apply adaptive group Lasso to select

both relevant regressors and the number of unobserved factors in panel data models with interactive

fixed effects; Cheng, Liao, and Schorfheide (2014) use adaptive group Lasso to detect and disentangle

two types of instabilities in factor models.

The rest of the paper is organized as follows. Section 2 introduces our GFL procedure. Section

3 analyzes its asymptotic properties. Section 4 reports the Monte Carlo simulation results. Section 5

provides an empirical application and Section 6 concludes. All proofs are relegated to the appendix.

NOTATION. For a real matrix  we denote its transpose as 0 its Frobenius norm as kk  and its
Moore-Penrose generalized inverse as +When  is symmetric, we use max () and min () to denote

its largest and smallest eigenvalues, respectively. I denotes a  ×  identity matrix and 0× an  × 

matrix of zeros. Let 1{·} denote the usual indicator function. The operator → denotes convergence in

probability,
→ convergence in distribution, ⇒ weak convergence, and plim probability limit.

2 Penalized Estimation of Linear Regression Models with Mul-

tiple Breaks

In this section we consider a linear regression model with an unknown number of breaks, which we

estimate via the GFL.

2.1 The model

Consider the following linear regression model

 = 0 +   = 1      (2.1)

where  is a ×1 vector of regressors,  is the error term, and  is a ×1 vector of unknown coefficients.
We assume that the coefficients {1   } exhibit certain sparse nature such that the total number of
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distinct vectors in the set is given by +1 which is unknown but assumed to be much smaller than the

sample size  More specifically, we assume that

 =  for  = −1   − 1 and  = 1 + 1

where we adopt the convention that 0 = 1 and +1 =  + 1 The indices 1   indicate the

unobserved  break points/dates and the number  + 1 denotes the total number of regimes. We are

interested in estimating the unknown number  of unknown break dates and the regression coefficients.

Let α = (
0
1  

0
+1)

0 and T = (1  ) 
Throughout, we denote the true value of a parameter with a superscript 0. In particular, we use 0

α00 =
¡
001   

00
0+1

¢0
and T 00 =

¡
 01   

0
0

¢
to denote the true number of breaks, the true vector of

regression coefficients, and the true vector of break dates, respectively. Hence the data generating process

is assumed to be

 = 00  +   = 1      (2.2)

where 0 = 0 for  =  0−1  
0
 − 1 and  = 1 0 + 1;  00 = 1 and  00+1 =  + 1

2.2 Penalized least squares estimation of {}
Since neither  nor the break dates are known and  is typically much smaller than  this motivates us

to consider the estimation of ’s and T via a variant of fused Lasso a la Tibshirani et al. (2005). We

propose to estimate {} by minimizing the following penalized least squares (PLS) objective function

 ({}) =
1



X
=1

¡
 − 0

¢2
+ 

X
=2

°° − −1
°° (2.3)

where  =  is a positive tuning parameter. Harchaoui and Lévy-Leduc (2010) consider a special case

where  = 1 and  = 1 so that the penalty term
P

=2

°° − −1
°° becomesP

=2

¯̄
 − −1

¯̄
 the total

variation of {}  Note that the objective function in (2.3) is convex in {}  The solution to the convex
problem can be computed very fast. Let {̂ = ̂ ()} denote the solution to the above minimization
problem. We frequently suppress the dependence of ̂ on  as long as no confusion arises. In Section

3.2 we will propose a data-driven method to choose 

To see the connection of (2.3) with the group Lasso of Yuan and Lin (2006), we can rewrite (2.1) in an

alternative format. Let 1 = 1 and  = −−1 for  = 2   Let β =
¡
01  

0


¢0
 θ =

¡
01  

0


¢0


 = (1   )
0
and  = (1   )

0
 Define


×

=

⎡⎢⎢⎢⎢⎢⎢⎣
01

02
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎦  ∗
×

=

⎡⎢⎢⎢⎢⎢⎢⎣
I

I I

· · · · · · . . .

I I I I

⎤⎥⎥⎥⎥⎥⎥⎦  and ∗
×

= ∗
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Then (2.1) can be rewritten as  = β+ = ∗θ+ and minimizing (2.3) is equivalent to minimizing

the following group Lasso criterion function

̄ ({}) = 1


k −∗θk2 + 

X
=2

kk = 1



X
=1

Ã
 − 0

X
=1



!2
+ 

X
=2

kk  (2.4)

For a given solution {̂} to (2.3), there exists a block partition {̂1  ̂̂+1} of {1 2  } such
that

̂ = ̂ for all   ∈ ̂ =
h
̂−1 ̂ − 1

i
and ̂̂ 6= ̂̂−1  = 1  ̂+ 1

where ̂0 = 1 and ̂̂+1 =  +1 That is, ̂ and T̂̂=(̂1  ̂̂) denote the estimated number of breaks
and estimated set of break points, respectively. Given the above block partition, we define ̂ = ̂(T̂̂) =
̂̂−1 as the estimate of  for  = 1  ̂+1 Frequently we suppress the dependence of ̂ on T̂̂ (and

) unless necessary. Let α̂̂ = α̂̂(T̂̂) = (̂1(T̂̂)0  ̂̂+1(T̂̂)0)0 For any α =
¡
01  

0
+1

¢0
and

T = {1  } with 1  1  · · ·     we can define

 (α; T) = 1



+1X
=1

−1X
=−1

¡
 − 0

¢2
+ 

X
=1

k+1 − k  (2.5)

Then (α̂̂; T̂) = ({̂})
As we shall show in Theorem 3.3 below, under some weak conditions 

¡
̂ ≥ 0

¢ → 1 as  → ∞

That is, the estimated number of breaks based on the GFL will be no less than the true number of breaks

w.p.a.1. For GFL to produce the correct number of breaks w.p.a.1., we will propose an information

criterion to determine the choice of .

3 Asymptotic Properties

In this section we address the statistical properties of the GFL procedure.

3.1 Consistency of the GFL

Let 0 =  0 −  0−1 for  = 1 
0 + 1 Define

min = min
1≤≤0+1

¯̄
0
¯̄
 min = min

1≤≤0

°°0+1 − 0
°°  and max = max

1≤≤0

°°0+1 − 0
°° 

Apparently, min denotes the minimum interval length among the 0 + 1 regimes, and min and max

denote the minimum and maximum jump sizes, respectively.

To study the consistency of the GFL, we make the following assumptions.

Assumption A1. (i){( )   = 1 2 } is a strong mixing process with mixing coefficients  (·)
satisfying  () ≤ 

 for some   0 and  ∈ (0 1)   () = 0 for each 
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(ii) Either one of the following two conditions is satisfied: (a) sup≥1 kk4 ∞ and sup≥1 ||4 
∞ for some   1; (b) There exist some constants  and  such that sup≥1[exp( kk2)] ≤
 ∞ and sup≥1 [exp ( kk)] ≤  ∞ for some  ∈ (0∞]

Assumption A2. (i) There exist two positive constants  and ̄ and a positive sequence { }
declining to zero as  →∞ such that

 ≤ inf
1≤≤+1
−≥

min

Ã
1

 − 

−1X
=

 (
0
)

!
≤ sup

1≤≤+1
−≥

max

Ã
1

 − 

−1X
=

 (
0
)

!
≤ ̄

(ii)  satisfies one of the following two conditions: (a)  ≥ 
1 for some   0 if A1(ii.a) is

satisfied; (b)  ≥  (log  )
(2+)

for some   0 if A1(ii.b) is satisfied.

Assumption A3. (i) 0 =  (log  ) and min( )→∞ as  →∞

(ii) max =  (1) and 
2
min(log  )

 → ∞ as  → ∞ where  = 6 if A1(ii.a) is satisfied and

 = 1 if A1(ii.b) is satisfied.

(iii) The tuning parameter  =  satisfies (min )→ 0 as  →∞

(iv)  = (−112min) and 
0[(log min)

2−12−12min +−1min+
−12]

¡
min

2
min

¢−1 → 0 as  →∞

Assumption A1(i) requires that {( )} be a strong mixing process with geometric decay rate. It is
satisfied by many well-known processes such as linear autoregressive moving average (ARMA) processes

and a large class of processes implied by numerous nonlinear models, including bilinear, nonlinear au-

toregressive, and autoregressive conditional heteroskedastic (ARCH) type of models. Note that we do

not require the error process {} to be a martingale difference sequence (m.d.s.) with respect to certain
filtration. Let F = -field{+1   −1 }  Bai and Perron (1998) specify two sets of conditions
for the process {( )} : one requires that it be an -mixingale sequence for some   4 but imposes

independence between  and  for all  and  and thus rules out lagged dependent variables in ; the

other requires that {} be an m.d.s. relative to F, allowing the presence of lagged dependent variables
in  but ruling out serial correlation in {}  In stark contrast, A1(i) allows both lagged dependent
variables in  and serial correlation and heteroskedasticity in  This is important as the model can

be dynamically misspecified. The conditions stated in A1(ii) pertain to two specific cases related to the

moments of  and  Part (a) in A1(ii) only requires finite moments for them whereas part (b) requires

the existence of exponential moments. By Markov inequality, part (b) implies that


³
kk2 ≥ 

´
≤ exp

µ
1−

µ




¶¶
where  = max (1 log)  That is, the tail probability of kk2 has to decay exponentially. Similar
remarks hold for kk   =∞ in part (b) corresponds to the case where kk and kk are uniformly
bounded. When combined with A1(i), the conditions in A2(ii) allow us to apply some exponential

inequalities for strong mixing processes; see, e.g., Merlevède et al. (2009, 2011).
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Assumption A2(i) requires that the sequence { (0)} be well behaved. It is automatically satisfied
if the process {} is covariance-stationary with positive definite covariance matrix. Nevertheless, we
do not want to make such a strong assumption because the presence of lagged dependent variables in

 generally invalidates it when a structural change occurs. In sharp contrast, Assumption A3 in Bai

and Perron (1998) requires that the matrix  ≡
P−1

= 
0
 be invertible for all  −  ≥  A similar

assumption is made in Bai (1998) and Kurozumi (2012), among others. It seems difficult to verify this

condition if possible at all. Nevertheless, one can verify that 1
− is invertible w.p.a.1 under our

Assumptions A1-A2 by assuming  −  passes to infinity sufficiently fast. A2(ii) restricts the speed at

which  shrinks to zero. If  and  only exhibit finite 4-th moments for some   1, then the fastest

speed at which  → 0 is given by  ∝  (1−) On the other hand, if A1(ii.b) is satisfied, the fastest

speed at which  → 0 is given by  ∝ (log  )(2+)  which is further simplified to (log  )  if both
 and  are uniformly bounded.

Assumption A3 specifies conditions on 0   min min and  Note that we allow the number

of breaks to diverge to infinity slowly and the time intervals in different regimes to diverge to infinity

at different rates as  → ∞. This is in sharp contrast with Bai (1998), Bai and Perron (1998), and
Kurozumi (2012), who assume that the fixed number of multiple break points are asymptotically distinct

in the sense that  0 = b0c where 0  01  · · ·  00  1 and b·c denotes the integer part of · As
we shall see,  will control the rate at which ̂ converges to 

0
  when the number of break points

are correctly estimated. If one only cares about the convergence rate of ̂ to 
0
  as in Theorem 3.1

below, A3(i) specifies the slowest rate at which  is allowed to converge to zero:  ¿ min ; A3(ii)-

(iii) specifies the fastest rate at which  is allowed to converge to zero: max
³
(log )

2
min

 
min

´
¿   Here

¿  indicates that  =  () as  →∞ In addition, A3(i)-(ii) imply that and min
2
min(log  )

 →∞
as  →∞ and A3(i) and (iii) imply that  (minmin)→ 0 as  →∞ which will be used in the proofs

of the theorems below.

A3(iv) is required for the proof of Theorem 3.3 below. The first part of A3(iv) is imposed to ensure

root-0 consistency of ̂ for all  and to simplify the other conditions. To get some intuition about the

second part of A3(iv), we suppose that min ∝   for some . It is easy to see  ∈ (12 1] in order for
the second part of A3(iv) to be satisfied and 0 =  (1) if  = 1. Let  = (log min)

2−12−12min +

−1min+−12 Note that  = ((log  )2−1) and (−12) when  = 1 and  ∈ (12 1) respectively.
Then the second part of A3(iv) requires⎧⎨⎩ Case 1: (log  )2−12min =  (1) if  = 1

Case 2:  120(min
2
min) = (1) if  ∈ (12 1)



Apparently, by allowing 0 → ∞ as  → ∞ in Case 2, min cannot be proportional to  and we need

to impose slightly stronger restrictions on min and min than those needed for the case of fixed 0 In
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particular, min
2
min must diverge to infinity faster in the case of divergent 

0 than in the case of fixed

0 In addition, in Case 1 the conditions in A3 are reduced to

Assumption A3∗ As  → ∞  = (−12)  2min(log  )
 → ∞ (min ) → 0, and

(log  )2−12min → 0

The following theorem establishes the consistency of {̂} and {̂} conditional on the event ̂ = 0

Theorem 3.1 Suppose that Assumptions A1-A2 and A3(i)-(iii) hold. If ̂ = 0 then

(i) 
³
max1≤≤0

¯̄̄
̂ −  0

¯̄̄
≤ 

´
→ 1 as  →∞

(ii) ̂ − 0 = 

¡
(0 )

−12 + 0 + 
0


¢
for each  = 1 0 + 1

The proof of Theorem 3.1(i) is quite involved. It builds upon some techniques that have been recently

developed by Harchaoui and Lévy-Leduc (2010). The latter authors aim at estimating multiple location

shifts by assuming independent and identically distributed (IID) errors that have exponential moments.

Like Harchaoui and Lévy-Leduc (2010), our analysis is based on a careful inspection of the Karush-Kuhn-

Tucker (KKT) optimality conditions for the solutions to the PLS problem in (2.4). Using these optimality

conditions and some exponential inequalities for strong mixing processes, we prove Theorem 3.1(i) by

contradiction. That is, if
¯̄̄
̂ −  0

¯̄̄
≥  for some  = 1 0 we show that w.p.a.1 the solutions

will not satisfy all the KKT conditions and therefore cannot be optimal. Extra technicality appears here

because of the presence of regressors that may contain lagged dependent variables, the allowance of only

finite 4-th moments for  and  and the allowance of serial dependence and heteroskedasticity in

the error process. The proof of part (ii) in Theorem 3.1 simply relies on the result in part (i) and the

inspection of the KKT optimality conditions.

Theorem 3.1 suggests that max1≤≤0

¯̄̄
̂ −  0

¯̄̄
 =  ( )  where max

³
(log  )

2
min

 
min

´
¿  as

explained above. On the one hand, because  =  (1)  we have
¯̄̄
̂ −  0

¯̄̄
 =  (1) implying that the

break ratio  0  can be consistently estimated. On the other hand, max
³
(log  )

2
min

 
min

´
¿  implies

that the fastest convergence rate for the break ratio estimator depends on 
min

and
(log )

2
min

 Here, the

first term signifies the effect of the penalty term in the GFL that interacts the minimal break size min;

the second term signifies the effect of moment conditions ( = 6 if the moment condition in Assumption

A1(ii.a) is satisfied and 1 if that in Assumption A1(ii.b) is satisfied) and minimal break size. Generally

speaking, the smaller the minimal break size is, the slower convergence rate we can achieve for the break

ratio estimator; the stronger moment conditions we have, the faster convergence rate the break ratio

estimator can have. The result in Theorem 3.1(ii) is intuitive. The first term ((0 )
−12) results from the

standard sample convergence as there are essentially 0 observations in use for the estimation of 
0
 ; the

second term (0 ) is derived from the penalty term in the GFL; the third term (
0
 ) is derived

from the estimation error of  0  If one knows the break dates { 0   = 1 0} in advance, then the
third term vanishes.
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To compare with existing results in the literature, we first restrict our attention to the fixed 0 case

where −1min =  (1) and min ∝  so that Assumption A3∗ is in effect with min replaced by 1. We further

consider two specific cases that correspond to Assumption A1(ii.a) and A1(ii.b), respectively. In the case

where Assumption A1(ii.a) is satisfied, both A2(ii) and A3∗ are satisfied if one chooses  ∝  (1−) and

 =   log  To ensure  = (−12) so that the estimation of break dates has no effect on the first

order asymptotic distribution of the regression coefficient estimators, we would require that   2 that is,

both  and  exhibit finite eighth plus moments. In the case where Assumptions A1(ii.b) and A2(ii.b)

are satisfied, by choosing  = (log  )
(2+)

 and  = (log  )  we can ensure that both A2(ii) and

A3∗ are satisfied. Then we can obtain an almost optimal rate for the estimation of  0  for  = 1 
0

up to a logarithmic factor since the optimal rate obtained in the literature is of order −1; see, e.g.,

Bai and Perron (1998). The appearance of the logarithmic factor is due to the application of certain

exponential inequality for strong mixing processes. Note that Bai and Perron (1998) make high level

assumptions on  which are not directly verifiable and their proof does not rely on any exponential

inequality. In the case of slowly divergent 0 if min ∝ 0, −1min =  (1)  and A1(i.b) and A2(ii.b) is

also satisfied, we can verify that Assumptions A3(i)-(iii) are all satisfied by setting  = (log  )
(2+)



and  = (log  )  so that we can obtain the same nearly optimal rate for the estimation of  0  for

 = 1 0 as in the case of fixed 0. In the following we show that as long as ̂ = 0 in large samples,

the above convergence rates for the estimates of break dates can be improved. See the last paragraph in

Section 3.3.

Unfortunately, the correct number 0 of break points may be unknown. However, if we follow the

literature (e.g., Bai and Perron (1998)) and assume that the true number of breaks is bounded by a number

max with max ≤  log  for a large number  then we can show that for any single true break date

 0 ∈ T 0, there exists an estimated break date in T̂̂ that is sufficiently close to  0 as long as ̂ ≥ 0

In addition, under the extra conditions on 0 , min min and  detailed in Assumption A3(iv), we

can ensure that the last condition is satisfied w.p.a.1. That is, the probability of under-estimating the

number of true break points converges to zero as  →∞

To proceed, let D () ≡ sup∈ inf∈ |− | for any two sets  and  Note that max{D () 
D ()} denotes the Hausdorff distance between  and . The following theorem indicates that all true
break points in T 0 can be “consistently” estimated by some points in T̂̂ under the assumption that the

estimated number of breaks is no less than the true number of breaks.

Theorem 3.2 Suppose that Assumptions A1-A2 and A3(i)-(iii) hold. If0 ≤ ̂ ≤ max then  (D(T̂ ̂

T 0) ≤  ) → 1 as  →∞

The proof of the above theorem is also accomplished by contradiction and by the repeated utilization

of the KKT optimality conditions under the same set of Assumptions required for Theorem 3.1. Theorem
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3.2 assures us that even if the number of breaks is overestimated, there will be an estimated break date

close to each unknown true break date.

The next theorem shows that ̂ cannot be smaller than 0 in large samples provided Assumption

A3(iv) is also satisfied.

Theorem 3.3 Suppose that Assumptions A1-A3 hold. Then 
¡
̂  0

¢→ 0 as  →∞

Theorem 3.3 implies that the probability of under-estimating the number of break points is asymp-

totically negligible.

3.2 Choosing the tuning parameter 

Let α̂T̂̂

() = (̂1T̂̂

()
0
  ̂̂+1T̂̂

()
0
)0 denote the set of post-Lasso OLS estimates of the

regression coefficients based on the break dates in T̂̂
= T̂̂

()  where we make the dependence of

various estimates on  explicit. Let ̂2T̂̂

≡ 1(α̂T̂̂

()  T̂̂
) where

1 (α; T) ≡ 1



+1X
=1

−1X
=−1

¡
 − 0

¢2
 (3.1)

is the first term in the definition of  (α;T) in (2.5). We propose to select the tuning parameter 
by minimizing the following information criterion:

 () = log(̂2T̂̂

) +   (̂ + 1)  (3.2)

Without any condition on  we are unable to study the asymptotic properties of ̂ T̂̂
 and ̂ for

 = 1  1 + ̂ For this reason, we restrict our attention to the class of tuning parameters such that

Assumptions A3(iii)-(iv) are satisfied.

To state the next result, we add the following assumption.

Assumption A4. (i) 0−1 −1min[
12
min

−12(log min)2 + 1] =  (1) as  →∞

(ii)
³
1 + 

min
2
min

´


0 → 0 and −1  →∞ as  →∞

Assumption A4(i) imposes an extra condition on  and it becomes redundant under Assumption A2

if min ∝  As in the discussion of Assumption A3(iv), if we suppose that min ∝   for some  ∈ (12 1],
A4(i) reduces to ⎧⎨⎩ Case 1: −1 −1(log  )2 =  (1) if  = 1

Case 2: 0( min) = (1) if  ∈ (12 1)


The condition in Case 1 is redundant under Assumption A2(ii). By allowing 0 →∞ as  →∞ in Case

2,  min must diverge to infinity; otherwise, it is possible to have  min =  (1) as  →∞. Assumption
A4(ii) reflects the usual conditions for the consistency of model selection, that is, the penalty coefficient
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 cannot shrink to zero either too fast or too slowly. If min ∝  and −1min =  (1)  the first part of

A4(ii) requires that  → 0 which is standard for an information-criterion function.  indicates the

probability order of the distance between the first term in the criterion function for an over-parametrized

model and that for the true model.

Theorem 3.4 Suppose that Assumptions A1-A4 hold. Let ̂ = argmin  ()  Then 
¡
̂
̂
= 0

¢→ 1

as  →∞

The proof of Theorem 3.4 in Appendix E suggests that the ’s that yield the over-estimated or

under-estimated number of breaks fail to minimize the information criterion w.p.a.1 provided that the

minimization is restricted for a class of tuning parameters that satisfy some basic requirements stated

in Assumptions A3(iii)-(iv). Consequently, the minimizer of  () can only be the one that produces

the correct number of estimated breaks in large samples. Conditional on ̂ = 0 we will study the

asymptotic distributions of the Lasso estimates of regression coefficients and break dates below.

3.3 Limiting distributions of the Lasso estimates of regression coefficients

and break dates

In this subsection we analyze the consistency of the regression coefficient estimates and break fraction es-

timates. We let ̂ = (̂1  ̂0) = (̂1  ̂0 ) with corresponding true values 0 = (01  
0
0) =

( 01   
0
0 ) Note that we allow 0−0−1 = 0 for some  = 1 0+1, which occurs if min = ( )

It is well known that the limiting distributions of the break date estimators obtained by specifying

fixed magnitude of changes are dependent on the exact distribution of { }  It is useful to consider
asymptotic distributions under shrinking magnitude of changes. Now, 0 ’s is  -dependent and we fre-

quently write 0 for 
0
 when we want to emphasize the dependence of 

0
 ’s on  Let 

0
 = 0+1−0

for  = 1 0 The required conditions are stated in the following two assumptions.

Assumption A5. (i) For  = 1 0 0 = ̄∆ for some ∆ independent of  and ̄  0 is a

scalar satisfying ̄ → 0 and  (12)− ̄ →∞ for some  ∈ (0 12).
(ii) For  = 1 0+1 as 0 →∞ (0 )

−1P0−1+b0 c
=0−1

 (
0
)→ Ψ and (

0
 )
−1P 0−1+b0 c

=0−1

P0−1+b0 c
= 0−1

 (
0
)→ Φ uniformly in 

Assumption A6. 0
−12
min → 0 as  →∞

Assumption A5(i) specifies the magnitude of each break size: the smaller the value of   the smaller

the magnitude of the break size could be. Note that we allow different breaks to shrink to zero at

different speeds. A5(ii) specifies the asymptotic average behavior of  (
0
) and  (

0
) within

each regime. In conjunction with Assumption A1, the first and second parts of A5(ii) ensure that
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(0 )
−1P0−1+b0 c

=0−1


0


→ Ψ and (
0
 )
−1P0−1+b0 c

=0−1
 ⇒  ()  respectively, by the uniform law

of large numbers and invariance principle for heterogeneous strong mixing processes, where  (·) is a
multivariate Gaussian process on [0 1] with mean 0 and covariance kernel [()()] = min( )Φ .

See White (2001). A6 imposes some side condition on  to ensure that the penalty term in the Lasso

procedure does not affect the usual (0 )
12-consistency of the Lasso estimator of 0 

Let0 =diag((01 )
12I  (00+1)

12I) and X =diag(X1 X0+1) where X = (0−1   0 −1)
0

for  = 1 0+1 LetΨ ≡ plim−1
0X0X−10 and Φ ≡ plim−1

0X0 0X−10 . Note that both Ψ and Φ

are well behaved under Assumptions A1 and A5(ii). For  = 1 0 define  = ∆
0
Ψ+1∆∆

0
Ψ∆ 

1 = {∆0Φ∆∆
0
Ψ∆}12 2 = {∆0Φ+1∆∆

0
Ψ+1∆}12 and let 1 () and 2 () be inde-

pendent Wiener processes that are defined on [0∞) with1 (0) =2 (0) = 0 and independent across

 Define

 () =

⎧⎨⎩ 11 (−)− || 2 if   0p
22 ()−  || 2 if   0

for  = 1 0

The following theorem reports the asymptotic distributions of the Lasso estimators.

Theorem 3.5 Suppose that Assumptions A1-A6 hold. Let  denote an × (0 + 1) selection matrix

such that kk is finite, where  ∈ [1 (0 + 1)] is a fixed integer. Then

(i) 0(α̂0 −α0) → 
¡
0 Ψ−1ΦΨ−10

¢
;

(ii) (∆0

Ψ∆

)̄2
¡
̂ − 0

¢ → argmax  () for  = 1 
0 and ̂’s are asymptotically mutu-

ally independent of each other.

The above theorem lays down the foundation for inferences on the unknown regression coefficients and

break fractions based on the GFL. Note that we specify a selection matrix  in Theorem 3.5(i) that is not

needed if 0 is fixed. Intuitively, we allow the number of breaks, 0 to diverge to infinity as the sample

size  passes to infinity. For this reason, the dimension of α̂0 is also divergent to infinity at the rate 0

and we cannot derive the asymptotic normality of α̂0 . Instead, we follow the literature on inferences

with a diverging number of parameters (see, e.g., Fan and Peng (2004), Lam and Fan (2008), Lu and

Su (2015)) and prove the asymptotic normality for any arbitrary linear combinations of elements of α̂0

after adapting to different convergence rates for different subvectors of α̂0(≡ (̂01  ̂00+1)
0) In the

special case where 0 is fixed, we can take  = I(0+1) and obtain the usual joint asymptotic normality

of ̂ ’s. Alternatively, if we assume that {} is an m.d.s., then likeΨ Φ is also block diagonal and ̂’s
are asymptotically mutually independent of each other. In this case, it suffices to report the asymptotic

normality of ̂ for  = 1 
0 + 1 Interestingly, Theorem 3.5(ii) suggests that ̂’s are asymptotically

mutually independent of each other even in the absence of any m.d.s. condition for {} 
A close examination of the proof of the above theorem suggests that the GFL estimators of the

regression coefficients and break dates are closely tied with Bai and Perron’s (1998) OLS estimators. If
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the number of breaks 0 were known, one could obtain the GFL estimator by minimizing the following

PLS objective function

(α T) = 1



0+1X
=1

−1X
=−1

( − 0)
2
+ 

0X
=1

k+1 − k 

where the first term is the usual OLS objective function with 0 unknown breaks and the second term

is a penalty term. As expected, for sufficiently small  the solution to the above problem will share the

same asymptotic distribution as that of Bai and Perron’s estimator. When 0 is unknown but can be

estimated correctly by ̂ w.p.a.1, we can treat ̂ as 0 to infer the above asymptotic result.

Given the result in Theorem 3.5(i), it is standard to estimate the asymptotic variance-covariance

matrix and make inferences on 0 In particular, one can obtain a HAC estimator for Φ to allow for

both heteroskedasticity and serial correlation. Let ̂0 =diag(̂
12
1 I  ̂

12

0+1
I) where ̂ = ̂ − ̂−1

for  = 1 0 + 1 ̂0 = 1 and ̂0+1 =  + 1 One can replace 0 by ̂0 in the above theorem.

Theorem 3.5(ii) indicates that the limiting distribution of the break fraction estimates is the same as

that occurring in a single break model. As Bai and Perron (1998) remark, if Ψ and Φ are the same

for adjacent ’s and are given by Ψ and Φ respectively, then we have the standard asymptotic pivotal

limiting distribution for ̂ after normalization:

(∆0

Ψ∆


)2

∆0

Φ∆



̄2
¡
̂− 0

¢ → argmax

{ ()− || 2}

where  () = 1 (−) for  ≤ 0 and  () = 2 () for   0. One can apply this result to

construct confidence intervals for 0 or equivalently, 
0
  See, e.g., Bai (1997a) and Su et al. (2013). We

omit the details for brevity.

Theorem 3.5(ii), in conjunction with Assumption A3(ii), indicates that in the case of small breaks

̂ −  0 = 

³
̄−2

´
=  (

−2
min) =  ( )

which suggests an improved rate than that obtained in Theorem 3.1. For the fixed magnitude of breaks,

although there is no way to obtain any asymptotic pivotal distribution for the break fraction estimates

even after normalization, we can obtain ̂ −  0 =  (1) =  ( ) using similar arguments in the

proof of Theorem 3.5. In either case, we can obtain the optimal rate of convergence for the estimation of

the break dates provided that ̂ = 0 is ensured by a proper choice of the tuning parameter .

3.4 Limiting distribution of post-Lasso estimate of regression coefficients

In this subsection we study the asymptotic distribution of the post-Lasso estimate ̂̂0
. Let X̂ =diag(X̂1

 X̂0+1) where X̂ = (̂−1   ̂−1)
0 We can write the DGP in matrix form

 = X0 +  (3.3)
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The model used for the post-Lasso estimation of 0 is given by

 = X̂α̂T̂0
+ ̂  (3.4)

where α̂T̂0
= (X̂0X̂)−1X̂0 and ̂ is a  ×1 vector of the post-Lasso residuals. The following assumption

is needed for the analysis of the limiting distribution of α̂T̂0


Assumption A7. 0 
−12
min → 0 as  →∞

Assumption A7 ensures that the estimation of the break dates has an asymptotically negligible effect

on the asymptotic distribution of the post-Lasso estimate of the regression coefficients. In the special

case min ∝  Assumption A7 is satisfied as long as  = (−12). In this case, Assumption A2(ii)

indicates that we only need  and  to exhibit finite eighth plus moments. In the general case, the

minimum interval length has a crucial effect on the rate at which  shrinks to zero.

The following theorem reports the limiting distribution of α̂T̂0


Theorem 3.6 Suppose that Assumptions A1-A4 and A7 hold. Let  be defined as in Theorem 3.5. Then

̂0(α̂T̂0
−α0) → 

¡
0 Ψ−1ΦΨ−10

¢


Note that Assumptions A5-A6 are not required for the above theorem. Define the infeasible estimator

α̂T 0

0
= (X0X)−1X0 We can prove the theorem by showing that ̂0(α̂T̂0

− α0) shares the same

asymptotic distribution as 0(α̂T 0

0
−α0) A similar idea was used by Bai (1997a) for the case of a

single structural break. Extra care is needed as we allow the interval length to be different across different

regimes and 0 to be divergent. Given the above result, it is standard to make inference on α0 based on

the post Lasso estimate α̂T̂0


As a referee kindly points out, the asymptotic distribution of the post-Lasso estimator is only valid

pointwise and it does not provide uniformly valid inference for the regression coefficients; see Pötscher

and Leeb (2009) and Pötscher and Schneider (2009). In particular, this limiting distribution ignores the

randomness of the estimated number of breaks in finite samples. As a result, a robust inference procedure

with correct asymptotic size is an important issue for the post-Lasso estimator; see, e.g., Belloni et al.

(2014). This is closely related to the post model selection inference problem investigated by Leeb and

Pötscher (2005, 2008), among others. Robust inference on the parameter of interest is beyond the scope

of this paper.

4 Monte Carlo Simulations

In this section we conduct a set of Monte Carlo experiments to evaluate the finite sample performance

of our GFL method. Throughout we use the block-coordinate descent algorithm (Angelosante and Gian-

nakis, 2012) to solve the minimization problem in (2.3).1 We select the penalty term  that minimizes
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the information criterion  () by setting  = 1
√
 (c.f. Bai (1998)).2 It is well known that there

exists a max such that any  ≥ max will produce constant coefficients (i.e., no break) (Ohlsson et

al., 2010). We thus search for a minimal IC on 20 evenly-distributed logarithmic grids on the interval

[001max max]. Finally, to purge unwanted breaks, we employ a post-processing procedure similar to

that used by Harchaoui and Lévy-Leduc (2010).

The main competitor of our approach is Bai and Perron (1998, 2003a, BP hereafter). For the brevity

of presentation, we focus on our method here but refer the readers to an early version of the paper (Qian

and Su, 2014) for a detailed comparison between BP’s and our methods. It is worth mentioning that as

shown in Bai and Perron (2006), the performance of BP is crucially dependent on the choice of trimming.

For some of the data generating processes (DGPs) experimented with, which have either no break or only

a small number of breaks in the middle range of the data, BP’s tests with large trimmings generally give

satisfactory performance. However, large trimming is an implicit assumption on the nature of the DGP.

For example, a trimming of 0.2 implicitly assumes that the maximum number of breaks is 4 and that

the break cannot happen in partitions at the beginning or in the end (each with a length of 20% of the

sample). The assumption may be too restrictive for some applications. Small trimming can afford more

breaks in the DGP but tend to overestimate the number of breaks. The size of trimming, indeed, plays

a similar role as the penalty term in our approach.

4.1 The Case of No Break

We first evaluate the probability of falsely detecting breaks when no break exists. We consider the

following DGPs

 = 1 +  + 

with

• DGP0-1:  ∼  (0 1),  ∼  (0 2).

• DGP0-2:  ∼ AR(1),  ∼  (0 2).

• GDP0-3:  ∼  (0 1),  = ,  = 05−1 + ,  ∼  (0 075).

• DGP0-4:  ∼ AR(1),  = 
√
,  = 005 + 005

2
−1 + 09−1,  ∼  (0 1).

• DGP0-5:  ∼ AR(1),  ∼  (0 21) for  ∈ {1 2     2} and  ∼  (0 22) for

 ∈ {2 2 + 1     }.

• DGP0-6:  = −1 + ,  = −1,  ∼  (0 1− 2).
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DGP0-1 is a benchmark. DGP0-2 introduces serial correlation in . Specifically, we generate  by

AR(1) dynamics:  = 05−1 +  where  ∼  (0 075), so that  has unit variance. DGP0-3

introduces serial correlation in . DGP0-4 introduces conditional heteroscedasticity (volatility clustering)

in the error process. DGP0-5 allows for breaks in the variance of the error process. Finally, DGP0-6 is

an AR regression where  is the lagged value of . To evaluate the performance under different noise

levels, we select the parameter  in DGP0-1, DGP0-2, DGP0-3, and GDP0-4 to be 0.5, 1, and 1.5. For

the benchmark case,  = 1 corresponds to a unit signal-to-noise ratio. In DGP0-5, we set 1 = 01 and

2 = 02 03, or 05. In DGP0-6, the autoregressive coefficient  is chosen from {02 05 09}.
The results are summarized in Table 1, where we report percentages of false detections among 500

repetitions for our GFL method. In the benchmark case of DGP0-1, GFL produces negligible percentages

of false detection of breaks for all noise levels. The same is true for all other DGPs but DGP0-3. However,

when serial correlation is introduced in  (DGP0-3), there are sizable percentages of false detections when

 = 100. As  gets larger, the percentages of false detections quickly decline to nearly zero. Overall, we

may conclude that GFL enjoys a low probability of falsely detecting breaks when none exists.

Table 1: Percentage of false detection when  = 0

  = 100  = 200  = 500

0.5 0.0 0.0 0.0

DGP0-1 1.0 0.0 0.0 0.0

1.5 0.2 0.0 0.0

0.5 0.0 0.0 0.0

DGP0-2 1.0 0.0 0.0 0.0

1.5 0.2 0.2 0.0

0.5 12.2 3.2 0.0

DGP0-3 1.0 11.6 2.4 0.2

1.5 11.8 2.8 0.2

0.5 0.2 0.0 0.0

DGP0-4 1.0 1.4 0.2 0.0

1.5 0.4 0.0 0.0

2 = 02 0.2 0.0 0.0

DGP0-5 2 = 03 0.0 0.0 0.0

2 = 05 0.6 0.0 0.0

 = 02 0.0 0.0 0.0

DGP0-6  = 05 0.2 0.0 0.0

 = 09 0.2 0.0 0.0

4.2 The Case of One Break

In the following we evaluate the probability of correctly detecting the number of structural changes and

the accuracy of change-point estimation when the true number of breaks is small. We generate data from

 =  + 
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with

• DGP1-1:  = 1 {2   ≤ },  ∼  (0 1),  ∼  (0 2).

• DGP1-2:  = 1 {2   ≤ },  ∼  (0 1),  =  with  = 05−1 + ,  ∼
(0 075).

• DGP1-3:  = 1 {2   ≤ },  ∼ AR(1),  ∼  (0 2).

• DGP1-4:  = 1 {2   ≤ },  ∼ AR(1),  = 
√
,  = 005 + 0052−1 + 09−1,

 ∼  (0 1).

• DGP1-5:  = 1 {2   ≤ },  ∼ AR(1),  =  with  = +05−1,  ∼  (0 08).

• DGP1-6:  = 021 {1 ≤  ≤ 2}+ 081 {2   ≤ },  = −1,  ∼  (0 2).

In all the above DGPs, the coefficient on  has a break at 2 and the intercept is a constant zero.
3

DGP1-1 serves as the benchmark case where both  and  are IID. DGP1-2 and DGP1-3 introduce

AR(1) structure to  and , respectively. As in the case of no breaks, we generate AR(1) processes

with an AR coefficient of 0.5 and make sure that the processes have unit variances. DGP1-4 considers

GARCH(1,1) error along with an AR(1) regressor. DGP1-5 considers MA(1) error along with an AR(1)

regressor. And DGP1-6 considers an auto-regression with a break in the AR coefficient. Again we set

 = 05 1, and 15.

Table 2 summarizes the percentages of correct estimation (pce) of  and, conditional on the correct

estimation of  (i.e., ̂ = 1), the accuracy of break date estimation, which we measure by average

Hausdorff distance divided by  (hd/ ). All figures in the table are in percentages (%). In the benchmark

case of DGP1-1, our method gives satisfactory results in terms of both pce and hd/ at low and medium

noise levels. At the high noise level ( = 15), the pce is low and the error rate for the break date

estimation is 5%. However, as  increases, the pce rises rapidly and hd/ quickly declines to 1.2%.

A similar picture emerges from other DGPs, with the exception of DGP1-6, where a lagged dependent

variable appears on the right hand side. In the case of DGP1-6, the noise level does not have a big impact

on the signal-to-noise ratio, hence the performances across different noise levels are similar.

4.3 The Case of Many Breaks

To evaluate the finite-sample performance for the case of many breaks, we consider two setups. First we

set a constant regime length and let the number of regimes increase. Then we fix the number of breaks

and allow the regime length to increase proportionally to the sample size. Specifically, we set  = ,

where  is an even number of regimes (+ 1). We generate data from the following equation,

 =  + 
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Table 2: Percentage of correct detection of one break and accuracy of change-point estimation when

 = 1

  = 100  = 200  = 500

pce hd/ pce hd/ pce hd/

0.5 100.0 1.1 100.0 0.6 100.0 0.2

DGP1-1 1.0 71.8 3.0 92.0 1.7 99.8 0.7

1.5 19.4 5.0 31.4 2.8 73.6 1.2

0.5 98.2 1.1 99.6 0.6 100.0 0.2

DGP1-2 1.0 74.8 3.9 90.2 1.9 98.0 0.7

1.5 30.2 6.5 42.8 3.7 77.8 1.6

0.5 99.8 1.5 100.0 0.6 100.0 0.2

DGP1-3 1.0 64.4 3.3 91.2 1.8 98.6 0.8

1.5 17.4 5.1 25.2 3.1 76.6 1.5

0.5 99.8 1.5 100.0 0.7 100.0 0.2

DGP1-4 1.0 62.0 3.4 89.6 1.9 98.8 0.8

1.5 22.8 5.5 31.4 3.3 73.4 1.3

0.5 98.8 1.6 100.0 0.8 100.0 0.3

DGP1-5 1.0 66.2 4.4 92.4 2.2 98.8 1.0

1.5 28.0 6.6 42.6 3.5 72.6 1.7

0.5 65.0 8.6 87.8 5.4 98.0 2.5

DGP1-6 1.0 65.8 7.6 88.2 5.0 98.0 2.6

1.5 66.8 8.4 87.0 5.0 98.4 2.5

Note: Under pce is the percentage of correct estimation of one break; under hd/ is the average Hausdorff

distance between the estimated and true sets of break dates in percentages of  conditional on the estimated

number of breaks being correct (i.e., ̂ = 1 here).

where  ∼  (0 1),  ∼  (0 2), and

 =

⎧⎨⎩ 0 (2) + 1 ≤   (2+ 1)

1 (2+ 1) + 1 ≤   (2+ 2)
  = 0 1     2

We specify

• DGPn-1: Fix  = 30 and vary  = 6 10 20.

• DGPn-2: Fix  = 10 and vary  = 150 300 600.

We compare our approach with BP’s weighted double maximum (WDMax) sequential procedure,

which is the preferred procedure in Bai and Perron (2006). To implement BP’s testing procedure, we

consider 5% tests and set the trimming size as 0.05, allowing the maximum number of breaks to be 18.

The results are summarized in Table 3.

In the case of DGPn-1, GFL correctly estimates the number of breaks in most repetitions (close to

100%) at the low noise level. At the high noise level, pce drops significantly, especially when at the same

time the true number of breaks is high. However, BP’s method seems even more sensitive to the noise

level than our method. Notice that when  = 20, pce for BP is zero at both noise levels, since the

number of breaks exceeds the maximum allowed by the trimming size. For both approaches, we witness
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a declining performance as the sample size increases along with the true number of breaks. In the case

of DGPn-2,  is fixed at 10 and  increases proportionally with the sample size  . We do see improving

performance as  increases. GFL dominates BP in terms of pce. In terms of accuracy of break-date

estimation, both approaches give satisfactory performances.

Table 3: Percentage of correct detection of the number of breaks and accuracy of break date estimation

in the case of many breaks

DGPn-1 DGPn-2

  GFL BP  GFL BP

pce hd/ pce hd/ pce hd/ pce hd/

6 99 1 95 0.7 150 98 1.3 52.2 1

0.2 10 99.8 0.7 99.4 0.5 300 100 0.7 98.8 0.5

20 99.4 0.4 0 N/A 600 100 0.4 99.6 0.3

6 92.4 2 71 1.9 150 53.8 2.4 0.8 2.8

0.5 10 84.8 1.5 38.8 1.4 300 83.2 1.5 38.8 1.4

20 36.4 1.2 0 N/A 600 93 0.7 99.4 0.7

Note: The regime length is fixed at  = 30 in DGPn-1 and the number of regimes is fixed at  = 10 in DGPn-2.

See the note in Table 2 for the explanation on the main entries.

5 An Empirical Illustration

In this section we present an empirical illustration of our method. We consider the problem of predicting

equity premium using fundamental information. We use a subset of the quarterly data of Welch and

Goyal (2008), which has been updated to 2011Q4. The equity premium () is the return on the stock

market minus the prevailing risk-free rate. We use the return on S&P 500 index as the proxy of the stock

market return and take the short-term T-bill rate as the risk-free rate. The fundamental information we

consider includes earning price ratio () and dividend price ratio (). We refer to Welch and Goyal

(2008) for a detailed description of the data and sources. Table 4 summarizes the data we use. We

estimate the following predictive regression with structural breaks,

+1 = 0 + 1 + 2 + +1

The parameter  = (0 1 2)
0 may contain multiple breaks in the calendar range from 1921Q2 to

2011Q4, reflecting discrete changes in the way equities are priced overall.

The main results are summarized in Table 5. The estimation contains two steps. First we estimate

the break dates, then we perform the usual OLS estimation in each regime. For each OLS regression, co-

efficient estimates and standard errors are tabulated along with 2 and F statistics for model significance

tests. Our approach (GFL) detects two breaks at 1932Q3 and 1942Q3. Possible reasons for the first break
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Table 4: Summary statistics for the equity data from 1921Q2 to 2011Q4 ( = 363)

Mean S.D. Min Max Median Skewness Kurtosis

 0.0053 0.1050 -0.5023 0.6226 0.0206 0.0683 10.7594

 0.0407 0.0178 0.0112 0.1490 0.0377 1.0800 6.4649

 0.0730 0.0291 0.0082 0.1695 0.0637 0.7299 3.1455

Note:  is equity premium,  is dividend to price ratio, and  is earning price ratio.

include the bottoming out of the stock market, election of FDR to the presidency, and the passage of the

Securities Act of 1933, which comprehensively regulated the securities industry. The second break may

be attributed to the deepening US involvement in World War II. Linear regressions in all three regimes

are statistically significant at the 5% level. Before the first break, the slope on  is significantly negative

and that on  significantly positive. This is reversed in the second regime, although the negative slope

of  fails to be statistically significant at the 5% level. In the third regime, the effect of  remains

significantly positive but weakens substantially and the effect of  remains insignificant.

For the purpose of comparison, we also estimate the model using BP’s WDMax procedure coupled

with different trimming sizes. If trimming equals 15%, BP fails to detect any break. Under 10% trimming,

one break is detected at 1932Q3, which coincides with the first break detected by our method. If trimming

equals 5%, two breaks are detected at 1928Q2 and 1933Q2. These results once again show the importance

of choosing a correct trimming size for BP’s approach. A large trimming implicitly imposes restrictive

assumptions that may preclude detection of true breaks, but a small trimming like 5% tends to produce

false structural breaks. Using our approach, in contrast, practitioners do not have to face such choices.

The continuous nature of the tuning parameter  offers an even richer trade-off between goodness of fit

and model simplicity. And as shown in Theorem 3.4, our IC-based procedure to choose  naturally rules

out the possibility of over- and under-fitting, at least asymptotically.

6 Conclusion

We propose a shrinkage procedure for the determination of the number of structural changes in a multiple

linear regression model via GFL. We show that our method consistently determines the number of breaks

and the estimated break dates are sufficiently close to the true break dates. Simulation results suggest

that our new method performs well in finite samples.

There are several interesting topics for further research. First, we consider the estimation and inference

in OLS regression models with an unknown number of breaks in this paper. It is interesting to extend

to the GMM framework. Second, following the lead of Andrews (2003) who considers an end-of-sample

stability test, it is also possible to allow a break to occur at the end of a random sample. Third, it is also

possible to extend our method to the panel data framework. The last decade has seen a growing literature
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Table 5: Empirical results

Regime Range ̂0 ̂1 () ̂2 () 2 F

GFL:

1921Q2-1932Q2 0.027 (0.776) -3.6747 (0.008) 2.0546 (0.040) 0.205 4.998 (0.007)

1932Q3-1942Q2 -0.1501 (0.080) 5.8416 (0.002) -2.259 (0.109) 0.263 6.411 (0.002)

1942Q3-2011Q4 -0.0194 (0.126) 1.5207 (0.021) -0.3831 (0.221) 0.0369 3.982 (0.020)

BP, trim=0.05:

1921Q2-1928Q1 0.1072 (0.285) -0.6536 (0.000) -0.4801 (0.416) 0.214 0.453 (0.636)

1928Q2-1933Q1 -1.0497 (0.666) -7.0342 (0.008) 21.8756 (0.000) 0.585 10.528 (0.000)

1933Q2-2011Q4 -0.0198 (0.416) 1.6299 (0.000) -0.4759 (0.106) 0.0383 5.079 (0.007)

BP, trim=0.10:

1921Q2-1932Q2 0.027 (0.776) -3.6747 (0.008) 2.0546 (0.040) 0.205 4.998 (0.007)

1932Q3-2011Q4 -0.0301 (0.037) 2.1835 (0.000) -0.6301 (0.024) 0.0758 11.655 (0.000)

BP, trim=0.15:

1921Q2-2011Q4 -0.0261 (0.090) 0.4584 (0.293) 0.174 (0.513) 0.0161 2.492 (0.084)

Note: p-values for significance tests (t and F) are given in parentheses.

on estimation and testing of common breaks in panel data models; see, De Watcher and Tzavalis (2005,

2012), Chan et al. (2008), Bai (2010), Kim (2011, 2014), Hsu and Lin (2012), Liao and Wang (2012),

Baltagi et al. (2014), among others. We are exploring some of these topics in ongoing work.

Notes

1Since the minimization in (2.6) is a convex problem, we may use a general-purpose convex solver

system such as CVX (Grant et al., 2009). However, the general solver does not exploit the special

structure of our problem, hence computationally inefficient.

2We also conduct a robustness check by considering  = 1
−2 for 1 = 09 1 and 1.1 and 2 = 04

0.5, and 0.6. The results are available upon request.

3The experiments for DGPs with two breaks yield similar results.
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APPENDIX

A Some Technical Lemmas

In this section we prove some technical lemmas that are used in the proof of the main results in the

paper.

Lemma A.1 Consider the PLS problem in (2.3) or equivalently (2.4). Let {̂  = 1 2 } and {̂

 = 2  } denote the respective solutions. Then

(i) 1


P

=̂


³
 − 0̂

´
= 

2
̂̂

°°°̂̂°°° for  = 1  ̂;
(ii) 1



°°°P
= 

³
 − 0̂

´°°° ≤ 
2
for  = 1  

Proof. To prove the above lemma, we invoke subdifferential calculus (e.g., Bertsekas (1995, Appendix

B.5)). We first rewrite the PLS criterion function as

̄ ({}) = 1



X
=1

Ã
 − 0

X
=1



!2
+ 

X
=2

kk  (A.1)

A necessary and sufficient condition for {̂} to minimize (A.1) is that for each  = 1   0×1 belongs

to the subdifferential of (A.1) with respect to  evaluated at {̂} That is,

− 2


X
=



Ã
 − 0

X
=1

̂

!
+  = 0×1 (A.2)

where for  = 2  

 =
̂°°°̂°°° if

°°°̂°°° 6= 0 and kk ≤ 1 if °°°̂°°° = 0 (A.3)

and 1 = 0×1 If  = ̂ for some  ∈ {1  ̂}  i.e.,  is one of the estimated break dates, then
̂ = ̂ − ̂−1 6= 0×1 and we obtain (i) as the breaks cannot occur at  = 1 and

P
=1 ̂ = ̂ In

general, (A.2) and (A.3) imply that (ii) holds for all  ≥ 2 When  = 1 the first order condition with

respect to 1 yields
P

=1 
0


³
 − 0

P
=1 ̂

´
= 0×1 so that (ii) is also satisfied for  = 1

Lemma A.2 Let {  = 1 2 } be a zero-mean strong mixing process, not necessarily stationary, with
the mixing coefficients satisfying  () ≤ 

 for some   0 and  ∈ (0 1) 
(i) If sup1≤≤ || ≤   then there exists a constant 0 depending on  and  such that for any
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(ii) If sup≥1  (||  ) ≤ exp (1− ()) for some  ∈ (0∞) and  ∈ (0∞] then there exist
constants 1 and 2 depending only on    and  such that for any  ≥ 4 and  ≥ 0(log  )
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Proof. (i) Merlevède et al. (2009, Theorem 2) prove (i) under the condition  () ≤ exp (−2) for
some   0 If  = 1 we can take  = exp (−2) and apply the theorem to obtain the claim in (i). Other
values of  do not alter the conclusion.

(ii) Merlevède et al. (2011, Theorem 1) prove a result that is more general than that in (ii) under the

condition  () ≤ exp (−11) for some 1 1  0 If  = 1 and 1 = 1 we can take  = exp (−21)
and apply the theorem to obtain the claim in (ii) Other values of  do not alter the conclusion.

Lemma A.3 Suppose Assumptions A1 and A2 hold. Let  =   Then
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Proof. (i) By Weyl inequality, the fact that |max ()| ≤ kk for any symmetric matrix  and

Assumption A2,
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It suffices to prove the theorem by showing that max
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 −  (

0
)]
°°° =  (1) 

We first consider the case where Assumption A1(ii.a) holds so that  ≥ 
1 Let  =  1(2)

Let  be an arbitrary ×1 unit vector such that kk = 1 for  = 1 2 Let  ≡ 01 [
0
 − (

0
)] 2

1 ≡ 01 [
0
1 −  (

0
1)] 2 and 2 ≡ 01 [

0
1̄ − (

0
1̄)] 2 where 1 ≡ 1{kk2 ≤  } and

1̄ = 1− 1 Note that  = 1 + 2 By Boole inequality and Lemma A.2(i)



⎛⎜⎝ sup
1≤≤+1
−≥

¯̄̄̄
¯ 1√

 − 

−1X
=

1

¯̄̄̄
¯ ≥ (log  )3

⎞⎟⎠ ≤  2 sup
1≤≤+1
−≥



Ã¯̄̄̄
¯
−1X
=

1

¯̄̄̄
¯ ≥ 

√
 − (log  )3

!

≤  2 sup
1≤≤+1
−≥

exp

Ã
− 0

2 ( − ) (log  )6

20 ( − ) + 42 + 2
√
 − (log  )3

£
log
¡√

 − 
¢¤2
!

≤ exp

Ã
− 0

2 (log  )
6

20 + 4
2
 +

1
2

√
 (log  )3 [log  ]

2
+ 2 log 

!
→ 0 as  →∞
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By Assumption A1(ii.a), Boole and Markov inequalities, and the dominated convergence theorem,



⎛⎜⎝ sup
1≤≤+1
−≥

¯̄̄̄
¯ 1√

 − 

−1X
=

2

¯̄̄̄
¯ ≥ (log  )3

⎞⎟⎠ ≤ 

µ
max
1≤≤

kk2 ≥ 

¶

≤  max
1≤≤


³
kk2 ≥ 

´
≤ 


2


max
1≤≤


h
kk4 1

n
kk2 ≥ 

oi
→ 0 as  →∞

Noting that 1 and 2 are arbitrary unit vectors, we infer thatmax1≤≤+1
−≥

°°° 1
−

P−1
= [

0
 − (

0
)]
°°°

= 

³

−12
 (log  )3

´
=  (1)  Then (i) follows.

Now we consider the case where Assumption A1(ii.b) holds where  ≥  (log  )
(2+)

 By Boole

inequality and Lemma A.2(ii) for any sufficiently large 



⎛⎜⎝ sup
1≤≤+1
−≥

¯̄̄̄
¯ 1√

 − 

−1X
=



¯̄̄̄
¯ ≥ 

p
log 

⎞⎟⎠ ≤  2 sup
1≤≤+1
−≥



Ã¯̄̄̄
¯
−1X
=



¯̄̄̄
¯ ≥ 

p
( − ) log 

!

≤  2 sup
1≤≤+1
−≥

"
( + 1) exp

Ã
− [ ( − ) log  ]

[2(1+)]

1

!
+ exp

µ
−( − ) log 

2

¶#

≤ exp

Ã
−( log  )

[2(1+)]

1
+ 4 log 

!
+ exp

µ
− log 

2
+ 2 log 

¶
→ 0 as  →∞

as ( log  )
[2(1+)] ∝ log  by construction. It follows thatmax

1≤≤+1
−≥

°°° 1
−

P−1
= [

0
 − (

0
)]
°°°

= 

³

−12
 (log  )12

´
=  (1) 

(ii) The proof of (ii) is analogous and thus omitted.

Lemma A.4 Suppose Assumptions A1(i) and A2 hold. Let  =  

(i) If Assumption A1(ii.a) holds, then sup
1≤≤+1
−≥

¯̄̄
1√
−

P−1
= 

¯̄̄
= 

¡
(log  )3

¢
;

(ii) If Assumption A1(ii.b) holds, then sup
1≤≤+1
−≥

¯̄̄
1√
−

P−1
= 

¯̄̄
= 

¡
(log  )12

¢


Proof. (i) In this case,  ≥ 
1 Let  =  1(2) and 1 be as defined in the proof of Lemma

A.3(i) Let  ≡ 01 [ − ()]  1 ≡ 01 [1 − (1)] and 2 ≡ 01 [1̄ − (1̄)] 

where now 1 ≡ 1 {kk ≤ } and 1̄ = 1−1 Note that  = 1+2 Arguments like those used in the

proof of Lemma A.3(i) show that for any sufficiently large  

Ã
max

1≤≤+1
−≥

¯̄̄
1√
−

P−1
=  

¯̄̄
≥ (log  )3

!
→ 0 as  →∞ for  = 1 2 Then (i) follows.

(ii) In this case,  ≥  (log  )
(2+)

and arguments like those used the proof of Lemma A.3(i) show

that for any sufficiently large , 

Ã
max

1≤≤+1
−≥

¯̄̄
1√
−

P−1
= 

¯̄̄
≥ (log  )12

!
→ 0 as  → ∞

Then (ii) holds.
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Remark. If in addition, {} is an m.d.s. with respect to F in Lemma A.4(ii) then for any  →∞
and   0 we can apply Theorem 1.1 in Liu and Watbled (2009) to obtain



⎛⎜⎝ max
1≤≤+1
−≥

¯̄̄̄
¯ 1√

 − 

−1X
=



¯̄̄̄
¯ ≥ 

p
log 

⎞⎟⎠ ≤  2 max
1≤≤+1
−≥

exp
¡−23√ −  log 

¢
≤ exp

¡−23√ log  + 2 log ¢→ 0 as  →∞

where 3 is a constant that does not depend on  .

B Proof of Theorem 3.1

(i) Our proof strategy follows closely from that of Proposition 3 in Harchaoui and Lévy-Leduc (2010).

Define

 =
n¯̄̄
̂ −  0

¯̄̄
≥ 

o
and  =

½
max

1≤≤0

¯̄̄
̂ −  0

¯̄̄
 min2

¾
 (B.1)

Since 
³
max1≤≤0

¯̄̄
̂ −  0

¯̄̄
≥ 

´
≤ P0

=1  () and 0  ∞ it suffices to show that (i1)P0

=1  (∩  ) → 0 and (i2)
P0

=1  ( ∩ 
 )→ 0 where 

 denotes the complement of  

We first prove (i1) by showing that
P0

=1 
³
+ ∩ 

´
→ 0 and

P0

=1 
³
− ∩ 

´
→ 0 where

+ = { 0 − ̂ ≥ } and − = {̂ −  0 ≥ } Without loss of generality (Wlog) we prove thatP0

=1 
³
+ ∩

´
→ 0 as the other case follows analogously. By the definition of   we have

 0−1  ̂   0+1 for all  ∈
©
1 0

ª
 (B.2)

By (2.2) and Lemma A.1, we have −1


P

=̂


0
(̂−0)+ 1



P

=̂
 =


2
̂ and ||−1

P
=0


0


(̂ − 0) +
1


P
= 0

|| ≤ 
2
 where ̂ = ̂̂||̂̂ || By the triangle inequality and the fact that

||̂ || = 1 we have

 ≥
°°°°°°−1

0 −1X
=̂


0


³
̂ − 0

´
+
1



0 −1X
=̂



°°°°°° =
°°°°°°−1

0 −1X
=̂


0


¡
̂+1 − 0

¢
+
1



 0 −1X
=̂



°°°°°°
≥

°°°°°° 1
0 −1X
=̂


0


¡
0+1 − 0

¢°°°°°°−
°°°°°° 1

0 −1X
=̂


0


¡
̂+1 − 0+1

¢°°°°°°−
°°°°°° 1

0 −1X
=̂



°°°°°°
≡ 1 −2 −3, say, (B.3)

where the equality follows from the fact that ̂ = ̂+1 and 0 = 0 for  ∈ [̂   0 − 1] by (B.2).
Define the event ̄ () =

©
 ≥ 1

3
1

ª ∪ ©2 ≥ 1
3
1

ª ∪ ©3 ≥ 1
3
1

ª
 It is easy to show

31



that 
¡
̄ ()

¢
= 1 It follows that


³
+ ∩

´
≤ 

µ
+ ∩ ∩

½
 ≥ 1

3
1

¾¶
+ 

µ
+ ∩ ∩

½
2 ≥ 1

3
1

¾¶
+

µ
+ ∩ ∩

½
3 ≥ 1

3
1

¾¶
≡ 1 +2 +3 say.

We first bound
P0

=11 Noting that kk = [tr(00)]12 ≥ min (
0)12 kk  we have

0X
=1

1 ≤
0X
=1



µ
+ ∩

½
 ≥ 1

3
1

¾¶

=

0X
=1



⎛⎝°°°°°° 1

 0 − ̂

0 −1X
=̂


0


¡
0+1 − 0

¢°°°°°° ≤ 3

 0 − ̂
;  0 − ̂ ≥ 

⎞⎠
≤

0X
=1


³
1 ≤ 3(min );  0 − ̂ ≥ 

´
→ 0

where 1 ≡ min

µ
1

0 −̂
P0 −1

=̂


0


¶
≥ 2  0 w.p.a.1 by Lemma A.3(ii) and (min )→ 0 by

Assumption A3(iii). Next, we bound
P0

=12 Observe that

2 = 

⎛⎝+ ∩  ∩
⎧⎨⎩
°°°°°° 1

 0 − ̂

 0 −1X
=̂


0


¡
̂+1 − 0+1

¢°°°°°° ≥ 13
°°°°°° 1

 0 − ̂

0 −1X
=̂


0


¡
0+1 − 0

¢°°°°°°
⎫⎬⎭
⎞⎠

≤ 

µ
+ ∩  ∩

½
̄1

°°̂+1 − 0+1
°° ≥ 1

3
1

°°0+1 − 0
°°¾¶ 

where ̄1 ≡ max

µ
1

0 −̂
P 0 −1

=̂


0


¶
≤ 2̄ w.p.a.1 by Lemma A.3(i). Note that ̂ = ̂+1

for  ∈ [ 0 
¡
 0 +  0+1

¢
2 − 1] as ̂   0 given + and ̂+1 

¡
 0 +  0+1

¢
2 conditional on the

event   Using Lemma A.1(ii) with  =
¡
 0 +  0+1

¢
2 and  =  0 and following the steps to obtain

(B.3), we have  ≥
°°°° 1 P(0 +0+1)2−1= 0


0


¡
̂+1 − 0+1

¢°°°°−°°°° 1 P(0 +0+1)2−1=0


°°°°  It follows that
conditional on  

°°̂+1 − 0+1
°° ≤ (2)−1 ∙ 2min

+

°°°° 2
0+1−0

P( 0 + 0+1)2−1
=0



°°°°¸  where 2 ≡
min

µ
2

0+1− 0
P(0 +0+1)2−1

= 0


0


¶
≥ 2 w.p.a.1 by Lemma A.3(ii). Consequently, we have

0X
=1


³n°°̂+1 − 0+1

°° ≥ ̄−111
°°0 − 0+1

°° 3o ∩ 

´

≤
0X
=1



µ
2

min
≥ ̄−1112

°°0 − 0+1
°° 6¶

+

0X
=1



⎛⎜⎝
°°°°°°°

2

 0+1 −  0

(0 +
0
+1)2−1X

=0



°°°°°°° ≥ ̄−1112
°°0 − 0+1

°° 6
⎞⎟⎠ 
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The first term converges to zero because (minmin) → 0 under Assumptions A3(i) and (iii). The

second term is bounded from above by
P0

=1 

µ°°°° 1
 0+1− 0

P(0 +0+1)2−1
= 0



°°°° ≥ ̄
2
min96

¶
→ 0

by analogous arguments as used in the proof of Lemma A.4 and the fact that 
−12
min

¡
log0

¢2
=  (min)

under Assumptions A3(i)-(ii). It follows that
P0

=12 → 0 Noting that 1 ≥ 2  0 w.p.a.1

and

°°°° 1

 0 −̂
P 0 −1

=̂


°°°° = {[(log  ) ]−12} =  (min) when  0 − ̂ ≥  by Lemma A.4

and Assumption A2(ii), we have

0X
=1

3 ≤
0X
=1



µ
+ ∩

½
3 ≥ 1

3
1

¾¶

=

0X
=1



⎛⎝+ ∩
⎧⎨⎩
°°°°°° 1

 0 − ̂

0 −1X
=̂



°°°°°° ≥ 13
°°°°°° 1

 0 − ̂

0 −1X
=̂


0


¡
0+1 − 0

¢°°°°°°
⎫⎬⎭
⎞⎠

≤
0X
=1



⎛⎝+ ∩
⎧⎨⎩
°°°°°° 1

 0 − ̂

0 −1X
=̂



°°°°°° ≥ 131min
⎫⎬⎭
⎞⎠→ 0

Here, the last convergence is obtained by strengthening the results in Lemma A.4 through the squeezing

of log0( log  ) into the exponent when applying the exponential inequality in Lemma A.3. So we

have shown that
P0

=1 
³
+ ∩ 

´
→ 0

Now we prove (i2). We prove this by showing that
P0

=1 
³
+ ∩



´
→ 0 and

P0

=1 
³
− ∩



´
→ 0 Wlog we prove that

P0

=1 
³
+ ∩ 



´
→ 0 Define


()

 ≡
n
∃ ∈ ©1 0

ª
 ̂ ≤  0−1

o
∩

 


()

 ≡
n
∀ ∈ ©1 0

ª
  0−1  ̂   0+1

o
∩ 

  and


()

 ≡
n
∃ ∈ ©1 0

ª
 ̂ ≥  0+1

o
∩

 

Then
P0

=1 
³
+ ∩ 



´
=
P0

=1  (
+
 ∩()

 ) +
P0

=1  (
+
 ∩()

 ) +
P0

=1  (
+
 ∩()

 )

We first consider
P0

=1  (
+
 ∩()

 ) Observe that


³
+ ∩()



´
= 

µ
+ ∩ {̂+1 −  0 ≥

1

2
min} ∩()



¶
+ 

µ
+ ∩ {̂+1 −  0 

1

2
min} ∩()



¶
≤ 

µ
+ ∩ {̂+1 −  0 ≥

1

2
min} ∩()



¶
+ 

µ
+ ∩ { 0+1 − ̂+1 ≥ 1

2
min} ∩()



¶


where the inequality follows as 0 ≤ ̂+1 −  0 ≤ min2 implies that 
0
+1 − ̂+1 = ( 0+1 −  0 ) −

(̂+1− 0 ) ≥ min− min2 = min2 Further noticing that
n
+ ∩ { 0+1 − ̂+1 ≥ min2} ∩()



o
⊂
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∪0−1
=+1

³
{ 0 − ̂ ≥ min2} ∩ {̂+1 −  0 ≥ min2} ∩()



´
 we have

0X
=1


³
+ ∩()



´
≤

0X
=1


³
+ ∩ {̂+1 −  0 ≥ min2} ∩()



´

+

0X
=1

0−1X
=+1


³
{ 0 − ̂ ≥ min2} ∩ {̂+1 −  0 ≥ min2} ∩()



´
(B.4)

To bound the first term on the right-hand side of (B.4), we apply Lemma A.1 with  = ̂ and

 =  0 to obtain 1


P

=̂
( − 0̂) =


2
̂̂||̂̂ || and 1



°°°P
=0

0( − 0̂)
°°° ≤ 

2
 This,

in conjunction with (2.2), implies that 

 0 −̂
≥ 1

0 −̂

°°°°−P 0 −1
=̂


0


¡
̂+1 − 0

¢
+
P 0 −1

=̂


°°°° ≥
1

°°̂+1 − 0
°°− °°°° 1

0 −̂
P 0 −1

=̂


°°°°  It follows that
°°̂+1 − 0

°° ≤ −11

⎡⎣ 

 0 − ̂
+

°°°°°° 1

 0 − ̂

0 −1X
=̂


0


°°°°°°
⎤⎦  (B.5)

Similarly, applying Lemma A.1 with  = ̂+1 and  =  0 yields
1


P

=̂+1
(−0̂) = 

2
̂̂+1||̂̂+1 ||

and 1


°°°P
= 0

0( − 0̂)
°°° ≤ 

2
 which, in conjunction with and (2.2), implies that 

̂+1−0
≥

1

̂+1−0

°°°P̂+1−1
= 0



³
 − 0̂

´°°° ≥ 3
°°̂+1 − 0+1

°° − °°°° 1

̂+1−0
P̂+1−1

=0


°°°°  where 3 ≡

min

µ
1

̂+1− 0
P̂+1−1

= 0


0


¶
≥ 2 w.p.a.1 by Lemma A.3(ii). So

°°̂+1 − 0+1
°° ≤ −13

⎡⎣ 

̂+1 −  0
+

°°°°°° 1

̂+1 −  0

̂+1−1X
=0



°°°°°°
⎤⎦  (B.6)

Define the event

 ≡
(°°0+1 − 0

°° ≤ 

Ã


 0 − ̂
−11 +



̂+1 −  0
−13

!

+ −11

°°°°°° 1

 0 − ̂

 0 −1X
=̂



°°°°°°+ −13

°°°°°° 1

̂+1 −  0

̂+1−1X
=0



°°°°°°
⎫⎬⎭  (B.7)
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By the triangle inequality, (B.5) and (B.6) imply that  occurs with probability one. It follows that

0X
=1


³
+ ∩

n
̂+1 −  0 ≥ min2

o
∩()



´

=

0X
=1


³
 ∩+ ∩

n
̂+1 −  0 ≥ min2

o
∩()



´

≤
0X
=1


³
 ∩

n
 0 − ̂  

o
∩
n
̂+1 −  0 ≥ min2

o´

≤
0X
=1



µ
−1 −11 +

2

min
−13 ≥

°°0+1 − 0
°° 3¶

+

0X
=1



⎛⎝⎧⎨⎩−11

°°°°°° 1

 0 − ̂

 0 −1X
=̂



°°°°°° ≥ °°0+1 − 0
°° 3

⎫⎬⎭ ∩ { 0 − ̂   }
⎞⎠

+

0X
=1



⎛⎝⎧⎨⎩−13

°°°°°° 1

̂+1 −  0

̂+1−1X
=0



°°°°°° ≥ °°0+1 − 0
°° 3

⎫⎬⎭ ∩ {̂+1 −  0 ≥ min2}
⎞⎠ (B.8)

The first term in (B.8) converges to zero because (min ) =  (1) and (minmin) =  (1) by As-

sumptions A3(i) and (iii). The second and third terms in (B.8) converge to zero because

°°°° 1

0 −̂
P0 −1

=̂


°°°°
=  {[ (log  ) ]−12} =  (min) by Lemma A.4 and Assumption A3(ii),

°°°° 1

̂+1−0
P̂+1−1

=0


°°°°
=  {[min(log  ) ]−12} =  (min) by Lemma A.4 and Assumptions A3(i)-(ii), and by strengthen-

ing the results in Lemma A.4 through the squeezing of log0( log  ) into the exponent. Similarly, we

can show that the second term in (B.4) converges to zero.

Now we consider
P0

=1  (
+
 ∩()

 ) Observe that


³
+ ∩()



´
≤ 

³

()



´
≤

0X
=1

2−1
³
max

n
 ∈ ©1 0

ª
: ̂ ≤  0−1

o
= 

´


and the event max
n
 ∈ ©1 0

ª
: ̂ ≤  0−1

o
=  implies that ̂ ≤  0−1 and ̂+1   0 for all  = 

0 and
n
max{ ∈ ©1 0

ª
: ̂ ≤  0−1} = 

o
⊂ ∪0−1

=

³
{ 0 − ̂ ≥ min2} ∩ {̂+1 −  0 ≥ min2}

´


It follows that

0X
=1


³
+ ∩()



´
≤ 0

0−1X
=1

2−1
0−1X
=


³n

 0 − ̂ ≥ min2
o
∩
n
̂+1 −  0 ≥ min2

o´
+02

0−1
³
 00 − ̂0 ≥ min2

´
 (B.9)

Consider the last term on the right-hand side of (B.9). Applying  = 0 in (B.7) suggests that the event
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0 occurs with probability one. It follows that

02
0−1

³
 00 − ̂0 ≥ min2

´
= 02

0−1
³
0 ∩

n
 00 − ̂0 ≥ min2

o´
≤ 02

0−1
µ
−1 −1

10 +
2

min
−1
30 ≥

°°00+1 − 00

°° 3¶

+02
0−1

⎛⎝−1
10

°°°°°° 1

 0
0 − ̂0

 0
0−1X

=̂0



°°°°°° ≥ °°00+1 − 00

°° 3  00 − ̂0 ≥ min2

⎞⎠
+02

0−1

⎛⎝−1
30

°°°°°° 1

 −  0
0

X
=0

0



°°°°°° ≥ °°00+1 − 00

°° 3
⎞⎠

→ 0

by similar arguments to those used in the study of (B.8) and the fact that 02
0−1 =  ( log  ) and

log ( log  ) ≤ log ¡ 1+2¢ can be squeezed into the exponent when applying the exponential inequality
in Lemma A.3. Now, we consider the first term on the right-hand side of (B.9). Using (B.7) with

 =  similar arguments like those used in the study of (B.8), and the fact that log(
¡
0
¢2
2

0−1) =

(log
¡
 1+2

¢
) yields

0

0−1X
=1

2−1
0−1X
=


³n

 0 − ̂ ≥ min2
o
∩
n
̂+1 −  0 ≥ min2

o´

≤ 02
0−1

0−1X
=1


³
 ∩

n
 0 − ̂ ≥ min2

o
∩
n
̂+1 −  0 ≥ min2

o´

≤ 02
0−1

0−1X
=1



µ
−1 −11 +

2

min
−13 ≥

°°0+1 − 0
°° 3¶

+02
0−1

0−1X
=1



⎛⎝⎧⎨⎩−11

°°°°°° 1

̂ −  0

0−1X
=̂


0


°°°°°° ≥ °°0+1 − 0
°° 3

⎫⎬⎭ ∩ n 0 − ̂ ≥ min2
o⎞⎠

+02
0−1

0−1X
=1



⎛⎝⎧⎨⎩−13

°°°°°° 1

̂+1 −  0

̂+1−1X
= 0





°°°°°° ≥ °°0+1 − 0
°° 3

⎫⎬⎭ ∩ n̂+1 −  0 ≥ min2
o⎞⎠

→ 0

It follows that
P0

=1  (
+
 ∩()

 )→ 0 Analogously, we can show that
P0

=1  (
+
 ∩()

 )→ 0

We now prove (ii). By the result in part (i) and Assumption A3(i),
¯̄̄
̂ −  0

¯̄̄
=  ( ) =

 (min) uniformly in  = 1 0 It follows that either ( 0−1 +  0 )2  ̂   0 or 
0
 ≤ ̂ 

( 0 +  0+1)2 holds for each  Fix  ∈ ©1 0
ª
 wlog we assume that ( 0−1 +  0 )2  ̂   0 and

consider two subcases: (ii1) ( 0 +  0+1)2  ̂+1   0+1 and (ii2) 
0
+1 ≤ ̂+1 In subcase (ii1), using
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Lemma A.1(i) with  = ̂ and ̂+1 and (2.2) yields

 ≥
°°°°°° 1

X
=̂



³
 − 0̂

´
− 1



X
=̂+1



³
 − 0̂

´°°°°°° =
°°°°°° 1

̂+1−1X
=̂



³
 − 0̂

´°°°°°°
=

°°°°°° 1
0 −1X
=̂

£


0


¡
0 − ̂+1

¢
+ 

¤
+
1



̂+1−1X
= 0



£


0


¡
0+1 − ̂+1

¢
+ 

¤°°°°°°
≥

°°°°°° 1
̂+1−1X
=0



£


0


¡
0+1 − ̂+1

¢
+ 

¤°°°°°°−
°°°°°° 1

0 −1X
=̂

£


0


¡
0 − ̂+1

¢
+ 

¤°°°°°°
≥ ̂+1 −  0



n


°°̂+1 − 0+1
°°− (

¡
0+1

¢−12
)
o
−

³
( 0 − ̂)

´
where  ≡ min

³
1

̂+1−0

P̂+1−1
=0




0


´
≥ 2 w.p.a.1 by Lemma A.3(ii) and the result in part (i).

It follows that
°°̂+1 − 0+1

°° =  [(+  )
0
+1 +

¡
0+1

¢−12
] In subcase (ii2), using Lemma A.1(i)

with  = ̂ and ̂+1 (2.2), and the triangle inequality yields

 ≥
°°°°°° 1

̂+1−1X
=̂



³
 − 0̂

´°°°°°°
=

°°°°°° 1
0 −1X
=̂

£


0


¡
0 − ̂+1

¢
+ 

¤
+
1



 0+1−1X
= 0



£


0


¡
0+1 − ̂+1

¢
+ 

¤

+
1



̂+1−1X
=0

+1

£


0


¡
0+2 − ̂+1

¢
+ 

¤°°°°°°
≥

°°°°°° 1
0+1−1X
=0



£


0


¡
0+1 − ̂+1

¢
+ 

¤°°°°°°−
°°°°°° 1

0 −1X
=̂

£


0


¡
0 − ̂+1

¢
+ 

¤°°°°°°
−
°°°°°° 1

̂+1−1X
=0

+1

£


0


¡
0+2 − ̂+1

¢
+ 

¤°°°°°°
≥ 0+1



n


°°̂+1 − 0+1
°°− (

¡
0+1

¢−12
)
o
−

³
( 0 − ̂)

´
−

³
(̂+1 −  0+1)

´
where  ≡ min

µ
1

0
+1

P 0+1−1
= 0




0


¶
≥ 2 w.p.a.1. It follows that

°°̂+1 − 0+1
°° =  [(+  )

0
+1

+
¡
0+1

¢−12
] The same conclusion holds when  0 ≤ ̂  (

0
 +  0+1)2 This implies that the result in

part (ii) holds for all  = 2 0 + 1

To show (ii) holds for  = 1 we apply Lemma A.1 with  = ̂1 and  = 1 and the triangle inequality

to obtain  ≥
°°° 1 P̂1−1

=1 

³
 − 0̂

´°°° ≥ ̂1


h
̄1

°°̂1 − 01
°°− °°° 1

̂1

P̂1−1
=1 

°°°i if ̂1 ≤  01  and

 ≥ 01


h
̄1

°°̂1 − 01
°°− 1

01

P̂1−1
=01

kk
°°̂1 − 02

°°− °°° 1

̂1

P̂1−1
=1 

°°°i if ̂1   01  where ̄1 ≡
min

³
1

̂1

P̂1−1
=1 

0


´
and ̄1 ≡ min

³
1
01

P01−1
=1 

0


´
. One can readily show that 1

̂1

P̂1−1
=1  =

1

̂1

P01−1
=1 − 1

̂1

P 01−1
=̂1

 =  [
¡
01
¢−12

+ ] if ̂1 ≤  01 and
1

̂1

P̂1−1
=1  =

1

̂1

P01−1
=1 +
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1

̂1

P̂1−1
=01

 =  [
¡
01
¢−12

+  ] if ̂1   01 by using ̂1 =  01  +  ( )  In addition,

1
01

P̂1−1
=01

kk = 

¡


0
1

¢
 It follows that

°°̂1 − 01
°° =  [( +  )

0
1 +

¡
01
¢−12

] This

completes the proof of part (ii). ¥

C Proof of Theorem 3.2

Given Theorem 3.1, it suffices to show that 
hn
D(T̂̂ T 00)  

o
∩ ©max ≥ ̂  0

ªi → 0 as

 →∞ Define

1 =
n
∀ ∈ {1 } 

¯̄̄
̂ −  0

¯̄̄
  and ̂   0

o


2 =
n
∀ ∈ {1 } 

¯̄̄
̂ −  0

¯̄̄
  and ̂   0

o
 and

3 =
n
∃ ∈ {1 − 1} 

¯̄̄
̂ −  0

¯̄̄
  

¯̄̄
̂+1 −  0

¯̄̄
  and ̂   0  ̂+1

o


Observe that


hn
D
³
T̂̂ T 00

´
 

o
∩ ©max ≥ ̂  0

ªi
≤

maxX
=0+1


³
D
³
T̂ T 00

´
 

´
≤

maxX
=0+1

0X
=1


³
∀ ∈ {1 } 

¯̄̄
̂ −  0

¯̄̄
 

´

=

maxX
=0+1

0X
=1

[ (1) +  (2) +  (3)] 

We first bound
Pmax

=0+1

P0

=1  (1)  Note that  (1) =  (1 ∩ {̂   0−1}) +
 (1 ∩{̂ ≤  0−1}) Using Lemma A.1 with  = ̂ and  =  0 in the case where 

0
 ≥ ̂   0−1

yields

1



X
=̂



³
 − 0̂

´
=



2
̂̂

°°°̂̂°°° and 1
°°°°°°

X
=0



0
³
 − 0̂

´°°°°°° ≤ 

2


implying that  ≥
°°° 1 P 0−1

=̂


0


¡
̂+1 − 0+1

¢
+ 1



P0−1
=̂


0


¡
0+1 − 0

¢− 1


P 0−1
=̂



°°°  This
further implies that the event

 ≡
⎧⎨⎩°°0+1 − 0

°° ≤ −14

⎡⎣ 

 0 − ̂
+

°°°°°° 1

 0 − ̂

0−1X
=̂


0


¡
̂+1 − 0+1

¢°°°°°°+
°°°°°° 1

 0 − ̂

0−1X
=̂



°°°°°°
⎤⎦⎫⎬⎭

occurs with probability one, where 4 ≡ min

³
1

0

−̂

P 0−1
=̂


0


´
≥ 2 w.p.a.1 by Lemma

A.3(ii) It follows that
Pmax

=0+1

P0

=1  (1 ∩ {̂   0−1}) =
Pmax

=0+1

P0

=1  ( ∩ 1∩
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{̂   0−1}) ≤ 1 (1) + 1 (2) + 1 (3), where

1 (1) =

maxX
=0+1

0X
=1


³
−14

−1
 ≥

°°0+1 − 0
°° 3´

1 (2) =

maxX
=0+1

0X
=1



⎛⎝−14

°°°°°° 1

 0 − ̂

0−1X
=̂


0


¡
̂+1 − 0+1

¢°°°°°° ≥ °°0+1 − 0
°° 3  0 − ̂  

⎞⎠
1 (3) =

maxX
=0+1

0X
=1



⎛⎝−14

°°°°°° 1

 0 − ̂

0−1X
=̂



°°°°°° ≥ °°0+1 − 0
°° 3  0 − ̂  

⎞⎠ .
Arguments like those used in the study of (B.8) show that 1 (1) and 3 (1) converge to 0. For

1 (2)  we apply Lemma A.1 with  =  0 and  =  0+1 and then the triangle inequality to ob-

tain
°°° 1 P

= 0

 ( − 0̂+1)

°°° ≤ 
2
and 1



°°°P
= 0

+1
0( − 0̂+1̂)

°°° ≤ 
2
 This implies that

 ≥
°°°° 1 P0+1−1

=0



0


¡
̂+1 − 0+1

¢− 1


P0+1−1
=0





°°°° and thus °°̂+1 − 0+1
°° ≤ −15[


 0
+1
−0



+ 1
0
+1
−0



||P0+1−1
=0



||] where 5 ≡ min

µ
1

0
+1
− 0



P 0+1−1
=0




0


¶
≥ 2 w.p.a.1 by Lemma

A.3(ii) It follows that

1 (2) =

maxX
=0+1

0X
=1



⎛⎝−14

°°°°°° 1
 0−1X
=̂


0


¡
̂+1 − 0+1

¢°°°°°° ≥ °°0+1 − 0
°° 3  0 − ̂  

⎞⎠
≤

maxX
=0+1

0X
=1


³
−14̄2

°°̂+1 − 0+1
°° ≥ °°0+1 − 0

°° 3´

≤
maxX

=0+1

0X
=1



µ
−15



min
≥ 4̄

−1
2

°°0+1 − 0
°° 6¶

+

maxX
=0+1

0X
=1



⎛⎝−15

°°°°°° 1

 0+1 −  0

0+1−1X
=0





°°°°°° ≥ 4 ̄
−1
2

°°0+1 − 0
°° 6

⎞⎠ (C.1)

→ 0

where ̄2 ≡ max

³
1

 0

−̂

P0−1
=̂


0


´
≤ 2̄ w.p.a.1 by Lemma A.3(i), the first term in (C.1)

converges to zero because (minmin) = (1) by Assumptions A3(i) and (iii), and the second term con-

verges to zero by the application of Lemma A.2. So we have shown that
Pmax

=0+1

P0

=1  (1∩{̂ 

 0−1})→ 0Analogously, we can show that
Pmax

=0+1

P0

=1  (1∩{̂ ≤  0−1})→ 0 It follows thatPmax

=0+1

P0

=1  (1)→ 0 as  →∞ Similarly, we can show that
Pmax

=0+1

P0

=1  (2)→ 0

as  →∞

Now we bound
Pmax

=0+1

P0

=1  (3)  Observe that  (3) =  (
(1)

3) +  (
(2)

3) +

 (
(3)

3)+ (
(4)

3) where 
(1)

3 = 3∩{ 0−1  ̂  ̂+1   0+1}  (2)3 = 3∩{ 0−1  ̂

  0+1 ̂+1 ≥  0+1}  (3)3 = 3 ∩ {̂ ≤  0−1 
0
−1  ̂+1   0+1} and 

(4)

3 = 3 ∩ {̂ ≤
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 0−1 
0
+1  ̂+1} For  (1)3 we apply Lemma A.1 first with  =  0 and  = ̂ to obtain

 

°°°°°° 1
0−1X
=̂


0


¡
̂+1 − 0

¢− 1



 0−1X
=̂



°°°°°°  (C.2)

and then with  =  0 and  = ̂+1 to obtain

 

°°°°°° 1
̂+1−1X
=0




0


¡
̂+1 − 0+1

¢− 1



̂+1−1X
=0





°°°°°°  (C.3)

Then by triangle inequality
°°0+1 − 0

°° ≤ °°̂+1 − 0
°°+°°̂+1 − 0+1

°° ≤ −16
³°°° 1

 0

−̂

P0−1
=̂



°°°
+ 

0

−̂

´
+−17

³


̂+1−0
+ 1

̂+1−0
P̂+1−1

=0




´
where 6 ≡ min

³
1

0

−̂

P0−1
=̂


0


´
≥ 2

w.p.a.1 and 7 ≡ min

³
1

̂+1−0

P̂+1−1
=0




0


´
≥ 2 w.p.a.1 by Lemma A.3(ii). It follows thatPmax

=0+1

P0

=1  (
(1)

3) is bounded from above by

maxX
=0+1

0X
=1


³
−1

³
−16 + −17

´
≥
°°0+1 − 0

°° 3´

+

maxX
=0+1

0X
=1



⎛⎝−16

°°°°°° 1

 0 − ̂

 0−1X
=̂



°°°°°° ≥ °°0+1 − 0
°° 3  0 − ̂ ≥ 

⎞⎠
+

maxX
=0+1

0X
=1



⎛⎝−17

°°°°°° 1

̂+1 −  0

̂+1−1X
=0





°°°°°° ≥ °°0+1 − 0
°° 3 ̂+1 −  0 ≥ 

⎞⎠
which converges to zero by arguments analogous to those used in the study of (B.8). For 

(2)

3 we apply

Lemma A.1 first with  =  0 and  = ̂ to obtain (C.2) and then with  =  0 and  =  0+1 to obtain

 

°°°°°° 1
0+1−1X
=0




0


¡
̂+1 − 0+1

¢− 1



 0+1−1X
=0





°°°°°°  (C.4)

Then by the triangle inequality
°°0+1 − 0

°° ≤ °°̂+1 − 0
°°+°°̂+1 − 0+1

°° ≤ −16
³°°° 1

 0

−̂

P0

=̂


°°°
+ 

0

−̂

´
+ −18

µ


0
+1
− 0



+ 1
 0
+1
−0



P0+1−1
=0





¶
where 8 ≡ min

µ
1

0
+1
−0



P0+1−1
=0




0


¶
≥

2 w.p.a.1 by Lemma A.3(ii) It follows that
Pmax

=0+1

P0

=1  (
(2)

3) is bounded from above by

maxX
=0+1

0X
=1



µ
−1 −16 +



min
−18 ≥

°°0+1 − 0
°° 3¶

+

maxX
=0+1

0X
=1



⎛⎝−16

°°°°°° 1

 0 − ̂

 0−1X
=̂



°°°°°° ≥ °°0+1 − 0
°° 3  0 − ̂ ≥ 

⎞⎠
+

maxX
=0+1

0X
=1



⎛⎝−18

°°°°°° 1

 0+1 −  0

 0+1−1X
=0





°°°°°° ≥ °°0+1 − 0
°° 3

⎞⎠ 
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which converges to zero by arguments analogous to those used in the study of (B.8). For 
(3)

3 we apply

Lemma A.1 first with  =  0−1 and  =  0 to obtain

 

°°°°°° 1
0−1X
=0

−1


0


¡
̂+1 − 0

¢− 1



0−1X
=0

−1



°°°°°°  (C.5)

and then with  =  0 and  = ̂+1 to obtain

 

°°°°°° 1
̂+1−1X
=0




0


¡
̂+1 − 0+1

¢− 1



̂+1−1X
=0





°°°°°°  (C.6)

Then by triangle inequality
°°0+1 − 0

°° ≤ °°̂+1 − 0
°°+°°̂+1 − 0+1

°° ≤ −19
³°°° 1

 0

−0

−1

P 0−1
=0

−1


°°°
+ 

0

−0

−1

´
+−110

³


̂+1−0
+ 1

̂+1−0
P̂+1−1

= 0




´
where 9 ≡ min

³
1

0

−0

−1

P0−1
= 0

−1


0


´
≥

2 w.p.a.1 and 10 ≡ min

³
1

̂+1− 0
P̂+1−1

= 0



0


´
≥ 2 w.p.a.1 by Lemma A.3(ii). It follows

that
Pmax

=0+1

P0

=1  (
(3)

3) is bounded from above by

maxX
=0+1

0X
=1



µ


min
−19 + −1 −110 ≥

°°0+1 − 0
°° 3¶

+

maxX
=0+1

0X
=1



⎛⎝−19

°°°°°° 1

 0 −  0−1

0−1X
= 0

−1



°°°°°° ≥ °°0+1 − 0
°° 3

⎞⎠
+

maxX
=0+1

0X
=1



⎛⎝−110

°°°°°° 1

̂+1 −  0

̂+1−1X
=0





°°°°°° ≥ °°0+1 − 0
°° 3 ̂+1 −  0 ≥ 

⎞⎠ 

which converges to zero by arguments analogous to those used in the study of (B.8). For 
(4)

3 we apply

Lemma A.1 first with  =  0−1 and  =  0 to obtain (C.5) and then with  =  0 and  =  0+1

to obtain (C.4). Then by the triangle inequality
°°0+1 − 0

°° ≤ °°̂+1 − 0
°° + °°̂+1 − 0+1

°° ≤
−19

³


0

−0

−1
+
°°° 1
 0

− 0

−1

P0−1
=0

−1


°°°´+−18µ 
0
+1
−0



+ 1
0
+1
−0



P0+1−1
=0





¶
. It follows thatPmax

=0+1

P0

=1  (
(4)

3) is bounded from above by

maxX
=0+1

0X
=1



µ


min

³
−19 + −18

´
≥
°°0+1 − 0

°° 3¶

+

maxX
=0+1

0X
=1



⎛⎝−19

°°°°°° 1

 0 −  0−1

0−1X
= 0

−1



°°°°°° ≥ °°0+1 − 0
°° 3

⎞⎠
+

maxX
=0+1

0X
=1



⎛⎝−18

°°°°°° 1

 0+1 −  0

0+1−1X
= 0





°°°°°° ≥ °°0+1 − 0
°° 3

⎞⎠
which converges to zero by arguments analogous to those used in the study of (B.8). Consequently,


hn
D(T̂̂ T 00)  

o
∩ ©max ≥ ̂  0

ªi→ 0 as  →∞ ¥
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D Proof of Theorem 3.3

To avoid confusion of notation, let ̆ T̆̆=(̆1  ̆̆) and α̂̆(T̆̆) = (̂1(T̆̆)0  ̂̆+1(T̆̆)0)0 be the
hypothesized GFL estimates of the number of breaks, the set of break points, and the set of regression

coefficient estimates, respectively. Let α̂T̆̆ be the corresponding set of post-Lasso OLS estimates. Let

 (·; ·) and 1 (·; ·) be as defined in (2.5) and 3.1, respectively. Let α̂T = (̂01T   ̂
0
+1T)

0 ≡
argmin 1 (α;T) denote the post-Lasso OLS estimate of α =

¡
01  

0
+1

¢0
for the given set

of break dates specified in T We want to show that for any ̆  0 we have  ((α̂̆(T̆̆); T̆̆)
 (α̂0(T̂0); T̂0))→ 1 Noting that under Assumption A3(iv)



min
2
min

h


³
α̂̆

³
T̆̆
´
; T̆̆

´
−

³
α̂0

³
T̂0

´
; T̂0

´i
=



min
2
min

⎧⎨⎩ 1
̆+1X
=1

̆−1X
=̆−1

∙
 − ̂

³
T̆̆
´0


¸2
− 1



0+1X
=1

̂−1X
=̂−1

∙
 − ̂

³
T̂0

´0


¸2⎫⎬⎭
+



min
2
min

⎧⎨⎩
̆X
=1

°°°̂+1 ³T̆̆´− ̂

³
T̆̆
´°°°− 0X

=1

°°°̂+1 ³T̂0

´
− ̂

³
T̂0

´°°°
⎫⎬⎭

≥ 

min
2
min

h
1

³
α̂T̆̆ ; T̆̆

´
−1

³
α̂0

³
T̂0

´
; T̂0

´i
+  (1)

it suffices to show that for some   0



µ
inf

0≤0
inf
T



min
2
min

h
1 (α̂T ; T)−1

³
α̂0

³
T̂0

´
; T̂0

´i
 +  (1)

¶
→ 1, (D.1)

where T = (1  ) with 1  1       denotes an arbitrary -dimensional set of potential

break dates. We prove (D.1) by showing that (i) 
min

2
min

h
1

³
α̂0

³
T̂0

´
; T̂0

´
− ̄2

i
=  (1) 

and (ii) 
³
inf0≤0 infT


min

2
min

£
1 (α̂T ; T)− ̄2

¤ ≥ +  (1)
´
→ 1 as  → ∞ where ̄2 ≡

1


P0+1
=1

P0 −1
=0−1

¡
 − 00 

¢2
= 1



P
=1 

2
 

We first show (i). We make the following decomposition: 1

³
α̂0

³
T̂0

´
; T̂0

´
−̄2 =

P0+1
=1

1


P̂−1
=̂−1

[
¡
 − ̂0

¢2 − 2 ] ≡
P0+1

=1 1  say. To study 1  we consider four subcases: (i1) ̂−1   0−1

and ̂   0  (i2) ̂−1   0−1 and ̂ ≥  0  (i3) ̂−1 ≥  0−1 and ̂   0  and (i4) ̂−1 ≥  0−1 and

̂ ≥  0  In subcase (i1), we have

1 =
1



0 −1X
= 0−1

h¡
 − ̂0

¢2 − 2

i
+
1



 0−1−1X
=̂−1

h¡
 − ̂0

¢2 − 2

i
− 1



 0 −1X
=̂

h¡
 − ̂0

¢2 − 2

i
≡ 1 (1) +1 (2)−1 (3)  say.

By the fact that 1


P0 −1
=0−1

 =  (
£
(log 0 )

0
¤12

 ) = 

£
((log min)

 )12
¤
and 1

0

P0 −1
=0−1


0

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=  (1) uniformly in  we have

1 (1) = −2 ¡̂ − 0
¢0 1


0 −1X
=0−1

 +
¡
̂ − 0

¢0 1


 0 −1X
=0−1


0


¡
̂ − 0

¢
= −

°°̂ − 0
°°

h
((log min)

 )12
i
+
°°̂ − 0

°°2 (1) uniformly in 

For1 (2)  we have1 (2) = −2
¡
̂ − 0

¢0 1


P0 −1
=̂−1

+
¡
̂ − 0

¢0 1


P0 −1
=̂−1


0


¡
̂ − 0

¢ ≡
−21 (2 1) + 1 (2 2)  say. By Theorem 3.1(i) and Markov inequality, w.p.a.1 we have that uni-

formly in 

1 (2 1) ≤
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°° 1

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
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°°̂ − 0
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It follows that 1 (2) =  (
°°̂ − 0

°° + °°̂ − 0
°°2) (1) uniformly in  Similarly, we can show

that 1 (3) =  (
°°̂ − 0

°° + °°̂ − 0
°°2) (1) uniformly in  Consequently, we have 1 =

 (1)
†
1 in subcase (i1), where 

†
1 = [

−12(log  )2+ ]
°°̂ − 0

°°+°°̂ − 0
°°2. Analogously,

we can show that this result also holds in subcases (i2)-(i4). By Theorem 3.1(ii) and Assumptions A3(iii)-

(iv), ̂ − 0 =  (
−12
min ) and −12(log min)2 +  = [−12(log min)2] It follows that


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¡
−1min

¢i
=  (1) (D.2)

under Assumption A3(iv). It follows that 
min

2
min

h
1

³
α̂0

³
T̂0

´
; T̂0

´
− ̄2

i
=  (1) 

We now show (ii). For brevity we assume that 0 = 1 and ̂1   01 below as the other cases can be

studied analogously. In this case,  = 0 and T0 is empty. Then α̂T0 reduces to the OLS estimate of 
on  using all  observations and we have α̂T0 = ̂ ≡

³
1

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=1 

0

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
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=1  Using (2.2)

with 0 = 1 yields
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where ∗ ≡ 01

−11

0
1 +

02

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0
2 =  (1)   =

1

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=1 

0
 1 =

1
01
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0
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2 =
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P
=01


0
 Note that  1 and 2 are all asymptotically nonsingular by Lemma

A.3. Let 01 ≡ 02 − 01 Then ∗ − 01 =
02

−12

0
1 and ∗ − 02 = − 01


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0
1 Using this we
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can readily show that

1 (α̂T0)− ̄2 =
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where the leading term is given by
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¢
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¸
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min for some   0

It follows that 
min

2
min

£
1 (α̂T ; T)− ̄2

¤ ≥  + 
min

2
min



¡
−12

¢
=  +  (1) by Assumption

A3(iv). This completes the proof of (ii) for the case 0 = 1 Analogous but more tedious arguments

show that (ii) also holds for the general case where 0 ≥ 2 ¥

E Proof of Theorem 3.4

Denote Ω = [0 max]  a bounded interval in R+. We divide Ω into three subsets Ω0 Ω− and Ω+ as follows

Ω0 =
©
 ∈ Ω : ̂ = 0

ª
 Ω− =

©
 ∈ Ω : ̂  0

ª
 and Ω+ =

©
 ∈ Ω : ̂  0

ª


Clearly, Ω0Ω− and Ω+ denote the three subsets of Ω in which the correct-, under- and over-number of

breaks are selected by the GFL, respectively. Recall α̂T̂̂

= (̂0
1T̂̂

  ̂0
̂+1T̂̂

)0 denotes the set of

post-Lasso OLS estimates of the regression coefficients based on the break dates in T̂̂
= T̂̂

() =

(̂1 ()   ̂̂
()) where we make the dependence of various estimates on  explicit when necessary.

Let ̂2T̂̂

≡ 1(α̂T̂̂

; T̂̂
) Let 0 denote an element in Ω0 that also satisfies the conditions on

 in Assumptions A3(iii)-(iv). For any 0 ∈ Ω0 we have ̂0

= 0 and

¯̄̄
̂
¡
0
¢−  0

¯̄̄
≤  for

 = 1 0 by Theorem 3.1 as 0 also satisfies Assumptions A3(iii)-(iv). By the proof of Theorem

3.3, ̂2T̂0
= ̄2 + (log min)

2−12 (
−12
min ) where ̄2 ≡ 1



P
=1 

2


→ 20 ≡ lim→∞ 1


P
=1

¡
2
¢

under Assumption A1. Then by Assumption A4(ii) and Slutsky lemma, 
¡
0
¢
= log(̂2T̂0

)+ 
0 =

log(̂2T 0

0
) +  (1)

→ log
¡
20
¢
. We consider the case of under- and over-fitted models separately.

Case 1: Under-fitted model. In this case, ̂  0 and by the proof of Theorem 3.3


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2
min
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³
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³
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´
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for some   0 It follows that



µ
inf

∈Ω−
 ()  

¡
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= 

µ
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´
+  (1)  0

¶
→ 1 (E.1)

Case 2: Over-fitted model. Let  ∈ Ω+. By the fact that log (1 + ) =  + 
¡
2
¢
for  in the

neighborhood of 0, and Lemma E.1,

−1
£
 ()− 

¡
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Noting that −1 (̂2T̂̃

− ̂2T̂0
) =  (1) by Lemma E.1, ̂

2

T̂0
= 20 +  (1)  and −1  → ∞ by

Assumption A4(ii), we have



µ
inf

∈Ω+
 ()  

¡
0
¢¶

≥ 

Ã¡
20
¢−1

min
0≤max

inf
T:D(TT 0

0)≤

h
−1

³
̂2T − ̂2T̂0

´
+ −1  

¡
−0

¢i
+  (1)  0

!
→ 1 as  →∞ (E.2)

Combining (E.1) with (E.2) yields 
¡
inf∈Ω−∪Ω+  ()  

¡
0
¢¢ → 1 as  →∞ This implies that

the minimizer ̂ of  () cannot belong to either Ω− or Ω+ Consequently, we have  (̂ ∈ Ω0) =  (̂
̂
=

0)→ 1 as  →∞ ¥

Lemma E.1 max0≤max
supT∈T −1

¯̄̄
̂2T − ̂2T̂0

¯̄̄
=  (1)  where T = {T = (1  ) :

1  1       D ¡T T 00

¢ ≤ }

Proof. Noting that |̂2T − ̂2T̂0
| ≤ |̂2T − ̄2 | + |̂2T̂0

− ̄2 | and D(T̂0  T 00) ≤  w.p.a.1 by

Theorem 3.1(i), it suffices to show that max0≤≤max
supT∈T −1

¯̄
̂2T − ̄2

¯̄
=  (1) 

Let ∈ ©0 max

ª
Given T = (1  ) ∈ T let α̂T =

¡
̂01T   ̂

0
+1T

¢0
= argmin

1 (α; T) denote the post-Lasso estimate of α = (1  +1). Let ̂
2
T ≡ 1 (α̂T ; T). Note

that we do not impose the condition that min0≤≤(+1 − ) ≥ min → ∞ It is possible to have

+1 −    for some  in which case the solution {̂T   = 1 + 1} is not unique despite its
existence. We can treat T and T 00 = ( 01   

0
0) as two sets with  and 0 break dates, respec-

tively. Let T̄+0 = (̄1 ̄2  ̄+0) denote the union of T and T 00 with elements ordered in

non-descending order: 1  ̄1 ≤ ̄2 ≤ · · · ≤ ̄+0   In view of the fact that ̂2T 0

0
≥ ̂2T̄+0

and

̂2T 0

0
= ̄2 + (

−1) we have

0 ≤ ̂2T 0

0
− ̂2T̄+0

= ̄2 − ̂2T̄+0
+

¡
−1

¢ ≤ ¡+0 + 1
¢
 +

¡
−1

¢
 (E.3)
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where

 ≡ sup
1≤≤+1(−1) does not contain any break points

−1
¯̄̄̄
¯inf

−1X
=

( − 0)
2 − 2

¯̄̄̄
¯ 

Let  = (  −1)0  = (  −1)0 and  = (  −1)0 By standard least squares regres-

sion results, if the time interval ( −1) does not contain any break points, then
¯̄̄
inf

P−1
= ( − 0)

2 − 2

¯̄̄
=  0

 where 
=  (

0
)

+
 0
 and 

+ denotes the Moore-Penrose generalized inverse

of  Let  =   Then

 ≤ sup
1≤≤+1

−1 0


= sup
1≤≤+1−≥

−1 0
 + sup

1≤≤ −
−1 0

 ≡ 1 + 2 say.

For 1 by Lemmas A.3 and A.4 and Assumption A3(ii) we have that w.p.a.1

1 = sup
1≤≤+1−≥

−1 0 (
0
)

−1
 0


≤ −1
∙

sup
1≤≤+1−≥

max

µ
1

 − 
 0


¶¸−1
sup

1≤≤+1−≥

°°°° 1√
 − 

 0


°°°°2
= −1 (1) ((log  )

) =  ( )

For 2 noting that max (
) = 1 we have by analogous arguments as used in the proof of Lemma

A.4 and Assumption A3(ii)

2 ≤ sup
1≤≤ −

−1
−1X
=

2 ≤ −1 sup
1≤≤−

+−1X
=

£
2 −

¡
2
¢¤
+ −1 sup

1≤≤−

+−1X
=


¡
2
¢

≤ −1

³p
 (log  )


´
+ −1 ( ) = 

¡
−1

¢
=  ( ) 

It follows that  =  ( )  This, in conjunction with (E.3), implies that − ( ) ≤ ̂2T̄+0
− ̄2 ≤



¡
−1

¢
 which holds for all  and T = (1  )  It follows that uniformly in  and T we have

−1 (̂2T − ̄2 ) ≥ −1 (̂2T̄+0
− ̄2 ) ≥ − (1)  (E.4)

Next, we want to show

max
0+1≤≤max

sup
T∈T

−1 (̂2T − ̄2 ) ≤  (1)  (E.5)

Since T = (1  ) ∈ T for each  0 ∈ T 0 there exists  ∗ ∈ T such that
¯̄
 ∗ −  0

¯̄
≤   This,

in conjunction with Assumption A3(i), also ensures that  ∗   ∗+1 for  = 0 1 
0 where by default

 ∗0 = 1 and  ∗0+1 =  + 1 Let T ∗0 =
¡
 ∗1   

∗
0

¢
 Note that

̂2T − ̄2 ≤ 1

³
α̂T ∗

0
; T ∗0

´
− ̄2 =

0+1X
=1

̄1 
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where ̄1 ≡ 1


P∗ −1
=∗−1

[( − ̂0T ∗
0

)
2 − 2 ] In addition, min1≤≤0

¯̄
 ∗ −  0

¯̄
≤  , min0≤≤0¯̄

 0+1 −  0
¯̄
= min and the fact that  =  (min) ensure that 

∗
 − ∗−1 = 0 +( ) = 0 + (min)

for  = 1 0 + 1 As a result, ̂T ∗
0

is uniquely defined in large samples and given by ̂T ∗
0

=

( 0
∗−1

∗

∗−1

∗

)−1 0

∗−1
∗

∗−1

∗

 It is straightforward to show that ̂T ∗

0
−0 = 

£
(0 )

−12 + 
¤

and
0+1X
=1

°°°̂T ∗
0
− 0

°°° = 0 (
−2
min +  ) = 0 (

−2
min ) for  = 1 2 (E.6)

To study ̄1  we consider four subcases: (i1) 
∗
−1   0−1 and  ∗   0  (i2) 

∗
−1   0−1 and

 ∗ ≥  0  (i3) 
∗
−1 ≥  0−1 and  ∗   0  and (i4) 

∗
−1 ≥  0−1 and  ∗ ≥  0  In subcase (i1), we have

̄1 =
1


P 0 −1
=0−1

[(−̂0T ∗
0

)
2−2 ]+ 1



P 0−1−1
=∗−1

[(−̂0T ∗
0

)
2−2 ] − 1



P0 −1
=∗

[(−̂0T ∗
0

)
2−

2 ] ≡ ̄1 (1) + ̄1 (2) − ̄1 (3)  say. By Theorem 3.2(ii) and the fact that 1


P0 −1
=0−1

 =



£
((log min)

 )12
¤
and 1

0

P0 −1
=0−1


0
 =  (1) uniformly in  we have

̄1 (1) = −2
³
̂T ∗

0
− 0

´0 1


 0 −1X
= 0−1

 +
³
̂T ∗

0
− 0

´0 1


0 −1X
=0−1


0


³
̂T ∗

0
− 0

´
=

°°°̂T ∗
0
− 0

°°°

³
−12(log min)2

´
+
°°°̂T ∗

0
− 0

°°°2 uniformly in 

For ̄1 (2)  we have ̄1 (2) = −2(̂T ∗
0
−0 )0 1

P 0−1−1
=∗−1

+(̂T ∗
0
−0)0 1

P 0−1−1
=∗−1


0
(̂T ∗

0

−0) ≡ −2̄1 (2 1) +̄1 (2 2)  say. Noting that uniformly in 

̄1 (2 1) ≤ 

°°°̂T ∗
0
− 0

°°° 1



 0−1−1X
=0 −

kk = 

°°°̂T ∗
0
− 0

°°° (1)  and

̄1 (2 2) ≤ 

°°°̂T ∗
0
− 0

°°°2 max
⎛⎝ 1



 0 −1X
=0 −


0


⎞⎠ = 

°°°̂T ∗
0
− 0

°°°2 (1) 

we have ̄1 (2) =  ( )

µ°°°̂T ∗
0
− 0

°°°+ °°°̂T ∗
0
− 0

°°°2¶ uniformly in  Analogously, we can

show that ̄1 (3) =  ( )

µ°°°̂T ∗
0
− 0

°°°+ °°°̂T ∗
0
− 0

°°°2¶ uniformly in  It follows that ̄1 =



¡
−12(log min)2

¢ °°°̂T ∗
0
− 0

°°°+ (1)
°°°̂T ∗

0
− 0

°°°2 uniformly in  in subcase (i1). The same
probability order holds in subcases (i2)-(i4). Then by (E.6) and Assumption A4(i), we have

−1

0+1X
=1

̄1 = 

³
−12(log min)2

−1


´0+1X
=1

°°°̂T ∗
0
− 0

°°°+

¡
−1

¢0+1X
=1

°°°̂T ∗
0
− 0

°°°2
= −12(log min)2

−1
 0 (

−12
min ) + −1 0 (

−1
min) =  (1) 

and (E.5) follows. Combining (E.4) with (E.5) yields max0+1≤≤max
supT∈T −1

¯̄
̂2T − ̄2

¯̄
=

 (1) 
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F Proof of Theorem 3.5

Despite the presence of the Lasso penalty term, the proof follows from the same idea as used in the

literature on break estimation; see, e.g., Bai (1995, Theorem 1), Bai (1997a, Proposition 3), and Su et al.

(2013, Theorem 4.4). The main difference is that these early papers focus on the case of a single break

whereas we allow the number of breaks (0) to diverge to infinity. [Bai and Perron (1998) stated that

the limiting distribution in the (fixed) multiple break case is the same as the single break case, but did

not give a formal proof.] By Theorem 3.4, 0 = ̂ w.p.a.1 so that we can treat 
0 as if it were known

in large samples. We reformulate the GFL objective function as

(α) =
1



0+1X
=1

−1X
=−1

( − 0)
2
+ 

0X
=1

k+1 − −1k (F.1)

where α = (01 
0
2  

0
0+1)

0 and  = (1  0) Let α̂ () ≡ argmin (α ) ̂ ≡ (̂1  ̂0)

= argmin  (α̂ () )  and α̂ = α̂ (̂) = (̂01 ̂
0
2  ̂

0
0+1)

0 Let 0 = ( 01   
0
0) To study the

asymptotic distributions of the Lasso estimators α̂ and ̂ we can evaluate the global behavior of (α

) over the whole parameter space for α and  via reparametrization. Define

 (a) = 
£
(α

0 +−1
0a ())− 

¡
α00

¢¤
(F.2)

where  () = (1 (1)   0 (0)) with  () = b 0 + c,  = (̄−2)  = (1  0) ∈
R

0

, a = (01 
0
2  

0
0+1)

0
is a 

¡
0 + 1

¢ × 1 vector, and 0 is as defined in Section 3.3. Assume

that  () = 1 if  () ≤ 1 and  () =  if  () ≥  Apparently, the reparametrization in

(F.2) conforms with the anticipated rates of pointwise convergence for α̂ and ̂ Let â and ̂ minimize

 (a)  Then â =
−1
0(α̂−α0) and b ̂c = ̂ −  0 for  = 1 

0

For notational simplicity, we focus on the case where  ≤ 0 ∀ ∈ {1 0} as the other 20 − 1
cases can be analyzed analogously. Noting that 0+1 − 0 = 0  we have

 (a) =

0X
=1

()−1X
= 0−1

½h
 − (0 )−120

i2
− 2

¾

+

0X
=1

0 −1X
=()

½h
 − (0+1)−120+1 − 00

i2
− 2

¾

+

X
=0

0

½h
 − (00+1)

−1200+1

i2
− 2

¾

+

0X
=1

n°°°(0+1)−12+1 − (0 )−12 + 0

°°°− °°0°°o
≡ 1 (a) + 2 (a) + 3 (a) + 4 (a)  say.
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We shall prove the weak convergence of  (a) on the compact set S ≡ {(a) : kak ≤
√
0

kk ≤
√
0} where  is fixed positive constant. By the triangle inequality and Assumption A6,

|4 (a)| ≤ 
P0

=1

°°(0+1)−12+1 − (0 )−12°° = (0
−12
min ) =  (1) uniformly in a It is

straightforward to show that uniformly in (a) ∈ S

1 (a) = −2
0X
=1

(0 )
−120

0 −1X
=0−1

 +

0X
=1

(0 )
−10

 0 −1X
=0−1


0
 +  (1) 

2 (a) = −2
0X
=1

00

0 −1X
=b0 +c

 +

0X
=1

00

 0 −1X
=b0 +c


0

0
 +  (1) 

In addition, 3 (a) = −2(00+1)
−1200+1

P
=0

0
 + (

0
0+1)

−100+1

P
= 0

0


0
0+1 It fol-

lows that uniformly in (a ) ∈ S we have  (a) = ̄1 (a) + ̄2 ()+ (1)  where ̄1 (a) =

−2a0−1
0X0+a0−10X0X−10a and ̄2 () =

P0

=1[−200
P0 −1

=b0 +c
 +

00


P0 −1
=b0 +c


0

0
 ]

Noting that ̄1 (a) converges weakly on a compact set to ̄
(0)

1 (a) = −2a0Φ12+a0Ψa where Φ and Ψ
are as defined in Section 3.3, and  is a 

¡
0 + 1

¢× 1 vector of independent standard normal variables.
By the continuous mapping theorem (CMT),

â =−1(α̂−α0) →  argmin
a

̄
(0)

1 (a) = 
¡
0 Ψ−1ΦΨ−10

¢


This proves part (i) in Theorem 3.5.

Let  = (̄0Ψ ̄)
−1 for  = 1 0 By the invariance principle for heterogenous mixing

processes (e.g., White (2001, Theorem 7.18)), 00
P0 −1

=b0 +c
 =

1√


P0 −1
=b0 +c


12


00


⇒ 11 (−)  Because  →∞, we have 00
P 0 −1

=b 0 +c


0

0
 =

−
− 

00


P0 −1
=b0 +c


0

0


→ | | by Assumptions A1 and A5(ii). It follows that ̄2 () ⇒
P0

=1[−211 (−)
+ | |] when   0 ∀ ∈ {1 0} For the case   0 ∀ ∈ {1 0} the counter part of ̄2 ()
is ̄ ∗2 () =

P0

=1[−200
Pb0 +c

=0
 +

00


Pb0 +c
=0


0

0
 ] which converges weakly toP0

=1[−2
p
22 () +  ] The cases where elements of  have different signs can be derived

analogously by discussing the signs of ( −  0 )’s as in the proof of Theorem 3.4. The independence

between 1 (·) and 2 (·) arises because by a simple application of Davydov’s inequality for strong
mixing processes (see, e.g., Hall and Heyde (1980, Corollary A.2)) and Assumptions A1 and A6(i), for

any   0 ̄  0 and small   0¯̄̄̄
¯̄
⎡⎣00 0 −1X

=b 0 +c


b 0 + ̄cX
=0


0

0


⎤⎦¯̄̄̄¯̄ ≤ 8°°0°°2 sup
≥1


h
kk2+

i ∞X
=1

 ()
(2+)

=  (1) 

By the same reason,  and  are independent for all  6=  and   = 1 2 Consequently, we

have ̄2 () ⇒
P0

=1−2 ()  (∆0Ψ∆)̄
2
(̂ −  0 )

→ argmax  () by CMT, and ̂ −  0 are

asymptotically independent of ̂ −  0 for all  6=  This completes the proof of part (ii). ¥
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G Proof of Theorem 3.6

We prove the theorem by showing that α̂T̂0
shares the same asymptotic distribution as α̂T 0

0
and

the asymptotic distribution of α̂T 0

0
is as given in the theorem. The latter can be verified easily

under our assumptions by a simple application of the central limit theorem for heterogenous strong

mixing processes; see, e.g., White (2001, Theorem 5.2). For notational simplicity, we shall suppress

the dependence of 0 and ̂0 on 0 and write them as  and ̂ respectively. Noting that

̂(α̂T̂0
−α0) = (̂−1X̂0X̂̂−1)−1̂−1X̂0[(X− X̂)α0+ ] and (α̂T 0

0
−α0) = (−1X0X−1)−1−1X0

by (3.3)-(3.4), we have

[̂(α̂T̂0
−α0)−(α̂T 0

0
−α0)] = (̂−1̂ −−1) + ̂−1̂

= ̂−1(̂ −) + (̂−1 −−1) + ̂−1̂,

where ̂ = ̂−1X̂0X̂̂−1  = −1X0X−1 ̂ = ̂−1X̂0  = −1X0 and ̂ = ̂−1X̂0(X− X̂)α0We
prove the theorem by showing that (i) 1 ≡ −1(̂−) =  (1)  (ii) 2 ≡ (̂−1−−1)̂ =  (1) 

and (iii) 3 ≡ ̂−1̂ =  (1) 

To proceed, we first show that: (a) min () ≥ 2 and max () ≤ 2̄ w.p.a.1, (b)
°°°̂−

°°°2 =

¡
10

¢
 and (c) min(̂) ≥ 4 and max(̂) ≤ 4̄ w.p.a.1. By Weyl inequality, min () ≥

min ( ())−max (− ())≥ min ( ())− k− ()k Assumption A2(i) ensures that min ( ())
≥  By Assumption A1 and Davydov inequality, we can readily verify that k− ()k2 = 

¡
0min

¢
=  (1)  Thus k− ()k =  (1) by Chebyshev inequality and the first part of (a) follows. Analo-

gously, we can prove the second part of (a). For (b), we have

̂− = ̂−1(X̂−X)0X̂̂−1 + ̂−1X0(X̂−X)̂−1 +−1X0X(̂−1 −−1) + (̂−1 −−1)X0X̂−1

≡ 1 +2 +3 +4 say.

Write 1 as a partitioned matrix: 1 = (1)
0+1

=1
where 1 ’s are  ×  matrices. Note that

X̂0X̂ =diag(X̂01X̂1  X̂
0
0+1X̂0+1) and X0X̂ is a block tridiagonal matrix w.p.a.1:

X0X̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P01∧̂1−1
=1 

P 01−1
=̂1

 0 · · · 0 0P̂1−1
= 01


P02∧̂2−1

=01∨̂1


P02−1
=̂2

 · · · 0 0

0
P̂2−1

= 02


P03∧̂3−1
=02∨̂2

 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · P0
0∧̂0−1

=0
0−1∨̂0−1


P0−1

=̂0


0 0 0 · · · P̂0−1
=0

0


P

= 0
0∨̂0



⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where  = 

0
 and

P
=  = 0 if    and we use the fact that when  ( 0−1  ̂   0+1) → 1

because w.p.a.1
¯̄̄
̂ −  0

¯̄̄
≤  = (min) by Theorem 3.1(i) and Assumption A3(i). We can analyze
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1 for   = 1 
0 + 1 For example, if  01 ≥ ̂1 then 111 = 0 121 = 0 and

k112k = ̂
−12
1 ̂

−12
2

°°°°°°
01−1X
=̂1


0


°°°°°° ≤  ̂
−12
1 ̂

−12
2

1



01−1X
=1−

k0k = 

¡
 

−1
min

¢
;

and if  01  ̂1 then 112 = 0 k111k = ̂−11
°°°P̂1−1

=01


0


°°° ≤  ̂
−1
1

1


P01+−1
= 01

k0k =


¡
 

−1
min

¢
 and analogously, k121k = ̂

−12
1 ̂

−12
2

°°°P̂1−1
=01


0


°°° = 

¡
 

−1
min

¢
 By the same to-

ken, we can show that for those 1 ’s that are nonzero, their Frobenius norm are uniformly bounded from

above by 

¡
 

−1
min

¢
 Consequently, k1k2 =

P0+1
=1

P0+1
=1|−|≤1 kk2 =  (

0
¡
 

−1
min

¢2
) =


¡
10

¢
 For 3 we have

k3k2 = tr
³
−1X0X−1(̂−1 −−1)(̂−1 −−1)−1X0X−1

´
≤ max

1≤≤0+1
0

³
̂
−12
 − 

0−12


´2
tr
¡
−1X0X−1−1X0X−1

¢
≤ max

1≤≤0+1
0

³
̂
−12
 − 

0−12


´2
max () tr ()

= 

¡
 22 

−2
min

¢
 (1)

¡
0
¢
= 

³
0
¡
 

−1
min

¢2´
= 

¡
10

¢


where we use the fact that 0

³
̂
−12
 − 

0−12


´2
=

(̂−0 )2

̂


̂
12

 +(0 )
12
2 = 

¡
 22 

−2
min

¢
uniformly in  by

Theorem 3.1(i). Analogously, we can show that kk = 
¡
10

¢
for  = 2 4 Thus we have shown

that
°°°̂−

°°°2 = 
¡
10

¢
 For part (c), we apply Weyl inequality to obtain w.p.a.1, min(̂) ≥

min() − max(− ̂) ≥ min() −
°°°− ̂

°°° ≥ 2−  (1) ≥ 4 Analogously, we can show the

second part of (c) holds.

To show (i), we first make the following decomposition 1 = ̂−1̂−1(X̂ − X)0 + ̂−1(̂−1 −
−1)X0 ≡ 11 + 12 By Theorem 3.1(i) and Assumption A3(i),

¯̄̄
̂ −  0

¯̄̄
≤  =  (min) 

This ensures that w.p.a.1 ̂ lies between  0−1 and  0+1 for  = 1 0 Let ̄11 ≡ ̂−1(X̂ − X)0
Write ̄11 = (̄0111  ̄

0
110+1)

0 where 1 ’s are  × 1 vectors. ̄111 = 0 if  01 ≥ ̂1 and

̄111 = ̂
−12


P̂1−1
=01

 if 
0
1  ̂1, we have w.p.a.1,

°°̄111°° ≤  ̂
−12
1

1


P 01+−1
= 01

kk =
 ( 

−12
min ) (1) = 

¡
(0)−12

¢
 Analogously, we can show that

°°̄10+1

°° = 
¡
(0)−12

¢
for

 = 2 0 0 + 1 and
°°̄11°°2 =P0+1

=1

°°̄11°°2 =  (1)  Consequently, we have

k11k2 ≤
°°°̂−1°°°2 °°̄11°°2 = tr³̂−1̂−10´°°̄11°°2 ≤ hmin(̂)i−2 kk2 °°̄11°°2 =  (1) 

Noting that
°°−1X0°°2 = 

¡
0
¢
by Markov inequality and tr(̂−1̂−10) ≤ [min(̂)]−2 kk2 =
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 (1)  we have

k12k2 ≤
°°°̂−1̂−1(̂ −)

°°°2 °°−1X°°2
= tr

³
̂−1̂−1(̂ −)(̂ −)̂−1̂−10

´°°−1X°°2
≤ max

1≤≤0+1
̂−1

³
̂
12
 − 

012


´2
tr
³
̂−1̂−10

´°°−1X°°2
=  (

22 
−2
min) (1)

¡
0
¢
=  (

0
¡
 

−1
min

¢2
) =  (1)

where we use the fact that ̂−1

³
̂
12
 − 

012


´2
≤ (̂−0 )

2

̂


̂
12

 +
012



2 = 

¡
 22 

−2
min

¢
uniformly in  by

Theorem 3.1(i). Thus, we have 1 =  (1) 

To show (ii), we apply the above results in (a)-(c) and the fact that kk2 = 

¡
0
¢
to obtain

k2 k2 =
°°°̂−1(− ̂)−1

°°°2 ≤ °°°̂−1(− ̂)−1
°°°2 kk2

= tr
³
̂−1(− ̂)−1−1(− ̂)0

´
kk2

≤ [min ()]
−2
h
min(̂)

i−2 °°°̂−
°°°2 kk2 kk2

=  (1) (1) 
¡
10

¢
 (1)

¡
0
¢
=  (1) 

We now show (iii). We write ̂ = (̂01  ̂
0
0+1)

0 where ̂ ’s are × 1 vectors. For ̂1 we have

̂1 =

⎧⎨⎩ 0 if  01 ≥ ̂1

̂
−12


P̂1−1
=01


0


¡
02 − 01

¢
if  01  ̂1

w.p.a.1,

where we use the fact that when ̂1   01   (̂1   02 )→ 1 because w.p.a.1 ̂1− 01 ≤  = ( 02 − 01 )

by Theorem 3.1(i) and Assumption A3(i). It follows that

°°°̂1°°° ≤  ̂
−12
1

1



 01+−1X
=01

kk2
°°02 − 01

°° = 

³
 

−12
min

´


Analogously, we can show that
°°°̂0+1

°°° =  ( 
−12
min ) For the ̂ with  = 2 0 we can

discuss four subcases according to the signs of ̂−1 −  0−1 and ̂ −  0 as in the proof of Theorem

3.4, and show that
°°°̂

°°° =  ( 
−12
min ) uniformly in  for each subcase. Consequently, we have°°°̂°°°2 =P0+1

=1

°°°̂

°°°2 = 0

¡
 22 

−1
min

¢
=  (1) and

k3 k2 ≤ tr
³
̂−1̂−10

´°°°̂°°°2 ≤ hmin(̂)i−2 kk2 °°°̂°°°2 =  (1) (1)  (1) =  (1) 

This completes the proof of the theorem. ¥
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