Shrinkage Estimation of Regression Models with Multiple Structural Changes*

Junhui Qiana and Liangjun Sub

a Antai College of Economics and Management, Shanghai Jiao Tong University

b School of Economics, Singapore Management University

March 11, 2015

Abstract

In this paper we consider the problem of determining the number of structural changes in multiple linear regression models via group fused Lasso. We show that with probability tending to one our method can correctly determine the unknown number of breaks and the estimated break dates are sufficiently close to the true break dates. We obtain estimates of the regression coefficients via post Lasso and establish the asymptotic distributions of the estimates of both break ratios and regression coefficients. We also propose and validate a data-driven method to determine the tuning parameter. Monte Carlo simulations demonstrate that the proposed method works well in finite samples. We illustrate the use of our method with a predictive regression of the equity premium on fundamental information.

JEL Classification: C13, C22

Key Words: Change point; Fused Lasso; Group Lasso; Penalized least squares; Structural change

1 Introduction

Since the 1950s a voluminous literature on issues related to structural changes has been developed. As Perron (2006) remarks, early works were mostly designed for the specific case of a single change. Andrews

*The authors thank Peter C. B. Phillips, Victor Chernozhukov and an anonymous referee for constructive comments and suggestions. They also thank participants in the China Meeting of Econometric Society (CMES 2014) and SJTU-SMU Econometrics Conference (2014) at Shanghai for helpful comments. Su acknowledges support from the Singapore Ministry of Education for Academic Research Fund under grant number MOE2012-T2-2-021. Address Correspondence to: Liangjun Su, School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903; E-mail: ljsu@smu.edu.sg, Phone: +65 6828 0386.
(1993) proposes a supremum-type \((sup\)-type) test for a one-time break in the GMM framework. Andrews and Ploberger (1994) consider the exponential-type \((exp\)-type) and average-type \((avg\)-type) tests for a one-time break in linear regression models and investigate their optimality properties under Pitman local alternatives. Bai (1995) and Bai (1998) consider the median estimation of a regression model with a single break and multiple breaks, respectively. Bai (1997a) and Bai (1997b) study the least squares estimation of a regression model with a single break and with multiple breaks, respectively. Bai and Perron (1998) extend the \(sup\)-type test to models with multiple changes and propose a double maximum test against the alternative under which only the maximum number of breaks is prescribed. They also consider a sequential test for the null hypothesis of \(\ell\) breaks against the alternative of \(\ell + 1\) breaks. Bai et al. (1998) consider a sup Wald test for a single change in a multivariate system, Qu and Perron (2007) extend the analysis to the context of multiple structural changes in multivariate regressions, and Kurozumi and Arai (2006) study inferential problems for multivariate time series with change points, all allowing stationary or integrated regressors as well as trends. Su and White (2010) consider tests of structural changes in semiparametric models. As Bai and Perron (2006) show, the multiple structural change tests tend to be more powerful than the single structural change tests when multiple breaks are present. For a comprehensive survey on structural changes, see Perron (2006).

Despite the satisfactory power properties of multiple structural change tests, they are subject to some practical problems. First, one major practical difficulty is that one needs to consider all permissible partitions of the sample in order to construct the \(avg\)- and \(exp\)-type test statistics, the number of which is proportional to \(T^m\) with \(T\) and \(m\) being the total number of observations in the sample and the number of breaks under the alternative, respectively. When \(m \geq 3\), the computational burden can be prohibitively heavy. For this reason, Bai and Perron (2003a) propose an efficient dynamic-programming-based algorithm to compute the \(sup\)-type test statistic, which requires only \(O(T^2)\) computations for any fixed number of breaks. Andrews (1993) and Bai and Perron (1998, 2003b) tabulate the critical values for the \(sup\)-type test for a one-time break and multiple breaks, respectively. Andrews and Ploberger (1994) tabulate critical values for the \(exp\)- and \(avg\)-type tests for a one-time break. The critical values for the last two types of tests in the case of multiple breaks have not been available until Kurozumi (2012) who tabulates the critical values for the \(exp\)-type test for at most three breaks and those for the \(sup\)- and \(avg\)-type tests for up to five breaks because the computation for the former test is prohibitively expensive in the case of \(m \geq 3\) whereas the latter two tests only require \(O(T^2)\) operations for any given number of breaks under the alternative. Second, for all tests for structural changes in the literature one has to apply some trimming parameter, say, by trimming 100\(\epsilon\) percentage of tail observations, and by requiring the minimum length of a segment be \(\epsilon T\), where \(\epsilon\) typically takes values from 0.05 to 0.25. Both the asymptotic distribution and the finite sample performance of the test heavily depend on \(\epsilon\). One may draw different conclusions for different choices of \(\epsilon\) and the desirable choice of \(\epsilon\) heavily depends on
the underlying data generating process (DGP). See Bai and Perron (2003a, 2006) for discussions on the importance of the choice of \(\epsilon \) for the size and power of the test. Third, the asymptotic distributions of the test statistics depend on the number of regressors in the model. It remains unknown how the presence of irrelevant regressors affects the performance of the tests. Another undesirable feature of the test of no break versus a fixed number of breaks is that one has to pick a number of breaks under the alternative, as practitioners often do not wish to pre-specify a particular number of breaks before making inferences.

In this paper we explore a different approach to the study of structural changes in regression models. For clarity, we focus on structural changes in a linear regression framework. But our methodology can be easily extended to the GMM framework, quantile regression, and systems of equations. Unlike the early literature which tries to test the number of breaks first and then conduct estimation and inference subsequently, we focus on the simultaneous estimation of the number of breaks and model parameters via the method of group fused Lasso (least absolute shrinkage and selection operator). See Tibshirani (1996) for the introduction of Lasso, and Knight and Fu (2000) for the first systematic study of the asymptotic properties of Lasso-type estimators. Tibshirani et al. (2005) propose a total-variation-based shrinkage technique, namely, the fused Lasso, a generalization of the Lasso designed for problems with features that can be ordered in some meaningful way. It penalizes the \(L_1 \)-norm of both the coefficients and their successive differences and encourages sparsity of both the coefficients and their successive differences. Friedman et al. (2007) propose a pathwise coordinatewise optimization algorithm to solve the fused Lasso problem. Rinaldo (2009) considers three interrelated least squares procedures for the fused Lasso and studies their asymptotic properties in the context of estimating an unknown blocky and sparse signal. Harchaoui and Lévy-Leduc (2010) apply the idea of fused Lasso to study the change point problem in one-dimensional piecewise constant signals. Bleakley and Vert (2011) propose fast algorithms to solve the group fused Lasso (hereafter GFL) problem to detect change points in a signal, and Angelosante and Giannakis (2012) develop an efficient block-coordinate descent algorithm to estimate piecewise-constants in time-varying autoregressive models. But they do not study the asymptotic properties of the resulting estimators of break points or regression coefficients.

We show that under suitable conditions on the tuning parameter, minimum regime length, minimum break size, and the underlying data generating process (DGP), the GFL procedure can not under-estimate the number of breaks in the DGP, and when the number of estimated breaks coincides with the true number of breaks, all break points can be “consistently” estimated as in Bai and Perron (1998). We further propose a BIC-type information criterion to determine a data-driven tuning parameter that can yield the correct number of breaks with probability approaching one (w.p.a.1). The limiting distributions of the break date estimates, the regression coefficients estimates, and their post-Lasso versions are also derived. We emphasize that we derive all asymptotic results under a set of fairly general conditions. In particular, the number of observations within each regime may not be proportional to the sample size,
the break magnitudes may differ across different break points, and the number of breaks may diverge to infinity as the sample size passes to infinity. Simulations demonstrate that our procedure works reasonably well in finite samples.

To proceed, it is worth mentioning that our paper contributes to the recent literature on the applications of Lasso-type shrinkage techniques in econometrics. These include Caner (2009) and Fan and Liao (2011) who consider covariate selection in GMM estimation; Belloni et al. (2012), Caner and Fan (2011), García (2011), and Liao (2013) who consider instruments or moment conditions selection in the GMM framework. In addition, Caner and Knight (2013) and Kock (2013) apply bridge estimators to differentiate a unit root from a stationary alternative and to study oracle efficient estimation of linear panel data models with fixed or random effects, respectively; Liao and Phillips (2014) apply adaptive shrinkage techniques to cointegrated systems; Lu and Su (2013) apply adaptive group Lasso to select both relevant regressors and the number of unobserved factors in panel data models with interactive fixed effects; Cheng, Liao, and Schorfheide (2014) use adaptive group Lasso to detect and disentangle two types of instabilities in factor models.

The rest of the paper is organized as follows. Section 2 introduces our GFL procedure. Section 3 analyzes its asymptotic properties. Section 4 reports the Monte Carlo simulation results. Section 5 provides an empirical application and Section 6 concludes. All proofs are relegated to the appendix.

NOTATION. For a real matrix A, we denote its transpose as A', its Frobenius norm as $\|A\|$, and its Moore-Penrose generalized inverse as A^+. When A is symmetric, we use $\mu_{\text{max}}(A)$ and $\mu_{\text{min}}(A)$ to denote its largest and smallest eigenvalues, respectively. I_p denotes a $p \times p$ identity matrix and $0_{a \times b}$ an $a \times b$ matrix of zeros. Let $1\{\cdot\}$ denote the usual indicator function. The operator $\overset{d}{\to}$ denotes convergence in probability, $\overset{d}{\to}$ convergence in distribution, \Rightarrow weak convergence, and plim probability limit.

2 Penalized Estimation of Linear Regression Models with Multiple Breaks

In this section we consider a linear regression model with an unknown number of breaks, which we estimate via the GFL.

2.1 The model

Consider the following linear regression model

$$y_t = \beta_t' x_t + u_t, \ t = 1, \ldots, T,$$

(2.1)

where x_t is a $p \times 1$ vector of regressors, u_t is the error term, and β_t is a $p \times 1$ vector of unknown coefficients. We assume that the coefficients $\{\beta_1, \ldots, \beta_T\}$ exhibit certain sparse nature such that the total number of
distinct vectors in the set is given by \(m + 1 \), which is unknown but assumed to be much smaller than the sample size \(T \). More specifically, we assume that

\[
\beta_t = \alpha_j \quad \text{for } t = T_{j-1}, \ldots, T_j - 1 \quad \text{and } j = 1, \ldots, m + 1,
\]

where we adopt the convention that \(T_0 = 1 \) and \(T_{m+1} = T + 1 \). The indices \(T_1, \ldots, T_m \) indicate the unobserved \(m \) break points/dates and the number \(m + 1 \) denotes the total number of regimes. We are interested in estimating the unknown number \(m \) of unknown break dates and the regression coefficients. Let \(\alpha_m = (\alpha'_1, \ldots, \alpha'_m, \alpha'_{m+1})' \) and \(\mathcal{T}_m = (T_1, \ldots, T_m) \).

Throughout, we denote the true value of a parameter with a superscript \(0 \). In particular, we use \(m^0 \), \(\alpha^0_m = (\alpha^0_1, \ldots, \alpha^0_{m^0+1})' \) and \(\mathcal{T}^0_m = (T^0_1, \ldots, T^0_{m^0}) \) to denote the true number of breaks, the true vector of regression coefficients, and the true vector of break dates, respectively. Hence the data generating process is assumed to be

\[
y_t = \beta^0_t x_t + u_t, \quad t = 1, \ldots, T,
\]

where \(\beta^0_t = \alpha^0_j \) for \(t = T^0_{j-1}, \ldots, T^0_j - 1 \) and \(j = 1, \ldots, m^0 + 1 \); \(T^0_0 = 1 \) and \(T^0_{m^0+1} = T + 1 \).

2.2 Penalized least squares estimation of \(\{\beta_t\} \)

Since neither \(m \) nor the break dates are known and \(m \) is typically much smaller than \(T \), this motivates us to consider the estimation of \(\beta_t \)'s and \(\mathcal{T}_m \) via a variant of fused Lasso a la Tibshirani et al. (2005). We propose to estimate \(\{\beta_t\} \) by minimizing the following penalized least squares (PLS) objective function

\[
V_{T\lambda}(\{\beta_t\}) = \frac{1}{T} \sum_{t=1}^{T} (y_t - \beta'_t x_t)^2 + \lambda \sum_{t=2}^{T} \|\beta_t - \beta_{t-1}\| \tag{2.3}
\]

where \(\lambda = \lambda_T \) is a positive tuning parameter. Harchaoui and Lévy-Leduc (2010) consider a special case where \(p = 1 \) and \(x_t = 1 \) so that the penalty term \(\sum_{t=2}^{T} \|\beta_t - \beta_{t-1}\| \) becomes \(\sum_{t=2}^{T} \|\beta_t - \beta_{t-1}\| \), the total variation of \(\{\beta_t\} \). Note that the objective function in (2.3) is convex in \(\{\beta_t\} \). The solution to the convex problem can be computed very fast. Let \(\hat{\beta}_t = \hat{\beta}_t(\lambda) \) denote the solution to the above minimization problem. We frequently suppress the dependence of \(\hat{\beta}_t \) on \(\lambda \) as long as no confusion arises. In Section 3.2 we will propose a data-driven method to choose \(\lambda \).

To see the connection of (2.3) with the group Lasso of Yuan and Lin (2006), we can rewrite (2.1) in an alternative format. Let \(\theta_1 = \beta_1 \) and \(\theta_t = \beta_t - \beta_{t-1} \) for \(t = 2, \ldots, T \). Let \(\beta = (\beta'_1, \ldots, \beta'_T)' \), \(\theta = (\theta'_1, \ldots, \theta'_T)' \), \(Y = (y_1, \ldots, y_T)' \) and \(U = (u_1, \ldots, u_T)' \). Define

\[
X_{T \times Tp} = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_T \end{bmatrix}, \quad A^*_{Tp \times Tp} = \begin{bmatrix} \mathbb{I}_p \\ \mathbb{I}_p \\ \cdots \\ \mathbb{I}_p \end{bmatrix}, \quad \text{and} \quad X^*_{T \times Tp} = X A^*.
\]
Then (2.1) can be rewritten as $Y = X\beta + U = X^*\theta + U$ and minimizing (2.3) is equivalent to minimizing the following group Lasso criterion function

$$V_{TL}(\{\theta_t\}) = \frac{1}{T} \|Y - X^*\theta\|^2 + \lambda \sum_{t=2}^{T} \|\theta_t\| = \frac{1}{T} \sum_{t=1}^{T} \left(y_t - x'_t \sum_{s=1}^{t} \theta_s \right)^2 + \lambda \sum_{t=2}^{T} \|\theta_t\|. \quad (2.4)$$

For a given solution $\{\hat{\beta}_t\}$ to (2.3), there exists a block partition $\{\hat{B}_1, ..., \hat{B}_{\hat{m}+1}\}$ of $\{1, 2, ..., T\}$ such that

$$\hat{\beta}_t = \hat{\beta}_s \text{ for all } t, s \in \hat{B}_j = [\hat{T}_{j-1}, \hat{T}_j - 1] \text{ and } \hat{\beta}_{T_j} \neq \hat{\beta}_{T_{j-1}}, \ j = 1, ..., \hat{m} + 1,$$

where $\hat{T}_0 = 1$ and $\hat{T}_{\hat{m}+1} = T + 1$. That is, \hat{m} and $\hat{T}_{\hat{m}} = (\hat{T}_1, ..., \hat{T}_{\hat{m}})$ denote the estimated number of breaks and estimated set of break points, respectively. Given the above block partition, we define $\hat{\alpha}_j = \hat{\alpha}_j(\hat{T}_{\hat{m}}) = \hat{\beta}_{T_{j-1}}$ as the estimate of α_j for $j = 1, ..., \hat{m} + 1$. Frequently we suppress the dependence of $\hat{\alpha}_j$ on $\hat{T}_{\hat{m}}$ (and λ) unless necessary. Let $\hat{\alpha}_{\hat{m}} = \hat{\alpha}_{\hat{m}}(\hat{T}_{\hat{m}}) = (\hat{\alpha}_1(\hat{T}_{\hat{m}})', ..., \hat{\alpha}_{\hat{m}+1}(\hat{T}_{\hat{m}})')$. For any $\alpha_m = (\alpha_1', ..., \alpha_{\hat{m}+1}')$ and $T_m = \{T_1, ..., T_m\}$ with $1 < T_1 < \cdots < T_m < T$, we can define

$$Q_{TL}(\alpha_m; T_m) = \frac{1}{T} \sum_{j=1}^{m+1} \sum_{t=\hat{T}_{j-1}}^{T_j-1} (y_t - \alpha'_j x_t)^2 + \lambda \sum_{j=1}^{m} \|\alpha_{j+1} - \alpha_j\|. \quad (2.5)$$

Then $Q_{TL}(\hat{\alpha}_{\hat{m}}; \hat{T}_{\hat{m}}) = V_{TL}(\{\hat{\beta}_t\})$.

As we shall show in Theorem 3.3 below, under some weak conditions $P(\hat{m} \geq m^0) \to 1$ as $T \to \infty$. That is, the estimated number of breaks based on the GFL will be no less than the true number of breaks w.p.a.1. For GFL to produce the correct number of breaks w.p.a.1., we will propose an information criterion to determine the choice of λ.

3 Asymptotic Properties

In this section we address the statistical properties of the GFL procedure.

3.1 Consistency of the GFL

Let $I_j^0 = T_j^0 - T_{j-1}^0$ for $j = 1, ..., m^0 + 1$. Define

$$I_{\min} = \min_{1 \leq j \leq m^0 + 1} |I_j^0|, \quad J_{\min} = \min_{1 \leq j \leq m^0} \|\alpha_{j+1}^0 - \alpha_j^0\|, \quad J_{\max} = \max_{1 \leq j \leq m^0} \|\alpha_{j+1}^0 - \alpha_j^0\|.$$

Apparently, I_{\min} denotes the minimum interval length among the $m^0 + 1$ regimes, and J_{\min} and J_{\max} denote the minimum and maximum jump sizes, respectively.

To study the consistency of the GFL, we make the following assumptions.

Assumption A1. *(i)\{<(x_t, u_t), t = 1, 2, ...\} is a strong mixing process with mixing coefficients $\alpha(\cdot)$ satisfying $\alpha(\tau) \leq c_\alpha \rho^\tau$ for some $c_\alpha > 0$ and $\rho \in (0, 1)$. $E(x_t u_t) = 0$ for each $t.$*
(ii) Either one of the following two conditions is satisfied: (a) \(\sup_{t \geq 1} E \| x_t \|^q < \infty \) and \(\sup_{t \geq 1} E | u_t |^q < \infty \) for some \(q > 1 \); (b) There exist some constants \(c_{xx} \) and \(c_{zu} \) such that \(\sup_{t \geq 1} E [\exp (c_{xx} \| x_t \|^\gamma)] \leq C_{xx} < \infty \) and \(\sup_{t \geq 1} E [\exp (c_{zu} \| x_t \|/\gamma)] \leq C_{zu} < \infty \) for some \(\gamma \in (0, \infty) \).

Assumption A2. (i) There exist two positive constants \(c_{xx} \) and \(c_{zz} \) and a positive sequence \(\{ \delta_T \} \) declining to zero as \(T \to \infty \) such that

\[
\mathcal{L}_{xx} \leq \inf_{r \geq s \geq 1} \frac{1}{r - s} \sum_{t = s}^{r - 1} \mathcal{E} (x_t x_t^\prime) \leq \sup_{r \geq s \geq 1} \mu_{\text{max}} \left(\frac{1}{r - s} \sum_{t = s}^{r - 1} \mathcal{E} (x_t x_t^\prime) \right) \leq c_{xx}.
\]

(ii) \(T \delta_T \) satisfies one of the following two conditions: (a) \(T \delta_T \geq c_\gamma T^{1/q} \) for some \(c_\gamma > 0 \) if A1(ii.a) is satisfied; (b) \(T \delta_T \geq c_\gamma (\log T)^{(2+\gamma)/\gamma} \) for some \(c_\gamma > 0 \) if A1(ii.b) is satisfied.

Assumption A3. (i) \(m^0 = O (\log T) \) and \(I_{\text{min}}/(T \delta_T) \to \infty \) as \(T \to \infty \).

(ii) \(J_{\text{max}} = O (1) \) and \(T \delta_T J_{\text{min}}^2/(\log T)^{c_\delta} \to \infty \) as \(T \to \infty \) where \(c_\delta = 6 \) if A1(ii.a) is satisfied and \(c_\delta = 1 \) if A1(ii.b) is satisfied.

(iii) The tuning parameter \(\lambda = \lambda_T \) satisfies \(\lambda J_{\text{min}} \delta_T \to 0 \) as \(T \to \infty \).

(iv) \(\delta_T = O (T^{-1/2}) \) and \(T m^0 (\log I_{\text{min}})^{c_\delta/2 T^{-1/2}} 1^{\min (I_{\text{min}}, T^{-1/2})} (I_{\text{min}} J_{\text{min}}^2)^{-1} \to 0 \) as \(T \to \infty \).

Assumption A1(i) requires that \(\{(x_t, u_t)\} \) be a strong mixing process with geometric decay rate. It is satisfied by many well-known processes such as linear autoregressive moving average (ARMA) processes and a large class of processes implied by numerous nonlinear models, including bilinear, nonlinear autoregressive, and autoregressive conditional heteroskedastic (ARCH) type of models. Note that we do not require the error process \(\{u_t\} \) to be a martingale difference sequence (m.d.s.) with respect to certain filtration. Let \(\mathcal{F}_t = \sigma(\{x_{t+1}, u_t, x_t, u_{t-1}, \ldots\}) \). Bai and Perron (1998) specify two sets of conditions for the process \(\{(x_t, u_t)\} \) : one requires that it be an \(L^a \)-mixingale sequence for some \(a > 4 \) but imposes independence between \(x_t \) and \(u_s \) for all \(t \) and \(s \) and thus rules out lagged dependent variables in \(x_t \); the other requires that \(\{u_t\} \) be an m.d.s. relative to \(\mathcal{F}_t \), allowing the presence of lagged dependent variables in \(x_t \), but ruling out serial correlation in \(\{u_t\} \). In stark contrast, A1(i) allows both lagged dependent variables in \(x_t \) and serial correlation and heteroskedasticity in \(u_t \). This is important as the model can be dynamically misspecified. The conditions stated in A1(ii) pertain to two specific cases related to the moments of \(x_t \) and \(u_t \). Part (a) in A1(ii) only requires finite moments for them whereas part (b) requires the existence of exponential moments. By Markov inequality, part (b) implies that

\[
P (\| x_t \|^2 \geq v) \leq \exp \left(1 - \left(\frac{v}{K \rho} \right)^\gamma \right)
\]

where \(K = \max \{1, \log C_{xx}\} \). That is, the tail probability of \(\| x_t \|^2 \) has to decay exponentially. Similar remarks hold for \(\| x_t u_t \| \). \(\gamma = \infty \) in part (b) corresponds to the case where \(\| x_t \| \) and \(\| u_t \| \) are uniformly bounded. When combined with A1(i), the conditions in A2(ii) allow us to apply some exponential inequalities for strong mixing processes; see, e.g., Merlevède et al. (2009, 2011).
Assumption A2(i) requires that the sequence \(\{E(x_t x'_t)\} \) be well behaved. It is automatically satisfied if the process \(\{x_t\} \) is covariance-stationary with positive definite covariance matrix. Nevertheless, we do not want to make such a strong assumption because the presence of lagged dependent variables in \(x_t \) generally invalidates it when a structural change occurs. In sharp contrast, Assumption A3 in Bai and Perron (1998) requires that the matrix \(B_{sr} \equiv \sum_{s=t}^{t-1} x_s x'_s \) be invertible for all \(r - s \geq p \). A similar assumption is made in Bai (1998) and Kurozumi (2012), among others. It seems difficult to verify this condition if possible at all. Nevertheless, one can verify that \(\frac{1}{r-s} B_{sr} \) is invertible w.p.a.l under our Assumptions A1-A2 by assuming \(r - s \) passes to infinity sufficiently fast. A2(ii) restricts the speed at which \(\delta_T \) shrinks to zero. If \(x_t \) and \(u_t \) only exhibit finite 4q-th moments for some \(q > 1 \), then the fastest speed at which \(\delta_T \rightarrow 0 \) is given by \(\delta_T \propto T^{(1-q)/q} \). On the other hand, if A1(ii.b) is satisfied, the fastest speed at which \(\delta_T \rightarrow 0 \) is given by \(\delta_T \propto (\log T)^{(2+\gamma)/\gamma} / T \), which is further simplified to \((\log T) / T \) if both \(x_t \) and \(u_t \) are uniformly bounded.

Assumption A3 specifies conditions on \(m^0, \delta_T, I_{\min}, J_{\min}, \) and \(\lambda \). Note that we allow the number of breaks to diverge to infinity slowly and the time intervals in different regimes to diverge to infinity at different rates as \(T \rightarrow \infty \). This is in sharp contrast with Bai (1998), Bai and Perron (1998), and Kurozumi (2012), who assume that the fixed number of multiple break points are asymptotically distinct in the sense that \(T^0 = \lfloor T \kappa^0 \rfloor \) where \(0 < \kappa^0_1 < \cdots < \kappa^0_m < 1 \) and \(\lfloor \cdot \rfloor \) denotes the integer part of \(\cdot \). As we shall see, \(\delta_T \) will control the rate at which \(\hat{T}_j/T \) converges to \(T^0_j/T \) when the number of break points are correctly estimated. If one only cares about the convergence rate of \(\hat{T}_j/T \) to \(T^0_j/T \) as in Theorem 3.1 below, A3(i) specifies the slowest rate at which \(\delta_T \) is allowed to converge to zero: \(\delta_T \ll I_{\min}/T^0 \); A3(ii)-(iii) specifies the fastest rate at which \(\delta_T \) is allowed to converge to zero: \(\max \left(\frac{\log T^{c/2}}{I_{\min} J_{\min}}, \frac{\lambda}{J_{\min}} \right) \ll \delta_T \). Here \(a \ll b \) indicates that \(a = o(b) \) as \(T \rightarrow \infty \). In addition, A3(i)-(ii) imply that and \(I_{\min} J_{\min}^2 / (\log T)^{c^0} \rightarrow \infty \) as \(T \rightarrow \infty \) and A3(i) and (iii) imply that \(\lambda T / (I_{\min} J_{\min}) \rightarrow 0 \) as \(T \rightarrow \infty \), which will be used in the proofs of the theorems below.

A3(iv) is required for the proof of Theorem 3.3 below. The first part of A3(iv) is imposed to ensure root-\(I^0_j \) consistency of \(\hat{\alpha}_j \) for all \(j \) and to simplify the other conditions. To get some intuition about the second part of A3(iv), we suppose that \(I_{\min} \propto T^a \) for some \(a \). It is easy to see \(a \in (1/2, 1] \) in order for the second part of A3(iv) to be satisfied and \(m^0 = O(1) \) if \(a = 1 \). Let \(\gamma_T = (\log I_{\min})^{c/2} T^{-1/2} I_{\min}^{-1/2} + I_{\min}^{-1/2} \). Note that \(\gamma_T = O((\log T)^{c/2} / T) \) and \(O(T^{-1/2}) \) when \(a = 1 \) and \(a \in (1/2, 1) \), respectively. Then the second part of A3(iv) requires

\[
\begin{align*}
\text{Case 1:} & \quad (\log T)^{c/2} T^{-1/2} I_{\min}^2 = o(1) \quad \text{if} \quad a = 1 \\
\text{Case 2:} & \quad T^{1/2} m^0 / (I_{\min} J_{\min}^2) = o(1) \quad \text{if} \quad a \in (1/2, 1)
\end{align*}
\]

Apparently, by allowing \(m^0 \rightarrow \infty \) as \(T \rightarrow \infty \) in Case 2, \(I_{\min} \) cannot be proportional to \(T \) and we need to impose slightly stronger restrictions on \(I_{\min} \) and \(J_{\min} \) than those needed for the case of fixed \(m^0 \). In
particular, $I_{\min} J_{\min}^2$ must diverge to infinity faster in the case of divergent m^0 than in the case of fixed m^0. In addition, in Case 1 the conditions in A3 are reduced to

Assumption A3. As $T \to \infty$, $\delta_T = O(T^{-1/2})$, $T \delta_T J_{\min}^2/ (\log T)^{c_3} \to \infty$, $\lambda/(J_{\min} \delta_T) \to 0$, and $(\log T)^{c_3/2} T^{-1} / J_{\min}^2 \to 0$.

The following theorem establishes the consistency of $\{ \hat{T}_j \}$ and $\{ \hat{\alpha}_j \}$ conditional on the event $\hat{m} = m^0$.

Theorem 3.1 Suppose that Assumptions A1-A2 and A3(i)-(iii) hold. If $\hat{m} = m^0$, then

1. $P \left(\max_{1 \leq j \leq m^0} \left| \hat{T}_j - T_j^0 \right| \leq T \delta_T \right) \to 1$ as $T \to \infty$,
2. $\hat{\alpha}_j - \alpha_j^0 = \mathcal{O}_P \left((I_j^0)^{-1/2} + \lambda T / I_j^0 + \delta_T T / I_j^0 \right)$ for each $j = 1, ..., m^0 + 1$.

The proof of Theorem 3.1(i) is quite involved. It builds upon some techniques that have been recently developed by Harchaoui and Lévy-Leduc (2010). The latter authors aim at estimating multiple location shifts by assuming independent and identically distributed (IID) errors that have exponential moments. Like Harchaoui and Lévy-Leduc (2010), our analysis is based on a careful inspection of the Karush-Kuhn-Tucker (KKT) optimality conditions for the solutions to the PLS problem in (2.4). Using these optimality conditions and some exponential inequalities for strong mixing processes, we prove Theorem 3.1(i) by contradiction. That is, if $\left| \hat{T}_j - T_j^0 \right| \geq T \delta_T$ for some $j = 1, ..., m^0$, we show that w.p.a.1 the solutions will not satisfy all the KKT conditions and therefore cannot be optimal. Extra technicality appears here because of the presence of regressors that may contain lagged dependent variables, the allowance of only finite $4q$-th moments for x_t and u_t, and the allowance of serial dependence and heteroskedasticity in the error process. The proof of part (ii) in Theorem 3.1 simply relies on the result in part (i) and the inspection of the KKT optimality conditions.

Theorem 3.1 suggests that $\max_{1 \leq j \leq m^0} \left| \hat{T}_j - T_j^0 \right| / T = \mathcal{O}_P (\delta_T)$, where $\max \left(\frac{(\log T)^{c_3}}{J_{\min}^2} \lambda \right) \ll \delta_T$ as explained above. On the one hand, because $\delta_T = o(1)$, we have $\left| \hat{T}_j - T_j^0 \right| / T = \mathcal{O}_P (1)$, implying that the break ratio T_j^0 / T can be consistently estimated. On the other hand, $\max \left(\frac{(\log T)^{c_3}}{J_{\min}^2} \lambda \right) \ll \delta_T$ implies that the fastest convergence rate for the break ratio estimator depends on $\frac{\lambda}{J_{\min}^2}$ and $\frac{(\log T)^{c_3}}{J_{\min}^2}$. Here, the first term signifies the effect of the penalty term in the GFL that interacts the minimal break size J_{\min}; the second term signifies the effect of moment conditions ($c_3 = 6$ if the moment condition in Assumption A1(ii.a) is satisfied and 1 if that in Assumption A1(ii.b) is satisfied) and minimal break size. Generally speaking, the smaller the minimal break size is, the slower convergence rate we can achieve for the break ratio estimator; the stronger moment conditions we have, the faster convergence rate the break ratio estimator can have. The result in Theorem 3.1(ii) is intuitive. The first term $(I_j^0)^{-1/2}$ results from the standard sample convergence as there are essentially I_j^0 observations in use for the estimation of α_j^0; the second term $(\lambda T / I_j^0)$ is derived from the penalty term in the GFL; the third term $(\delta_T T / I_j^0)$ is derived from the estimation error of T_j^0. If one knows the break dates $\{ T_j^0, j = 1, ..., m^0 \}$ in advance, then the third term vanishes.
To compare with existing results in the literature, we first restrict our attention to the fixed \(m^0\) case where \(J_{\text{min}}^{-1} = O(1)\) and \(I_{\text{min}} \propto T\) so that Assumption A3* is in effect with \(J_{\text{min}}\) replaced by 1. We further consider two specific cases that correspond to Assumption A1(ii.a) and A1(ii.b), respectively. In the case where Assumption A1(ii.a) is satisfied, both A2(ii) and A3* are satisfied if one chooses \(\delta_T \propto T^{(1-q)/q}\) and \(\lambda = \delta_T / \log T\). To ensure \(\delta_T = o(T^{-1/2})\) so that the estimation of break dates has no effect on the first order asymptotic distribution of the regression coefficient estimators, we would require that \(q > 2\), that is, both \(x_t\) and \(u_t\) exhibit finite eighth plus moments. In the case where Assumptions A1(ii.b) and A2(ii.b) are satisfied, by choosing \(\delta_T = (\log T)^{(2+\gamma)/\gamma} / T\) and \(\lambda = (\log T) / T\) we can ensure that both A2(ii) and A3* are satisfied. Then we can obtain an almost optimal rate for the estimation of \(T_j^0/T\) for \(j = 1, \ldots, m^0\) up to a logarithmic factor since the optimal rate obtained in the literature is of order \(T^{-1}\); see, e.g., Bai and Perron (1998). The appearance of the logarithmic factor is due to the application of certain exponential inequality for strong mixing processes. Note that Bai and Perron (1998) make high level assumptions on \(B_T\), which are not directly verifiable and their proof does not rely on any exponential inequality. In the case of slowly divergent \(m^0\), if \(I_{\text{min}} \propto T/m^0\), \(J_{\text{min}}^{-1} = O(1)\), and A1(ii.b) and A2(ii.b) is also satisfied, we can verify that Assumptions A3(i)-(iii) are all satisfied by setting \(\delta_T = (\log T)^{(2+\gamma)/\gamma} / T\) and \(\lambda = (\log T) / T\) so that we can obtain the same nearly optimal rate for the estimation of \(T_j^0/T\) for \(j = 1, \ldots, m^0\) as in the case of fixed \(m^0\). In the following we show that as long as \(\hat{m} = m^0\) in large samples, the above convergence rates for the estimates of break dates can be improved. See the last paragraph in Section 3.3.

Unfortunately, the correct number \(m^0\) of break points may be unknown. However, if we follow the literature (e.g., Bai and Perron (1998)) and assume that the true number of breaks is bounded by a number \(m_{\text{max}}\) with \(m_{\text{max}} \leq C \log T\) for a large number \(C\), then we can show that for any single true break date \(T_j^0 \in T^0\), there exists an estimated break date in \(\hat{T}_{\hat{m}}\) that is sufficiently close to \(T_j^0\) as long as \(\hat{m} \geq m^0\). In addition, under the extra conditions on \(m^0\), \(\lambda\), \(I_{\text{min}}\), \(J_{\text{min}}\), and \(\delta_T\) detailed in Assumption A3(iv), we can ensure that the last condition is satisfied w.p.a.1. That is, the probability of under-estimating the number of true break points converges to zero as \(T \to \infty\).

To proceed, let \(\mathcal{D}(A, B) \equiv \sup_{a \in A} \inf_{b \in B} |a - b|\) for any two sets \(A\) and \(B\). Note that \(\max\{\mathcal{D}(A, B), \mathcal{D}(B, A)\}\) denotes the Hausdorff distance between \(A\) and \(B\). The following theorem indicates that all true break points in \(T^0\) can be “consistently” estimated by some points in \(\hat{T}_{\hat{m}}\) under the assumption that the estimated number of breaks is no less than the true number of breaks.

Theorem 3.2 Suppose that Assumptions A1-A2 and A3(i)-(iii) hold. If \(m^0 \leq \hat{m} \leq m_{\text{max}}\), then \(P(\mathcal{D}(\hat{T}_{\hat{m}}, T^0) \leq T\delta_T) \to 1\) as \(T \to \infty\).

The proof of the above theorem is also accomplished by contradiction and by the repeated utilization of the KKT optimality conditions under the same set of Assumptions required for Theorem 3.1. Theorem
3.2 assures us that even if the number of breaks is overestimated, there will be an estimated break date close to each unknown true break date.

The next theorem shows that \(\hat{m} \) cannot be smaller than \(m^0 \) in large samples provided Assumption A3(iv) is also satisfied.

Theorem 3.3 Suppose that Assumptions A1-A3 hold. Then \(\hat{m} < m^0 \) as \(T \to \infty \).

Theorem 3.3 implies that the probability of under-estimating the number of break points is asymptotically negligible.

3.2 Choosing the tuning parameter \(\lambda \)

Let \(\hat{\alpha}_{\hat{t}_{m_{\lambda}}} (\lambda) = (\hat{\alpha}_{1,\hat{t}_{m_{\lambda}}} (\lambda)', ..., \hat{\alpha}_{m_{\lambda}+1,\hat{t}_{m_{\lambda}}} (\lambda)')' \) denote the set of post-Lasso OLS estimates of the regression coefficients based on the break dates in \(\hat{t}_{m_{\lambda}} = \hat{t}_{m_{\lambda}} (\lambda) \), where we make the dependence of various estimates on \(\lambda \) explicit. Let \(\hat{\sigma}^2_{\hat{t}_{m_{\lambda}}} \equiv Q_{T,1}(\hat{\alpha}_{\hat{t}_{m_{\lambda}}}, \hat{T}_{m_{\lambda}}) \), where

\[
Q_{T,1}(\alpha_{m}; T_m) = \frac{1}{T} \sum_{j=1}^{m+1} \sum_{t=T_{j-1}}^{T_j-1} (y_t - \alpha_j x_t)^2,
\]

is the first term in the definition of \(Q_{T,\lambda}(\alpha_{m}; T_m) \) in (2.5). We propose to select the tuning parameter \(\lambda \) by minimizing the following information criterion:

\[
IC(\lambda) = \log(\hat{\sigma}^2_{\hat{t}_{m_{\lambda}}}) + \rho_T \hat{m} + 1.
\]

Without any condition on \(\lambda \), we are unable to study the asymptotic properties of \(\hat{m}_\lambda = \hat{t}_{m_{\lambda}} \), \(\hat{T}_{m_{\lambda}} \), and \(\hat{\alpha}_j \) for \(j = 1, ..., 1 + \hat{m}_\lambda \). For this reason, we restrict our attention to the class of tuning parameters such that Assumptions A3(iii)-(iv) are satisfied.

To state the next result, we add the following assumption.

Assumption A4.

(i) \(m^0 \delta_T^{-1} I_{\min}^{-1} [I_{\min}^{1/2}T^{-1/2}(\log I_{\min})^{c_i/2} + 1] = O(1) \) as \(T \to \infty \).

(ii) \(\left(1 + \frac{\rho_T m^0}{\Delta T_{\min}} \right) \rho_T m^0 \to 0 \) and \(\delta_T^{-1} \rho_T \to \infty \) as \(T \to \infty \).

Assumption A4(i) imposes an extra condition on \(\delta_T \) and it becomes redundant under Assumption A2 if \(I_{\min} \propto T \). As in the discussion of Assumption A3(iv), if we suppose that \(I_{\min} \propto T^a \) for some \(a \in (1/2, 1] \), A4(i) reduces to

\[
\begin{align*}
\text{Case 1:} & \quad \delta_T^{-1}T^{-1}(\log T)^{c_i/2} = O(1) \quad \text{if} \quad a = 1 \\
\text{Case 2:} & \quad m^0/\delta_T I_{\min} = O(1) \quad \text{if} \quad a \in (1/2, 1) \, .
\end{align*}
\]

The condition in Case 1 is redundant under Assumption A2(ii). By allowing \(m^0 \to \infty \) as \(T \to \infty \) in Case 2, \(\delta_T I_{\min} \) must diverge to infinity; otherwise, it is possible to have \(\delta_T I_{\min} = O(1) \) as \(T \to \infty \). Assumption A4(ii) reflects the usual conditions for the consistency of model selection, that is, the penalty coefficient
\(\rho_T \) cannot shrink to zero either too fast or too slowly. If \(I_{\text{min}} \propto T \) and \(J_{\text{min}}^{-1} = O(1) \), the first part of A4(ii) requires that \(\rho_T \to 0 \), which is standard for an information-criterion function. \(\delta_T \) indicates the probability order of the distance between the first term in the criterion function for an over-parametrized model and that for the true model.

Theorem 3.4 Suppose that Assumptions A1-A4 hold. Let \(\hat{\lambda} = \arg \min_{\lambda} \text{IC} (\lambda) \). Then \(P \left(\hat{m}_\lambda = m^0 \right) \to 1 \) as \(T \to \infty \).

The proof of Theorem 3.4 in Appendix E suggests that the \(\hat{\lambda} \)'s that yield the over-estimated or under-estimated number of breaks fail to minimize the information criterion w.p.a.1 provided that the minimization is restricted for a class of tuning parameters that satisfy some basic requirements stated in Assumptions A3(iii)-(iv). Consequently, the minimizer of IC(\(\lambda \)) can only be the one that produces the correct number of estimated breaks in large samples. Conditional on \(\hat{m}_\lambda = m^0 \), we will study the asymptotic distributions of the Lasso estimates of regression coefficients and break dates below.

3.3 Limiting distributions of the Lasso estimates of regression coefficients and break dates

In this subsection we analyze the consistency of the regression coefficient estimates and break fraction estimates. We let \(\hat{\kappa} = (\hat{\kappa}_1, \ldots, \hat{\kappa}_{m^0}) = (\hat{T}_1/T, \ldots, \hat{T}_{m^0}/T) \) with corresponding true values \(\kappa^0 = (\kappa_1^0, \ldots, \kappa_{m^0}^0) = (T_1^0/T, \ldots, T_{m^0}^0/T) \). Note that we allow \(\kappa_j^0 - \kappa_{j-1}^0 = 0 \) for some \(j = 1, \ldots, m^0+1 \), which occurs if \(I_{\text{min}} = o(T) \).

It is well known that the limiting distributions of the break date estimators obtained by specifying fixed magnitude of changes are dependent on the exact distribution of \(\{x_t, u_t\} \). It is useful to consider asymptotic distributions under shrinking magnitude of changes. Now, \(\delta_j^0 \)'s is \(T \)-dependent and we frequently write \(\alpha_j^0 \) for \(\alpha_j^0 \) when we want to emphasize the dependence of \(\alpha_j^0 \)'s on \(T \). Let \(\delta_{T,j}^0 = \alpha_{T,j+1}^0 - \alpha_{T,j}^0 \) for \(j = 1, \ldots, m^0 \). The required conditions are stated in the following two assumptions.

Assumption A5. (i) For \(j = 1, \ldots, m^0, \delta_{T,j}^0 = \delta_{T,j} \Delta_j \) for some \(\Delta_j \) independent of \(T \) and \(\delta_{T,j} > 0 \) is a scalar satisfying \(\delta_{T,j} \to 0 \) and \(T^{(1/2)-\delta_j} \delta_{T,j} \to \infty \) for some \(\delta_j \in (0,1/2) \).

(ii) For \(j = 1, \ldots, m^0+1, \) as \(T_j^0 \to \infty, (T_j^0)^{-1} \sum_{t=T_j^0-1}^{T_j^0+|s|} E (x_t x'_t) \to s \Phi_j \) and \((T_j^0)^{-1} \sum_{t=T_j^0-1}^{T_j^0+|s|} E (x_t x'_t s u_t u_s) \to s \Phi_j \) uniformly in \(s \).

Assumption A6. \(m^0 T \lambda I_{\text{min}}^{-1/2} \to 0 \) as \(T \to \infty \).

Assumption A5(i) specifies the magnitude of each break size: the smaller the value of \(\delta_j \), the smaller the magnitude of the break size could be. Note that we allow different breaks to shrink to zero at different speeds. A5(ii) specifies the asymptotic average behavior of \(E (x_t x'_t) \) and \(E (x_t x'_t s u_t u_s) \) within each regime. In conjunction with Assumption A1, the first and second parts of A5(ii) ensure that
Theorem 3.5 Suppose that Assumptions A1-A6 hold. Let S denote an $L \times p(m^0 + 1)$ selection matrix such that $|S|$ is finite, where $L \in [1, p(m^0 + 1)]$ is a fixed integer. Then

(i) $SD_{m^0}(\hat{\alpha}_{m^0} - \alpha^0) \xrightarrow{d} N(0, S\Sigma^{-1}P\Sigma^{-1}S')$;

(ii) $(\Delta_j\Psi_j\Delta_j)\hat{\kappa}_j - \kappa_j^0 \xrightarrow{d} \arg\max_s Z_j(s)$ for $j = 1, ..., m^0$, and $\hat{\kappa}_j$'s are asymptotically mutually independent of each other.

The above theorem lays down the foundation for inferences on the unknown regression coefficients and break dates based on the GFL. Note that we specify a selection matrix S in Theorem 3.5(i) that is not needed if m^0 is fixed. Intuitively, we allow the number of breaks, m^0, to diverge to infinity as the sample size T passes to infinity. For this reason, the dimension of $\hat{\alpha}_{m^0}$ is also divergent to infinity at the rate m^0 and we cannot derive the asymptotic normality of $\hat{\alpha}_{m^0}$. Instead, we follow the literature on inferences with a diverging number of parameters (see, e.g., Fan and Peng (2004), Lam and Fan (2008), Lu and Su (2015)) and prove the asymptotic normality for any arbitrary linear combinations of elements of $\hat{\alpha}_{m^0}$ after adapting to different convergence rates for different subvectors of $\hat{\alpha}_{m^0}(= (\hat{\alpha}'_1, ..., \hat{\alpha}'_{m^0+1})')$. In the special case where m^0 is fixed, we can take $S = \mathbb{I}_p(m^0 + 1)$ and obtain the usual joint asymptotic normality of $\hat{\alpha}_j$'s. Alternatively, if we assume that $\{x_t u_t\}$ is an m.d.s., then like Ψ, Φ is also block diagonal and $\hat{\alpha}_j$'s are asymptotically mutually independent of each other. In this case, it suffices to report the asymptotic normality of $\hat{\alpha}_j$ for $j = 1, ..., m^0 + 1$. Interestingly, Theorem 3.5(ii) suggests that $\hat{\kappa}_j$'s are asymptotically mutually independent of each other even in the absence of any m.d.s. condition for $\{x_t u_t\}$.

A close examination of the proof of the above theorem suggests that the GFL estimators of the regression coefficients and break dates are closely tied with Bai and Perron’s (1998) OLS estimators. If
the number of breaks \(m^0 \) were known, one could obtain the GFL estimator by minimizing the following PLS objective function

\[
S_{T\lambda}(\alpha, T_m) = \frac{1}{T} \sum_{j=1}^{m_0+1} T_j - 1 \sum_{t=T_{j-1}} T_j \left(y_t - x_t' \alpha_j \right)^2 + \lambda \sum_{j=1}^{m_0} \| \alpha_{j+1} - \alpha_j \|
\]

where the first term is the usual OLS objective function with \(m^0 \) unknown breaks and the second term is a penalty term. As expected, for sufficiently small \(\lambda \), the solution to the above problem will share the same asymptotic distribution as that of Bai and Perron’s estimator. When \(m^0 \) is unknown but can be estimated correctly by \(\hat{m} \) w.p.a.1, we can treat \(\hat{m} \) as \(m^0 \) to infer the above asymptotic result.

Given the result in Theorem 3.5(i), it is standard to estimate the asymptotic variance-covariance matrix and make inferences on \(\alpha^0 \). In particular, one can obtain a HAC estimator for \(\Phi \) to allow for both heteroskedasticity and serial correlation. Let \(\hat{D}_{m^0} = \text{diag}(\hat{I}_1,\ldots,\hat{I}_{m^0+1}) \) where \(\hat{I}_j = \hat{T}_j - \hat{T}_{j-1} \) for \(j = 1,\ldots,m^0+1 \), \(\hat{T}_0 = 1 \), and \(\hat{T}_{m^0+1} = T+1 \). One can replace \(D_{m^0} \) by \(\hat{D}_{m^0} \) in the above theorem. Theorem 3.5(ii) indicates that the limiting distribution of the break fraction estimates is the same as that occurring in a single break model as Bai and Perron (1998) remark, if \(\Psi_j \) and \(\Phi_j \) are the same for adjacent \(j \)'s and are given by \(\Psi \) and \(\Phi \), respectively, then we have the standard asymptotic pivotal limiting distribution for \(\hat{\kappa} \) after normalization:

\[
\frac{(\Delta' \Psi \Delta)}{\Delta' \Phi \Delta} \hat{d}_{T_j} T (\hat{\kappa} - \kappa_j^0) \overset{d}{\to} \arg \max_s \{W_j(s) - |s|/2\}
\]

where \(W_j(s) = W_{j,1}(-s) \) for \(s \leq 0 \) and \(W_j(s) = W_{j,2}(s) \) for \(s > 0 \). One can apply this result to construct confidence intervals for \(\kappa_j^0 \) or equivalently, \(T_j^0 \). See, e.g., Bai (1997a) and Su et al. (2013). We omit the details for brevity.

Theorem 3.5(ii), in conjunction with Assumption A3(ii), indicates that in the case of small breaks

\[
\hat{T}_j - T_j^0 = O_P \left(\hat{d}_{T_j}^{-2} \right) = O_P \left(J_{\min}^{-2} \right) = o_P(T \delta_T),
\]

which suggests an improved rate than that obtained in Theorem 3.1. For the fixed magnitude of breaks, although there is no way to obtain any asymptotic pivotal distribution for the break fraction estimates even after normalization, we can obtain \(\hat{T}_j - T_j^0 = O_P (1) = o_P(T \delta_T) \), using similar arguments in the proof of Theorem 3.5. In either case, we can obtain the optimal rate of convergence for the estimation of the break dates provided that \(\hat{m}_\lambda = m^0 \) is ensured by a proper choice of the tuning parameter \(\lambda \).

3.4 Limiting distribution of post-Lasso estimate of regression coefficients

In this subsection we study the asymptotic distribution of the post-Lasso estimate \(\hat{\alpha}_{j,T_m^0} \). Let \(\hat{X} = \text{diag}(\hat{X}_1, \ldots, \hat{X}_{m^0+1}) \) where \(\hat{X}_j = (x_{T_{j-1}},\ldots,x_{T_j-1})' \). We can write the DGP in matrix form

\[
Y = X\alpha^0 + U.
\]

(3.3)
The model used for the post-Lasso estimation of α^0 is given by

$$Y = \tilde{Y}\hat{\alpha}_{m_0} + \tilde{U},$$

(3.4)

where $\hat{\alpha}_{m_0} = (\tilde{X}'\tilde{X})^{-1}\tilde{X}'Y$, and \tilde{U} is a $T \times 1$ vector of the post-Lasso residuals. The following assumption is needed for the analysis of the limiting distribution of $\hat{\alpha}_{m_0}$.

Assumption A7. $m_0^0T\delta_TI_{min}^{-1/2} \to 0$ as $T \to \infty$.

Assumption A7 ensures that the estimation of the break dates has an asymptotically negligible effect on the asymptotic distribution of the post-Lasso estimate of the regression coefficients. In the special case $I_{min} \propto T$, Assumption A7 is satisfied as long as $\delta_T = o(T^{-1/2})$. In this case, Assumption A2(ii) indicates that we only need x_t and u_t to exhibit finite eighth plus moments. In the general case, the minimum interval length has a crucial effect on the rate at which δ_T shrinks to zero.

The following theorem reports the limiting distribution of $\hat{\alpha}_{m_0}$.

Theorem 3.6 Suppose that Assumptions A1-A4 and A7 hold. Let S be defined as in Theorem 3.5. Then $S\hat{D}_{m_0}(\hat{\alpha}_{m_0} - \alpha^0) \xrightarrow{d} N\left(0, S\Psi^{-1}\Phi\Psi^{-1}S'\right)$.

Note that Assumptions A5-A6 are not required for the above theorem. Define the infeasible estimator $\hat{\alpha}_{m_0} = (X'X)^{-1}XY$. We can prove the theorem by showing that $S\hat{D}_{m_0}(\hat{\alpha}_{m_0} - \alpha^0)$ shares the same asymptotic distribution as $S\hat{D}_{m_0}(\hat{\alpha}_{m_0} - \alpha^0)$. A similar idea was used by Bai (1997a) for the case of a single structural break. Extra care is needed as we allow the interval length to be different across different regimes and m_0 to be divergent. Given the above result, it is standard to make inference on α^0 based on the post Lasso estimate $\hat{\alpha}_{m_0}$.

As a referee kindly points out, the asymptotic distribution of the post-Lasso estimator is only valid pointwise and it does not provide uniformly valid inference for the regression coefficients; see Pötscher and Leeb (2009) and Pötscher and Schneider (2009). In particular, this limiting distribution ignores the randomness of the estimated number of breaks in finite samples. As a result, a robust inference procedure with correct asymptotic size is an important issue for the post-Lasso estimator; see, e.g., Belloni et al. (2014). This is closely related to the post model selection inference problem investigated by Leeb and Pötscher (2005, 2008), among others. Robust inference on the parameter of interest is beyond the scope of this paper.

4 Monte Carlo Simulations

In this section we conduct a set of Monte Carlo experiments to evaluate the finite sample performance of our GFL method. Throughout we use the block-coordinate descent algorithm (Angelosante and Giannakis, 2012) to solve the minimization problem in (2.3). We select the penalty term λ that minimizes
the information criterion $IC(\lambda)$ by setting $\rho_T = 1/\sqrt{T}$ (c.f. Bai (1998)). It is well known that there exists a λ^{max} such that any $\lambda \geq \lambda^{\text{max}}$ will produce constant coefficients (i.e., no break) (Ohlsson et al., 2010). We thus search for a minimal IC on 20 evenly-distributed logarithmic grids on the interval $[0.01\lambda^{\text{max}}, \lambda^{\text{max}}]$. Finally, to purge unwanted breaks, we employ a post-processing procedure similar to that used by Harchaoui and Lévy-Leduc (2010).

The main competitor of our approach is Bai and Perron (1998, 2003a, BP hereafter). For the brevity of presentation, we focus on our method here but refer the readers to an early version of the paper (Qian and Su, 2014) for a detailed comparison between BP’s and our methods. It is worth mentioning that as shown in Bai and Perron (2006), the performance of BP is crucially dependent on the choice of trimming. For some of the data generating processes (DGPs) experimented with, which have either no break or only a small number of breaks in the middle range of the data, BP’s tests with large trimmings generally give satisfactory performance. However, large trimming is an implicit assumption on the nature of the DGP. For example, a trimming of 0.2 implicitly assumes that the maximum number of breaks is 4 and that the break cannot happen in partitions at the beginning or in the end (each with a length of 20% of the sample). The assumption may be too restrictive for some applications. Small trimming can afford more breaks in the DGP but tend to overestimate the number of breaks. The size of trimming, indeed, plays a similar role as the penalty term in our approach.

4.1 The Case of No Break

We first evaluate the probability of falsely detecting breaks when no break exists. We consider the following DGPs

$$y_t = 1 + x_t + u_t,$$

with

- DGP0-1: $x_t \sim IID N(0, 1), u_t \sim IID N(0, \sigma^2_u)$.
- DGP0-2: $x_t \sim AR(1), u_t \sim IID N(0, \sigma^2_u)$.
- GDP0-3: $x_t \sim IID N(0, 1), u_t = \sigma_u v_t, v = 0.5v_{t-1} + \epsilon_t, \epsilon_t \sim IID N(0, 0.75)$.
- DGP0-4: $x_t \sim AR(1), u_t = \sigma_u \sqrt{h_t} \epsilon_t, h_t = 0.05 + 0.05a^2_{t-1} + 0.9h_{t-1}, \epsilon_t \sim IID N(0, 1)$.
- DGP0-5: $x_t \sim AR(1), u_t \sim IID N(0, \sigma^2_u)$ for $t \in \{1, 2, \ldots, T/2\}$ and $u_t \sim IID N(0, \sigma^2_u)$ for $t \in \{T/2, T/2 + 1, \ldots, T\}$.
- DGP0-6: $y_t = ay_{t-1} + \epsilon_t, x_t = y_{t-1}, \epsilon_t \sim IID N(0, 1 - a^2)$.

16
DGP0-1 is a benchmark. DGP0-2 introduces serial correlation in x_t. Specifically, we generate x_t by AR(1) dynamics: $x_t = 0.5x_{t-1} + \varepsilon_t$ where $\varepsilon_t \sim IID \ N(0, 0.75)$, so that x_t has unit variance. DGP0-3 introduces serial correlation in u_t. DGP0-4 introduces conditional heteroscedasticity (volatility clustering) in the error process. DGP0-5 allows for breaks in the variance of the error process. Finally, DGP0-6 is an AR regression where x_t is the lagged value of y_t. To evaluate the performance under different noise levels, we select the parameter σ_u in DGP0-1, DGP0-2, DGP0-3, and GDP0-4 to be 0.5, 1, and 1.5. For the benchmark case, $\sigma_u = 1$ corresponds to a unit signal-to-noise ratio. In DGP0-5, we set $\sigma_1 = 0.1$ and $\sigma_2 = 0.2, 0.3, \text{or} \ 0.5$. In DGP0-6, the autoregressive coefficient a is chosen from $\{0.2, 0.5, 0.9\}$.

The results are summarized in Table 1, where we report percentages of false detections among 500 repetitions for our GFL method. In the benchmark case of DGP0-1, GFL produces negligible percentages of false detection of breaks for all noise levels. The same is true for all other DGPs but DGP0-3. However, when serial correlation is introduced in u_t (DGP0-3), there are sizable percentages of false detections when $T = 100$. As T gets larger, the percentages of false detections quickly decline to nearly zero. Overall, we may conclude that GFL enjoys a low probability of falsely detecting breaks when none exists.

<table>
<thead>
<tr>
<th>Table 1: Percentage of false detection when $m = 0$</th>
<th>(\sigma_u)</th>
<th>$T = 100$</th>
<th>$T = 200$</th>
<th>$T = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGP0-1</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DGP0-2</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>DGP0-3</td>
<td>0.5</td>
<td>12.2</td>
<td>3.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>11.6</td>
<td>2.4</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>11.8</td>
<td>2.8</td>
<td>0.2</td>
</tr>
<tr>
<td>DGP0-4</td>
<td>0.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DGP0-5</td>
<td>$\sigma_2 = 0.2$</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>$\sigma_2 = 0.3$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>$\sigma_2 = 0.5$</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DGP0-6</td>
<td>$a = 0.2$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>$a = 0.5$</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>$a = 0.9$</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

4.2 The Case of One Break

In the following we evaluate the probability of correctly detecting the number of structural changes and the accuracy of change-point estimation when the true number of breaks is small. We generate data from

$$y_t = \beta_1 x_t + u_t,$$
with

- DGP1-1: $\beta_1 = 1 \{T/2 < t \leq T\}, \ x_t \sim IID \ N(0,1), u_t \sim IID \ N(0,\sigma_u^2)$.
- DGP1-2: $\beta_1 = 1 \{T/2 < t \leq T\}, \ x_t \sim IID \ N(0,1), u_t = \sigma_u v_t$ with $v_t = 0.5v_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0,0.75)$.
- DGP1-3: $\beta_1 = 1 \{T/2 < t \leq T\}, \ x_t \sim AR(1), u_t \sim IID \ N(0,\sigma_u^2)$.
- DGP1-4: $\beta_1 = 1 \{T/2 < t \leq T\}, \ x_t \sim AR(1), u_t = \sigma_u \sqrt{h_t} \epsilon_t, \ h_t = 0.05 + 0.05u_{t-1}^2 + 0.9h_{t-1}$, $\epsilon_t \sim IID \ N(0,1)$.
- DGP1-5: $\beta_1 = 1 \{T/2 < t \leq T\}, \ x_t \sim AR(1), u_t = \sigma_u v_t$ with $v_t = \epsilon_t + 0.5\epsilon_{t-1}$, $\epsilon_t \sim IID \ N(0,0.8)$.
- DGP1-6: $\beta_1 = 0.21 \{1 \leq t \leq T/2\} + 0.81 \{T/2 < t \leq T\}, \ x_t = y_{t-1}, \ u_t \sim IID \ N(0,\sigma_u^2)$.

In all the above DGPs, the coefficient on x_t has a break at $T/2$ and the intercept is a constant zero.\(^3\) DGP1-1 serves as the benchmark case where both x_t and u_t are IID. DGP1-2 and DGP1-3 introduce AR(1) structure to u_t and x_t, respectively. As in the case of no breaks, we generate AR(1) processes with an AR coefficient of 0.5 and make sure that the processes have unit variances. DGP1-4 considers GARCH(1,1) error along with an AR(1) regressor. DGP1-5 considers MA(1) error along with an AR(1) regressor. And DGP1-6 considers an auto-regression with a break in the AR coefficient. Again we set $\sigma_u = 0.5, 1, \text{ and } 1.5$.

Table 2 summarizes the percentages of correct estimation (pce) of m and, conditional on the correct estimation of m (i.e., $\hat{m} = 1$), the accuracy of break date estimation, which we measure by average Hausdorff distance divided by T (hd/T). All figures in the table are in percentages (%). In the benchmark case of DGP1-1, our method gives satisfactory results in terms of both pce and hd/T at low and medium noise levels. At the high noise level ($\sigma_u = 1.5$), the pce is low and the error rate for the break date estimation is 5%. However, as T increases, the pce rises rapidly and hd/T quickly declines to 1.2%. A similar picture emerges from other DGPs, with the exception of DGP1-6, where a lagged dependent variable appears on the right hand side. In the case of DGP1-6, the noise level does not have a big impact on the signal-to-noise ratio, hence the performances across different noise levels are similar.

4.3 The Case of Many Breaks

To evaluate the finite-sample performance for the case of many breaks, we consider two setups. First we set a constant regime length and let the number of regimes increase. Then we fix the number of breaks and allow the regime length to increase proportionally to the sample size. Specifically, we set $\delta = T/R$, where R is an even number of regimes ($m+1$). We generate data from the following equation,

$$y_t = x_t \beta_t + u_t,$$
Table 2: Percentage of correct detection of one break and accuracy of change-point estimation when $m = 1$

<table>
<thead>
<tr>
<th>σ_u</th>
<th>$T = 100$</th>
<th></th>
<th>$T = 200$</th>
<th></th>
<th>$T = 500$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pce</td>
<td>hd/T</td>
<td>pce</td>
<td>hd/T</td>
<td>pce</td>
<td>hd/T</td>
</tr>
<tr>
<td>DGP1-1</td>
<td>0.5</td>
<td>100.0</td>
<td>1.1</td>
<td>100.0</td>
<td>0.6</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>71.8</td>
<td>3.0</td>
<td>92.0</td>
<td>1.7</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>19.4</td>
<td>5.0</td>
<td>31.4</td>
<td>2.8</td>
<td>73.6</td>
</tr>
<tr>
<td>DGP1-2</td>
<td>0.5</td>
<td>98.2</td>
<td>1.1</td>
<td>99.6</td>
<td>0.6</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>74.8</td>
<td>3.9</td>
<td>90.2</td>
<td>1.9</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>30.2</td>
<td>6.5</td>
<td>42.8</td>
<td>3.7</td>
<td>77.8</td>
</tr>
<tr>
<td>DGP1-3</td>
<td>0.5</td>
<td>99.8</td>
<td>1.5</td>
<td>100.0</td>
<td>0.6</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>64.4</td>
<td>3.3</td>
<td>91.2</td>
<td>1.8</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>17.4</td>
<td>5.1</td>
<td>25.2</td>
<td>3.1</td>
<td>76.6</td>
</tr>
<tr>
<td>DGP1-4</td>
<td>0.5</td>
<td>99.8</td>
<td>1.5</td>
<td>100.0</td>
<td>0.7</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>62.0</td>
<td>3.4</td>
<td>89.6</td>
<td>1.9</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>22.8</td>
<td>5.5</td>
<td>31.4</td>
<td>3.3</td>
<td>73.4</td>
</tr>
<tr>
<td>DGP1-5</td>
<td>0.5</td>
<td>98.8</td>
<td>1.6</td>
<td>100.0</td>
<td>0.8</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>66.2</td>
<td>4.4</td>
<td>92.4</td>
<td>2.2</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>28.0</td>
<td>6.6</td>
<td>42.6</td>
<td>3.5</td>
<td>72.6</td>
</tr>
<tr>
<td>DGP1-6</td>
<td>0.5</td>
<td>65.0</td>
<td>8.6</td>
<td>87.8</td>
<td>5.4</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>65.8</td>
<td>7.6</td>
<td>88.2</td>
<td>5.0</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>66.8</td>
<td>8.4</td>
<td>87.0</td>
<td>5.0</td>
<td>98.4</td>
</tr>
</tbody>
</table>

Note: Under pce is the percentage of correct estimation of one break; under hd/T is the average Hausdorff distance between the estimated and true sets of break dates in percentages of T conditional on the estimated number of breaks being correct (i.e., $\hat{m} = 1$ here).

where $x_t \sim IID \ N(0, 1)$, $u_t \sim IID \ N(0, \sigma_u^2)$, and

$$
\beta_t = \begin{cases}
0 & \delta(2i) + 1 \leq t < \delta(2i + 1) \\
1 & \delta(2i + 1) + 1 \leq t < \delta(2i + 2)
\end{cases}, \ i = 0, 1, \ldots, R/2.
$$

We specify

- DGPn-1: Fix $\delta = 30$ and vary $R = 6, 10, 20$.
- DGPn-2: Fix $R = 10$ and vary $T = 150, 300, 600$.

We compare our approach with BP’s weighted double maximum (WDMax) sequential procedure, which is the preferred procedure in Bai and Perron (2006). To implement BP’s testing procedure, we consider 5% tests and set the trimming size as 0.05, allowing the maximum number of breaks to be 18. The results are summarized in Table 3.

In the case of DGPn-1, GFL correctly estimates the number of breaks in most repetitions (close to 100%) at the low noise level. At the high noise level, pce drops significantly, especially when at the same time the true number of breaks is high. However, BP’s method seems even more sensitive to the noise level than our method. Notice that when $R = 20$, pce for BP is zero at both noise levels, since the number of breaks exceeds the maximum allowed by the trimming size. For both approaches, we witness
a declining performance as the sample size increases along with the true number of breaks. In the case of DGPn-2, \(R \) is fixed at 10 and \(\delta \) increases proportionally with the sample size \(T \). We do see improving performance as \(T \) increases. GFL dominates BP in terms of pce. In terms of accuracy of break-date estimation, both approaches give satisfactory performances.

Table 3: Percentage of correct detection of the number of breaks and accuracy of break date estimation in the case of many breaks

<table>
<thead>
<tr>
<th>(\sigma_u)</th>
<th>(R)</th>
<th>(\text{GFL})</th>
<th>(\text{BP})</th>
<th>(T)</th>
<th>(\text{GFL})</th>
<th>(\text{BP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pce})</td>
<td>(\text{hd}/T)</td>
<td>(\text{pce})</td>
<td>(\text{hd}/T)</td>
<td>(\text{pce})</td>
<td>(\text{hd}/T)</td>
<td>(\text{pce})</td>
</tr>
<tr>
<td>0.2</td>
<td>10</td>
<td>99.8</td>
<td>0.7</td>
<td>99.4</td>
<td>0.5</td>
<td>300</td>
</tr>
<tr>
<td>20</td>
<td>99.4</td>
<td>0.4</td>
<td>0</td>
<td>N/A</td>
<td>600</td>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
<td>84.8</td>
<td>1.5</td>
<td>38.8</td>
<td>1.4</td>
<td>300</td>
</tr>
<tr>
<td>20</td>
<td>36.4</td>
<td>1.2</td>
<td>0</td>
<td>N/A</td>
<td>600</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: The regime length is fixed at \(\delta = 30 \) in DGPn-1 and the number of regimes is fixed at \(R = 10 \) in DGPn-2. See the note in Table 2 for the explanation on the main entries.

5 An Empirical Illustration

In this section we present an empirical illustration of our method. We consider the problem of predicting equity premium using fundamental information. We use a subset of the quarterly data of Welch and Goyal (2008), which has been updated to 2011Q4. The equity premium \((y) \) is the return on the stock market minus the prevailing risk-free rate. We use the return on S&P 500 index as the proxy of the stock market return and take the short-term T-bill rate as the risk-free rate. The fundamental information we consider includes earning price ratio \((\varepsilon\pi) \) and dividend price ratio \((d\pi) \). We refer to Welch and Goyal (2008) for a detailed description of the data and sources. Table 4 summarizes the data we use. We estimate the following predictive regression with structural breaks,

\[
y_{t+1} = \beta_{0,t} + \beta_{1,t}dp_t + \beta_{2,t}d\pi_t + u_{t+1}.
\]

The parameter \(\beta_t = (\beta_{0,t}, \beta_{1,t}, \beta_{2,t})' \) may contain multiple breaks in the calendar range from 1921Q2 to 2011Q4, reflecting discrete changes in the way equities are priced overall.

The main results are summarized in Table 5. The estimation contains two steps. First we estimate the break dates, then we perform the usual OLS estimation in each regime. For each OLS regression, coefficient estimates and standard errors are tabulated along with \(R^2 \) and F statistics for model significance tests. Our approach (GFL) detects two breaks at 1932Q3 and 1942Q3. Possible reasons for the first break
Table 4: Summary statistics for the equity data from 1921Q2 to 2011Q4 ($T = 363$)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>S.D.</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.0053</td>
<td>0.1050</td>
<td>-0.5023</td>
<td>0.6226</td>
<td>0.0206</td>
<td>0.0683</td>
<td>10.7594</td>
</tr>
<tr>
<td>dp</td>
<td>0.0407</td>
<td>0.0178</td>
<td>0.0112</td>
<td>0.1490</td>
<td>0.0377</td>
<td>1.0800</td>
<td>6.4649</td>
</tr>
<tr>
<td>ep</td>
<td>0.0730</td>
<td>0.0291</td>
<td>0.0082</td>
<td>0.1695</td>
<td>0.0637</td>
<td>0.7299</td>
<td>3.1455</td>
</tr>
</tbody>
</table>

Note: y is equity premium, dp is dividend to price ratio, and ep is earning price ratio.

include the bottoming out of the stock market, election of FDR to the presidency, and the passage of the Securities Act of 1933, which comprehensively regulated the securities industry. The second break may be attributed to the deepening US involvement in World War II. Linear regressions in all three regimes are statistically significant at the 5% level. Before the first break, the slope on dp is significantly negative and that on ep significantly positive. This is reversed in the second regime, although the negative slope of ep fails to be statistically significant at the 5% level. In the third regime, the effect of dp remains significantly positive but weakens substantially and the effect of ep remains insignificant.

For the purpose of comparison, we also estimate the model using BP’s WDMax procedure coupled with different trimming sizes. If trimming equals 15%, BP fails to detect any break. Under 10% trimming, one break is detected at 1932Q3, which coincides with the first break detected by our method. If trimming equals 5%, two breaks are detected at 1928Q2 and 1933Q2. These results once again show the importance of choosing a correct trimming size for BP’s approach. A large trimming implicitly imposes restrictive assumptions that may preclude detection of true breaks, but a small trimming like 5% tends to produce false structural breaks. Using our approach, in contrast, practitioners do not have to face such choices.

The continuous nature of the tuning parameter λ offers an even richer trade-off between goodness of fit and model simplicity. And as shown in Theorem 3.4, our IC-based procedure to choose λ naturally rules out the possibility of over- and under-fitting, at least asymptotically.

6 Conclusion

We propose a shrinkage procedure for the determination of the number of structural changes in a multiple linear regression model via GFL. We show that our method consistently determines the number of breaks and the estimated break dates are sufficiently close to the true break dates. Simulation results suggest that our new method performs well in finite samples.

There are several interesting topics for further research. First, we consider the estimation and inference in OLS regression models with an unknown number of breaks in this paper. It is interesting to extend to the GMM framework. Second, following the lead of Andrews (2003) who considers an end-of-sample stability test, it is also possible to allow a break to occur at the end of a random sample. Third, it is also possible to extend our method to the panel data framework. The last decade has seen a growing literature
Table 5: Empirical results

<table>
<thead>
<tr>
<th>Regime Range</th>
<th>$\beta_{0,t}$</th>
<th>$\beta_{1,t}$ (dp)</th>
<th>$\beta_{2,t}$ (ep)</th>
<th>R^2</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFL:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1921Q2-1932Q2</td>
<td>0.027 (0.776)</td>
<td>-3.6747 (0.008)</td>
<td>2.0546 (0.040)</td>
<td>0.205</td>
<td>4.998 (0.007)</td>
</tr>
<tr>
<td>1932Q3-1942Q2</td>
<td>-0.1501 (0.080)</td>
<td>5.8416 (0.002)</td>
<td>-2.259 (0.109)</td>
<td>0.263</td>
<td>6.411 (0.002)</td>
</tr>
<tr>
<td>1942Q3-2011Q4</td>
<td>-0.0194 (0.126)</td>
<td>1.5207 (0.021)</td>
<td>-0.3831 (0.221)</td>
<td>0.0369</td>
<td>3.982 (0.020)</td>
</tr>
<tr>
<td>BP, trim=0.05:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1921Q2-1928Q1</td>
<td>0.1072 (0.285)</td>
<td>-0.6536 (0.000)</td>
<td>-0.4801 (0.416)</td>
<td>0.214</td>
<td>0.453 (0.636)</td>
</tr>
<tr>
<td>1928Q2-1933Q1</td>
<td>-1.0497 (0.666)</td>
<td>-7.0342 (0.008)</td>
<td>21.8756 (0.000)</td>
<td>0.585</td>
<td>10.528 (0.000)</td>
</tr>
<tr>
<td>1933Q2-2011Q4</td>
<td>-0.0198 (0.416)</td>
<td>1.6299 (0.000)</td>
<td>-0.4759 (0.106)</td>
<td>0.0383</td>
<td>5.079 (0.007)</td>
</tr>
<tr>
<td>BP, trim=0.10:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1921Q2-1932Q2</td>
<td>0.027 (0.776)</td>
<td>-3.6747 (0.008)</td>
<td>2.0546 (0.040)</td>
<td>0.205</td>
<td>4.998 (0.007)</td>
</tr>
<tr>
<td>1932Q3-2011Q4</td>
<td>-0.0301 (0.037)</td>
<td>2.1835 (0.000)</td>
<td>-0.6301 (0.024)</td>
<td>0.0758</td>
<td>11.655 (0.000)</td>
</tr>
<tr>
<td>BP, trim=0.15:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1921Q2-2011Q4</td>
<td>-0.0261 (0.090)</td>
<td>0.4584 (0.293)</td>
<td>0.174 (0.513)</td>
<td>0.0161</td>
<td>2.492 (0.084)</td>
</tr>
</tbody>
</table>

Note: p-values for significance tests (t and F) are given in parentheses.

on estimation and testing of common breaks in panel data models; see, De Watcher and Tzavalis (2005, 2012), Chan et al. (2008), Bai (2010), Kim (2011, 2014), Hsu and Lin (2012), Liao and Wang (2012), Baltagi et al. (2014), among others. We are exploring some of these topics in ongoing work.

Notes

1 Since the minimization in (2.6) is a convex problem, we may use a general-purpose convex solver system such as CVX (Grant et al., 2009). However, the general solver does not exploit the special structure of our problem, hence computationally inefficient.

2 We also conduct a robustness check by considering $\rho_T = c_1 T^{-c_2}$ for $c_1 = 0.9$, 1 and 1.1 and $c_2 = 0.4$, 0.5, and 0.6. The results are available upon request.

3 The experiments for DGPs with two breaks yield similar results.

REFERENCE

APPENDIX

A Some Technical Lemmas

In this section we prove some technical lemmas that are used in the proof of the main results in the paper.

Lemma A.1 Consider the PLS problem in (2.3) or equivalently (2.4). Let \(\{ \hat{\beta}_t, t = 1, 2, \ldots, T \} \) and \(\{ \hat{\theta}_t, t = 2, \ldots, T \} \) denote the respective solutions. Then

(i) \(\frac{1}{T} \sum_{t=T_j}^T x_r \left(y_r - x'_r \hat{\beta}_r \right) = \frac{2}{\lambda} \hat{\theta}_{j+1} / \left\| \hat{\theta}_{j+1} \right\| \) for \(j = 1, \ldots, \tilde{m} \);

(ii) \(\frac{1}{T} \left\| \sum_{t=T_j}^T x_r \left(y_r - x'_r \hat{\beta}_r \right) \right\| \leq \frac{2}{\lambda} \) for \(t = 1, \ldots, T \).

Proof. To prove the above lemma, we invoke subdifferential calculus (e.g., Bertsekas (1995, Appendix B.5)). We first rewrite the PLS criterion function as

\[
\hat{V}_{\lambda} (\{ \theta_t \}) = \frac{1}{T} \sum_{t=1}^T \left(y_t - x'_t \sum_{s=1}^t \theta_s \right)^2 + \lambda \sum_{t=2}^T \left\| \theta_t \right\|.
\]

A necessary and sufficient condition for \(\{ \hat{\theta}_t \} \) to minimize (A.1) is that for each \(t = 1, \ldots, T \), \(0_{p \times 1} \) belongs to the subdifferential of (A.1) with respect to \(\theta_t \) evaluated at \(\{ \hat{\theta}_t \} \). That is,

\[-2 \frac{1}{T} \sum_{t=1}^T x_r \left(y_r - x'_r \sum_{s=1}^r \hat{\theta}_s \right) + \lambda e_t = 0_{p \times 1}
\]

where for \(t = 2, \ldots, T \),

\[e_t = \frac{\hat{\theta}_t}{\left\| \hat{\theta}_t \right\|} \text{ if } \left\| \hat{\theta}_t \right\| \neq 0 \text{ and } \left\| e_t \right\| \leq 1 \text{ if } \left\| \hat{\theta}_t \right\| = 0,
\]

and \(e_1 = 0_{p \times 1} \). If \(t = T_j \) for some \(j \in \{ 1, \ldots, \tilde{m} \} \), i.e., \(t \) is one of the estimated break dates, then \(\hat{\theta}_t = \hat{\beta}_t - \hat{\beta}_{t-1} \neq 0_{p \times 1} \) and we obtain (i) as the breaks cannot occur at \(t = 1 \) and \(\sum_{s=1}^r \hat{\theta}_s = \hat{\beta}_r \). In general, (A.2) and (A.3) imply that (ii) holds for all \(t \geq 2 \). When \(t = 1 \), the first order condition with respect to \(\theta_1 \) yields \(\sum_{r=1}^T x'_r \left(y_r - x'_r \sum_{s=1}^r \hat{\theta}_s \right) = 0_{p \times 1} \) so that (ii) is also satisfied for \(t = 1 \). ■

Lemma A.2 Let \(\{ \xi_t, t = 1, 2, \ldots \} \) be a zero-mean strong mixing process, not necessarily stationary, with the mixing coefficients satisfying \(\alpha (\tau) \leq c_\alpha \rho^\tau \) for some \(c_\alpha > 0 \) and \(\rho \in (0, 1) \).

(i) If \(\sup_{1 \leq t \leq T} |\xi_t| \leq M_T \), then there exists a constant \(C_0 \) depending on \(c_\alpha \) and \(\rho \) such that for any \(T \geq 2 \) and \(\epsilon > 0 \),

\[
P \left(\left\| \sum_{t=1}^T \xi_t \right\| > \epsilon \right) \leq \exp \left(-\frac{C_0 \epsilon^2}{\nu_0^2 T + M_T^2 + \epsilon M_T (\log T)^2} \right),
\]

where \(\nu_0^2 = \sup_{t \geq 1} \left[\text{Var}(\xi_t) + 2 \sum_{s=t+1}^\infty \text{Cov}(\xi_t, \xi_s) \right] \).
(ii) If \(\sup_{t \geq 1} P (|\xi_t| > v) \leq \exp (1 - (v/b)^\gamma) \) for some \(b \in (0, \infty) \) and \(\gamma \in (0, \infty) \), then there exist constants \(C_1 \) and \(C_2 \) depending only on \(b \), \(c_\alpha \), \(\rho \), and \(\gamma \) such that for any \(T \geq 4 \) and \(\epsilon \geq C_0 (\log T)^{\eta_0} \) with \(\eta_0 \), \(C_0 > 0 \),

\[
P \left(\left| \sum_{t=1}^{T} \xi_t \right| > \epsilon \right) \leq (T+1) \exp \left(-\frac{\epsilon^{1+\gamma}}{C_1} \right) + \exp \left(-\frac{\epsilon^2}{TC_2} \right).
\]

Proof. (i) Merlevède et al. (2009, Theorem 2) prove (i) under the condition \(\alpha (\tau) \leq \exp (-2c\tau) \) for some \(c > 0 \). If \(c_0 = 1 \), we can take \(\rho = \exp (-2c) \) and apply the theorem to obtain the claim in (i). Other values of \(c_0 \) do not alter the conclusion.

(ii) Merlevède et al. (2011, Theorem 1) prove a result that is more general than that in (ii) under the condition \(\alpha (\tau) \leq \exp (-c_1 \tau^{\gamma_1}) \) for some \(c_1, \gamma_1 > 0 \). If \(c_0 = 1 \) and \(c_0 = 1 \), we can take \(\rho = \exp (-2c_1) \) and apply the theorem to obtain the claim in (ii). Other values of \(c_0 \) do not alter the conclusion. □

Lemma A.3 Suppose Assumptions A1 and A2 hold. Let \(v_T = T \delta_T \). Then

(i) \(\sup_{1 \leq s < r \leq T+1} \mu_{\max} \left(\frac{1}{r-s} \sum_{t=s}^{r-1} x_t x'_t \right) \leq \bar{c}_{xx} + o_P (1) \);

(ii) \(\inf_{1 \leq s < r \leq T+1} \mu_{\min} \left(\frac{1}{r-s} \sum_{t=s}^{r-1} x_t x'_t \right) \geq \underline{c}_{xx} + o_P (1) \).

Proof. (i) By Weyl inequality, the fact that \(|\mu_{\max} (A)| \leq \|A\| \) for any symmetric matrix \(A \), and Assumption A2,

\[
\mu_{\max} \left(\frac{1}{r-s} \sum_{t=s}^{r-1} x_t x'_t \right) \leq \mu_{\max} \left(\frac{1}{r-s} \sum_{t=s}^{r-1} E (x_t x'_t) \right) \leq \bar{c}_{xx} + \left\| \frac{1}{r-s} \sum_{t=s}^{r-1} [x_t x'_t - E (x_t x'_t)] \right\|
\]

It suffices to prove the theorem by showing that \(\max_{1 \leq s < r \leq T+1} \left\| \frac{1}{r-s} \sum_{t=s}^{r-1} [x_t x'_t - E (x_t x'_t)] \right\| = o_P (1) \).

We first consider the case where Assumption A1(ii)a holds so that \(v_T \geq c_0 T^{1/2} \). Let \(\eta_T = T^{1/(2\theta)} \). Let \(\epsilon_{sp} \) be an arbitrary \(p \times 1 \) unit vector such that \(\|\epsilon_{sp}\| = 1 \) for \(s = 1, 2 \). Let \(\zeta_s \equiv \epsilon_{1p} [x_s x'_s - E (x_s x'_s)] \epsilon_{2p} \), \(\zeta_{1t} \equiv \epsilon_{1p} [x_s x'_t - E (x_s x'_t)] \epsilon_{2p} \), and \(\zeta_{2t} \equiv \epsilon_{1p} [x_t x'_t - E (x_t x'_t)] \epsilon_{2p} \), where \(1_1 = 1 \|x_1\|^2 \leq \eta_T \) and \(1_1 = 1 - 1_1 \). Note that \(\zeta_s = \zeta_{1t} + \zeta_{2t} \). By Boole inequality and Lemma A.2(i),

\[
P \left(\sup_{1 \leq s < r \leq T+1} \frac{1}{r-s} \sum_{t=s}^{r-1} \zeta_{1t} \right) \geq C (\log T)^{3} \leq T^2 \sup_{1 \leq s < r \leq T+1} P \left(\sum_{t=s}^{r-1} \zeta_{1t} \right) \geq C \sqrt{r-s} (\log T)^3
\]

\[
\leq T^2 \sup_{1 \leq s < r \leq T+1} \exp \left(-\frac{C_0 C^2 (r-s)}{v_0^3 (r-s) + 4n_T^2 + 2C \sqrt{r-s} (\log T)^3 \eta_T \log (\sqrt{r-s})^2} \right)
\]

\[
\leq 0 \text{ as } T \to \infty.
\]
By Assumption A1(ii.a), Boole and Markov inequalities, and the dominated convergence theorem,

\[P \left(\sup_{1 \leq s < r \leq T + 1} \left(\frac{1}{\sqrt{T - s}} \sum_{t=s}^{r-1} \zeta_{2t} \right) \geq C (\log T)^{3} \right) \leq P \left(\max_{1 \leq t \leq T} \| x_{t} \|^{2} \geq \eta_{T} \right) \]

\[\leq T \max_{1 \leq t \leq T} P \left(\| x_{t} \|^{2} \geq \eta_{T} \right) \leq \frac{T}{\eta_{T}^{q}} \max_{1 \leq t \leq T} E \left[\| x_{t} \|^{2q} \mathbf{1} \left\{ \| x_{t} \|^{2} \geq \eta_{T} \right\} \right] \to 0 \text{ as } T \to \infty. \]

Noting that \(\nu_{1p} \) and \(\nu_{2p} \) are arbitrary unit vectors, we infer that \(\max_{1 \leq s < r \leq T + 1} \left(\frac{1}{\sqrt{T - s}} \sum_{t=s}^{r-1} [x_{t}^{'}x_{t}' - E(x_{t}^{'}x_{t}')] \right) = O_{P} \left(v_{T}^{-1/2}(\log T)^{3} \right) = o_{P} (1). \) Then (i) follows.

Now we consider the case where Assumption A1(ii.b) holds where \(v_{T} \geq c_{0} (\log T)^{(2+\gamma)/\gamma}. \) By Boole inequality and Lemma A.2(ii), for any sufficiently large \(C \)

\[P \left(\sup_{1 \leq s < r \leq T + 1, \ r-s \geq v_{T}} \left(\frac{1}{\sqrt{r-s}} \sum_{t=s}^{r-1} \zeta_{t} \right) \geq C (\sqrt{r-s}) \right) \leq T^{2} \sup_{1 \leq s < r \leq T + 1, \ r-s \geq v_{T}} P \left(\left(\sum_{t=s}^{r-1} \zeta_{t} \right) \geq C (\sqrt{r-s}) \right) \]

\[\leq T^{2} \sup_{1 \leq s < r \leq T + 1} \left[(T+1) \exp \left(- \left(\frac{C (r-s)}{C_{1}} \right)^{1/2(1+\gamma)} \right) + \exp \left(- \left(\frac{C v_{T}}{C_{2}} \right)^{1/2+1} \right) \right] \]

\[\to 0 \text{ as } T \to \infty, \]

as \((v_{T}(\log T)^{1/2(1+\gamma)}) \propto (\log T) \) by construction. It follows that \(\max_{1 \leq s < r \leq T + 1, \ r-s \geq v_{T}} \left(\frac{1}{\sqrt{r-s}} \sum_{t=s}^{r-1} [x_{t}^{'}x_{t}' - E(x_{t}^{'}x_{t}')] \right) = O_{P} \left(v_{T}^{-1/2}(\log T)^{1/2} \right) = o_{P} (1).

(ii) The proof of (ii) is analogous and thus omitted. \(\blacksquare \)

Lemma A.4 Suppose Assumptions A1(i) and A2 hold. Let \(v_{T} = T\delta_{T}. \)

(i) If Assumption A1(ii.a) holds, then

\[\sup_{1 \leq s < r \leq T + 1} \left(\frac{1}{\sqrt{r-s}} \sum_{t=s}^{r-1} x_{t}u_{t} \right) = O_{P} \left((\log T)^{3} \right). \]

(ii) If Assumption A1(ii.b) holds, then

\[\sup_{1 \leq s < r \leq T + 1} \left(\frac{1}{\sqrt{r-s}} \sum_{t=s}^{r-1} x_{t}u_{t} \right) = O_{P} \left((\log T)^{1/2} \right). \]

Proof. (i) In this case, \(v_{T} \geq c_{0} T^{1/\gamma} \). Let \(\eta_{T} = T^{1/(2\gamma)} \) and \(\nu_{1p} \) be as defined in the proof of Lemma A.3(i). Let \(\zeta_{1} \equiv \nu_{1p}^{'}, [x_{t}u_{t} - E(x_{t}u_{t})] \), \(\zeta_{2t} \equiv \nu_{1p}^{'}, [x_{t}u_{t}\mathbf{1}_{t} - E(x_{t}u_{t}\mathbf{1}_{t})] \), \(\zeta_{2t} \equiv \nu_{1p}^{'}, [x_{t}u_{t}\mathbf{1}_{t} - E(x_{t}u_{t}\mathbf{1}_{t})] \), where now \(\mathbf{1}_{t} \equiv 1 \left\{ \| x_{t}u_{t} \| \leq \eta_{T} \right\} \) and \(\mathbf{1}_{t} = 1 - \mathbf{1}_{t} \). Note that \(\zeta_{t} = \zeta_{1t} + \zeta_{2t} \). Arguments like those used in the proof of Lemma A.3(i) show that for any sufficiently large \(C, \)

\[P \left(\max_{1 \leq s < r \leq T + 1} \left(\frac{1}{\sqrt{r-s}} \sum_{t=s}^{r-1} \zeta_{t} \right) \geq C (\log T)^{3} \right) \]

\[\to 0 \text{ as } T \to \infty \text{ for } l = 1, 2. \] Then (i) follows.

(ii) In this case, \(v_{T} \geq c_{0} (\log T)^{(2+\gamma)/\gamma} \) and arguments like those used the proof of Lemma A.3(i) show that for any sufficiently large \(C, \)

\[P \left(\max_{1 \leq s < r \leq T + 1} \left(\frac{1}{\sqrt{r-s}} \sum_{t=s}^{r-1} \zeta_{t} \right) \geq C (\log T)^{1/2} \right) \]

Then (ii) holds. \(\blacksquare \)
Remark. If in addition, \(\{x_t u_t\} \) is an m.d.s. with respect to \(\mathcal{F}_t \) in Lemma A.4(ii), then for any \(v_T \to \infty \) and \(C > 0 \) we can apply Theorem 1.1 in Liu and Watbled (2009) to obtain

\[
P \left(\max_{1 \leq s \leq T_0} \left| \frac{1}{\sqrt{T}} - \frac{s}{T} \sum_{t=s}^{T_0-1} \xi_t \right| \geq C \sqrt{\log T} \right) \leq T^2 \max_{1 \leq s \leq T_0} \exp \left(-C^2 C_3 \sqrt{r - s \log T} \right)
\]

\[
\leq \exp \left(-C^2 C_3 \sqrt{r \log T + 2 \log T} \right) \to 0 \quad \text{as} \quad T \to \infty,
\]

where \(C_3 \) is a constant that does not depend on \(T \).

B Proof of Theorem 3.1

(i) Our proof strategy follows closely from that of Proposition 3 in Harchaoui and Lévy-Leduc (2010).

Define

\[A_{T,j} = \left\{ \left| \hat{T}_j - T_0^j \right| \geq T \delta \right\} \text{ and } C_T = \left\{ \max_{1 \leq t \leq m^0} \left| \hat{T}_t - T_0^t \right| < \frac{1}{2} \right\}. \tag{B.1} \]

Since \(P \left(\max_{1 \leq j \leq m^0} \left| \hat{T}_j - T_0^j \right| \geq T \delta \right) \leq \sum_{j=1}^{m^0} P (A_{T,j}) \) and \(m^0 < \infty \), it suffices to show that (i1) \(\sum_{j=1}^{m^0} P (A_{T,j} \cap C_T) \to 0 \) and (i2) \(\sum_{j=1}^{m^0} P (A_{T,j} \cap C_T^c) \to 0 \), where \(C_T^c \) denotes the complement of \(C_T \).

We first prove (i1) by showing that \(\sum_{j=1}^{m^0} P \left(A_{T,j} \cap C_T \right) \to 0 \) and \(\sum_{j=1}^{m^0} P \left(A_{T,j} \setminus C_T \right) \to 0 \), where \(A_{T,j}^+ = \{ T_j^0 - T_j \geq T \delta \} \) and \(A_{T,j}^- = \{ T_j - T_j^0 \geq T \delta \} \). Without loss of generality (Wlog) we prove that \(\sum_{j=1}^{m^0} P \left(A_{T,j}^+ \cap C_T \right) \to 0 \) as the other case follows analogously. By the definition of \(C_T \), we have

\[T_j^0 - 1 < T_j < T_j^0 + 1 \quad \text{for all } j \in \{1,...,m^0\}. \tag{B.2} \]

By (2.2) and Lemma A.1, we have

\[\frac{1}{T} \sum_{r=\hat{T}_j}^{T_j^0-1} x_r x_r' (\hat{\beta}_r - \beta_0^j) + \frac{1}{T} \sum_{r=\hat{T}_j}^{T_j^0-1} x_r u_r = \frac{1}{T} \sum_{r=1}^{T_j^0-1} x_r x_r' (\hat{\beta}_r - \beta_0^j) + \frac{1}{T} \sum_{r=1}^{T_j^0-1} x_r u_r \]

\[\leq \frac{1}{T} \sum_{r=\hat{T}_j}^{T_j^0-1} x_r x_r' (\alpha_{j+1}^0 - \alpha_j^0) + \frac{1}{T} \sum_{r=\hat{T}_j}^{T_j^0-1} x_r x_r' \left(\hat{\alpha}_j + 1 - \alpha_j^0 \right) \]

\[\equiv R_{T,j,1} - R_{T,j,2} - R_{T,j,3}, \text{ say}, \tag{B.3} \]

where the equality follows from the fact that \(\hat{\beta}_r = \alpha_{j+1}^0 \) and \(\beta_r^j = \alpha_j^0 \) for \(r \in [\hat{T}_j, T_j^0 - 1] \) by (B.2).

Define the event \(\hat{R}_{T,j} (\lambda) = \{ \lambda \geq \frac{1}{T} R_{T,j,1} \} \cup \{ R_{T,j,2} \geq \frac{1}{T} R_{T,j,1} \} \cup \{ R_{T,j,3} \geq \frac{1}{T} R_{T,j,1} \} \). It is easy to show
that $P(\hat{R}_{T,j}(\lambda)) = 1$. It follows that

$$P \left(A_{T,j}^+ \cap C_T \right) \leq P \left(A_{T,j}^+ \cap C_T \cap \left\{ \lambda \geq \frac{1}{3} R_{T,j1} \right\} \right) + P \left(A_{T,j}^+ \cap C_T \cap \left\{ R_{T,j2} \geq \frac{1}{3} R_{T,j1} \right\} \right) + P \left(A_{T,j}^+ \cap C_T \cap \left\{ R_{T,j3} \geq \frac{1}{3} R_{T,j1} \right\} \right)$$

$\equiv AC_{j1} + AC_{j2} + AC_{j3}$, say.

We first bound $\sum_{j=1}^{m_0} AC_{j1}$. Noting that $||AB|| = \|tr(BB'AA')\|^{1/2} \geq \mu_{\min}(AA')^{1/2} ||B||$, we have

$$\sum_{j=1}^{m_0} AC_{j1} \leq \sum_{j=1}^{m_0} P \left(A_{T,j}^+ \cap \left\{ \lambda \geq \frac{1}{3} R_{T,j1} \right\} \right)$$

$$= \sum_{j=1}^{m_0} P \left(\frac{1}{T_{j}^{0} - T_{j}} \sum_{r=T_{j}}^{T_{j}^{0} - 1} x_r x'_r (\hat{\alpha}_{j+1} - \alpha_{j+1}^0) \leq \frac{3T\lambda}{T_{j}^{0} - T_{j}} : T_{j}^{0} - \hat{T}_j \geq T\delta_T \right)$$

$$\leq \sum_{j=1}^{m_0} P \left(c_{1T,j} \leq 3\lambda/(\min\delta_T) : T_{j}^{0} - \hat{T}_j \geq T\delta_T \right) \rightarrow 0,$$

where $c_{1T,j} \equiv \mu_{\min} \left(\frac{1}{T_{j}^{0} - T_{j}} \sum_{r=T_{j}}^{T_{j}^{0} - 1} x_r x'_r \right) \geq \varepsilon_{xx}/2 > 0$ w.p.a.1 by Lemma A.3(ii) and $\lambda/(\min\delta_T) \rightarrow 0$ by Assumption A3(iii). Next, we bound $\sum_{j=1}^{m_0} AC_{j2}$. Observe that

$$AC_{j2} = P \left(A_{T,j}^+ \cap C_T \cap \left\{ \frac{1}{T_{j}^{0} - T_{j}} \sum_{r=T_{j}}^{T_{j}^{0} - 1} x_r x'_r (\hat{\alpha}_{j+1} - \alpha_{j+1}^0) \leq \frac{1}{3} c_{1T,j} ||\hat{\alpha}_{j+1} - \alpha_{j+1}^0|| \right\} \right)$$

$$\leq P \left(A_{T,j}^+ \cap C_T \cap \left\{ c_{2T,j} ||\hat{\alpha}_{j+1} - \alpha_{j+1}^0|| \leq \frac{1}{3} c_{1T,j} ||\hat{\alpha}_{j+1} - \alpha_{j+1}^0|| \right\} \right),$$

where $c_{2T,j} \equiv \mu_{\max} \left(\frac{1}{T_{j}^{0} - T_{j}} \sum_{r=T_{j}}^{T_{j}^{0} - 1} x_r x'_r \right) \leq 2\varepsilon_{xx}$ w.p.a.1 by Lemma A.3(i). Note that $\hat{\alpha}_t = \hat{\alpha}_{j+1}$ for $t \in [T_{j}^{0}, (T_{j}^{0} + T_{j+1}^{0})/2 - 1]$ as $\hat{T}_j < T_{j}^{0}$ given $A_{T,j}^+$ and $\hat{T}_{j+1} > (T_{j}^{0} + T_{j+1}^{0})/2$ conditional on the event C_T. Using Lemma A.1(ii) with $t = (T_{j}^{0} + T_{j+1}^{0})/2$ and $t = T_{j}^{0}$ and following the steps to obtain (B.3), we have $\lambda \geq \frac{1}{2} \sum_{r=T_{j}^{0}}^{(T_{j}^{0} + T_{j+1}^{0})/2 - 1} x_r x'_r (\hat{\alpha}_{j+1} - \alpha_{j+1}^0) \geq \frac{1}{2} \sum_{r=T_{j}^{0}}^{(T_{j}^{0} + T_{j+1}^{0})/2 - 1} x_r u_r$. It follows that

$$\sum_{j=1}^{m_0} P \left(\left\{ ||\hat{\alpha}_{j+1} - \alpha_{j+1}^0|| \geq c_{1T,j} c_{2T,j} ||\alpha_j - \alpha_{j+1}^0|| / 3 \right\} \cap C_T \right)$$

$$\leq \sum_{j=1}^{m_0} P \left(c_{2T,j} c_{1T,j} c_{2T,j} ||\alpha_j - \alpha_{j+1}^0|| / 6 \right)$$

$$+ \sum_{j=1}^{m_0} P \left(\frac{2\lambda T}{T_{j+1}^{0} - T_{j}^{0}} \sum_{r=T_{j}^{0}}^{(T_{j}^{0} + T_{j+1}^{0})/2 - 1} x_r u_r \geq \frac{1}{3} c_{1T,j} c_{1T,j} c_{2T,j} ||\alpha_j - \alpha_{j+1}^0|| / 6 \right).$$

32
The first term converges to zero because \(\lambda T/(I_{\text{min}}J_{\text{min}}) \to 0\) under Assumptions A3(i) and (iii). The second term is bounded from above by \(\sum_{j=1}^{m^0} P\left(\left\|\frac{1}{T_j - T_j'} \sum_{r=T_j}^{T_j + T_j'} x_r u_r \right\| \geq \hat{c}_2 \omega_x J_{\text{min}}/96\right) \to 0\) by analogous arguments as used in the proof of Lemma A.4 and the fact that \(I_{\text{min}}^{-1/2} \log m^0/c^2 = o(J_{\text{min}})\) under Assumptions A3(i)-(ii). It follows that \(\sum_{j=1}^{m^0} AC_{j2} \to 0\). Noting that \(c_{1T,j} \geq \omega_x/2 > 0\) w.p.a.1 and \(\|\frac{1}{T_j - T_j'} \sum_{r=T_j}^{T_j + 1} x_r u_r\| = OP\left([T\delta_T/(\log T)^{c^2}]-1/2\right) = o_p\left(J_{\text{min}}\right)\) when \(T_j - \hat{T}_j \geq T\delta_T\) by Lemma A.4 and Assumption A2(ii), we have

\[
\sum_{j=1}^{m^0} AC_{j3} \leq \sum_{j=1}^{m^0} P\left(A_{T,j}^+ \cap \{R_{T,3} \geq \frac{1}{3} R_{T,1}\}\right)
\]

\[
= \sum_{j=1}^{m^0} P\left(A_{T,j}^+ \cap \left\{\left\|\frac{1}{T_j - T_j'} \sum_{r=T_j}^{T_j + 1} x_r u_r \right\| \geq \frac{1}{3} \left\|\frac{1}{T_j - T_j'} \sum_{r=T_j}^{T_j + 1} x_r x'_r (a_{j+1}^0 - a_j^0)\right\|\right\}\right)
\]

\[
\leq \sum_{j=1}^{m^0} P\left(A_{T,j}^+ \cap \left\{\left\|\frac{1}{T_j - T_j'} \sum_{r=T_j}^{T_j + 1} x_r u_r \right\| \geq \frac{1}{3} c_{1T,j} J_{\text{min}}\right\}\right) \to 0.
\]

Here, the last convergence is obtained by strengthening the results in Lemma A.4 through the squeezing of \(\log m^0(< \log T)\) into the exponent when applying the exponential inequality in Lemma A.3. So we have shown that \(\sum_{j=1}^{m^0} P\left(A_{T,j}^+ \cap C_T\right) \to 0\).

Now we prove (i2). We prove this by showing that \(\sum_{j=1}^{m^0} P\left(A_{T,j}^+ \cap C_T\right) \to 0\) and \(\sum_{j=1}^{m^0} P\left(A_{T,j}^- \cap C_T\right) \to 0\). Wlog we prove that \(\sum_{j=1}^{m^0} P\left(A_{T,j}^+ \cap C_T\right) \to 0\). Define

\[
D_T^0 \equiv \left\{j \in \{1, \ldots, m^0\}, \hat{T}_j \leq T_{j-1}^0\right\} \cap C_T,
\]

\[
D_T^{(m)} \equiv \left\{\forall j \in \{1, \ldots, m^0\}, T_{j-1}^0 < \hat{T}_j < T_{j+1}^0\right\} \cap C_T, \text{ and}
\]

\[
D_T^{(e)} \equiv \left\{j \in \{1, \ldots, m^0\}, \hat{T}_j \geq T_{j+1}^0\right\} \cap C_T.
\]

Then \(\sum_{j=1}^{m^0} P\left(A_{T,j}^+ \cap C_T\right) = \sum_{j=1}^{m^0} P(A_T^+ \cap D_T^0) + \sum_{j=1}^{m^0} P(A_T^+ \cap D_T^{(m)}) + \sum_{j=1}^{m^0} P(A_T^+ \cap D_T^{(e)})\). We first consider \(\sum_{j=1}^{m^0} P(A_T^+ \cap D_T^{(m)})\). Observe that

\[
P\left(A_{T,j}^+ \cap D_T^{(m)}\right) = P\left(A_{T,j}^+ \cap \{\hat{T}_{j+1} - T_j^0 \geq \frac{1}{2} I_{\text{min}}\} \cap D_T^{(m)}\right) + P\left(A_{T,j}^+ \cap \{\hat{T}_{j+1} - T_j^0 < \frac{1}{2} I_{\text{min}}\} \cap D_T^{(m)}\right)
\]

\[
\leq P\left(A_{T,j}^+ \cap \{\hat{T}_{j+1} - T_j^0 \geq \frac{1}{2} I_{\text{min}}\} \cap D_T^{(m)}\right) + P\left(A_{T,j}^+ \cap \{T_{j+1}^0 - \hat{T}_{j+1} \geq \frac{1}{2} I_{\text{min}}\} \cap D_T^{(m)}\right),
\]

where the inequality follows as \(0 \leq \hat{T}_{j+1} - T_j^0 \leq I_{\text{min}}/2\) implies that \(T_{j+1}^0 - \hat{T}_{j+1} = (T_{j+1}^0 - T_j^0) - (\hat{T}_{j+1} - T_j^0) \geq I_{\text{min}} - I_{\text{min}}/2 = I_{\text{min}}/2\). Further noticing that \(\left\{A_{T,j}^+ \cap \{T_{j+1}^0 - \hat{T}_{j+1} \geq I_{\text{min}}/2\} \cap D_T^{(m)}\right\} \subset \)
\[\bigcup_{k=j+1}^{m^0} \left(\{ T_k^0 - \hat{T}_k \geq \min / 2 \} \cap \{ \hat{T}_{k+1} - T_k^0 \geq \min / 2 \} \cap D_T^{(m)} \right), \]

we have
\[
\sum_{j=1}^{m^0} P \left(A_{T,j} \cap D_T^{(m)} \right) \leq \sum_{j=1}^{m^0} P \left(A_{T,j} \cap \{ \hat{T}_{j+1} - T_j^0 \geq \min / 2 \} \cap D_T^{(m)} \right) + \sum_{j=1}^{m^0} \sum_{k=k+1}^{m^0} P \left(\{ T_k^0 - \hat{T}_k \geq \min / 2 \} \cap \{ \hat{T}_{k+1} - T_k^0 \geq \min / 2 \} \cap D_T^{(m)} \right). \tag{B.4}
\]

To bound the first term on the right-hand side of (B.4), we apply Lemma A.1 with \(t = \hat{T}_j \) and \(t = T_j^0 \) to obtain \(\frac{T}{T_j^0 - T_j} \sum_{r=T_j^0}^{T_j} x_r (y_r - x_r^0 \hat{\beta}_r) = \frac{1}{2} \hat{\theta}_{T_j^0} / \| \hat{\theta}_{T_j^0} \| \) and \(\frac{T}{T_j^0 - T_j} \left\| \sum_{r=T_j^0}^{T_j} x_r (y_r - x_r^0 \hat{\beta}_r) \right\| \leq \frac{T}{T_j^0 - T_j} \left(\sum_{r=T_j^0}^{T_j - 1} x_r x_r^0 (\hat{\alpha}_{j+1} - \alpha_j^0) + \sum_{r=T_j^0}^{T_j - 1} x_r u_r \right) \geq c_{1T,j} \| \hat{\alpha}_{j+1} - \alpha_j^0 \| - \left\| \frac{T}{T_j^0 - T_j} \sum_{r=T_j}^{T_j - 1} x_r u_r \right\| . \)

It follows that
\[
\| \hat{\alpha}_{j+1} - \alpha_j^0 \| \leq c_{1T,j} \left[\frac{\lambda T}{T_j^0 - T_j} + \left\| \frac{T}{T_j^0 - T_j} \sum_{r=T_j}^{T_j - 1} x_r u_r \right\| \right]. \tag{B.5}
\]

Similarly, applying Lemma A.1 with \(t = \hat{T}_{j+1} \) and \(t = T_j^0 \) yields \(\frac{T}{T_{j+1}^0 - T_j} \sum_{r=T_j^0}^{T_{j+1}^0} x_r (y_r - x_r^0 \hat{\beta}_r) = \frac{1}{2} \hat{\theta}_{T_{j+1}^0} / \| \hat{\theta}_{T_{j+1}^0} \| \) and \(\frac{T}{T_{j+1}^0 - T_j} \left\| \sum_{r=T_j^0}^{T_{j+1}^0} x_r (y_r - x_r^0 \hat{\beta}_r) \right\| \leq \frac{T}{T_{j+1}^0 - T_j} \left(\sum_{r=T_j^0}^{T_{j+1}^0 - 1} x_r x_r^0 \left(\hat{\alpha}_{j+1} - \alpha_j^0 \right) + \sum_{r=T_j^0}^{T_{j+1}^0 - 1} x_r u_r \right) \), which, in conjunction with (2.2), implies that
\[
\frac{T}{T_{j+1}^0 - T_j} \left\| \sum_{r=T_j^0}^{T_{j+1}^0 - 1} x_r x_r^0 \left(\hat{\alpha}_{j+1} - \alpha_j^0 \right) + \sum_{r=T_j^0}^{T_{j+1}^0 - 1} x_r u_r \right\| \geq c_{3T,j} \| \alpha_{j+1} - \alpha_j^0 \| - \left\| \frac{T}{T_{j+1}^0 - T_j} \sum_{r=T_j^0}^{T_{j+1}^0 - 1} x_r u_r \right\| , \]

where \(c_{3T,j} \equiv \mu_{\min} \left(\frac{T}{T_{j+1}^0 - T_j} \sum_{r=T_j^0}^{T_{j+1}^0 - 1} x_r x_r^0 \right) \) \(\geq c_{xz} / 2 \) w.p.a.1 by Lemma A.3(ii). So
\[
\| \hat{\alpha}_{j+1} - \alpha_j^0 \| \leq c_{3T,j} \left[\frac{\lambda T}{T_{j+1}^0 - T_j} + \left\| \frac{T}{T_{j+1}^0 - T_j} \sum_{r=T_j^0}^{T_{j+1}^0 - 1} x_r u_r \right\| \right]. \tag{B.6}
\]

Define the event
\[
E_{T,j} \equiv \left\{ \| \alpha_{j+1}^0 - \alpha_j^0 \| \leq \lambda \left(\frac{T}{T_j^0 - T_j} \sum_{r=T_j^0}^{T_j} \sum_{r=T_j}^{T_j - 1} x_r u_r \right) + c_{1T,j} \left\| \frac{T}{T_j^0 - T_j} \sum_{r=T_j}^{T_j - 1} x_r u_r \right\| + c_{3T,j} \left\| \frac{T}{T_{j+1}^0 - T_j} \sum_{r=T_j^0}^{T_{j+1}^0 - 1} x_r u_r \right\| \right\}. \tag{B.7}
\]
By the triangle inequality, (B.5) and (B.6) imply that \(E_{T,j} \) occurs with probability one. It follows that

\[
\sum_{j=1}^{m^0} P \left(A_{T,j}^+ \cap \left\{ \hat{T}_{j+1} - T_j^0 \geq I_{\min}/2 \right\} \cap D_T^{(m)} \right)
\]

\[
= \sum_{j=1}^{m^0} P \left(E_{T,j} \cap A_{T,j}^+ \cap \left\{ \hat{T}_{j+1} - T_j^0 \geq I_{\min}/2 \right\} \cap D_T^{(m)} \right)
\]

\[
\leq \sum_{j=1}^{m^0} P \left(E_{T,j} \cap \left\{ T_j^0 - \hat{T}_j > T\delta_T \right\} \cap \left\{ \hat{T}_{j+1} - T_j^0 \geq I_{\min}/2 \right\} \right)
\]

\[
\leq \sum_{j=1}^{m^0} P \left(\lambda \delta_T^{-1} c_{T,j}^{-1} + \frac{2\lambda T}{I_{\min}} c_T^{-1} \geq \| \alpha_j^0 - \alpha_j^0 \| / 3 \right)
\]

\[
+ \sum_{j=1}^{m^0} P \left(c_{T,j}^{-1} \left\| \frac{1}{T_j^0 - T_j} \sum_{r=T_j}^{T_j^0-1} x_r u_r \right\| \geq \| \alpha_j^0 - \alpha_j^0 \| / 3 \right) \cap \left\{ T_j^0 - \hat{T}_j > T\delta_T \right\}
\]

\[
+ \sum_{j=1}^{m^0} P \left(c_{T,j}^{-1} \left\| \frac{1}{T_{j+1}^0 - T_j} \sum_{r=T_j}^{T_{j+1}^0-1} x_r u_r \right\| \geq \| \alpha_j^0 - \alpha_j^0 \| / 3 \right) \cap \left\{ \hat{T}_{j+1} - T_j^0 \geq I_{\min}/2 \right\} \right) . \tag{B.8}
\]

The first term in (B.8) converges to zero because \(\lambda/(I_{\min} \delta_T) = o(1) \) and \(\lambda T/(I_{\min} I_{\min}) = o(1) \) by Assumptions A3(i) and (iii). The second and third terms in (B.8) converge to zero because \(\left\| \frac{1}{T_j^0 - T_j} \sum_{r=T_j}^{T_j^0-1} x_r u_r \right\| \)

\(= O_P \left([T\delta_T/(\log T)^c]^{-1/2} \right) = o_P \left(I_{\min} \right) \) by Lemma A.4 and Assumption A3(ii), \(\left\| \frac{1}{T_{j+1}^0 - T_j} \sum_{r=T_j}^{T_{j+1}^0-1} x_r u_r \right\| = O_P \left([I_{\min}/(\log T)^c]^{-1/2} \right) = o_P \left(I_{\min} \right) \) by Lemma A.4 and Assumptions A3(i)-(ii), and by strengthening the results in Lemma A.4 through the squeezing of \(\log m^0 \(< \log T) \) into the exponent. Similarly, we can show that the second term in (B.8) converges to zero.

Now we consider \(\sum_{j=1}^{m^0} P(A_{T,j}^+ \cap D_T^{(l)}) \). Observe that

\[
P \left(A_{T,j}^+ \cap D_T^{(l)} \right) \leq P \left(D_T^{(l)} \right) \leq \sum_{j=1}^{m^0} P \left(\max \left\{ l \in \{1, ..., m^0 \} : \hat{T}_l \leq T_{l-1}^0 \right\} = j \right),
\]

and the event \(\max \left\{ l \in \{1, ..., m^0 \} : \hat{T}_l \leq T_{l-1}^0 \right\} = j \) implies that \(\hat{T}_j \leq T_{j-1}^0 \) and \(\hat{T}_{j+1} > T_j^0 \) for all \(l = j, ..., m^0 \), and \(\left\{ \max \left\{ l \in \{1, ..., m^0 \} : \hat{T}_l \leq T_{l-1}^0 \right\} = j \right\} \subset \bigcup_{k=j}^{m^0-1} \left(\left\{ T_k^0 - \hat{T}_k \geq I_{\min}/2 \right\} \cap \left\{ \hat{T}_{k+1} - T_k^0 \geq I_{\min}/2 \right\} \right) \).

It follows that

\[
\sum_{j=1}^{m^0} P \left(A_{T,j}^+ \cap D_T^{(l)} \right) \leq m^0 \sum_{j=1}^{m^0} \sum_{k=j}^{m^0-1} P \left(\left\{ T_k^0 - \hat{T}_k \geq I_{\min}/2 \right\} \cap \left\{ \hat{T}_{k+1} - T_k^0 \geq I_{\min}/2 \right\} \right)
\]

\[
+ m^0 2^{m^0-1} P \left(\hat{T}_{m^0}^0 - \hat{T}_{m^0} \geq I_{\min}/2 \right) . \tag{B.9}
\]

Consider the last term on the right-hand side of (B.9). Applying \(j = m^0 \) in (B.7) suggests that the event
E_{T, m^0} occurs with probability one. It follows that
\[
m^{0} m^{-1} P \left(T^0_m - \hat{T}^0_m \geq I_{\min}/2 \right)
\leq m^{0} m^{-1} P \left(E^0_{T, m^0} \cap \left\{ T^0_m - \hat{T}^0_m \geq I_{\min}/2 \right\} \right)
\leq m^{0} m^{-1} P \left(\lambda \delta_T^{-1} c_{IT, m^0}^1 + \frac{2 \lambda T}{I_{\min}} c_{IT, m^0} \geq \| \alpha^0_{m^0} - \alpha^0_{m^0} \| / 3 \right)
\leq m^{0} m^{-1} P \left(c_{IT, m^0}^{-1} \left| T^0_m - \hat{T}^0_m \right| \sum_{r=0}^T x_r u_r \geq \| \alpha^0_{m^0} - \alpha^0_{m^0} \| / 3 \right)
\rightarrow 0,
\]
by similar arguments to those used in the study of (B.8) and the fact that $m^{0} m^{-1} = O(T \log T)$ and
\[
\log(T \log T) \leq \log(T^{1+\epsilon/2})
\]
can be squeezed into the exponent when applying the exponential inequality in Lemma A.3. Now, consider the first term on the right-hand side of (B.9). Using (B.7) with $j = k$, similar arguments like those used in the study of (B.8), and the fact that $\log((m^0)^2 2 m^{-1}) = O(\log(T^{1+\epsilon/2}))$ yields
\[
m^{0} \sum_{j=1}^{m^0-1} \sum_{k=j}^{m^0-1} P \left(\left\{ T^0_k - \hat{T}^0_k \geq I_{\min}/2 \right\} \cap \left\{ \hat{T}^0_k - T^0_k \geq I_{\min}/2 \right\} \right)
\leq m^{0} m^{-1} \sum_{k=1}^{m^0-1} P \left(E_{T, k} \cap \left\{ T^0_k - \hat{T}^0_k \geq I_{\min}/2 \right\} \cap \left\{ \hat{T}^0_k - T^0_k \geq I_{\min}/2 \right\} \right)
\leq m^{0} m^{-1} \sum_{k=1}^{m^0-1} P \left(\lambda \delta_T^{-1} c_{IT, k}^1 + \frac{2 \lambda T}{I_{\min}} c_{IT, k} \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3 \right)
\leq m^{0} m^{-1} \sum_{k=1}^{m^0-1} P \left(c_{IT, k}^{-1} \left| T^0_k - T^0_k \right| \sum_{r=0}^T x_r u_r \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3 \right) \cap \left\{ T^0_k - \hat{T}^0_k \geq I_{\min}/2 \right\}
\leq m^{0} m^{-1} \sum_{k=1}^{m^0-1} P \left(c_{IT, k}^{-1} \left| \hat{T}^0_{k+1} - \hat{T}^0_k \right| \sum_{r=T_k}^T x_r u_r \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3 \right) \cap \left\{ \hat{T}^0_k - T^0_k \geq I_{\min}/2 \right\}
\rightarrow 0.
\]
It follows that $\sum_{j=1}^{m^0} P(A_{T, j}^+ \cap D_{T}^{(l)}) \rightarrow 0$. Analogously, we can show that $\sum_{j=1}^{m^0} P(A_{T, j}^+ \cap D_{T}^{(l)}) \rightarrow 0$.

We now prove (ii). By the result in part (i) and Assumption A3(i), $|\hat{T}^0_j - T^0_j| = O_p(T \delta_T) = o_p(I_{\min})$ uniformly in $j = 1, ..., m^0$. It follows that either $(T^0_{j-1} + T^0_j)/2 < \hat{T}^0_j < T^0_j$ or $T^0_j \leq \hat{T}^0_j < (T^0_{j-1} + T^0_{j+1})/2$ holds for each j. Fix $l \in \{1, ..., m^0\}$, wlog assume that $(T^0_{j-1} + T^0_j)/2 < \hat{T}^0_l < T^0_j$ and consider two subcases: (ii1) $(T^0_l + T^0_{l+1})/2 < \hat{T}^0_{l+1} < T^0_{l+1}$ and (ii2) $T^0_{l+1} \leq \hat{T}^0_{l+1}$. In subcase (ii1), using
Lemma A.1(i) with \(t = \tilde{T}_1 \) and \(\tilde{T}_{i+1} \) and (2.2) yields

\[
\lambda \geq \left\| \frac{1}{T} \sum_{r = \tilde{T}_i}^{T_{i+1}-1} x_r \left(y_r - x'_r \beta_r \right) \right\| \geq \left\| \frac{1}{T} \sum_{r = \tilde{T}_i}^{T_{i+1}-1} x_r \left(y_r - x'_r \beta_r \right) \right\|
\]

\[
= \left\| \frac{1}{T} \sum_{r = \tilde{T}_i}^{T_{i+1}-1} x_r x'_r \left(\alpha^0_r - \hat{\alpha}_{i+1} \right) + x_r u_r \right\| + \left\| \frac{1}{T} \sum_{r = T_0}^{T_{i+1}-1} x_r x'_r \left(\alpha^0_r - \hat{\alpha}_{i+1} \right) + x_r u_r \right\|
\]

\[
\geq \left\| \frac{1}{T} \sum_{r = \tilde{T}_i}^{T_{i+1}-1} x_r x'_r \left(\alpha^0_r - \hat{\alpha}_{i+1} \right) + x_r u_r \right\| - \left\| \frac{1}{T} \sum_{r = T_0}^{T_{i+1}-1} x_r x'_r \left(\alpha^0_r - \hat{\alpha}_{i+1} \right) + x_r u_r \right\|
\]

\[
\geq \frac{\tilde{T}_{i+1} - T_0}{T} \left\{ \epsilon_{T,i} \left\| \hat{\alpha}_{i+1} - \alpha^0_{i+1} \right\| - O_P \left(\left(I_{i+1}^0 \right)^{-1/2} \right) \right\} - O_P \left(\left(T_0 - \tilde{T}_1 \right)/T \right)
\]

where \(\epsilon_{T,i} \equiv \mu_{\min} \left(\frac{1}{\tilde{T}_{i+1} - T_0} \sum_{r = T_0}^{\tilde{T}_{i+1}-1} x_r x'_r \right) \geq \xi_{xx}/2 \) w.p.a.1 by Lemma A.3(ii) and the result in part (i).

It follows that \(\left\| \hat{\alpha}_{i+1} - \alpha^0_{i+1} \right\| = O_P \left(\left(\lambda + \delta_T \right) T / I_{i+1}^0 + \left(I_{i+1}^0 \right)^{-1/2} \right) \). In subcase (ii2), using Lemma A.1(i) with \(t = \tilde{T}_1 \) and \(\tilde{T}_{i+1} \), (2.2), and the triangle inequality yields

\[
\lambda \geq \left\| \frac{1}{T} \sum_{r = \tilde{T}_i}^{T_{i+1}-1} x_r \left(y_r - x'_r \beta_r \right) \right\|
\]

\[
= \left\| \frac{1}{T} \sum_{r = \tilde{T}_i}^{T_{i+1}-1} x_r x'_r \left(\alpha^0_r - \hat{\alpha}_{i+1} \right) + x_r u_r \right\| + \left\| \frac{1}{T} \sum_{r = T_0}^{T_{i+1}-1} x_r x'_r \left(\alpha^0_r - \hat{\alpha}_{i+1} \right) + x_r u_r \right\|
\]

\[
\geq \left\| \frac{1}{T} \sum_{r = \tilde{T}_i}^{T_{i+1}-1} x_r x'_r \left(\alpha^0_r - \hat{\alpha}_{i+1} \right) + x_r u_r \right\| - \left\| \frac{1}{T} \sum_{r = T_0}^{T_{i+1}-1} x_r x'_r \left(\alpha^0_r - \hat{\alpha}_{i+1} \right) + x_r u_r \right\|
\]

\[
\geq \frac{T_0}{T} \left\{ \epsilon_{T,i} \left\| \hat{\alpha}_{i+1} - \alpha^0_{i+1} \right\| - O_P \left(\left(I_{i+1}^0 \right)^{-1/2} \right) \right\} - O_P \left(\left(T_0 - \tilde{T}_1 \right)/T \right)
\]

where \(\epsilon_{T,i} \equiv \mu_{\min} \left(\frac{1}{\tilde{T}_{i+1} - T_0} \sum_{r = T_0}^{\tilde{T}_{i+1}-1} x_r x'_r \right) \geq \xi_{xx}/2 \) w.p.a.1. It follows that \(\left\| \hat{\alpha}_{i+1} - \alpha^0_{i+1} \right\| = O_P \left(\left(\lambda + \delta_T \right) T / I_{i+1}^0 + \left(I_{i+1}^0 \right)^{-1/2} \right) \). The same conclusion holds when \(T_0 \leq \tilde{T}_1 < \left(T_0^0 + T_{i+1}^0 \right)/2 \). This implies that the result in part (ii) holds for all \(j = 2, ..., m^0 + 1 \).

To show (ii) holds for \(j = 1 \), we apply Lemma A.1 with \(t = \tilde{T}_1 \) and \(t = 1 \) and the triangle inequality to obtain

\[
\lambda \geq \left\| \frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r \left(y_r - x'_r \beta_r \right) \right\| \geq \frac{\tilde{T}_{i+1}}{T} \left\| \epsilon_{T,1a} \left\| \hat{\alpha}_1 - \alpha^0_1 \right\| - \frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r u_r \right\| \right\|
\]

if \(\tilde{T}_1 \leq T_0^0 \), and

\[
\lambda \geq \frac{T_1}{T} \left\{ \epsilon_{T,1b} \left\| \hat{\alpha}_1 - \alpha^0_1 \right\| - \frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} \left\| x_r u_r \right\| \right\| \right\| - \frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r u_r \right\| \right\| \right\| \right\|
\]

if \(\tilde{T}_1 > T_0^0 \), where \(\epsilon_{T,1a} \equiv \mu_{\min} \left(\frac{1}{\tilde{T}_{i+1} - T_1} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r x'_r \right) \) and \(\epsilon_{T,1b} \equiv \mu_{\min} \left(\frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r x'_r \right) \). One can readily show that \(\frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r u_r \right\| \right\| \right\| \right\|

One can readily show that

\[
\frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r u_r = \frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r u_r = \frac{1}{T} \sum_{r = \tilde{T}_1}^{\tilde{T}_{i+1}-1} x_r u_r +
\]

37
\[\frac{1}{T} \sum_{x_r = T^0_k}^{T^0_k - 1} x_r u_r = O_P[(R^0_k)^{-1/2} + \delta_T] \] if \(\hat{T}_1 > T^0_k \) by using \(\hat{T}_1/T = T^0_k/T + O_P(\delta_T) \). In addition, \[\frac{1}{T} \sum_{x_r = T^0_k}^{T^0_k - 1} \|x_r u_r\| = O_P(T\delta_T/R^0_k) \). It follows that \[\|\hat{\alpha}_1 - \alpha_1^0\| = O_P[(\lambda + \delta_T)T/R^0_k + (R^0_k)^{-1/2}] \]. This completes the proof of part (ii). \]

C Proof of Theorem 3.2

Given Theorem 3.1, it suffices to show that \(P \left[\left\{ D(\hat{T}_m, T^0_m) > T\delta_T \right\} \cap \left\{ m_{\max} \geq \hat{m} > m_0 \right\} \right] \to 0 \) as \(T \to \infty \). Define

\[
F_{m, k, 1} = \left\{ \forall l \in \{1, \ldots, m\} \mid \hat{T}_l - T^0_k > T\delta_T \text{ and } \hat{T}_l < T^0_k \right\},
\]

\[
F_{m, k, 2} = \left\{ \forall l \in \{1, \ldots, m\} \mid \hat{T}_l - T^0_k > T\delta_T \text{ and } \hat{T}_l = T^0_k \right\},
\]

\[
F_{m, k, 3} = \left\{ \exists l \in \{1, \ldots, m - 1\} \mid \hat{T}_l - T^0_k > T\delta_T, \ |\hat{T}_{l+1} - T^0_k| > T\delta_T \text{ and } \hat{T}_l < T^0_k < \hat{T}_{l+1} \right\}.
\]

Observe that

\[
P \left[\left\{ D(\hat{T}_m, T^0_m) > T\delta_T \right\} \cap \left\{ m_{\max} \geq \hat{m} > m_0 \right\} \right] \\
\leq \sum_{m = m_0}^{m_{\max}} P(\bar{D}(\hat{T}_m, T^0_m) > T\delta_T) \\
\leq \sum_{m = m_0}^{m_{\max}} \sum_{k = 1}^{m_0} P\left(D(\hat{T}_m, T^0_m) > T\delta_T, \ |\hat{T}_l - T^0_k| > T\delta_T \right)
\]

\[
= \sum_{m = m_0}^{m_{\max}} \sum_{k = 1}^{m_0} \left[P(F_{m, k, 1}) + P(F_{m, k, 2}) + P(F_{m, k, 3}) \right].
\]

We first bound \(\sum_{m = m_0}^{m_{\max}} \sum_{k = 1}^{m_0} P(F_{m, k, 1}) \). Note that \(P(F_{m, k, 1}) = P(F_{m, k, 1} \cap \{ T_m > T^0_{k-1} \}) + P(F_{m, k, 1} \cap \{ T_m \leq T^0_{k-1} \}) \). Using Lemma A.1 with \(t = \hat{T}_m \) and \(t = T^0_k \) in the case where \(T^0_k \geq \hat{T}_m > T^0_{k-1} \) yields

\[
1/T \sum_{r = T_m}^T x_r(\lambda T - \hat{T}_m) = \frac{\lambda \hat{T}_m}{2} \| \hat{T}_m \| \and 1/T \sum_{r = T^0_k}^T x_r(\lambda T - \hat{T}_m) = \frac{\lambda}{2},
\]

implying that \(\lambda \geq \frac{1}{2} \sum_{r = T_m}^{T^0_k - 1} x_r x'_r \left(\alpha_{m+1} - \alpha_0^0 \right) + \frac{1}{2} \sum_{r = T^0_k}^{T^0_{k-1}} x_r x'_r \left(\alpha_0^0 - \alpha_{k+1} \right) - \frac{1}{2} \sum_{r = T_m}^{T^0_{k-1}} x_r u_r \). This further implies that the event

\[
G_T \equiv \left\{ \|\alpha_{k+1} - \alpha_0^0\| \leq c_{4T, mk} \left[\frac{\lambda T}{T^0_k - T_m} \right] + \frac{1}{T^0_k - T_m} \sum_{r = T_m}^{T^0_k - 1} x_r x'_r \left(\alpha_{m+1} - \alpha_0^0 \right) + \frac{1}{T^0_k - T_m} \sum_{r = T_m}^{T^0_{k-1}} x_r u_r \right\}
\]

occurs with probability one, where \(c_{4T, mk} = \mu_{min} \left(\frac{1}{T^0_k - T_m} \sum_{r = T_m}^{T^0_k - 1} x_r x'_r \right) \geq \frac{\lambda \mu}{2} / T^0_k \) w.p.a.1 by Lemma A.3(ii). It follows that \(\sum_{m = m_0}^{m_{\max}} \sum_{k = 1}^{m_0} P(F_{m, k, 1} \cap \{ T_m > T^0_{k-1} \}) = \sum_{m = m_0}^{m_{\max}} \sum_{k = 1}^{m_0} P(G_T \cap F_{m, k, 1}) \)

38
where

\[\{ \hat{T}_m > T_{k-1}^0 \} \leq F_1(1) + F_1(2) + F_1(3), \]

where

\[
F_1(1) = \sum_{m=n^{b+1}}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{m_0} P \left(\frac{c^{-1}_{4T,mk}}{T_k} \lambda_T^k \geq \left\| \alpha_{k+1}^0 - \alpha_k^0 \right\| / 3 \right)
\]

\[
F_1(2) = \sum_{m=n^{b+1}}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{m_0} \left(\frac{c^1_{4T,mk}}{T_k - T_m} \sum_{r=T_m}^{T_k-1} x_r x'_r (\hat{\alpha}_{m+1} - \alpha_{k+1}^0) \right) \geq \left\| \alpha_{k+1}^0 - \alpha_k^0 \right\| / 3, T_k - T_m > T \delta T \]

\[
F_1(3) = \sum_{m=n^{b+1}}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{m_0} \left(\frac{c^{-1}_{4T,mk}}{T_k - T_m} \sum_{r=T_m}^{T_k-1} x_r u_r \right) \geq \left\| \alpha_{k+1}^0 - \alpha_k^0 \right\| / 3, T_k - T_m > T \delta T \right). \]

Arguments like those used in the study of (B.8) show that $F_1(1)$ and $F_1(3)$ converge to 0. For $F_1(2)$, we apply Lemma A.1 with $t = T_k^0$ and $t = T_k^{0+1}$ and then the triangle inequality to obtain

\[
\left\| \sum_{r=T_k^0}^{r=T_k^{0+1}} x_r (y_r - x'_r \hat{\alpha}_{m+1}) \right\| \leq \frac{\lambda}{3} \text{ and } \left\| \sum_{r=T_k^0}^{r=T_k^{0+1}} x'_r (y_r - x'_r \hat{\alpha}_{m+1}) \right\| \leq \frac{\lambda}{3}. \]

This implies that

\[
\lambda \geq \left\| \sum_{r=T_k^0}^{r=T_k^{0+1}} x_r x'_r (\hat{\alpha}_{m+1} - \alpha_1^0) + \frac{1}{T_k-1-T_k} \sum_{r=T_k^0}^{r=T_k^{0+1}} x_r u_r \right\| \geq \frac{c_{5T,k}}{T_k^0 - T_k} \sum_{r=T_k^0}^{r=T_k^{0+1}} x_r x'_r \geq c_x / 2 \text{ w.p.a.1 by Lemma A.3(ii)}. \]

It follows that

\[
F_1(2) \leq \sum_{m=n^{b+1}}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{m_0} \left(c^1_{4T,mk} \frac{1}{T_k - T_m} \sum_{r=T_m}^{T_k-1} x_r x'_r (\hat{\alpha}_{m+1} - \alpha_{k+1}^0) \right) \geq \left\| \alpha_{k+1}^0 - \alpha_k^0 \right\| / 3, T_k - T_m > T \delta T \right)
\]

\[
\leq \sum_{m=n^{b+1}}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{m_0} \left(c^1_{4T,mk} \frac{1}{T_k - T_m} \sum_{r=T_m}^{T_k-1} x_r x'_r (\hat{\alpha}_{m+1} - \alpha_{k+1}^0) \right) \geq \left\| \alpha_{k+1}^0 - \alpha_k^0 \right\| / 3
\]

\[
\leq \sum_{m=n^{b+1}}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{m_0} \left(c^1_{5T,k} \frac{\lambda T}{I_{\text{min}}} \sum_{r=T_k^0}^{r=T_k^{0+1}} x_r x'_r \right) \geq c_{4T,2T,mk} \left\| \alpha_{k+1}^0 - \alpha_k^0 \right\| / 6
\]

\[
+ \sum_{m=n^{b+1}}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{m_0} \left(c^1_{5T,k} \frac{1}{T_k - T_m} \sum_{r=T_m}^{T_k-1} x_r u_r \right) \geq \left\| \alpha_{k+1}^0 - \alpha_k^0 \right\| / 6
\]

\[
\rightarrow 0 \quad \text{(C.1)}
\]

where

\[
\hat{c}_{2T,mk} \equiv \mu_{\text{max}} \left(\frac{1}{T_k - T_m} \sum_{r=T_k}^{T_k-1} x_r x'_r \right) \leq 2c_x \text{ w.p.a.1 by Lemma A.3(i)}, \]

the first term in (C.1) converges to zero because $\lambda T/(I_{\text{min}}J_{\text{min}}) = o(1)$ by Assumptions A3(i) and (iii), and the second term converges to zero by the application of Lemma A.2. So we have shown that $\sum_{m=m_0+1}^{\infty} \sum_{k=1}^{m_0} P(F_{m,k,1} \cap \{ T_m > T_{k-1}^0 \}) \rightarrow 0$. Analogously, we can show that $\sum_{m=m_0+1}^{\infty} \sum_{k=1}^{m_0} P(F_{m,k,1} \cap \{ \hat{T}_m < T_{k-1}^0 \}) \rightarrow 0$. It follows that $\sum_{m=m_0+1}^{\infty} \sum_{k=1}^{m_0} P(F_{m,k,1}) \rightarrow 0$ as $T \rightarrow \infty$. Similarly, we can show that $\sum_{m=m_0+1}^{\infty} \sum_{k=1}^{m_0} P(F_{m,k,2}) \rightarrow 0$ as $T \rightarrow \infty$.

Now we bound $\sum_{m=m_0+1}^{\infty} \sum_{k=1}^{m_0} P(F_{m,k,3})$. Observe that $P(F_{m,k,3}) = P(F_{m,k,3}^{(1)}) + P(F_{m,k,3}^{(2)}) + P(F_{m,k,3}^{(3)}) + P(F_{m,k,3}^{(4)})$ where $F_{m,k,3}^{(1)} = F_{m,k,3} \cap \{ \hat{T}_k < \hat{T}_{k+1} < T_k^0 < T_{k+1}^0 \}$, $F_{m,k,3}^{(2)} = F_{m,k,3} \cap \{ \hat{T}_k < \hat{T}_{k+1} < T_k^0 < T_{k+1}^0 \}$, $F_{m,k,3}^{(3)} = F_{m,k,3} \cap \{ \hat{T}_k > T_{k-1}^0 < T_k^0 < T_{k+1}^0 \}$, and $F_{m,k,3}^{(4)} = F_{m,k,3} \cap \{ \hat{T}_k > T_{k-1}^0 < T_k^0 < T_{k+1}^0 \}$.
\(T^0_{k-1}, T^0_{k+1} < \tilde{T}_{i+1} \). For \(F_{m,k,3}^{(1)} \) we apply Lemma A.1 first with \(t = T^0_k \) and \(t = \tilde{T}_i \) to obtain
\[
\lambda > \left\| \frac{1}{T} \sum_{r=\tilde{T}_i}^{T^0_k} x_r x'_r (\hat{\alpha}_{i+1} - \alpha^0_{k+1}) - \frac{1}{T} \sum_{r=\tilde{T}_i}^{T^0_k} x_r u_r \right\|,
\]
and then with \(t = T^0_k \) and \(t = \tilde{T}_{i+1} \) to obtain
\[
\lambda > \left\| \frac{1}{T} \sum_{r=\tilde{T}_{i+1}}^{T^0_k} x_r x'_r (\hat{\alpha}_{i+1} - \alpha^0_{k+1}) - \frac{1}{T} \sum_{r=\tilde{T}_{i+1}}^{T^0_k} x_r u_r \right\|.
\]

Then by triangle inequality \(\| \alpha^0_{k+1} - \alpha^0_k \| \leq \| \hat{\alpha}_{i+1} - \alpha^0_k \| + \| \hat{\alpha}_{i+1} - \alpha^0_{k+1} \| \) \(\leq c^{-1}_{0T,kl} \left(\left\| \frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r u_r \right\| \right) \)
\(+ \frac{\lambda T}{T^0_k - \tilde{T}^0_k} + c^{-1}_{T+1,kl} \left(\frac{\lambda T}{T^0_k - \tilde{T}^0_k} + \frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r x'_r \right) \) where \(c_{0T,kl} \equiv \mu_{\min} \left(\frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r x'_r \right) \geq c_{x_x}/2 \) w.p.a.1 and \(c_{T+1,kl} \equiv \mu_{\min} \left(\frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r x'_r \right) \geq c_{x_x}/2 \) w.p.a.1 by Lemma A.3(ii). It follows that \(\sum_{m=m^0+1}^{m^0} P(F^{(1)}_{m,k,3}) \) is bounded from above by
\[
\sum_{m=m^0+1}^{m^0} \sum_{k=1}^{m^0} P \left(\lambda^{-1} \left(c^{-1}_{0T,kl} + c^{-1}_{T+1,kl} \right) \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3 \right)
+ \sum_{m=m^0+1}^{m^0} \sum_{k=1}^{m^0} P \left(c^{-1}_{0T,kl} \left| \frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r u_r \right| \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3, T^0_k - \tilde{T}^0_k \geq T^0_{\delta T} \right)
+ \sum_{m=m^0+1}^{m^0} \sum_{k=1}^{m^0} P \left(c^{-1}_{T+1,kl} \left| \frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r x'_r \right| \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3, T^0_k - \tilde{T}^0_k \geq T^0_{\delta T} \right)
\]
which converges to zero by arguments analogous to those used in the study of (B.8). For \(F_{m,k,3}^{(2)} \) we apply Lemma A.1 first with \(t = T^0_k \) and \(t = \tilde{T}_i \) to obtain (C.2) and then with \(t = T^0_k \) and \(t = T^0_{k+1} \) to obtain
\[
\lambda > \left\| \frac{1}{T} \sum_{r=\tilde{T}_i}^{T^0_k} x_r x'_r (\hat{\alpha}_{i+1} - \alpha^0_{k+1}) - \frac{1}{T} \sum_{r=\tilde{T}_i}^{T^0_k} x_r u_r \right\|.
\]

Then by triangle inequality \(\| \alpha^0_{k+1} - \alpha^0_k \| \leq \| \hat{\alpha}_{i+1} - \alpha^0_k \| + \| \hat{\alpha}_{i+1} - \alpha^0_{k+1} \| \) \(\leq c^{-1}_{0T,kl} \left(\left\| \frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r u_r \right\| \right) \)
\(+ \frac{\lambda T}{T^0_k - \tilde{T}^0_k} + c^{-1}_{ST,k} \left(\frac{\lambda T}{T^0_k - \tilde{T}^0_k} + \frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r x'_r \right) \) where \(c_{ST,k} \equiv \mu_{\min} \left(\frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r x'_r \right) \) \(\geq c_{x_x}/2 \) w.p.a.1 by Lemma A.3(ii). It follows that \(\sum_{m=m^0+1}^{m^0} \sum_{k=1}^{m^0} P(F^{(2)}_{m,k,3}) \) is bounded from above by
\[
\sum_{m=m^0+1}^{m^0} \sum_{k=1}^{m^0} P \left(\lambda^{-1} c^{-1}_{0T,kl} + \frac{\lambda T}{\min} \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3 \right)
+ \sum_{m=m^0+1}^{m^0} \sum_{k=1}^{m^0} P \left(c^{-1}_{0T,kl} \left| \frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r u_r \right| \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3, T^0_k - \tilde{T}^0_k \geq T^0_{\delta T} \right)
+ \sum_{m=m^0+1}^{m^0} \sum_{k=1}^{m^0} P \left(c^{-1}_{ST,k} \left| \frac{1}{T^0_k - \tilde{T}^0_k} \sum_{r=\tilde{T}^0_k}^{T^0_k} x_r x'_r \right| \geq \| \alpha^0_{k+1} - \alpha^0_k \| / 3 \right).
\]
which converges to zero by arguments analogous to those used in the study of (B.8). For \(F^{(3)}_{m,k,3} \) we apply Lemma A.1 first with \(t = T^0_{k-1} \) and \(t = T^0_k \) to obtain

\[
\lambda > \left\| \frac{1}{T} \sum_{r=T^0_{k-1}}^{T^0_k} x_r x'_r (\hat{\alpha}_{t+1} - \alpha^0_k) - \frac{1}{T} \sum_{r=T^0_{k-1}}^{T^0_k} x_r u_r \right\|
\]

(C.5)

and then with \(t = T^0_k \) and \(t = \hat{T}_{t+1} \) to obtain

\[
\lambda > \left\| \frac{1}{T} \sum_{r=T^0_k}^{\hat{T}_{t+1}-1} x_r x'_r (\hat{\alpha}_{t+1} - \alpha^0_{k+1}) - \frac{1}{T} \sum_{r=T^0_k}^{\hat{T}_{t+1}-1} x_r u_r \right\|
\]

(C.6)

Then by triangle inequality \(\|\alpha^0_{k+1} - \alpha^0_k\| \leq \|\hat{\alpha}_{t+1} - \alpha^0_k\| + \|\hat{\alpha}_{t+1} - \alpha^0_{k+1}\| \leq c^{-1}_{9T,k} \left(\|\frac{1}{T} \sum_{r=T^0_{k-1}}^{T^0_k} x_r u_r \| + \frac{\lambda_T}{T^0_{k-1} - T^0_k} \right) + c_{10T,kl} \left(\frac{\lambda_T}{T^0_{k-1} - T^0_k} + \|\frac{1}{T} \sum_{r=T^0_k}^{\hat{T}_{t+1}-1} x_r x'_r \| \right) \geq c_{ex}/2 \) w.p.a. and \(c_{10T,kl} \equiv \mu_{\min} \left(\frac{1}{\hat{T}_{t+1} - T^0_k} \sum_{r=T^0_k}^{\hat{T}_{t+1}-1} x_r x'_r \right) \geq c_{ex}/2 \) w.p.a. by Lemma A.3(ii). It follows that \(\sum_{m=m^0+1}^{m_{\max}} \sum_{k=1}^{n^0} P(F^{(3)}_{m,k,3}) \) is bounded from above by

\[
\sum_{m=m^0+1}^{m_{\max}} \sum_{k=1}^{n^0} P \left(\frac{\lambda_T}{T^0_{k-1} - T^0_k} \right. \left. + \frac{\lambda_T}{T^0_{k-1} - T^0_k} \sum_{r=T^0_k}^{\hat{T}_{t+1}-1} x_r u_r \right) \geq \|\alpha^0_{k+1} - \alpha^0_k\| / 3, \hat{T}_{t+1} - T^0_k \geq T\delta_T \right),
\]

which converges to zero by arguments analogous to those used in the study of (B.8). For \(F^{(4)}_{m,k,3} \) we apply Lemma A.1 first with \(t = T^0_{k-1} \) and \(t = T^0_k \) to obtain (C.5) and then with \(t = T^0_k \) and \(t = T^0_{k+1} \) to obtain (C.4). Then by the triangle inequality \(\|\alpha^0_{k+1} - \alpha^0_k\| \leq \|\hat{\alpha}_{t+1} - \alpha^0_k\| + \|\hat{\alpha}_{t+1} - \alpha^0_{k+1}\| \leq c^{-1}_{9T,k} \left(\|\frac{1}{T} \sum_{r=T^0_{k-1}}^{T^0_k} x_r u_r \| + \frac{\lambda_T}{T^0_{k-1} - T^0_k} \sum_{r=T^0_k}^{\hat{T}_{t+1}-1} x_r x'_r \right) + c_{10T,kl} \left(\frac{\lambda_T}{T^0_{k-1} - T^0_k} + \|\frac{1}{T} \sum_{r=T^0_k}^{\hat{T}_{t+1}-1} x_r x'_r \| \right) \). It follows that

\[
\sum_{m=m^0+1}^{m_{\max}} \sum_{k=1}^{n^0} P(F^{(4)}_{m,k,3}) \text{ is bounded from above by}
\]

\[
\sum_{m=m^0+1}^{m_{\max}} \sum_{k=1}^{n^0} P \left(\frac{\lambda_T}{T^0_{k-1} - T^0_k} \right. \left. + \frac{\lambda_T}{T^0_{k-1} - T^0_k} \sum_{r=T^0_k}^{\hat{T}_{t+1}-1} x_r u_r \right) \geq \|\alpha^0_{k+1} - \alpha^0_k\| / 3, \hat{T}_{t+1} - T^0_k \geq T\delta_T \right),
\]

which converges to zero by arguments analogous to those used in the study of (B.8). Consequently,

\[
P \left(\mathcal{D}(\hat{T}_m, T^0_{m^0}) > T\delta_T \right) \cap \{ m_{\max} \geq \hat{m} > m^0 \} \rightarrow 0 \text{ as } T \rightarrow \infty. \]
D Proof of Theorem 3.3

To avoid confusion of notation, let \(\hat{m} \), \(\hat{T}_m = (\hat{T}_1, ..., \hat{T}_m) \), and \(\hat{\alpha}_m(\hat{T}_m) = (\hat{\alpha}_1(\hat{T}_m), ..., \hat{\alpha}_{\hat{m}}(\hat{T}_m))' \) be the hypothesized GFL estimates of the number of breaks, the set of break points, and the set of regression coefficient estimates, respectively. Let \(\hat{\alpha}_{\hat{m}} \) be the corresponding set of post-Lasso OLS estimates. Let \(Q_{T, 1}(\cdot; \cdot) \) and \(Q_{T, 1} (\cdot; \cdot) \) be as defined in (2.5) and 3.1, respectively. Let \(\hat{\alpha}_m = (\hat{\alpha}_1, \hat{\alpha}_m, ..., \hat{\alpha}_{m+1}, \hat{\alpha}_m)' \equiv \arg \min_{\alpha} Q_{T, 1}(\alpha; \gamma_m) \) denote the post-Lasso OLS estimate of \(\alpha_m = (\alpha_1', ..., \alpha_{m+1})' \) for the given set of break dates specified in \(\gamma_m \). We want to show that for any \(\hat{m} < m^0 \) we have \(P(Q_{T, 1}(\alpha_m(\hat{T}_m); \hat{T}_m) > Q_{T, 1}(\alpha_m(\hat{T}_m); \hat{T}_m)) \) → 1. Noting that under Assumption A3(iv)

\[
\frac{T}{\inf_{\alpha \leq \hat{m} < m^0} I_{\min}} \left[Q_{T, 1}(\alpha_m(\hat{T}_m); \hat{T}_m) - Q_{T, 1} (\alpha_m(\hat{T}_m); \hat{T}_m) \right] = \frac{T}{\inf_{\alpha \leq \hat{m} < m^0} I_{\min}} \left\{ \frac{1}{T} \sum_{j=1}^{m+1} \sum_{t=T_{j-1}}^{T_j} \left[y_t - \hat{\alpha}_j(\hat{T}_m)' x_t \right]^2 \right\} + \frac{\lambda T}{\inf_{\alpha \leq \hat{m} < m^0} I_{\min}} \left\{ \sum_{j=1}^{\hat{m}} \left\| \hat{\alpha}_{j+1} - \hat{\alpha}_j \right\| - \sum_{j=1}^{m^0} \left\| \hat{\alpha}_{j+1} - \hat{\alpha}_j \right\| \right\} \geq \frac{T}{\inf_{\alpha \leq \hat{m} < m^0} I_{\min}} \left[Q_{T, 1}(\alpha_m(\hat{T}_m); \hat{T}_m) - Q_{T, 1} (\alpha_m(\hat{T}_m); \hat{T}_m) \right] + o_P(1)
\]

it suffices to show that for some \(c > 0 \)

\[
P \left(\inf_{\alpha \leq \hat{m} < m^0} \inf_{I \min} \frac{T}{I_{\min}} \left[Q_{T, 1}(\alpha_m(\hat{T}_m); \hat{T}_m) - Q_{T, 1} (\alpha_m(\hat{T}_m); \hat{T}_m) \right] > c + o_P(1) \right) \rightarrow 1, \quad (D.1)
\]

where \(\gamma_m = (T_1, ..., T_m) \) with \(1 < T_1 < ... < T_m < T \) denotes an arbitrary \(m \)-dimensional set of potential break dates. We prove (D.1) by showing that (i) \(\frac{T}{I_{\min}} \left[Q_{T, 1}(\alpha_m(\hat{T}_m); \hat{T}_m) - \hat{\sigma}_T^2 \right] = o_P(1) \), and (ii) \(P(\inf_{\alpha \leq \hat{m} < m^0} \inf_{I \min} \left[T_{\min} \left[Q_{T, 1}(\alpha_m(\hat{T}_m); \hat{T}_m) - \hat{\sigma}_T^2 \right] \geq c + o_P(1) \right) \rightarrow 1 \) as \(T \rightarrow \infty \), where \(\hat{\sigma}_T \equiv 1 \sum_{j=1}^{m^0+1} \sum_{t=T_{j-1}}^{T_j} \left(y_t - \hat{\alpha}_{j, T_m} x_t \right)^2 = \frac{1}{T} \sum_{t=1}^{T} u_t^2. \)

We first show (i). We make the following decomposition: \(Q_{T, 1}(\alpha_m(\hat{T}_m); \hat{T}_m) - \hat{\sigma}_T^2 = \sum_{j=1}^{m^0+1} \sum_{t=T_{j-1}}^{T_j} \left(y_t - \hat{\alpha}_{j, T_m} x_t \right)^2 = \frac{1}{T} \sum_{t=1}^{T} u_t^2. \)

By the fact that \(\frac{1}{T} \sum_{t=T_{j-1}}^{T_j} x_t u_t = O_P((\log T_j) T_j^{1/2}) / T = O_P \left((\log T_{j-1})^{1/2} \right) \) and \(\frac{1}{T} \sum_{t=T_{j-1}}^{T_j} x_t x_t' \)

42
\[Q_{T,ij}(1) = -2 (\hat{\alpha}_j - \alpha_j^0) \frac{1}{T} \sum_{t=1}^{T_j-1} x_t u_t + (\hat{\alpha}_j - \alpha_j^0) \frac{1}{T} \sum_{t=T_j}^{T_j-1} x_t x_t'^t (\hat{\alpha}_j - \alpha_j^0) \]

\[= - \|\hat{\alpha}_j - \alpha_j^0\| O_P \left(\left(\log \min \frac{m}{n} T \right)^{1/2} \right) + \|\hat{\alpha}_j - \alpha_j^0\|^2 O_P(1) \] uniformly in \(j \).

For \(Q_{T,ij}(2) \), we have \(Q_{T,ij}(2) = -2 (\hat{\alpha}_j - \alpha_j^0) \frac{1}{T} \sum_{t=1}^{T_j-1} x_t u_t + (\hat{\alpha}_j - \alpha_j^0) \frac{1}{T} \sum_{t=T_j}^{T_j-1} x_t x_t'^t (\hat{\alpha}_j - \alpha_j^0) \equiv -2Q_{T,ij}(2,1) + Q_{T,ij}(2,2) \), say. By Theorem 3.1(i) and Markov inequality, w.p.a.1 we have that uniformly in \(j \),

\[Q_{T,ij}(2,1) \leq \|\hat{\alpha}_j - \alpha_j^0\| \frac{1}{T} \sum_{t=1}^{T_j-1} \|x_t u_t\| \leq \delta_T \|\hat{\alpha}_j - \alpha_j^0\| \frac{1}{T} \sum_{t=T_j}^{T_j-1} \|x_t u_t\| = \delta_T \|\hat{\alpha}_j - \alpha_j^0\| O_P(1), \]

\[Q_{T,ij}(2,2) \leq \delta_T \|\hat{\alpha}_j - \alpha_j^0\|^2 \mu_{\max} \left(\frac{1}{T} \sum_{t=T_j}^{T_j-1} x_t x_t'^t \right) = \delta_T \|\hat{\alpha}_j - \alpha_j^0\|^2 O_P(1). \]

It follows that \(Q_{T,ij}(2) = \delta_T (\|\hat{\alpha}_j - \alpha_j^0\| + \|\hat{\alpha}_j - \alpha_j^0\|^2)O_P(1) \) uniformly in \(j \). Similarly, we can show that \(Q_{T,ij}(3) = \delta_T (\|\hat{\alpha}_j - \alpha_j^0\| + \|\hat{\alpha}_j - \alpha_j^0\|^2)O_P(1) \) uniformly in \(j \). Consequently, we have \(Q_{T,ij} = O_p(1) \) \(Q_{T,ij} \) in subcase (ii), where \(Q_{T,ij} = [T^{-1/2} \log T_{\alpha}^{1/2} + \delta_T] \|\hat{\alpha}_j - \alpha_j^0\| + \|\hat{\alpha}_j - \alpha_j^0\|^2 \). Analogously, we can show that this result also holds in subcases (ii)-(iv). By Theorem 3.1(ii) and Assumptions A3(iii)-(iv), \(\hat{\alpha}_j - \alpha_j^0 = O_p(I_{\text{min}}^{-1/2}) \) and \(T^{-1/2} \log I_{\text{min}}^{1/2} + \delta_T = O(T^{-1/2} \log I_{\text{min}}^{1/2}) \). It follows that

\[\frac{T}{I_{\text{min}}^2} \sum_{j=1}^{\min} Q_{T,ij} = \frac{T (m^0 + 1)}{I_{\text{min}}^2 J_{\text{min}}} \left(\log I_{\text{min}}^{1/2} T^{-1/2} O_p(I_{\text{min}}^{-1/2}) + O_p(I_{\text{min}}^{-1/2}) \right) = O_p(1) \] (D.2)

under Assumption A3(iv). It follows that \(\frac{T}{I_{\text{min}}^2} \sum_{j=1}^{\min} Q_{T,ij} \) \(\bar{T}_{n^0} \left(\tilde{T}_{m^0}^0 \right) \) \(\tau_{m^0}^0 - \sigma_T^2 = O_p(1) \).

We now show (ii). For brevity we assume that \(m^0 = 1 \) and \(\tilde{T}_1 < T_1^0 \) below as the other cases can be studied analogously. In this case, \(m = 0 \) and \(T_0 \) is empty. Then \(\hat{\alpha}_T \) reduces to the OLS estimate of \(y_t \) on \(x_t \) using all \(T \) observations and we have \(\hat{\alpha}_T = \hat{\alpha}_{OLS} \equiv \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t' \right)^{-1} \frac{1}{T} \sum_{t=1}^{T} x_t y_t \). Using (2.2) with \(m_0 = 1 \) yields

\[\hat{\alpha}_{OLS} = \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t' \right)^{-1} \frac{1}{T} \sum_{t=1}^{T} x_t x_t' a_0 + \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t' \right)^{-1} \frac{1}{T} \sum_{t=1}^{T} x_t x_t' a_0^0 + \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t' \right)^{-1} \frac{1}{T} \sum_{t=1}^{T} x_t x_t' \]

\[= \alpha_T + O_p \left(T^{-1/2} \right), \] say,

where \(\alpha_T \equiv \frac{1}{T} \sum_{t=1}^{T} x_t x_t' a_0 + \frac{1}{T} \sum_{t=1}^{T} x_t x_t' a_0^0 = O_p(1) \), \(Q_{xx} = \frac{1}{T} \sum_{t=1}^{T} x_t x_t' \), \(Q_{1xx} = \frac{1}{T} \sum_{t=1}^{T} x_t x_t'^t \), and \(Q_{2xx} = \frac{1}{T} \sum_{t=1}^{T} x_t x_t'^t \). Note that \(Q_{xx}, Q_{1xx}, \) and \(Q_{2xx} \) are all asymptotically nonsingular by Lemma A.3. Let \(d_1^0 \equiv \alpha_2^0 - \alpha_1^0 \). Then \(\alpha_T^0 - \alpha_1^0 = \frac{1}{T} \sum_{t=1}^{T} x_t x_t'^t d_1^0 \), and \(\alpha_T^0 - \alpha_2^0 = -\frac{1}{T} \sum_{t=1}^{T} x_t x_t'^t d_1^0 \). Using this we
can readily show that
\[Q_{T,1}(\hat{\alpha}_{T}) - \sigma^2_T = \frac{1}{T} \sum_{t=1}^{T} \left[(y_t - \hat{\alpha}_{OLS} x_t)^2 - u_t^2 \right] \]
\[= (\alpha^0_0 - \hat{\alpha}_{OLS}) \frac{1}{T} \sum_{t=1}^{T-1} x_t x'_t (\alpha^0_0 - \hat{\alpha}_{OLS}) + 2 (\alpha^0_1 - \hat{\alpha}_{OLS}) \frac{1}{T} \sum_{t=1}^{T-1} x_t u_t \]
\[+ (\alpha^0_2 - \hat{\alpha}_{OLS}) \frac{1}{T} \sum_{t=1}^{T} x_t x'_t (\alpha^0_2 - \hat{\alpha}_{OLS}) + 2 (\alpha^0_0 - \hat{\alpha}_{OLS}) \frac{1}{T} \sum_{t=1}^{T} x_t u_t \]
\[= c_T + O_P \left(T^{-1/2} \left(T^{-1/2} + \|d_0^0\| \right) \right) = c_T + O_P \left(T^{-1/2} \right), \]
where the leading term is given by
\[c_T = \frac{T}{T^2} \left(\frac{T}{2} \right) d_0 Q_{1xx} Q_{1xx}^{-1} Q_{1xx}^{-1} Q_{1xx}^{-1} Q_{1xx}^{-1} Q_{1xx}^{-1} \]
\[\geq c \min_{T} \frac{d^2_{T}}{T} \text{ for some } c > 0. \]

It follows that
\[\frac{T}{T^2} \left(Q_{T,1}(\hat{\alpha}_{m}, T_0) - \sigma^2_T \right) \geq c + \frac{T}{T \min_{T}} O_P \left(T^{-1/2} \right) = c + o_P (1) \text{ by Assumption A3(iv).} \]
This completes the proof of (ii) for the case \(m^0 = 1 \). Analogous but more tedious arguments show that (ii) also holds for the general case where \(m^0 \geq 2 \). □

E Proof of Theorem 3.4

Denote \(\Omega = [0, \lambda_{\max}] \), a bounded interval in \(\mathbb{R}^+ \). We divide \(\Omega \) into three subsets \(\Omega_0 \), \(\Omega_- \) and \(\Omega_+ \) as follows
\[\Omega_0 = \{ \lambda \in \Omega : \hat{m}_\lambda = m^0 \}, \quad \Omega_- = \{ \lambda \in \Omega : \hat{m}_\lambda < m^0 \}, \quad \text{and } \Omega_+ = \{ \lambda \in \Omega : \hat{m}_\lambda > m^0 \}. \]

Clearly, \(\Omega_0 \), \(\Omega_- \) and \(\Omega_+ \) denote the three subsets of \(\Omega \) in which the correct-, under- and over-number of breaks are selected by the GFL, respectively. Recall \(\hat{\alpha}_{m, \lambda} = (\hat{\alpha}_{m, \lambda}, \ldots, \hat{\alpha}_{m, \lambda+1}, \hat{\alpha}_{m, \lambda})' \) denotes the set of post-Lasso OLS estimates of the regression coefficients based on the break dates in \(\hat{T}_{m, \lambda} = \hat{T}_{m, \lambda} (\lambda) = (T_1 (\lambda), \ldots, T_{m, \lambda} (\lambda)) \), where we make the dependence of various estimates on \(\lambda \) explicit when necessary.

Let \(\sigma^2_{T_{m, \lambda}} \equiv Q_{T,1}(\hat{\alpha}_{m, \lambda}, \hat{T}_{m, \lambda}) \). Let \(\lambda_{T} \) denote an element in \(\Omega_0 \) that also satisfies the conditions on \(\lambda \) in Assumptions A3(iii)-(iv). For any \(\lambda_{T} \in \Omega_0 \), we have \(\hat{m}_{\lambda_{T}} = m^0 \) and \(\hat{T}_j (\lambda_{T}) - T_{j, \lambda} \leq T \delta_{T} \) for \(j = 1, \ldots, m^0 \) by Theorem 3.1 as \(\lambda_{T} \) also satisfies Assumptions A3(iii)-(iv). By the proof of Theorem 3.3, \(\sigma^2_{T_{m, \lambda}} = \sigma^2_T + (\log I_{\min})^{c_2/2} T^{-1/2} O_P(I_{\min}^{-1/2}) \), where \(\sigma^2_T \equiv \frac{1}{T} \sum_{t=1}^{T} u_t^2 \) and \(\sigma^2_0 = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} E(u_t^2) \) under Assumption A1. Then by Assumption A4(iii) and Slutsky lemma, \(IC (\lambda_{T}) = (\log(\sigma^2_{T_{m, \lambda}}) + P_{T_{m, \lambda}} m^0 = \log(\sigma^2_{T_{m, \lambda}}) + o_P (1) = \frac{T}{T \min_{T}} \inf_{\lambda \in \Omega_-} \left[\sigma^2_{T_{m, \lambda}} - \sigma^2_{T_{m, \lambda}} \right] = \frac{T}{T \min_{T}} \inf_{\lambda \in \Omega_-} \left[Q_{T,1}(\hat{\alpha}_{m, \lambda}, \hat{T}_{m, \lambda}) - Q_{T,1}(\hat{\alpha}_{m, \lambda}, \hat{T}_{m, \lambda}) \right] \geq c + o_P (1) \)
for some $c > 0$. It follows that

$$P \left(\inf_{\lambda \in \Omega_-} IC(\lambda) > IC(\lambda_0^T) \right) = P \left(\frac{T}{I_{\min}^a J_{\min}^a} \log \left(\frac{\hat{\sigma}^2_{T m, \lambda}}{\hat{\sigma}^2_{T m, 0}} \right) + \rho_T p \left(\hat{m}_\lambda - m^0 \right) \right) > 0 \right) > 1.$$ \text{ (E.1)}

Case 2: Over-fitted model. Let $\lambda \in \Omega_+$. By the fact that $\log(1 + x) = x + O(x^2)$ for x in the neighborhood of 0, and Lemma E.1,

$$\delta^{-1}\left[IC(\lambda) - IC(\lambda_0^T) \right] = \delta^{-1}\log\left(\frac{\hat{\sigma}^2_{T m, \lambda}}{\hat{\sigma}^2_{T m, 0}} \right) + \delta^{-1}\rho_T p \left(\hat{m}_\lambda - m^0 \right)$$

$$= \left(\hat{\sigma}^2_{T m, \lambda} - \hat{\sigma}^2_{T m, 0} \right) + \delta^{-1}\rho_T p \left(m - m^0 \right) + o_P(1).$$

Noting that $\delta^{-1}(\hat{\sigma}^2_{T m, \lambda} - \hat{\sigma}^2_{T m, 0}) = O_P(1)$ by Lemma E.1, $\hat{\sigma}^2_{T m, 0} = \sigma_0^2 + o_P(1)$, and $\delta^{-1}\rho_T \to \infty$ by Assumption A4(ii), we have

$$P \left(\inf_{\lambda \in \Omega_+} IC(\lambda) > IC(\lambda_0^T) \right) \geq \min_{m^0 < m \leq m_{\max}} \sup_{T \in T_\mathcal{M}: \mathcal{D}(T, T_{m, 0}) \leq T \mathcal{D}} \delta^{-1}\left[\hat{\sigma}^2_{T m} - \hat{\sigma}^2_{T m, 0} \right] = O_P(1),$$

where $T_m = \{T_m = (T_1, \ldots, T_m) : 1 < T_1 < \ldots < T_m < T, \mathcal{D}(T_m, T_{m, 0}) \leq T \mathcal{D}\}$.

Lemma E.1

$$\max_{m^0 < m \leq m_{\max}} \sup_{T_m \in T_m} \delta^{-1}\left| \hat{\sigma}^2_{T m} - \hat{\sigma}^2_{T m, 0} \right| = O_P(1),$$

where $\hat{\sigma}^2_{T m} = \min_{\alpha_m \in \mathcal{Q}_{T, 1}(\alpha_m; T_m)}$ denote the post-Lasso estimate of $\alpha_m = (\alpha_{m_1}, \ldots, \alpha_{m_{m+1}})$.

Proof. Noting that $|\hat{\sigma}^2_{T m} - \hat{\sigma}^2_{T m, 0}| \leq |\hat{\sigma}^2_{T m} - \hat{\sigma}^2_{T}| + |\hat{\sigma}^2_{T m, 0} - \hat{\sigma}^2_{T}|$ and $\mathcal{D}(T_{m, 0}, T_{m}) \leq T \mathcal{D}$, it suffices to show that $\max_{m^0 < m \leq m_{\max}} \sup_{T_m \in T_m} \delta^{-1}\left| \hat{\sigma}^2_{T m} - \hat{\sigma}^2_{T} \right| = O_P(1)$.

Let $m \in \{m^0, \ldots, m_{\max}\}$. Given $T_m = (T_1, \ldots, T_m) \in T_m$, let $\hat{\alpha}_{T m} = (\hat{\alpha}_{T m, 1}, \ldots, \hat{\alpha}_{T m, m}). \mathcal{Q}_{T, 1}(\alpha_m; T_m)$ denote the post-Lasso estimate of $\alpha_m = (\alpha_{m_1}, \ldots, \alpha_{m_{m+1}})$. Let $\hat{\sigma}^2_{T m} = Q_{T, 1}(\hat{\alpha}_{T m}; T_m)$. Note that we do not impose the condition that $m_0 \leq \min_{j \leq m} (T_j + 1 - T_j) \geq I_{\min} \to \infty$. It is possible to have $T_{j+1} - T_j < p$ for some j, in which case the solution $\{\hat{\alpha}_j, T_m, j = 1, \ldots, m + 1\}$ is not unique despite its existence. We can treat T_m and $T_{m, 0}$ as two sets with m and m^0 break dates, respectively. Let $T_{m, m^0} = (T_1, T_2, \ldots, T_{m^0})$ denote the union of T_m and $T_{m, 0}$ with elements ordered in non-descending order: $1 < T_1 \leq T_2 \leq \cdots \leq T_{m^0} < T$. In view of the fact that $\hat{\sigma}^2_{T m, 0} > \hat{\sigma}^2_{T m^0, 0}$ and $\hat{\sigma}^2_{T m} = \hat{\sigma}^2_T + O_P(T^{-1})$, we have

$$0 \leq \hat{\sigma}^2_{T m, 0} - \hat{\sigma}^2_{T m^0, 0} = \hat{\sigma}^2_T - \hat{\sigma}^2_{T m^0} + O_P(T^{-1}) \leq (m + m^0 + 1) J_T + O_P(T^{-1}), \quad (E.3)$$
where
\[J_T \equiv \sup_{1 \leq s < r \leq T+1, (s, r-1) \text{ does not contain any break points}} T^{-1} \left| \inf_{a} \sum_{t=s}^{r-1} \left(y_t - a' x_t \right)^2 - u_t^2 \right|. \]

Let \(X_{sr} = (x_s, \ldots, x_r)' \), \(Y_{sr} = (y_s, \ldots, y_r)' \), and \(U_{sr} = (u_s, \ldots, u_{r-1})' \). By standard least squares regression results, if the time interval \((s, r-1)\) does not contain any break points, then
\[\left| \inf_{a} \sum_{t=s}^{r-1} \left(y_t - a' x_t \right)^2 - u_t^2 \right| = U_{sr}' P_{X_{sr}} U_{sr}, \]
where \(P_{X_{sr}} = (X_{sr}' X_{sr})^{-1} X_{sr}' \) and \(A^+ \) denotes the Moore-Penrose generalized inverse of \(A \). Let \(v_T = T \delta_T \). Then
\[
J_T \leq \sup_{1 \leq s < r \leq T+1, r-s \geq v_T} T^{-1} U_{sr}' P_{X_{sr}} U_{sr} = \sup_{1 \leq s < r \leq T+1, r-s \geq v_T} T^{-1} U_{sr}' P_{X_{sr}} U_{sr} + \sup_{1 \leq s < r \leq T, r-s < v_T} T^{-1} U_{sr}' P_{X_{sr}} U_{sr} \equiv J_{T1} + J_{T2}, \text{ say.}
\]

For \(J_{T1} \), by Lemmas A.3 and A.4 and Assumption A3(ii) we have that w.p.a.1
\[
J_{T1} = \sup_{1 \leq s < r \leq T+1, r-s \geq v_T} T^{-1} U_{sr}' P_{X_{sr}} (X_{sr}' X_{sr})^{-1} X_{sr}' U_{sr} \leq T^{-1} \left[\sup_{1 \leq s < r \leq T+1, r-s \geq v_T} \mu_{\max} \left(\frac{1}{r-s} X_{sr}' X_{sr} \right) \right]^{-1} \sup_{1 \leq s < r \leq T+1, r-s \geq v_T} \left(\frac{1}{\sqrt{r-s}} X_{sr}' U_{sr} \right)^2 = T^{-1} O_P (1) O_P (\log T)^{\frac{1}{2}} = O_P (T \delta_T) \cdot
\]

For \(J_{T2} \), noting that \(\mu_{\max} (P_{X_{sr}}) = 1 \), we have by analogous arguments as used in the proof of Lemma A.4 and Assumption A3(ii)
\[
J_{T2} \leq \sup_{1 \leq s < r \leq T+1, r-s < v_T} T^{-1} \sum_{t=s}^{r-1} u_t^2 \leq T^{-1} \sum_{t=s}^{s+v_T-1} \left[u_t^2 - E (u_t^2) \right] + T^{-1} \sum_{t=s}^{s+v_T-1} E (u_t^2) \leq T^{-1} O_P \left(\sqrt{v_T (\log T)} \right) + T^{-1} O (v_T) = O_P (T^{-1} v_T) = O_P (\delta_T). \]

It follows that \(J_T = O_P (\delta_T) \). This, in conjunction with (E.3), implies that \(-O_P (\delta_T) \leq \delta_{T, m, n}^2 - \delta_T^2 \leq O_P (T^{-1}) \), which holds for all \(m \) and \(T_m = (T_1, \ldots, T_m) \). It follows that uniformly in \(m \) and \(T_m \) we have
\[
\delta_T^{-1} (\delta_{T, m, n}^2 - \delta_T^2) \geq \delta_T^{-1} (\delta_{T, m, n}^2 - \delta_T^2) \geq -O_P (1). \quad (E.4)
\]

Next, we want to show
\[
\max_{m^0+1 \leq m \leq m_{\max}} \sup_{T_m \in T_m} \delta_T^{-1} (\delta_{T, m, n}^2 - \delta_T^2) \leq O_P (1). \quad (E.5)
\]

Since \(T_m = (T_1, \ldots, T_m) \in T_m \), for each \(T_j^0 \in T^0 \) there exists \(T_j^* \in T_m \) such that \(|T_j^* - T_j^0| \leq T \delta_T \). This, in conjunction with Assumption A3(i), also ensures that \(T_j^* < T_{j+1}^* \) for \(j = 0, 1, \ldots, m^0 \), where by default \(T_0^* = 1 \) and \(T_{m^0+1}^* = T + 1 \). Let \(T_m^* = (T_1^*, \ldots, T_m^*) \). Note that
\[
\delta_{T, m, n}^2 - \delta_T^2 \leq Q_{T, 1} \left(\delta_{T, m^0, n^0} - \delta_T^2 \right) = \sum_{j=1}^{m^0+1} Q_{T, 1j},
\]

46
where \(\bar{Q}_{T,1j} \equiv \frac{1}{T} \sum_{T_{j-1}=1}^{T_{j-1}} \left[(y_t - \hat{\alpha}_{j,T_{m^0}} x_t)^2 - u_t^2 \right] \). In addition, \(\min_{1 \leq j \leq m^0} |T_{j} - T_{j}^0| \leq T \delta_T, \min_{0 \leq j \leq m^0} |T_{j+1} - T_{j}^0| = I_{\min}, \) and the fact that \(T \delta_T = o(I_{\min}) \) ensure that \(T_{j} - T_{j}^* = I_{0} + O(T \delta_T) = I_{0}^1 + o(I_{\min}) \) for \(j = 1, \ldots, m^0 \). As a result, \(\hat{\alpha}_{j,T_{m^0}} \) is uniquely defined in large samples and given by \(\hat{\alpha}_{j,T_{m^0}} = (X_{T_{j} - T_{j+1}} - X_{T_{j} - T_{j-1}}^{-1} X_{T_{j} - T_{j-1}}^{-1} X_{T_{j} - T_{j-1}}^{-1} X_{T_{j} - T_{j-1}} Y_{T_{j} - T_{j-1}}^{-1} Y_{T_{j} - T_{j-1}} \). It is straightforward to show that \(\hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 = O_P \left(|I_{0}|-1/2 + \delta_T \right) \) and

\[
\sum_{i=1}^{m^0+1} \left\| \hat{\alpha}_{i,T_{m^0}} - \alpha_i^0 \right\|^2 = m^0 O_P(I_{\min}^{s/2} + \delta_T) = m^0 O_P(I_{\min}^{s/2}) \quad \text{for } s = 1, 2. \quad (E.6)
\]

To study \(\bar{Q}_{T,1j} \), we consider four subcases: (i) \(T_{j-1} < T_{j}^0 \) and \(T_{j} < T_{j}^0 \), (ii) \(T_{j-1} < T_{j}^0 \) and \(T_{j} \geq T_{j}^0 \), (iii) \(T_{j-1} \geq T_{j}^0 \) and \(T_{j} < T_{j}^0 \), and (iv) \(T_{j-1} \geq T_{j}^0 \) and \(T_{j} \geq T_{j}^0 \). In subcase (i), we have

\[
\bar{Q}_{T,1j} = \frac{1}{T} \sum_{t=T_{j-1}}^{T_{j-1}+1} [(y_t - \hat{\alpha}_{j,T_{m^0}} x_t)^2 - u_t^2] + \frac{1}{T} \sum_{t=T_{j-1}}^{T_{j-1}+1} [(y_t - \hat{\alpha}_{j,T_{m^0}} x_t)^2 - u_t^2] - \frac{1}{T} \sum_{t=T_{j-1}}^{T_{j-1}+1} [(y_t - \hat{\alpha}_{j,T_{m^0}} x_t)^2 - u_t^2] \equiv \bar{Q}_{T,1j}(1) + \bar{Q}_{T,1j}(2) - \bar{Q}_{T,1j}(3), \quad \text{say.}
\]

By Theorem 3.2(ii) and the fact that \(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t u_t = O_P \left(|(\log I_{\min})^{s/2}/T|-1/2 \right) \) and \(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t u_t = O_P (1) \) uniformly in \(j \), we have

\[
\bar{Q}_{T,1j}(1) = -2 \left(\hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right)^T \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t u_t \right) + \left(\hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right)^T \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t x_t^T \right) \left(\hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right)
\]

\[
= \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t u_t \right) + \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \quad \text{uniformly in } j.
\]

For \(\bar{Q}_{T,1j}(2) \), we have \(\bar{Q}_{T,1j}(2) = -2 \left(\hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right)^T \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t u_t \right) + \left(\hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right)^T \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t x_t^T \right) \left(\hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right) \equiv -2 \bar{Q}_{T,1j}(2,1) + \bar{Q}_{T,1j}(2,2), \quad \text{say.}
\]

Noting that uniformly in \(j \)

\[
\bar{Q}_{T,1j}(2,1) \leq \delta_T \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t u_t \right) = \delta_T \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t x_t^T \right) = \delta_T \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t x_t^T \right)
\]

\[
\bar{Q}_{T,1j}(2,2) \leq \delta_T \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \mu_{\max} \left(\left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t x_t^T \right) \right) = \delta_T \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \left(\frac{1}{T} \sum_{t=T_{j-1}+1}^{T_{j-1}+1} x_t x_t^T \right)
\]

we have \(\bar{Q}_{T,1j}(2) = O_P \left(\delta_T \right) \left(\left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \right) \) uniformly in \(j \). Analogously, we can show that \(\bar{Q}_{T,1j}(3) = O_P \left(\delta_T \right) \left(\left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \right) \) uniformly in \(j \). It follows that \(\bar{Q}_{T,1j} = O_P \left(T^{-1/2}(\log I_{\min})^{s/2}/\delta_T \right) \left(\left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 + O_P (1) \right) \left(\left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \right) \) uniformly in \(j \) in subcase (i). The same probability order holds in subcases (ii)-(iv). Then by (E.6) and Assumption A4(i), we have

\[
\delta_T^{-1} \sum_{j=1}^{m^0+1} \bar{Q}_{T,1j} = O_P \left(T^{-1/2}(\log I_{\min})^{s/2}/\delta_T \right) \sum_{j=1}^{m^0+1} \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 + O_P \left(\delta_T^{-1} \sum_{j=1}^{m^0+1} \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 \right)
\]

\[
= T^{-1/2}(\log I_{\min})^{s/2}/\delta_T \sum_{j=1}^{m^0+1} \left\| \hat{\alpha}_{j,T_{m^0}} - \alpha_j^0 \right\|^2 + \delta_T^{-1} m^0 O_P(I_{\min}^{-1/2}) = O_P (1),
\]

and (E.5) follows. Combining (E.4) with (E.5) yields \(\max_{m^0+1 \leq \ell \leq m_{\max}} \sup_{\tau_{m} \in T_{m}} \delta_T^{-1} \left| \hat{\alpha}_{\tau_{m}}^2 - \alpha_{\tau_{m}}^2 \right| = O_P (1). \)
\section*{F Proof of Theorem 3.5}

Despite the presence of the Lasso penalty term, the proof follows from the same idea as used in the literature on break estimation; see, e.g., Bai (1995, Theorem 1), Bai (1997a, Proposition 3), and Su et al. (2013, Theorem 4.4). The main difference is that these early papers focus on the case of a single break whereas we allow the number of breaks \((m^0)\) to diverge to infinity. [Bai and Perron (1998) stated that the limiting distribution in the (fixed) multiple break case is the same as the single break case, but did not give a formal proof.] By Theorem 3.4, \(m^0 = \tilde{m}_\lambda\) w.p.a.1 so that we can treat \(m^0\) as if it were known in large samples. We reformulate the GFL objective function as

\[
S_{T\lambda}(\alpha, r) = \frac{1}{T} \sum_{j=1}^{m^0 + 1} \sum_{t = T_j-1}^{T_j-1} (y_t - x_t' \alpha_j)^2 + \lambda \sum_{j=1}^{m^0} \| \alpha_{j+1} - \alpha_{j-1} \| \tag{F.1}
\]

where \(\alpha = (\alpha_1', \alpha_2', \ldots, \alpha_{m^0+1}')\) and \(r = (T_1, \ldots, T_{m^0})\). Let \(\hat{\alpha}(r) \equiv \arg \min_{\alpha} S_{T\lambda}(\alpha, r), \hat{r} \equiv (\hat{T}_1, \ldots, \hat{T}_{m^0})\) = \(\arg \min_{r} S_{T\lambda}(\hat{\alpha}(r), r)\), and \(\tilde{\alpha} = \hat{\alpha}(\hat{r}) = (\hat{\alpha}_1', \hat{\alpha}_2', \ldots, \hat{\alpha}_{m^0+1}')\). Let \(\tilde{r}^0 = (T_1^0, \ldots, T_{m^0}^0)\). To study the asymptotic distributions of the Lasso estimators \(\hat{\alpha}\) and \(\hat{r}\), we can evaluate the global behavior of \(S_{T\lambda}(\alpha, r)\) over the whole parameter space for \(\alpha\) and \(r\) via reparametrization. Define

\[
V_{T\lambda}(\alpha, v) = T \left[S_{T\lambda}(\alpha^0 + D_{m^0}^{-1} \alpha, r(v)) - S_{T\lambda}(\alpha^0, r^0) \right] \tag{F.2}
\]

where \(r(v) = (r_1(v_1), \ldots, r_{m^0}(v_{m^0}))\) with \(r_j(v_j) = [T_j^0 + c_{T,j} v_j], c_{T,j} = O(d_{T,j}^{-2}), v = (v_1, \ldots, v_{m^0}) \in \mathbb{R}^{m^0}, \alpha = (\alpha_1', \alpha_2', \ldots, \alpha_{m^0+1}')\) is a \(p \times (m^0 + 1)\) vector, and \(D_{m^0}\) is as defined in Section 3.3. Assume that \(r_j(v_j) = 1\) if \(r_j(v_j) \leq 1\) and \(r_j(v_j) = T\) if \(r_j(v_j) \geq T\). Apparently, the reparametrization in (F.2) conforms with the anticipated rates of pointwise convergence for \(\hat{\alpha}\) and \(\hat{r}\). Let \(\hat{\alpha}\) and \(\hat{v}\) minimize \(V_{T\lambda}(\alpha, v)\). Then \(\hat{\alpha} = D_{m^0}^{-1} (\hat{\alpha} - \alpha^0)\) and \(c_{T, j} \hat{v}_j = \hat{T}_j - T_j^0\) for \(j = 1, \ldots, m^0\).

For notational simplicity, we focus on the case where \(v_j \leq 0\) \(\forall j \in \{1, \ldots, m^0\}\) as the other \(2^{m^0} - 1\) cases can be analyzed analogously. Noting that \(\alpha_{j+1}^0 - \alpha_j^0 = d_{T,j}^\mu\), we have

\[
V_{T\lambda}(\alpha, v) = \sum_{j=1}^{m^0} \sum_{t = T_j-1}^{T_j-1} \left\{ \left[u_t - (I_j^0)^{-1/2} a_{j,t} \right]^2 - u_t^2 \right\} + \sum_{j=1}^{m^0} \sum_{t = T_j-1}^{T_j-1} \left\{ \left[u_t - (I_{j+1}^0)^{-1/2} a_{j+1,t} - d_{T,j}^\mu \right]^2 - u_t^2 \right\} + \sum_{t = T_{m^0}^0}^{T} \left\{ \left[u_t - (I_{m^0+1}^0)^{-1/2} a_{m^0+1,t} - d_{T}^\mu \right]^2 - u_t^2 \right\} + T\lambda \sum_{j=1}^{m^0} \left\{ \left[(I_j^0)^{-1/2} a_{j+1} - (I_j^0)^{-1/2} a_j + d_{T,j}^\mu \right] - \left\| d_{T,j}^\mu \right\| \right\} \equiv V_{T\lambda,1}(\alpha, v) + V_{T\lambda,2}(\alpha, v) + V_{T\lambda,3}(\alpha) + V_{T\lambda,4}(\alpha), \text{ say.}
\]
We shall prove the weak convergence of $V_{T\lambda}(a,v)$ on the compact set $S_K = \{ (a,v) : |a| \leq \sqrt{m^0 K}, \| v \| \leq \sqrt{m^0 K} \}$ where K is fixed positive constant. By the triangle inequality and Assumption A6, $|V_{T\lambda,4}(a)| \leq T\lambda \sum_{j=1}^{m^0} \{(T_{j+1}^0)^{-1/2} a_{j+1} + (T_{j}^0)^{-1/2} a_j\} = O(m^0 T\lambda^{-1/2}) = o(1)$ uniformly in a. It is straightforward to show that uniformly in $(a,v) \in S_L$,

$$V_{T\lambda,1}(a,v) = -2 \sum_{j=1}^{m^0} (T_{j}^0)^{-1/2} a_j \sum_{t=T_{j-1}^0}^{T_{j}^0-1} x_t u_t + \sum_{j=1}^{m^0} (T_{j}^0)^{-1/2} a_j \sum_{t=T_{j}^0-1}^{T_{j+1}^0-1} x_t u_t + o_p(1),$$

$$V_{T\lambda,2}(a,v) = -2 \sum_{j=1}^{m^0} d_{T_j}^0 \sum_{t=T_{j}^0}^{T_{j+1}^0-1} x_t u_t + \sum_{j=1}^{m^0} d_{T_j}^0 \sum_{t=T_{j+1}^0}^{T_{j+1}^0-1} x_t u_t + o_p(1).$$

In addition, $V_{T\lambda,3}(a) = -2(\sum_{m^0+1}^{T_{m^0+1}} a_{m^0+1} \sum_{t=T_{m^0}}^{T_{m^0+1}} x_t u_t + \sum_{j=m^0+1}^{T_{m^0+1}} (T_{j}^0)^{-1/2} a_j \sum_{t=T_{j-1}^0}^{T_{j}^0-1} x_t u_t + o_p(1)$. It follows that uniformly in $(a,v) \in S_L$, we have $V_{T\lambda}(a,v) = V_{1T}(a,v) + V_{2T}(v) + o_p(1)$, where $V_{1T}(a) = -2a^0 \sum_{m^0+1}^{T_{m^0+1}} x_t u_t + a^0 \sum_{j=m^0+1}^{T_{m^0+1}} x_t u_t + o_p(1)$, and $V_{2T}(v) = \sum_{j=1}^{m^0} \sum_{t=T_{j}^0}^{T_{j+1}^0} x_t u_t + o_p(1)$. Noting that $V_{1T}(a)$ converges weakly on a compact set to $V_{1T}^{(0)}(a) = -2a^0 \Phi^1/2 + a^0 \Psi a$, where Φ and Ψ are as defined in Section 3.3, and Z is a $p(m^0+1)$ Gaussian vector of independent standard normal variables.

By the continuous mapping theorem (CMT),

$$S\hat{a} = SD^{-1}(\hat{a} - a^0) \overset{d}{\to} S \arg \min_a \bar{V}_{1T}^{(0)}(a) = N(0, S\Psi^{-1} \Phi \Psi^{-1} S^T).$$

This proves part (i) in Theorem 3.5.

Let $c_{r,j} = (d_{T_j}^0 \Psi \bar{d}_{T_j})^{-1}$ for $j = 1, \ldots, m^0$. By the invariance principle for heterogenous mixing processes (e.g., White (2001, Theorem 7.18)), $d_{T_{j}}^0 \sum_{t=T_{j}^0}^{T_{j+1}^0} x_t u_t = \frac{1}{\sqrt{T_{j}^0}} \sum_{t=T_{j}^0}^{T_{j+1}^0} c_{r,j}^{-1/2} d_{T_j}^0 x_t u_t \Rightarrow \phi_{j,1} W_{j,1}(-v)$. Because $c_{r,j} \to \infty$, we have $d_{T_{j}}^0 \sum_{t=T_{j}^0}^{T_{j+1}^0} x_t u_t \Rightarrow \phi_{j,1} W_{j,1}(-v) + [v_j]$ when $v_j < 0$. For the case $v_j > 0$, the counterpart of $V_{2T}(v)$ is $V_{2T}(v) = \sum_{j=1}^{m^0} \sum_{t=T_{j}^0}^{T_{j+1}^0} x_t u_t + o_p(1)$, which converges weakly to $\sum_{j=1}^{m^0} \sqrt{\phi_{j,2} W_{j,2}(v_j) + \xi_j v_j}$. The cases where elements of v have different signs can be derived analogously by discussing the signs of $(T_j - T_{j+1})/\hat{a}$ as in the proof of Theorem 3.4. The independence between $W_{j,1}(-\cdot)$ and $W_{j,2}(\cdot)$ arises because by a simple application of Davydov’s inequality for strong mixing processes (see, e.g., Hall and Heyde (1980, Corollary A.2)) and Assumptions A1 and A6(i), for any $v_j < 0$, $\hat{v}_j > 0$, and small $\epsilon > 0$,

$$\left| E \left[d_{T_j}^0 \sum_{t=T_{j}^0}^{T_{j+1}^0} x_t u_t \right] \right|_{2+\epsilon} \leq 8 \left\| d_{T_j}^0 \right\|_{2+\epsilon} \sup_{t \geq 1} \left\| x_t u_t \right\|_{2+\epsilon}^{2+\epsilon} \sum_{\tau=1}^{\infty} \tau \alpha(\tau)^{\epsilon/(2+\epsilon)} = o(1).$$

By the same reason, $W_{j,l}$ and $W_{i,k}$ are independent for all $j \neq i$ and $l, k = 1, 2$. Consequently, we have $V_{2T}(v) = \sum_{j=1}^{m^0} -2Z_{j}(v_j), (\Delta_j \Psi \Delta_j d_{T_j}^0 \bar{d}_{T_j}) \overset{d}{\to} \arg \max_j Z_j(v)$ by CMT, and $\hat{T}_j - T_{j}^0$ are asymptotically independent of $\hat{T}_i - T_i^0$ for all $j \neq i$. This completes the proof of part (ii).
\section{Proof of Theorem 3.6}

We prove the theorem by showing that $\hat{\alpha}_{T_m^0}$ shares the same asymptotic distribution as $\hat{\alpha}_{T_m^0}$ and the asymptotic distribution of $\hat{\alpha}_{T_m^0}$ is as given in the theorem. The latter can be verified easily under our assumptions by a simple application of the central limit theorem for heterogenous strong mixing processes; see, e.g., White (2001, Theorem 5.2). For notational simplicity, we shall suppress the dependence of D_{m^0} and \hat{D}_{m^0} on m^0 and write them as D and \hat{D}, respectively. Noting that $\hat{D}(\hat{\alpha}_{T_m^0} - \alpha_0) = (\hat{D}^{-1}\hat{\mathcal{X}}\hat{\mathcal{D}}^{-1})^{-1}\hat{D}^{-1}\hat{\mathcal{X}}([\hat{\mathcal{X}} - \hat{\mathcal{X}}]\alpha_0 + U)$ and $D(\hat{\alpha}_{T_m^0} - \alpha_0) = (D^{-1}\mathcal{X}D^{-1})^{-1}D^{-1}\mathcal{X}U$ by (3.3)-(3.4), we have

$$S[D(\hat{\alpha}_{T_m^0} - \alpha_0) - D(\hat{\alpha}_{T_m^0} - \alpha_0)] = S(\hat{A}^{-1}\hat{B} - A^{-1}B) + S\hat{A}^{-1}\hat{C} = S\hat{A}^{-1}(\hat{B} - B) + S(\hat{A}^{-1} - A^{-1})B + S\hat{A}^{-1}\hat{C},$$

where $\hat{A} = \hat{D}^{-1}\hat{\mathcal{X}}\hat{\mathcal{D}}^{-1}$, $A = D^{-1}\mathcal{X}D^{-1}$, $\hat{B} = \hat{D}^{-1}\hat{\mathcal{X}}U$, $B = D^{-1}\mathcal{X}U$, and $\hat{C} = \hat{D}^{-1}\hat{\mathcal{X}}(\hat{\mathcal{X}} - \hat{\mathcal{X}})\alpha_0$. We prove the theorem by showing that (i) $S_{1T} \equiv S\hat{A}^{-1}(\hat{B} - B) = o_P(1)$, (ii) $S_{2T} \equiv S(\hat{A}^{-1} - A^{-1})\hat{B} = o_P(1)$, and (iii) $S_{3T} \equiv S\hat{A}^{-1}\hat{C} = o_P(1)$.

To proceed, we first show that: (a) $\lambda_{\min}(A) \geq \lambda_{\min}(A) \leq 2e_{xx}$ w.p.a.1, (b) $\|\hat{A} - A\|^2 = o_P(1/m^0)$, and (c) $\lambda_{\min}(\hat{A}) \geq \lambda_{\min}(A) \leq 4e_{xx}$ w.p.a.1. By Weyl inequality, $\lambda_{\min}(A) \geq \lambda_{\min}(E(A))-\lambda_{\max}(A-E(A)) \geq \lambda_{\min}(E(A)) - \|A - E(A)\|$. Assumption A2(i) ensures that $\lambda_{\min}(E(A)) \geq \lambda_{\min}(E(A))$. By Assumption A1 and Davydov inequality, we can readily verify that $E \|A - E(A)\|^2 = o(m^0/I_{\min}) = o(1)$. Thus $\|A - E(A)\| = o_P(1)$ by Chebyshev inequality and the first part of (a) follows. Analogously, we can prove the second part of (a). For (b), we have

$$A - \hat{A} = D^{-1}(\hat{\mathcal{X}} - \mathcal{X})'\hat{X}\hat{D}^{-1} + \hat{D}^{-1}\mathcal{X}(\hat{\mathcal{X}} - \mathcal{X})\hat{D}^{-1} + D^{-1}\mathcal{X}\hat{\mathcal{X}}(\hat{D}^{-1} - D^{-1}) + (\hat{D}^{-1} - D^{-1})\mathcal{X}'\hat{D}^{-1} \quad \equiv \quad A_1 + A_2 + A_3 + A_4,$$

where A_{1} as a partitioned matrix: $A_1 = (A_{1,ij})_{i,j=1}^{m^0+1}$ where $A_{1,ij}$’s are $p \times p$ matrices. Note that $\hat{\mathcal{X}}\hat{\mathcal{X}} = \text{diag}(\hat{\mathcal{X}}_1, \ldots, \hat{\mathcal{X}}_{m^0+1})$ and $\mathcal{X}'\mathcal{X}$ is a block tridiagonal matrix w.p.a.1:

$$\mathcal{X}'\mathcal{X} = \begin{pmatrix} \sum_{\ell=1}^{T^0_j} \xi_{t} & \sum_{\ell=1}^{T^0_j} \xi_{t} & \cdots & 0 & 0 & 0 \\ \sum_{\ell=1}^{T^0_j} \xi_{t} & \sum_{\ell=1}^{T^0_j} \xi_{t} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \sum_{\ell=1}^{T^0_j} \xi_{t} & \sum_{\ell=1}^{T^0_j} \xi_{t} & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \sum_{\ell=1}^{T^0_j} \xi_{t} & \sum_{\ell=1}^{T^0_j} \xi_{t} & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \sum_{\ell=1}^{T^0_j} \xi_{t} & \sum_{\ell=1}^{T^0_j} \xi_{t} & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \sum_{\ell=1}^{T^0_j} \xi_{t} & \sum_{\ell=1}^{T^0_j} \xi_{t} & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \sum_{\ell=1}^{T^0_j} \xi_{t} & \sum_{\ell=1}^{T^0_j} \xi_{t} & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ \sum_{\ell=1}^{T^0_j} \xi_{t} & \sum_{\ell=1}^{T^0_j} \xi_{t} & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \\ 0 & 0 & \cdots & \sum_{\ell=1}^{T^0_j} \xi_{t} & 0 & 0 \end{pmatrix}$$

where $\xi_t = x_t x_t' \text{ and } \sum_{i=0}^{b} \xi_t = 0 \text{ if } b > a \text{ and we use the fact that when } P(T_{0,j-1}^0 < T_j < T_{0,j+1}^0) \to 1 \text{ because w.p.a.1 } |\hat{T}_j - T_j^0| \leq T \delta_T = o(I_{\min}) \text{ by Theorem 3.1(i) and Assumption A3(i). We can analyze}
\[A_{1,ij} \text{ for } i, j = 1, \ldots, m^0 + 1. \text{ For example, if } T^0_1 \geq \tilde{T}_1, \text{ then } A_{1,11} = 0, A_{1,21} = 0, \text{ and} \]
\[
\|A_{1,12}\| = I_1^{1/2} I_2^{1/2} \left\| \sum_{t=T_1}^{T^0_1} x_t x'_t \right\| \leq T\delta_T \tilde{I}_1^{1/2} I_2^{1/2} \frac{1}{T\delta_T} \sum_{t=T_1-T\delta_T}^{T^0_1} \|x_t x'_t\| = O_P \left(T\delta_T I_{\min}^{-1} \right); \]
\[
\text{and if } T^0_1 < \tilde{T}_1, \text{ then } A_{1,12} = 0, \|A_{1,11}\| = I_1^{-1/2} \left\| \sum_{t=T_1}^{T^0_1} x_t x'_t \right\| \leq T\delta_T \tilde{I}_1^{-1} \frac{1}{T\delta_T} \sum_{t=T_1}^{T^0_1+T\delta_T^{-1}} \|x_t x'_t\| = O_P \left(T\delta_T I_{\min}^{-1} \right), \text{ and analogously, } \|A_{1,21}\| = I_1^{1/2} I_2^{1/2} \left\| \sum_{t=T_1}^{T^0_1} x_t x'_t \right\| = O_P \left(T\delta_T I_{\min}^{-1} \right). \text{ By the same token, we can show that for those } A_{1,j,i} \text{'s that are nonzero, their Frobenius norm are uniformly bounded from above by } O_P \left(T\delta_T I_{\min}^{-1} \right). \text{ Consequently, } \|A_1\|^2 = \sum_{i=1}^{m^0+1} \sum_{j=1, j\neq i}^{m^0+1} \|A_{ij}\|^2 = O_P(m^0 \left(T\delta_T I_{\min}^{-1} \right)^2) = o_P \left(1/m^0 \right). \text{ For } A_3, \text{ we have} \]
\[
\|A_3\|^2 = \text{tr} \left(D^{-1} X'X D^{-1} D(\tilde{X} - X)' U + S \tilde{A}^{-1} \tilde{D}^{-1} - D^{-1} \right) \text{ uniformly in } j \text{ by Theorem 3.1(i). Analogously, we can show that } \|A_3\| = o_P \left(1/m^0 \right) \text{ for } s = 2, 4. \text{ Thus we have shown that } \|A_3\|^2 = o_P \left(1/m^0 \right). \text{ For part (c), we apply Weyl inequality to obtain w.p.a.1. } \lambda_{\min}(A) \geq \lambda_{\min}(A) - \lambda_{\max}(A - \hat{A}) \geq \lambda_{\min}(A) - \|A - \hat{A}\| \geq \xi_{xx}/2 - o_P(1) \geq \xi_{xx}/4. \text{ Analogously, we can show the second part of (c) holds.} \]

To show (i), we first make the following decomposition \(S_{1T} = S_{1T'} \tilde{A}^{-1} \tilde{D}^{-1} (\tilde{X} - X)' U + S_{1T'} \tilde{A}^{-1} (\tilde{D}^{-1} - D^{-1}) X' U \equiv S_{1T,1} + S_{1T,2}. \) By Theorem 3.1(i) and Assumption A3(i), \(\|\tilde{T}_j - T_0\| \leq \delta_T T = o(I_{\min}). \) This ensures that w.p.a.1 \(\tilde{T}_j \) lies between \(T^0_{j-1} \) and \(T^0_{j+1} \) for \(j = 1, \ldots, m^0. \) Let \(S_{1T,1} \equiv \tilde{D}^{-1} (\tilde{X} - X)' U. \) Write \(S_{1T,1} = (S_{1T,1,1}', \ldots, S_{1T,1,m^0+1}')', \) where \(S_{1T,1,j} \)’s are \(p \times 1 \) vectors. \(S_{1T,1,1} = 0 \) if \(T^0_1 \geq \tilde{T}_1 \) and \(S_{1T,1,1} = \tilde{T}_1 I_1^{1/2} \sum_{t=T_1}^{T^0_1} x_t u_t \) if \(T^0_1 < \tilde{T}_1. \) we have w.p.a.1. \(\|S_{1T,1,1}\| \leq T\delta_T \tilde{I}_1^{1/2} \frac{1}{T\delta_T} \sum_{t=T_1-T\delta_T}^{T^0_1} \|x_t u_t\| = O_P(T\delta_T I_{\min}^{-1/2}) = o_P \left((m^0)^{-1/2} \right). \) Analogously, we can show that \(\|S_{1T,1,j,m^0+1}\| = o_P \left((m^0)^{-1/2} \right) \) for \(j = 2, \ldots, m^0, \text{ and } m^0 + 1 \text{ and } \|S_{1T,1}\|^2 = \sum_{j=1}^{m^0+1} \|S_{1T,1,j}\|^2 = o_P(1). \text{ Consequently, we have} \]
\[
\|S_{1T,1}\|^2 \leq \|S_{1T,1}\|^2 = \text{tr} \left(S_{1T,1}' \tilde{A}^{-1} S_{1T,1}' \right) \leq \left[\lambda_{\min}(\tilde{A}) \right]^{-2} \|S\|^2 \leq o_P(1). \text{ Noting that } \|D^{-1} X' U\|^2 = O_P \left(m^0 \right) \text{ by Markov inequality and } \text{tr}(S_{1T,1}' \tilde{A}^{-1} S_{1T,1}') \leq \left[\lambda_{\min}(\tilde{A}) \right]^{-2} \|S\|^2 =
$O_P(1)$, we have

$$
\|S_{1T,2}\|^2 \leq \left\| S\hat{A}^{-1}\hat{D}^{-1}(\hat{D} - D) \right\|^2 \left\| D^{-1}XU \right\|^2 \\
= tr \left(S\hat{A}^{-1}\hat{D}^{-1}(\hat{D} - D)(\hat{D} - D)\hat{A}^{-1}\hat{A}^{-1}S' \right) \left\| D^{-1}XU \right\|^2 \\
\leq \max_{1 \leq j \leq m^0 + 1} \hat{I}_j^{-1/2} \left(\hat{I}_j^{1/2} - \hat{I}_j^{01/2} \right)^2 \left. tr \left(S\hat{A}^{-1}\hat{A}^{-1}S' \right) \right\| D^{-1}XU \right\|^2 \\
= O_P(T^2\delta_T^2I_{\min}^2)O_P(1)O_P(m^0) = O_P(m^0(T\delta_TI_{\min}^2)^2) = o_P(1),
$$

where we use the fact that $\hat{I}_j^{-1} \left(\hat{I}_j^{1/2} - \hat{I}_j^{01/2} \right)^2 \leq \frac{(\hat{I}_j - \hat{I}_j^0)^2}{\hat{I}_j(\hat{I}_j^{1/2} + \hat{I}_j^{01/2})} = O_P(T^2\delta_T^2I_{\min}^2)$ uniformly in j by Theorem 3.1(i). Thus, we have $S_{1T} = o_P(1)$.

To show (ii), we apply the above results in (a)-(c) and the fact that $\|B\|^2 = O_P(m^0)$ to obtain

$$
\|S_{2T}\|^2 = \left\| S\hat{A}^{-1}(A - \hat{A})A^{-1}B \right\|^2 \leq \left\| S\hat{A}^{-1}(A - \hat{A})A^{-1} \right\|^2 \left\| B \right\|^2 \\
= tr \left(S\hat{A}^{-1}(A - \hat{A})A^{-1}(A - \hat{A})S' \right) \left\| B \right\|^2 \\
\leq |\lambda_{\min}(A)|^{-2} \left[\lambda_{\min}(A) \right]^{-2} \left\| \hat{A} - A \right\|^2 \left\| S \right\|^2 \left\| B \right\|^2 \\
= O_P(1)O_P(1)o_P(1/m^0)O_P(1)O_P(m^0) = o_P(1).
$$

We now show (iii). We write $\hat{C} = (\hat{C}_1, ..., \hat{C}_{m^0 + 1})'$ where \hat{C}_j's are $p \times 1$ vectors. For \hat{C}_1, we have

$$
\hat{C}_1 = \begin{cases} \\
\hat{I}_j^{-1/2} \sum_{t=1}^{T_n^0} x_t x'_t \left(\alpha_2 - \alpha_1^0 \right) & \text{if } T_n^0 \geq \hat{T}_1 \\
\text{w.p.a.1,} & \text{if } T_n^0 < \hat{T}_1
\end{cases}
$$

where we use the fact that when $\hat{T}_1 > T_n^0, P(\hat{T}_1 < T_n^0) \rightarrow 1$ because w.p.a.1 $\hat{T}_1 - T_n^0 \leq T\delta_T = o(T_2^0 - T_n^0)$ by Theorem 3.1(i) and Assumption A3(i). It follows that

$$
\left\| \hat{C}_1 \right\| \leq T\delta_T\hat{T}_1^{-1/2} \frac{1}{T\delta_T} \sum_{t=1}^{T_n^0} x_t^2 \left\| \alpha_2 - \alpha_1^0 \right\| = O_P(T\delta_TI_{\min}^{-1/2}).
$$

Analogously, we can show that $\|\hat{C}_{m^0 + 1}\| = O_P(T\delta_TI_{\min}^{-1/2})$. For the \hat{C}_j with $j = 2, ..., m^0$, we can discuss four subcases according to the signs of $\hat{T}_{j-1} - T_n^0, \hat{T}_{j-1} - T_n^0$ and $\hat{T}_j - T_n^0$ as in the proof of Theorem 3.4, and show that $\left\| \hat{C}_j \right\| = O_P(T\delta_TI_{\min}^{-1/2})$ uniformly in j for each subcase. Consequently, we have

$$
\left\| \hat{C} \right\|^2 = \sum_{j=1}^{m^0 + 1} \left\| \hat{C}_j \right\|^2 = m^0O_P(T^2\delta_T^2I_{\min}^{-1/2}) = o_P(1) \text{ and}
$$

$$
\|S_{3T}\|^2 \leq tr \left(S\hat{A}^{-1}\hat{A}^{-1}S' \right) \left\| \hat{C} \right\|^2 \leq \left[\lambda_{\min}(A) \right]^{-2} \left\| S \right\|^2 \left\| \hat{C} \right\|^2 = O_P(1)O_P(1)O_P(1) = o_P(1).
$$

This completes the proof of the theorem. □