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Abstract

We propose semi-parametric GMM estimation of semi-parametric spatial autoregressive (SAR)

models under weak moment conditions. In comparison with the quasi-maximum-likelihood-based

semi-parametric estimator of Su and Jin (2010), we allow for both heteroskedasticity and spatial

dependence in the error terms. We derive the limiting distributions of our estimators for both the

parametric and nonparametric components in the model and demonstrate the estimator of the para-

metric component has the usual
√
n-asymptotics. When the error term also follows a SAR process,

we propose an estimator for the parameter in the SAR error process and derive the joint asymptotic

distribution for both spatial parameters. Consistent estimates for the asymptotic variance-covariance

matrices of both the parametric and nonparametric components are provided. Monte Carlo simula-

tions indicate that our estimators perform well in finite samples.
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1 Introduction

Nonlinearity is important in spatial dependence models. As was argued in Paelinck and Klaassen

(1979, pp. 6-9), econometric relations in space result more often than not in highly non-linear

specifications. Despite this observation, most theoretical studies on spatial autoregressive (SAR)

models ignore potential nonlinear functional forms. A few exceptions include van Gastel and Paelinck

(1995), Baltagi and Li (2001), Pace, Barry, Slawsoon, and Sirmans (2004), and Yang, Li, and Tse

(2006), who have considered flexible functional forms to account for certain forms of nonlinearities.

On the application side, recent researches have started addressing the importance of nonparametric

modeling in spatial econometrics. For example, in modelling hedonic housing price, Gress (2004)

introduced two semiparametric spatial autocorrelation models and compare them with a variety of

competing parametric spatial models, in which the exogeous regressors include house size, house

age, latitude, longitude, and some dummy variables for the zip code area where the house resides.

He found that the semiparametric models offer more accurate and stable estimates of the regression

parameters and better out-of-sample predictions than do the alternative parametric models. Basile

and Gress (2004) proposed a semiparametric spatial auto-covariance specification of the growth

model for the European economy, where the dependent variable is the average per capita GDP

growth rate in the period 1988-2000 and the exogenous regressors include the initial per capita GDP,

average proportion of real physical investment to real GDP, average growth rate of the population,

and average unemployment rate. They found that nonlinearities are important in regional growth in

Europe even when the spatial dependence is controlled for. As a result, assuming a common linear

relationship between economic growth and inputs is misleading.

Recently, Su and Jin (2010) propose a quasi-maximum-likelihood-based estimator of partially

linear spatial autoregressive models and demonstrate that the rates of consistency for the finite-

dimensional parameters in the model depend on some general features of the spatial weight matrix.

Unfortunately, like the quasi-maximum likelihood estimator (QMLE) of Lee (2004) in the parametric

setup, their estimator does not have a closed form expression and thus is not easy to implement in

practice.

In this paper we propose semi-parametric GMM (SPGMM hereafter) estimation of semi-parametric

SAR models where the spatial lag effect (endogenous variable) enters the model linearly and the ex-

ogenous variables enter the model nonparametrically. Based on some moment conditions implied by

the model, we propose a two-stage estimation strategy for both the one-dimensional spatial parame-

ter and the nonparametric component and term the resulting estimators as SPGMM estimators. In

the first stage, we treat the spatial parameter as if it were known, and use some local instruments

to estimate the nonparametric component locally as a function of the spatial parameter. In the

second stage we use the global instruments to estimate the spatial parameter by profiling out the

nonparametric component, and recover the estimate of the nonparametric component. It is worth

mentioning that the idea of nonparametric profiling is not new in the literature; see Su and Ullah

(2006) and Henderson, Carroll, and Li (2008) for recent applications in econometrics. Nevertheless,

to the best of our knowledge, this paper is the first to apply the idea of nonparametrically profiling
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out a nonparametric function of the exogenous regressor before applying instrumental variables to

estimate the coefficient of the endogenous regressor. As a referee kindly points out, this idea seems

quite general and can be applied to estimate various semiparametric conditional mean or quantile

models with endogeneity in which the endogenous variables enter the model parametrically (linear

or nonlinear) while the exogeous variables enter nonparametrically.

In comparison with the estimation strategy of Su and Jin (2010), our SPGMM approach has

several advantages. First, our estimation is based upon some moment conditions instead of a quasi-

likelihood function. As a result, we can have an analytic form for our estimator, and it is easy

to implement in practice. Second, we can obtain the usual parametric consistency rate for our

estimator of the parametric component in the model whereas the consistency rate of Su and Jin’s

(2010) estimator depends on some general features of the spatial weight matrix. Third, unlike Su and

Jin (2010) who only consider homoskedastic and independent errors, we allow the stochastic error

terms to exhibit both heteroskedasticity of unknown form and certain form of spatial dependence.

Fourth, we allow for both continuous and discrete exogenous regressors in the model whereas Su and

Jin (2010) consider only continuous regressors in their nonparametric component. Fifth, our method

can be easily extended to semi-parametric spatial panel data autoregressive models or applied to

other types of semiparametric models with endogeneity.

The paper is structured as follows. In Section 2 we introduce the semi-parametric SAR model and

the semi-parametric GMM approach to estimate the finite and infinite dimensional parameters in the

model. In Section 3 we first make some basic assumptions underlying our analysis and then study the

asymptotic properties of the estimators for both the parametric and nonparametric parts. We explore

the estimation of the spatial parameter in the spatial error process and derive the joint asymptotic

distribution of both spatial parameters in Section 4. Section 5 discusses consistent estimation of

the asymptotic variance-covariance matrices. We conduct a small set of Monte Carlo simulations

to check the finite-sample performance of the proposed estimators in Section 6. Final remarks are

contained in Section 7. All technical details are relegated to the appendices.

Like Kelejian and Prucha (2001), we adopt the following notation and conventions. For a matrix

An, we denote its norm as kAnk = [tr (AnA
0
n)]

1/2
, its (i, j)th element as an,ij , and its minimum

eigenvalue as λmin(An) when An is a square matrix. For a vector an we use an,i to denote its ith

element and diag(an) a diagonal matrix with an,i as its (i, i)th element. An analogous convention is

adopted for matrices and vectors that do not depend on the index n, where n is frequently suppressed.

We say An is uniformly bounded in absolute value if sup1≤i≤n,1≤j≤n |an,ij | < c for some c < ∞.

Following Lee (2002), we say that the row (resp. column) sums of An are uniformly bounded in

absolute value if sup1≤i≤n,n≥1
Pn

j=1 |an,ij| ≤ ca < ∞ (resp. sup1≤j≤n,n≥1
Pn

i=1 |an,ij | ≤ ca < ∞).
Similarly, we say that the row (resp. column) sums of An are uniformly bounded in absolute value

for sufficiently large n if sup1≤i≤n,n≥N1

Pn
j=1 |an,ij | ≤ ca < ∞ (resp. sup1≤j≤n,n≥N1

Pn
i=1 |an,ij | ≤

ca < ∞) for some large integer N1. For pc × 1 vectors a ≡ (a1, ..., apc)0 and b ≡ (b1, ..., bpc)0, define
a/b = (a1/b1, ..., apc/bpc)

0. Let 0d1×d2 denote a d1 × d2 matrix of zeros. Let ¯ and ⊗ denote the
Hadamard and Kronecker products, respectively.
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2 Model and semi-parametric GMM estimation

2.1 Model and moment conditions

Consider the following semi-parametric spatial autoregressive model:

Yn =m(Xn) + ρ0nW1nYn + Un, (2.1)

where Xn ≡ (xn,1, ..., xn,n)0 is an n × p matrix of fixed regressors that do not contain the constant

term, W1n is a pre-specified constant n× n spatial weight matrix, m(Xn) ≡ (m(xn,1), ...,m(xn,n))0 ,
m (.) is an unknown function defined on Rp, and Un ≡ (un,1, ..., un,n)0 is an n-dimensional vector

of zero mean random variables that are not necessarily identically distributed and may also exhibit

spatial dependence structure such as spatial autoregressive or spatial moving average (SMA) forms.

When Un also exhibits a SAR form, we will call the model in (2.1) as a semi-parametric SARAR

model. When Un exhibits a SMA form, we will call the model in (2.1) as a semi-parametric SARMA

model.

If W1nYn were not endogenous, we could extend the procedure of Robinson (1988) to our frame-

work and estimate both the parametric component and nonparametric component in (2.1). Never-

theless, since W1nYn is endogenously generated here, one can show that the estimator of Robinson

(1988) is generally inconsistent. (An exception occurs when the elements of the spatial weight matrix

W1n are uniformly of the order o(n−1/2).)
Let Y n ≡ W1nYn and denote its ith element as yn,i. When ρ0n 6= 0, we can assume that there

exists a q × 1 vector of nonstochastic instruments zn,i for exn,i≡ ¡x0n,i, yn,i¢0 such that we have the
following orthogonality condition

E (zn,iun,i) = 0. (2.2)

For example, zn,i =
¡
1, x0n,i, x

0
n,i

¢0
, where xn,i is the ith row of Xn ≡ W1nXn. In the following, we

assume that zn,i contains 1. We will propose semi-parametric GMM estimation of both ρ0n and m (
.)

based upon (2.2).

2.2 Semi-parametric GMM estimation

The moment condition in (2.2) implies that1

E
©
zn,i

£
yn,i − ρ0nyn,i −m (xn,i)

¤ª
= 0. (2.3)

Clearly, (2.3) provides moment restrictions and can lead to an estimation approach similar to the

generalized method of moments (GMM) procedure of Hansen (1982) for parametric models. Since

the functional form m (·) is unknown, one can approximate it with a sieve and estimate ρ0n and the
sieve parameters jointly. Such an approach was taken by Ai and Chen (2003) who show that the

1Alternatively, we can impose the following conditional moment restrictions: E{yn,i−ρ0nyn,i−m (xn,i) |zn,i} = 0,
where zn,i contains xn,i and is treated as random. In this case, we have E{b (zn,i) [yn,i − ρ0nyn,i −m (xn,i)]} for any
vector function b (zn,i) .
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sieve estimator of the nonparametric component (m here) is consistent with a rate faster than n−1/4

under certain metric, and the estimator of the parametric component (ρ0n here) is
√
n-consistent

and asymptotically normally distributed. It is worth mentioning that the data are assumed to be

independent and identically distributed (i.i.d.) in Ai and Chen (2003) so that their theory can not

be applied directly to our framework. In addition, the asymptotic distribution of the estimator of

the nonparametric component is also of our main interest, which is unfortunately not addressed in

Ai and Chen (2003).

In this paper we propose to approximate m (·) by using the local linear fitting method of Fan
(1992) and Fan and Gijbels (1996). Fan and Gijbels (1996) have documented the advantages of

local linear method or more generally, local polynomial method, over the conventional local constant

(Nadaraya-Watson) method or the sieve/series method. In particular, when the support of xn,i
is compact, the local linear/polynomial method automatically adjusts to boundary points so that

it is not subject to the “boundary bias” problem associated with the local constant method. In

comparison with the sieve method, one can readily establish asymptotic normality for the local

linear/polynomial estimator. In the following, we will focus on the local linear method for the sake

of notational simplicity. Nevertheless, as remarked after Assumption 4, if xn,i contains at least four

continuous regressors, one will need to use higher order local polynomial as in Masry (1996).

To allow for both continuous and discrete regressors in xn,i, write xn,i = (xc
0
n,i, x

d0
n,i)

0
where

xcn,i denotes a pc × 1 vector of continuous regressors in xn,i and xdn,i denotes a pd × 1 vector of
remaining discrete regressors with pd = p−pc.We assume that some of the discrete regressors have a
natural ordering, examples of which would include environmental conditions (excellent, good, poor)

or preference ordering (like, indifference, dislike) etc. Let −→x d
n,i denote a p1 × 1 vector (say, the first

p1 components of xdn,i, 0 ≤ p1 ≤ pd) of discrete regressors that have a natural ordering. Let exdn,i
denote the remaining p2 = pd − p1 discrete regressors that do not have a natural ordering. We use

xcn,is and xdn,is to denote the sth element of x
c
n,i and xdn,i, respectively (s = 1, ..., pc or pd).

For the continuous exogenous regressor, we choose a product kernel function Q (.) of q (.) and a

vector of smoothing parameters h = (h1, ..., hpc)
0. Let Qh,i (x

c) = Πpcs=1h
−1
s q

¡¡
xcn,is − xcs

¢
/hs
¢
and

Qh,ij ≡ Qh,i

¡
xcn,j

¢
= Πpcs=1h

−1
s q

¡¡
xcn,is − xcn,js

¢
/hs
¢
. (2.4)

For the unordered discrete regressor, we follow Racine and Li (2004) and Li and Racine (2007) and

use a variation of the kernel function of Aitchison and Aitken (1976):

el ¡exdn,is, exdn,js, λs¢ =
(
1 if exdn,is = exdn,js
λs otherwise

(2.5)

where λs ∈ [0, 1] is the smoothing parameter. In the special case where λs = 0, el (·, ·, ·) reduces to
the usual indicator function as used in the nonparametric frequency approach. Similarly, λs = 1

leads to a uniform weight function, in which case, the exdn,is regressor will be completely smoothed
out in the sense that it will not affect the nonparametric estimation result. For the ordered discrete

regressors, we assume that for s = 1, · · · , p1, −→x d
n,is take only integer values 0, 1, 2, · · · , cs, where
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1 ≤ cs <∞. We follow Racine and Li (2004) and use the following kernel

−→
l
¡−→x d

n,is,
−→x d

n,js, λs
¢
=

(
1 if −→x d

n,is =
−→x d

n,js

λ
|−→x d

n,is−−→x d
n,js|

s otherwise
(2.6)

Again, choosing λs = 0 or 1 leads to similar remarks as above.

Combining (2.5) and (2.6), we obtain the product kernel function for the discrete regressors:

Lλ,ij ≡ Lλ,i
¡
xdn,j

¢ ≡ " p1Y
s=1

λ
|−→x d

n,is−−→x d
n,js|

s

#"
p2Y
s=1

λ
1−1(xdn,is=xdn,js)
s+p1

#
, (2.7)

where λ = (λ1, · · · , λpd)0, and 1 (A) = 1 if A holds and 0 otherwise. Combining (2.4) and (2.7), we

obtain the product kernel function for all the exogenous regressors:

Khλ,ij ≡ Khλ,i (xn,j) = Qh,i

¡
xcn,j

¢
Lλ,i

¡
xdn,j

¢
. (2.8)

Now, fix a point xn,j = (xc
0
n,j , x

d0
n,j)

0
. It follows from the first order Taylor expansion that

m (xn,i) ≈ m (xn,j) +
.
m (xn,j)

0 ¡
xcn,i − xcn,j

¢
(2.9)

for any xcn,i in the neighborhood of x
c
n,j and xdn,i = xdn,j , where

.
m (x) = ∂m (x) /∂xc, i.e., the

derivative is only taken with respect to the continuous component xc of x = (xc0, xd
0
)
0
. So (2.3) can

be approximated as follows

E
©
zn,i

£
yn,i − ρ0nyn,i −m (x)− .

m (x)0
¡
xcn,i − xc

¢¤ª ≈ 0, (2.10)

where xcn,i is close to xc and xdn,i = xd. If the above relationship held exactly, we could follow

the approach of Newey (1990) to construct optimal instruments for the efficient estimation of both

ρ0n and (m (x) ,
.
m (x)0). Alternatively one could follow Ai and Chen (2003) and construct optimal

instruments for the efficient estimation of ρ0n based upon (2.3). In either case, difficulty arises here

due to the approximation nature of the relationship in (2.10), the non-i.i.d. observations, potential

heteroskedasticity of unknown form, and potential spatial dependence in the disturbances. For this

reason, we will focus on a convenient choice of zn,i and leave the optimality issue as an open question.

Furthermore, due to the local nature of the approximation in (2.10), we will allow the instruments

zn,i to be locally dependent on the point of approximation (x) and certain parameter used in the

approximation when we consider profiling out the nonparametric component.

Noting that the unknown parameters in (2.10) include both the global parameter ρ0n and the non-

parametric local parameter vector (m (x) ,
.
m (x)), we now propose a two-step procedure to estimate

these unknown parameters by profiling out the nonparametric component first.

In the first step, we treat ρ0n as if it were known in (2.10) and consider the estimation of m (x)

and
.
m (x) as a function of ρn. At the sample level, the orthogonality condition in (2.10) implies the

following locally weighted orthogonality conditions

n−1
nX
i=1

zh,ij
©
yn,i − ρnyn,i − τ 0h,ijMh (xn,j)

ª
Khλ,ij = 0, (2.11)
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where Mh (x) is a (pc + 1) × 1 vector of parameters whose true value corresponds to (m (x) , (h ¯
.
m(x))

0
)
0
, τh,ij ≡ τh,i (xn,j) = (1, ((x

c
n,i − xcn,j)/h)

0)0. Here we allow the “local instruments” zh,ij to
depend on the smoothing parameter h and the particular point xn,j at which we approximate the

function m (·) . Motivated by the idea of local linear fitting, we can choose zh,ij simply as

zh,ij ≡ zh,i
¡
xcn,j

¢
=

Ã
z
(1)
n,i

z
(1)
n,i ⊗

¡¡
xcn,i − xcn,j

¢
/h
¢ ! , (2.12)

where ⊗ is the Kronecker product and z
(1)
n,i is a subset of zn,i. In an extreme case, one can take

z
(1)
n,i = zn,i. In the other extreme case, it is fine to take z

(1)
n,i = 1 and then zh,ij = τh,ij , which results

in the local linear profile estimator of Mh (xn,j) by regressing yn,i − ρnyn,i on xcn,i and treating ρn
as if it were known. In either case, it is sufficient to identifyMh in (2.11) for any given ρn and point

xn,j . Noting that unless the dimension of zh,ij is same as that of τh,ij , the number of equations in

(2.11) is greater than the number of parameters (pc+1) for any fixed ρn and xn,j , so that the model

is overidentified and we may not have a unique Mh satisfying (2.11). To ensure a unique solution,

we premultiply (2.11) by An,hλ (xn,j)
0 ≡ n−1

Pn
i=1 τh,ijz

0
h,ijKhλ,ij to obtain

An,hλ (xn,j)
0
n−1

nX
i=1

zh,ij
©
yn,i − ρnyn,i − τ 0h,ijMh (xn,j)

ª
Khλ,ij = 0. (2.13)

Solving the above equation for Mh yields the following solution

Mρn,hλ (xn,j) =
¡
An,hλ (xn,j)

0An,hλ (xn,j)
¢−1

An,hλ (xn,j)
0Bnρn,hλ (xn,j)

where Bnρn,hλ (xn,j) = n−1
Pn

i=1Khλ,ijzh,ij
¡
yn,i − ρnyn,i

¢
. In particular, the estimator of m (xn,j)

is given by

mρn,hλ (xn,j) = e01Mρn,hλ (xn,j) = shλ (xn,j)
0 (Yn − ρnW1nYn) ,

where e1 ≡ (1, 0, · · · , 0)0 is a (pc + 1)-vector, shλ (x)0 ≡ e01
¡
An,hλ (x)

0
An,hλ (x)

¢−1
An,hλ (x)

0
Zn,h (x)

0

diag(khλ (x)) , Zn,h (x) = (zh,1 (xc) , · · · , zh,n (xc))0, and khλ (x) = (Khλ,1 (x) , ...,Khλ,n (x))
0.

In the second step, we can estimate the parameter ρ0n by the global IV method. Let Zn =

(zn,1, ..., zn,n)
0. Let Shλ = (shλ (xn,1) , · · · , shλ (xn,n))0 , eYn = (In − Shλ)Yn, and eY n = (In − Shλ)W1nYn.

Then
nX
j=1

zn,j
©
yn,j − ρnyn,j −mρn (xn,j)

ª
= Z0n(eYn − ρn

eY n). (2.14)

Let Ωn be a symmetric q × q matrix that is positive semidefinite for large n. We can choose ρn to

minimize °°°Z0n(eYn − ρn
eY n)

°°°
Ωn

(2.15)

where kAkΩn ≡
√
A0ΩnA. It is easy to see the minimizer of (2.15) is given by

eρn = eρn (Ωn) = eY 0
nZnΩnZ

0
n
eYneY 0

nZnΩnZ
0
n
eY n

.
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We will study the optimal choice of Ωn for the given choice of zn,j . (The optimal choice of zn,j is

beyond the scope of this paper.) After we obtain eρn, we can obtain the estimator of Mh (x) byfMhλ (x) ≡Mρn,hλ
(x) and that of m (x) by emhλ (x) ≡ mρn,hλ

(x) = shλ (x)
0 (Yn − eρnW1nYn) .

Note that we allow for different choices of smoothing parameters (h, λ) used in the estimation of

ρ0n andMh (x) . We will explore the asymptotic properties of eρn and fMhλ (x) in the next section.

3 Asymptotic theory

In this section, we study the asymptotic properties of eρn and fMhλ (x).

3.1 Assumptions

To provide a rigorous asymptotic analysis, we maintain the following assumptions.

Assumption 1. (i) All diagonal elements w1n,ii of W1n are zero. (ii) ρ0n ∈ (−aρn, aρn) with
0 < aρn, aρn ≤ aρ < ∞. (iii) The matrix In − ρW1n is nonsingular for all ρ ∈ (−aρn, aρn). (iv)
The row and column sums of the sequences of matrices {W1n} and {

¡
In − ρ0nW1n

¢−1} are uniformly
bounded in absolute value.

Assumption 1 concerns the essential features of spatial weights matrix. Assumptions 1(i)-(iii)

parallel Assumptions 1(a)-(c) in Kelejian and Prucha (2010). Assumption 1(i) is clearly a normal-

ization rule. Assumption 1(ii) concerns the parameter space of ρ0n which may vary as the sample size

changes. See Section 2.2 of Kelejian and Prucha (2010) for an excellent discussion on the parameter

space for an autoregressive parameter. Assumption 1(iii) ensures that Yn defined in (2.1) has the

reduced form

Yn =
¡
In − ρ0nW1n

¢−1
m(Xn) +

¡
In − ρ0nW1n

¢−1
Un. (3.1)

Assumption 1(iv) parallels Assumption 5 of Lee (2004). Kelejian and Prucha (1998, 1999, 2001, 2007)

also assume Assumption 1(iv) which limits the spatial correlation to some degree but facilitates the

study of the asymptotic properties of the spatial parameter estimator.

Assumption 2. (i) Un = Anεn such that the row and column sums of the sequences of matrices

An are uniformly bounded in absolute value: sup1≤j≤n,n≥1
Pn

i=1 |an,ij | ≤ ca and sup1≤i≤n,n≥1
Pn

j=1

|an,ij | ≤ ca for some ca < ∞. (ii) The error terms {εn,i : 1 ≤ i ≤ n, n ≥ 1} satisfy: E(εn,i) = 0;

E(ε2n,i) = σ2n,i with sup1≤i≤n,n≥1σ
2
n,i ≤ σ2 < ∞; sup1≤i≤n,n≥1E |εn,i|4+η1 ≤ μ4+η1 < ∞ for some

small η1 > 0. (iii) εn,1, · · · , εn,n are totally independent.
Assumption 2 is fairly weak. It allows for not only heteroskedasticity but also spatial dependence

in Un. When An = In such that Un = εn, we have only heteroskedasticity in the error terms. In

the presence of heteroscedasticity, the QMLE of Lee (2004) in the linear SAR models is generally

inconsistent. For this reason, Kelejian and Prucha (2010) and Lin and Lee (2010) explore the GMM

estimation of the linear SAR models with heteroscedasticity. They also require the existence of

(4 + η1)th moments of un,i or εn,i for some η1 > 0. More recently, Su and Yang (2009) study the
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instrumental variable quantile estimation of SAR models. They only require the existence of first

moment of un,i but do not allow dependence among un,i, i = 1, 2, · · · , n.
It is possible that Un follows a SAR process, e.g., Un = γ0nW2nUn + εn with W2n being a

nonstochastic spatial weight matrix and γ0n a spatial parameter in the error process. Under the

condition that supn
°°γ0nW2n

°° < 1, Un has a reduced form: Un = Anεn where An ≡ (In− γ0nW2n)
−1

will meet the conditions in Assumption 2(i). It is also possible that Un forms a SMA process:

Un = γ0nW2nεn + εn, in which case An = In + γ0nW2n will meet Assumption 2(i) if the row and

column sums of W2n are uniformly bounded in absolute value.

Assumption 3. (i) xn,i, i = 1, ..., n, are nonstochastic regressors with xn,i = (xc
0
n,i, x

d0
n,i)

0 ∈
X c
n × X d

n ⊂ Rp, where X c
n is a bounded set in Rpc and X d

n is the support of xdn,i in Rpd (the set
of values that

©
xdn,i, i = 1, ...n,

ª
can take). (ii) There exist a function ϕn

¡
xc, xd

¢
and a positive

probability density/mass function fn
¡
xc, xd

¢
with support Xn≡ X c

n ×X d
n such that

lim
n→∞

1

n

nX
i=1

z
(1)
n,i vn (xn,i) = lim

n→∞

X
xd∈Xd

n

Z
Xc
n

ϕn
¡
xc, xd

¢
vn
¡
xc, xd

¢
fn
¡
xc, xd

¢
dxc (3.2)

for any bounded function vn
¡
xc, xd

¢
that is continuous in xc, and ϕn

¡
xc, xd

¢
and fn

¡
xc, xd

¢
are

continuous in xc and uniformly bounded on the support Xn. (iii) limn→∞ϕn (x) = ϕ (x) and

limn→∞fn (x) = f (x) exist for each x on the support X ≡ X c×X d of f
¡
xc, xd

¢
. (iv) m

¡
xc, xd

¢
is

second order continuously differentiable in xc for each xd on X d
n and supx∈Xm (x) ≤ cm <∞.

For notational simplicity, hereafter we will write
R
an (x) dx for

P
xd∈Xd

n

R
Xc
n
an
¡
xc, xd

¢
dxc for

any function an, where the summation is over all possible values of xd on X d
n . The fixed bounded

design assumption in Assumption 3(i) is typically assumed in the spatial econometrics literature,

see Kelejian and Prucha (1998, 1999, 2001, 2010), Lee (2002, 2004) and Lin and Lee (2010), among

others. Also, it allows for the fixed regressors to depend on n. Assumptions 3(ii)-(iii) are typical in

nonparametric regression with fixed regressor. For stationary random observations, ϕn (xn,i) can be

regarded as the conditional expectation of z(1)n,i given xn,i. As in Linton (1995), Assumption 3(ii)

does not preclude {xn,i}ni=1 from being generated by some random mechanism. For example, if xn,i
were i.i.d. with density fn (

.) , then (3.2) holds with probability one. So even though we focus on

the fixed regressor case, our analysis holds with probability one if {xn,i}ni=1 are generated randomly,
and in this case, we can interpret our analysis as being conditional on {xn,i}ni=1 . Assumption 3(iv)
is required for the second order Taylor expansion of m(xc, xd) with respect to xc.

Assumption 4. (i) The kernel function q (.) is a continuous symmetric density function. There

exists some small η2 > 0 and a constant cq < ∞ such that
R |uq (u)|2+η2 du < cq,

R
q4 (u) du < cq,

supuq (u) < cq, and supu |u| q (u) < cq. (ii) As n→∞, khk→ 0, kλk→ 0, kλk is of the same order
as khk2 , nh1 · · ·hpc →∞, and n khk4 → 0. (iii) As n→∞, ||eh||→ 0, ||eλ||→ 0, ||eλ|| is of the same
order as ||eh||2, neh1 · · ·ehpc →∞, and n(Πpcs=1

ehs)||eh||4 → c0 ∈ [0,∞).
Assumption 4(i) concerns the choice of kernel function. It is fairly standard in the nonparametric

estimation literature. Assumptions 4(ii) and (iii) concern the choice of smoothing parameters used
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in the first stage estimation of the parametric component (ρ0n) and the second stage estimation

of the nonparametric component (m (x)), respectively. They are standard in the nonparametric

regression with both continuous and discrete regressors with the only exception that undersmoothing

is required for the bandwidth sequences used in the first stage. The conditions in Assumption 4(ii)

imply implicitly that pc ≤ 3. This is not too restrictive given the “curse of dimensionality” in the
nonparametric literature. In the case where pc ≥ 4, one can apply higher order local polynomial
estimation in place of the local linear procedure in the first stage.

Let Σn ≡Var(εn) =diag
¡
σ2n
¢
with σ2n = (σ2n,1, · · · , σ2n,n)0. Let Bn ≡ n−1Z0n (In − Shλ)W1nYn.

The next assumption concerns the global instruments Zn, and the weight matrix Ωn.

Assumption 5. (i) Ωn = Ω+ op (1) where Ω is positive semidefinite. (ii) The elements zn,i of

Zn are uniformly bounded such that sup1≤i≤n,n≥1 kzn,ik ≤ cz <∞ and Bn = B + op (1) for a q × 1
vector B with B0ΩB > 0. (iii) Θ ≡ limn→∞ n−1Z0n (In − Shλ)AnΣnA

0
n (In − Shλ)0 Zn exists and

B0ΩΘΩB > 0.

Assumption 5(i) is standard and it allows the weight matrix Ωn to be estimated from the data.

The first part of Assumption 5(ii) is also standard in the spatial econometrics literature, whereas the

second part of Assumption 5(ii) indicates the instruments relevance. Assumption 5(iii) allows Θ to

be positive semidefinite which occurs if zn,i contains xn,i.

3.2 Asymptotic property of eρn
We first study the asymptotic property of eρn. This is given in Theorem 3.1.

Theorem 3.1 Under Assumptions 1-5,

√
n
¡eρn − ρ0n

¢ d→ N
³
0, (B0ΩB)−2B0ΩΘΩB

´
.

The proof of the above theorem is tedious and relegated to the appendix. Theorem 3.1 implies that

the optimal choice of Ω is given by Ω = Θ+ where Θ+ is the Moore-Penrose generalized inverse of Θ.

With this choice of weight, the asymptotic variance of eρn (Θ+) is minimized and given by (B0Θ+B)−1.
In the special case where un,i, i = 1, · · · , n, are independent and homoskedastic such that An = In

and σ2n,i = σ20 for all i, it is easy to see that Θ = σ20 limn→∞ n−1Z0n (In − Shλ) (In − Shλ)0 Zn. For
statistical inference, we need to estimate the asymptotic variance of

√
n(eρn − ρ0n). We postpone this

study to Section 5.

3.3 Asymptotic property of fMhλ (x)

To consider the asymptotic property of fMhλ (x) , we define the following notation:

A (x) ≡
Ã

ϕ (x) 0q1×pc
0q1pc×1 κ21ϕ (x)⊗ Ipc

!
and

Γn (x) ≡ n−1Πpcs=1ehsZ0n,h (x)diag(khλ (x))AnΣnA
0
ndiag(khλ (x))Zn,h (x) ,

10



where q1 is the dimension of z
(1)
n,i , and κ21 =

R
s2q (s) ds. Furthermore, for s = 1, · · · , pd, let

1s(x
d
n,i, x

d) = 1
¡
xdn,is 6= xds

¢
Πpds0 6=s1

¡
xdn,is0 = xds0

¢
1 (s > p1)

+1
¡|xdn,is − xds | = 1

¢
Πpds0 6=s1

¡
xdn,is0 = xds0

¢
1 (s ≤ p1) . (3.3)

Define

bλ (x) =
X

vd∈Xd

£
m
¡
xc, vd

¢−m
¡
xc, xd

¢¤ pdX
s=1

eλs1s(vd, xd)f ¡xc, vd¢ϕ ¡xc, vd¢ . (3.4)

That is, 1s(xdn,i, x
d) = 1 requires that all the elements of xdn,i but one should be identical to those

of xd. When s > p1, x
d
n,is is the unique element of x

d
n,i that is not shared by xd. When s ≤ p1,

1s(x
d
n,i, x

d) = 1 further requires that |xdn,is − xds | = 1. As shown in the proof of Theorem 3.2, bλ (x)

will be a part of the asymptotic bias of our estimator of m (x) .

The following theorem shows that the nonparametric component m (x) and its first derivatives

with respect to its continuous component can be estimated at the regular nonparametric convergence

rates.

Theorem 3.2 Under Assumptions 1-5, if Γ (x) ≡ limn→∞ Γn (x) exists and xc is an interior point

of X c, thenq
nΠpcs=1

ehsÃfMhλ (x)−Mh (x)−A∗ (x)
Ã

1
2κ21ϕ (x)

Ppc
s=1

eh2smss

¡
xc, xd

¢
+ bλ (x)

0q1pc×1

!!
d→ N

¡
0,A∗ (x)Γ (x)A∗ (x)0 /f2 (x)

¢
,

where Mh (x) = (m (x) , (eh ¯ .
m(x))

0
)
0
, mss(x

c, xd) = ∂2m(xc, xd)/(xcss)
2, s = 1, · · · , pc, bλ (x) is

defined in (3.4), and A∗ (x) = (A (x)0A (x))−1A (x)0 .

Theorem 3.2 allows for both heteroskedasticity and spatial dependence in Un. This general result

does not come free. It requires that the limit of Γn should exist, which may not be easily verified for

general specification of Un. In the special case where Un = εn and z
(1)
n,i = 1, it is easy to see that

Γ = lim
n→∞n−1Πpcs=1ehs nX

i=1

Ã
1 ((xcn,i − xc)/eh)0

(xcn,i − xc)/eh ((xcn,i − xc)/eh)((xcn,i − xc)/eh)0
!
K2
hλ,i

(x)σ2n,i

If further σ2n,i = σ2 (xn,i) , i.e., the error terms un,i are conditionally heteroskedastic, it is easy to

show that

Γ = f (x)σ2 (x)

Ã
κpc02 0

0 κpc−102 κ22Ipc

!
, (3.5)

where κij =
R
siqj (s) ds for i, j = 0, 1, 2. This implies the asymptotic independence between the

estimator of m (x) and that of its first derivative with respect to the continuous component of x.
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4 Joint asymptotic distribution for the estimators of both

spatial parameters in SARAR Models

In this section we demonstrate that after we obtain the estimates of ρ0n and m (x) , we can also

estimate the spatial parameter in the error term Un. For clarity, we focus on the case where Un also

follows the SAR structure. In this case, we write

Un = γ0nW2nUn + εn,

whereW2n is the spatial weight matrix in the error process that may be different fromW1n. Since the

elements un,i of Un are not observed, we need to base our estimator of γ0n on a consistent estimator

of Un: eUn ≡ Yn − em (Xn)− eρnW1nYn,

where em (Xn) ≡ (em (xn,1) , · · · , em (xn,n))0 and em (x) ≡ emhλ (x) .

4.1 Estimation of the spatial parameter γ0n

In this subsection, we study the consistent estimation of the spatial parameter γn. Following the

literature, we assume that the diagonal elements of W2n are zero. Let εn =W2nεn. Then we have

n−1E [ε0nεn] = n−1tr {W2nΣnW
0
2n} and n−1E [ε0nεn] = 0. (4.1)

Like Kelejian and Prucha (2010), it is convenient to rewrite the above moment conditions as

n−1E

"
ε0nA1nεn
ε0nA2nεn

#
= 0, (4.2)

whereA1n ≡W 0
2nW2n−diag(w2n), A2n ≡ (W2n+W

0
2n)/2, andw2n ≡ (w02n,.1w2n,.1, · · · , w02n,.nw2n,.n)0

with w2n,.i denoting the ith column of W2n.We will estimate γ0n based upon the moment conditions

in (4.2).

Noting that εn =
¡
In − γ0nW2n

¢
Un, we can substitute this expression into (4.2) to yield

ψn −Ψnθ0n = 0, (4.3)

where θ0n ≡ [γ0n,
¡
γ0n
¢2
]0,

ψn ≡
"
ψn,1

ψn,2

#
=

"
n−1E (U 0nA1nUn)
n−1E (U 0nA2nUn)

#
, and (4.4)

Ψn ≡
"
ψn,11 ψn,12
ψn,21 ψn,22

#
=

"
2n−1E (U 0nW 0

2nA1nUn) −n−1E (U 0nW 0
2nA1nW2nUn)

2n−1E (U 0nW 0
2nA2nUn) −n−1E (U 0nW 0

2nA2nW2nUn)

#
. (4.5)

We then obtain the estimators eΨn =
heψn,iji

i,j=1,2
and eψn = [eψn,1, eψn,2]0 for the elements of

Ψn =
£
ψn,ij

¤
i,j=1,2

and ψn = [ψn,1, ψn,2]
0 by suppressing the expectation operator and replacing
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the disturbance vector Un by eUn. Let qn (γn) = eψn − eΨnθn, where θn ≡ [γn, γ2n]0. We obtain the
generalized methods of moments estimator eγn ≡ eγn (Υn) for γ0n by minimizing the following objective
function

Qn ≡ qn (γn)
0
Υnqn (γn) , (4.6)

where Υn is a 2× 2 symmetric positive semidefinite matrix.
As shown in the appendix (see (C.5) and (C.7)), the dominant term of

√
n
¡eγn − γ0n

¢
can be

written as a linear combination of

vn ≡ n−1/2
"

ε0nA1nεn + a01nεn
ε0nA2nεn + a02nεn]

#
, (4.7)

where for k = 1, 2,

a0kn = −n−1E[ε0nCknεn](B
0ΩB)−1B0ΩZ 0n (In − Shγ)

¡
In − γ0nW2n

¢−1
, (4.8)

G1n ≡W1n

¡
In − ρ0nW1n

¢−1
,

Ckn = 2
¡
In − γ0nW

0
2n

¢−1
G01n

¡
In − γ0nW

0
2n

¢
Akn. (4.9)

Noticing that the diagonal elements of the matrices Akn (k = 1, 2) are zero, we can apply Theorem

A.1 to deduce that the asymptotic variance-covariance (VC) matrix of the vector of linear quadratic

forms in (4.7) is given by Φn,γγ = [φnγγ,kl]k,l=1,2, where

φnγγ,kl = 2n
−1tr [AknΣnAlnΣn] + n−1a0knΣnaln. (4.10)

To state the next theorem, we add the following assumption.

Assumption 6. (i) All diagonal elements w2n,ii of W2n are zero. (ii) γ0n ∈ (−aγn, aγn) with
0 < aγn, aγn ≤ aγ < ∞. (iii) The matrix In − γW2n is nonsingular for all γ ∈ (−aγn, aγn). (iv)
The row and column sums of the sequences of matrices {W2n} and {

¡
In − γ0nW2n

¢−1} are uniformly
bounded in absolute value.

Assumption 6 parallels Assumption 1 so that a discussion similar to that after Assumption 1 also

applies here. The following theorem concerns the asymptotic normal distribution of eγn.
Theorem 4.1 Suppose that Assumptions 1-6 hold. Furthermore, suppose that n||eh||8 → 0 and

n(Πpcs=1
ehs logn)2 → ∞ as n → ∞. Suppose that λmin (Ψ0nΨn) ≥ cψ > 0, λmin (Υn) ≥ cΥ > 0 and

λmin (Φn,γγ) ≥ cΦγγ > 0. Then

√
n
¡eγn − γ0n

¢
= (J 0nΥnJn)

−1
J 0nΥnΦ

1/2
n,γγξn + op (1)

d→ N (0,Ωγ) ,

where Jn = Ψn[1, 2γ
0
n]
0, Ωγ = limn→∞ (J 0nΥnJn)

−1
J 0nΥnΦn,γγΥnJn (J 0nΥnJn)

−1 ≥ c > 0, and

ξn ≡ Φ−1/2n,γγ vn
d→ N (0, I2) .

Like Assumption 4(ii), the extra conditions on eh in Theorem 4.1 require that pc ≤ 3. As pc
increases, it becomes more and more difficult to estimate m (x) so that the distance between em (xn,i)
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and m (xn,i) gets larger and larger. Unless we can estimate m (x) at a sufficiently accurate rate, we

cannot estimate the spatial parameter γ0n at the usual
√
n-parametric rate. From the proof of Lemma

C.1 in the appendix, we need the bias of em (xn,i) to be o(n−1/4), which is a typical requirement in
the semi-parametric literature where nonparametric estimation is conducted before one obtains a

parametric estimator.

Clearly, the choice Υn = Φ−1n,γγ minimizes Ωγ , and in this case, Ωγ = limn→∞
¡
J 0nΦ

−1
n,γγJn

¢−1
.

In practice, Υn may not be observable and one can replace Υn by its consistent estimate in (4.6)

without altering the asymptotic results in Theorem 4.1.

4.2 Joint asymptotic distribution of eρn and eγn
In this subsection, we study the joint asymptotic distribution of the estimators for ρ0n and γ0n. Let

δ0n ≡ (ρ0n, γ0n)0 and eδn ≡ (eρn, eγn)0. In light of the proofs of Theorems 3.1 and 4.1,
√
n
¡eρn − ρ0n

¢
= (B0ΩB)−1B0Ωn−1/2P 0nεn + op (1) , and

√
n
¡eγn − γ0n

¢
= (J 0nΥnJn)

−1
J 0nΥnvn + op (1) ,

where P 0n = Z0n (In − Shλ)
¡
In − γ0nW2n

¢−1
, and vn is defined in (4.7). Hence, the joint limiting

distribution of
√
n
¡eρΩ − ρ0n

¢
and

√
n
¡eγn − γ0n

¢
will depend on the limiting distribution of van ≡

[n−1/2(P 0nεn)0, v0n]0. Observe that van is a vector of linear and linear quadratic forms studied in

Appendix A. Its variance-covariance matrix is given by

Φn ≡
"
Φn,ρρ Φn,ργ

Φ0n,ργ Φn,γγ

#
(4.11)

where Φn,ρρ = n−1P 0nΣnPn, Φn,ργ = n−1P 0nΣn[a1n, a2n], and elements of Φn,γγ are defined in (4.10).
The following theorem establishes the joint asymptotic normality of eρn and eγn.

Theorem 4.2 Suppose that the conditions in Theorem 4.1 hold. Suppose that λmin (Φn) ≥ cΦ > 0.

Then

√
n
³eδn − δ0n

´
=

"
(B0ΩB)−1B0Ω 0

0 (J 0nΥnJn)
−1 J 0nΥn

#
Φ1/2n ξan + op (1)

d→ N (0,Ωδ)

where Ωδ ≡ limn→∞Ωn,δ, Ωn,δ ≡ H 0
nΦnHn, Hn ≡

"
ΩB (B0ΩB)−1 0

0 ΥnJn (J
0
nΥnJn)

−1

#
, and

ξan ≡ Φ−1/2n van
d→ N (0, Iq+2) .

Theorem 4.2 implies that we can make joint statistical inference on both spatial parameters ρ0n
and γ0n. To do so, consistent estimation of the asymptotic VC matrix Ωδ is needed. See the next

section for the exploration.
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4.3 An alternative method: joint estimation of ρ0n and γ0n

In this subsection, we study the joint estimation of the spatial parameters ρ0n and γ0n based on

the moment conditions in (4.2).2 Let εn (δn) ≡ (In − γnW2n) (Yn − em (Xn) − ρnW1nYn) where

δn ≡ (ρn, γn)0 and em (Xn) ≡ (emhλ (xn,1) , · · · , emhλ (xn,n))
0. Let q∗n (δn) ≡ [q∗1n (δn) , q∗2n (δn)]0, where

q∗kn (δn) ≡ n−1εn (δn)
0
Aknεn (δn) for k = 1, 2.We propose to estimate δ

0
n by minimizing the following

objective function

Q∗n ≡ q∗n (δn)
0
Υ∗nq

∗
n (δn) , (4.12)

whereΥ∗n is a 2×2matrix that is positive definite for sufficiently large n. Let bδn ≡ (bρn, bγn)0 denote the
solution to the above minimization problem. As shown in the appendix, ∂q∗n

³bδn´ /∂δ0n = J∗n+op (1) ,
where

J∗n = 2n
−1

⎡⎣ E
n
U 0nG01n

¡
In − γ0nW2n

¢0
A1n

¡
In − γ0nW2n

¢
Un

o
E
©
U 0nW 0

2nA1n
¡
In − γ0nW2n

¢
Un
ª

E
n
U 0nG01n

¡
In − γ0nW2n

¢0
A2n

¡
In − γ0nW2n

¢
Un

o
E
©
U 0nW 0

2nA2n
¡
In − γ0nW2n

¢
Un
ª
⎤⎦ .

(4.13)

The dominant term of
√
n
³bδn − δ0n

´
can be written as a linear combination of v∗n ≡ n−1/2[ε0nA1nεn

ε0nA2nεn]0. Then Theorem A.1 implies that the asymptotic VC matrix of v∗n is given by Φ∗n ≡
[φ∗n,kl]k,l=1,2, where φ

∗
n,kl ≡ 2n−1tr(AknΣnAlnΣn) .

Let q∗n (δn) ≡ [q∗1n (δn) , q
∗
2n (δn)]

0, where q∗kn (δn) ≡ n−1E[εn (δn)
0
Aknεn (δn)] and εn (δn) ≡

(In − γnW2n) (Yn −m (Xn) − ρnW1nYn). The following theorem concerns the asymptotic normal

distribution of bδn.
Theorem 4.3 Suppose that Assumptions 1-6 hold. Suppose that n||eh||8 → 0 and n(Πpcs=1

ehs logn)2
→∞ as n→∞. Suppose that inf{δn:||δn−δ0n||>�} kq∗n (δn)k ≥ cq∗ > 0 for each � > 0, λmin (J

∗0
n J
∗
n) ≥

cJ∗ > 0, λmin (Υ
∗
n) ≥ cΥ∗ > 0 and λmin (Φ

∗
n) ≥ cΦ∗ > 0. Then

√
n
³bδn − δ0n

´
= (J∗0n Υ

∗
nJ
∗
n)
−1

J∗0n Υ
∗
nΦ
∗1/2
n ξ∗n + op (1)

d→ N (0,Ω∗δ) ,

where Ω∗δ = limn→∞ (J∗0n Υ∗nJ∗n)
−1

J∗0n Υ∗nΦ∗nΥ∗nJ∗n (J∗0n Υ∗nJ∗n)
−1

, and ξn ≡ Φ∗−1/2n v∗n
d→ N (0, I2) .

Similar remarks to those after Theorem 4.1 hold. In particular, the choice Υ∗n = Φ
∗−1
n minimizes

Ω∗δ asymptotically, and in this case Ω
∗
δ = limn→∞

¡
J∗0n Φ∗−1n J∗n

¢−1
.

Even though it is hard to compare the asymptotic VC matrix of bδn with that of eδn, a noticeable
difference is that the former does not depend on matrices like B and Ω. This implies that the

preliminary estimation of the nonparametric component plays asymptotically negligible role in the

joint estimation of ρ0n and γ0n. In addition, it is easy to verify that the condition on J∗n is violated
when ρ0n = γ0n = 0 and W1n = W2n. In this case, the asymptotic VC matrix of bδn is singular. For
this reason, we only implement eδn in Section 6.

2More generally, one could consider the GMM estimation of ρ0n and γ
0
n based on both linear and quadratic moment

conditions for εn as in Liu, Lee, and Bollinger (2008).
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5 Estimation of the asymptotic VC matrices

In this section, we discuss the estimation of the asymptotic variance-covariance matrices for both

estimators of the parametric and nonparametric components in the model. In particular, we focus

on the consistent estimation of the two asymptotic covariance matrices in Theorem 4.2 and Theorem

3.2.

We first define a HAC type estimator for Φn defined in (4.11). For this purpose, let eεn ≡
(In − eγnW2n)eUn = (eεn,1, · · · ,eεn,n)0, eε2n ≡ (eε2n,1, · · · ,eε2n,n)0, eΣn ≡diag(eε2n), ea0kn ≡ −n−1eε0n eCkneεn
(B0

nΩnBn)
−1B0

nΩnZ
0
n (In − Shγ) (In − eγnW2n)

−1 , and eCkn ≡ 2 (In − eγnW 0
2n)
−1
(In − eρnW 0

1n)
−1

W 0
1n

(In − eγnW 0
2n)Akn where k = 1, 2. We also need to specify an estimator for Pn : ePn ≡ Z0n (In − Shλ)

× (In − eγnW2n)
−1 . Let eΦn ≡ " eΦn,ρρ eΦn,ργeΦ0n,ργ eΦn,γγ

#
,

with eΦn,ρρ = n−1 eP 0neΣn ePn, eΦn,ργ = n−1 eP 0neΣn[ea1n,ea2n], eΦn,γγ = (eφnγγ,kl)k,l=1,2, where eφnγγ,kl =
2n−1tr(Akn

eΣnAln
eΣn) + n−1ea0kneΣnealn. Let eJn ≡ eΨn[1, 2eγn] and eΩn,δ ≡ eH 0

n
eΦn eHn, where

eHn ≡
"
ΩnBn (B

0
nΩnBn)

−1 0

0 Υn eJn( eJ 0nΥn eJn)−1
#
.

The following theorem says that we can consistently estimate Ωδ by eΩn,δ.
Theorem 5.1 Suppose the conditions in Theorem 4.2 hold. Suppose in addition that supn

¯̄
ρ0n
¯̄
< ρ∗

and supn
¯̄
γ0n
¯̄
< γ∗ such that kρ∗W1nk∞ < 1 and kγ∗W2nk∞ < 1, where k·k∞ denotes the maximum

row sum norm. Then eΦn − Φn = op (1) and eΩn,δ − Ωn,δ = op (1) .

Let bUn ≡ Yn− em (Xn)−bρnW1nYn, bεn ≡ (In−bγnW2n)bUn = (eεn,1, · · · ,eεn,n)0, bε2n ≡ (bε2n,1, · · · ,bε2n,n)0,
and bΣn ≡diag(bε2n). Let bG1n ≡W1n(In−bρnW1n)

−1 and eΦ∗n ≡ [eφ∗n,kl]k,l=1,2 where eφ∗n,kl ≡ 2n−1tr(Akn
bΣn

Aln
bΣn). Define
eJ∗n ≡ 2n−1

" bU 0n bG01n (In − bγnW2n)
0
A1n (In − bγnW2n) bUn bU 0nW 0

2nA1n (In − bγnW2n) bUnbU 0n bG01n (In − bγnW2n)
0
A2n (In − bγnW2n) bUn bU 0nW 0

2nA2n (In − bγnW2n) bUn
#
.

Let eΩ∗n,δ ≡ ³ eJ∗0n Υ∗n eJ∗n´−1 eJ∗nΥ∗neΦ∗nΥ∗n eJ∗n ³ eJ∗0n Υ∗n eJ∗n´−1 . The following theorem establishes the con-

sistency of eΩ∗n,δ for Ω∗δ .
Theorem 5.2 Suppose the conditions in Theorem 4.3 hold. Suppose in addition that supn

¯̄
ρ0n
¯̄
< ρ∗

and supn
¯̄
γ0n
¯̄
< γ∗ such that kρ∗W1nk∞ < 1 and kγ∗W2nk∞ < 1. Then eΦ∗n − Φ∗n = op (1) andeΩ∗n,δ − Ω∗n,δ = op (1) .

Statistical inference associated with δ0n ≡ (ρ0n, γ0n)0 can now be conducted based upon the above
theorems and Theorems 4.2-4.3. For example, we can test the hypothesis of zero spatial correlation

in both the regression model and the disturbance term, i.e., H0 : ρ
0
n = γ0n = 0. As special cases, we

can also test the simple null hypothesis H0 : ρ
0
n = 0 or H0 : γ

0
n = 0.
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In practice, we may be also interested in making statistical inference on the nonparametric compo-

nent. For this purpose, we need to estimate the asymptotic VC matrix in Theorem 3.2. Let eΓn (x) ≡
n−1Πpcs=1ehsZ0n,h (x)diag(khλ (x))An

eΣnA0ndiag(khλ (x))Zn,h (x) , efn (x) ≡ n−1
Pn

i=1Khλ,i (x) , andeϕn (x) ≡ n−1
Pn

i=1 z
(1)
n,iKhλ,i (x) /

efn (x) . Define eAn (x) as A (x) with eϕn (x) replacing ϕn (x) . LeteA∗n (x) = (eAn (x)
0 eAn (x))

−1 eAn (x)
0, and eΩn,M (x) ≡ eA∗n (x) eΓn (x) eA∗n (x)0 / efn (x)2 . The following

result is sufficient to establish the consistency of the estimator for the asymptotic VC matrix.

Theorem 5.3 Suppose that the conditions in Theorem 3.2 hold. Then eΓn (x) − Γn (x) = op (1) ,efn (x)−fn (x) = o (1) , eϕn (x)−ϕn (x) = o (1) , and eΩn,M (x)−Ωn,M (x) = op (1) , where Ωn,M (x) ≡
A∗ (x)Γ (x)A∗ (x) /f2n (x) .

In proving the above theorem, we assume that An is known. In the case of spatial autoregression

error, An = In−γ0nW2n, which is not observed. It is easy to show that the replacement of An by, say,eAn ≡ In − eγnW2n in the definition of eΓn will have asymptotically negligible effect on the consistent
result in Theorem 5.3 provided Assumption 6 is also satisfied.

6 Monte Carlo simulations

We now present a small set of Monte Carlo experiments to examine the finite sample performance

of our semi-parametric GMM estimators. Like Su and Yang (2009), we generate the spatial weight

matrix Wn ≡ W1n according to Rook contiguity, by randomly allocating the n spatial units on a

lattice of 5×m (≥ n) squares, finding the neighbors for each unit, and then row normalizing.

We generate the data from the following data generating processes (DGPs):

DGP 1: Yn = 1 +Xd
n1 +Xd

n2 +Xc
n1 + ρ0nWnYn +Xc

n1 ¯Xc
n1 + Un,

DGP 2: Yn = 1+Xd
n1+Xd

n2+Xc
n1+ ρ0nWnYn+0.5X

d
n1¯ exp(Xc

n1)+0.5X
d
n2¯Xc

n1¯Xc
n1+Un,

DGP 3: Yn = 1+Xd
n1+X

d
n2+X

c
n1+X

c
n2+ρ

0
nWnYn+X

d
n1¯cos (0.5πXc

n1)+X
d
n2¯ sin(0.5πXc

n2)+

0.5Xc
n1 ¯Xc

n2 + Un,

where ¯ denotes the Hadamard product, Xc
n1 =

¡
xcn,11, ..., x

c
n,1n

¢0
, Xc

n2 =
¡
xcn,21, ..., x

c
n,2n

¢0
, xcn,1i’s

are i.i.d. and each is equal to the sum of 48 independent random variables each uniformly distributed

on [-0.25, 0.25], and xcn,2i’s are i.i.d. U (−2, 2); for t = 1, 2, Xd
nt =

¡
xdn,t1, · · · , xdn,tn

¢0
, P (xdn,t1 = l) =

0.5 for l = 0, 1. According to the central limit theorem, we can treat xcn,1i as being nearly a normal

random variable with truncated support on [-12, 12]. The error term is generated according to the

SAR process: Un = γ0nWnUn+ εn, where εn = (εn,1, ..., εn,n)
0, εn,i =

q
0.5(1 + xc2n,1i)ηi, and ηi’s are

i.i.d. N (0, 1) . We will consider different population values of
¡
ρ0n, γ

0
n

¢
: (0, 0), (0.3, 0), (0, 0.3), and

(0.3, 0.3).

To implement our estimation procedure, we need to choose the kernel function and bandwidth

sequences. Throughout, we will choose a Gaussian kernel (for DGPs 1-2) or the product of a Gaussian

kernel (for DGP 3). That is, for DGPs 1 and 2 where there is only one continuous exogenous regressor,

we choose q (x) = (2π)−1/2 exp
¡−x2/2¢ ; for DGP 3 where there are two non-constant exogenous

regressors, we choose Q (x1, x2) = Π2l=1 (2π)
−1/2 exp

¡−x2l /2¢ .
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As it is difficult to specify the optimal bandwidth sequences h = (h1, ..., hpc)
0 and eh = (eh1, ...,ehpc)0

(pc = 1, or 2 here), we propose to choose them via the following two-step procedure. (1) Choose

h = (h1, ..., hpc)
0 and λ = (λ1, ..., λpd)

0 with hl = sXc
nl
n−1/3.5 and λl = sXd

nl
n−2/3.5 to obtain

a preliminary estimate −→ρ n of ρ0n, where sXc
nl
denotes the sample standard deviation of Xc

nl for

l = 1, · · · , pc, and sXd
nl
is similarly defined. (2) Conduct the least squares cross validation (LSCV)

to choose (eh, eλ) by regressing Yn− −→ρ nWnYn on Xn. Since undersmoothing is required for h and λ,

we set h = ehn−1/3.5+1/(pc+4) and λ = eλn−2/3.5+2/(pc+4) and obtain an updated estimator eρn of ρ0n.
To be concrete, let −→y n,i denote the ith element of Yn− −→ρ nWnYn. Let

−→m−i (xn,i) be the leave-
one-out local linear estimator of m (xn,i) by leaving the observation (xn,i,

−→y n,i) out in the estimation

procedure and by using the smoothing parameters (h, λ). We choose (eh, eλ) to be
(eh, eλ) = arg min

(h,λ)
n−1

nX
i=1

[−→y n,i −−→m−i (xn,i)]2w(xcn,i),

where w(xcn,i) is a nonnegative weight function. In our simulations, we set w(x
c
n,i) = Π

pc
s=11(|xcn,is −

xcs)| ≤ 2sXc
ns
) with xcs being the sample mean of X

c
ns.

After obtaining eρn, we obtain the estimate em (xn,i) of m (xn,i) as in Section 2 and the estimateeγn of γ0n as in Section 4.
Recently, Kelejian and Prucha (2010) study the generalized moments (GM) estimation of spatial

autoregressive models with autoregressive and heteroskedastic errors. Note that their estimation

procedure requires a complete specification of the regression model, i.e., the functional form of

m (xn,i) has to be known and is actually linear in their paper. In the case of nonlinearity, it is

hard to know the exact form of m (xn,i) . To check the robustness of Kelejian and Prucha’s (2010)

procedure against nonlinearity, we will also report their GM estimators of (ρ0n, γ
0
n) by pretending

that m (xn,i) is linear in xn,i in all DGPs. We denote their estimators of ρ0n and γ0n as bρKP andbγKP , respectively.

For each Monte Carlo experiment, we consider samples of size n = 200 and 800. The numbers of

Monte Carlo replications are 1000 and 500 for the cases n = 200 and n = 800, respectively.

Table 1 reports the empirical mean, theoretical standard deviations (theoret. std dev), simulated

standard deviations (simul. std dev), separate null hypothesis test (sep. test), and joint hypothesis

test (joint test) results regarding the parametric component in the model. The theoretical standard

deviations are calculated from the asymptotic variance-covariance formula and then averaged over

the 1000 or 500 replications; the simulated standard deviations are the empirical standard deviations

of the corresponding estimators obtained in the replications. The separate tests are conducted to

test whether each spatial parameter is significantly different from zero in each replication; the joint

tests are to test whether the two spatial parameters are jointly zero in each replication. Both tests

are performed at a nominal 5% significance level.

We summarize some important findings from Table 1. First, we see that the estimates eρn are well
behaved in all cases and the estimates eγn are well behaved for all scenarios in DGPs 1-2. For DGP
3, we observe non-negligible small sample biases when n = 200 but the biases diminish rapidly as the

sample size quadruples. Second, despite the use of linear approximation of m (.) , the estimates bρKP
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Table 1: Parametric Estimates and Hypothesis Tests for DGPs 1-3
n = 200 n = 800

estima- true theoret. simul. sep. joint theoret. simul. sep. joint
tor value mean std dev std dev test test mean std dev std dev test test

DGP 1eρn 0 -0.034 0.117 0.135 0.067 -0.016 0.058 0.061 0.064eγn 0 0.042 0.155 0.147 0.049 0.072 0.019 0.074 0.074 0.054 0.064bρKP 0 0.008 0.182 0.192 0.068 0.004 0.093 0.096 0.050bγKP 0 -0.013 0.201 0.205 0.057 0.075 0.002 0.104 0.109 0.074 0.048

eρn 0.3 0.268 0.112 0.131 0.689 0.284 0.055 0.058 0.996eγn 0 0.043 0.150 0.149 0.059 0.955 0.020 0.075 0.075 0.060 1bρKP 0.3 0.310 0.172 0.182 0.483 0.297 0.088 0.091 0.900bγKP 0 -0.024 0.201 0.204 0.062 0.928 -0.001 0.103 0.109 0.078 1

eρn 0 -0.035 0.129 0.149 0.063 -0.012 0.064 0.068 0.054eγn 0.3 0.294 0.157 0.141 0.539 0.792 0.300 0.074 0.074 0.982 1bρKP 0 0.013 0.185 0.196 0.070 0.007 0.095 0.102 0.058bγKP 0.3 0.085 0.202 0.210 0.089 0.178 0.096 0.104 0.111 0.158 0.538

eρn 0.3 0.266 0.125 0.145 0.633 0.288 0.061 0.066 0.970eγn 0.3 0.296 0.151 0.144 0.546 0.998 0.300 0.075 0.076 0.980 1bρKP 0.3 0.315 0.176 0.188 0.494 0.308 0.090 0.098 0.864bγKP 0.3 0.073 0.204 0.209 0.080 0.994 0.093 0.105 0.112 0.148 1
DGP 2eρn 0 -0.007 0.077 0.085 0.074 -0.006 0.039 0.041 0.068eγn 0 0.005 0.122 0.125 0.061 0.067 0.003 0.061 0.062 0.054 0.058bρKP 0 0.005 0.093 0.100 0.079 -0.002 0.048 0.049 0.042bγKP 0 -0.012 0.131 0.134 0.058 0.072 -0.001 0.066 0.069 0.062 0.050

eρn 0.3 0.294 0.073 0.081 0.953 0.296 0.037 0.040 1eγn 0 0.005 0.122 0.126 0.066 0.990 0.006 0.061 0.067 0.070 1bρKP 0.3 0.305 0.088 0.094 0.897 0.297 0.046 0.047 0.998bγKP 0 -0.014 0.131 0.134 0.058 0.975 -0.001 0.067 0.066 0.040 1

eρn 0 0.008 0.083 0.092 0.073 -0.008 0.043 0.047 0.064eγn 0.3 0.279 0.119 0.122 0.624 0.781 0.295 0.060 0.066 0.992 1bρKP 0 0.007 0.095 0.103 0.081 -0.002 0.050 0.052 0.062bγKP 0.3 0.160 0.129 0.137 0.269 0.421 0.171 0.067 0.069 0.714 0.924

eρn 0.3 0.293 0.079 0.088 0.897 0.295 0.040 0.041 1eγn 0.3 0.270 0.119 0.123 0.619 1 0.291 0.060 0.060 0.996 1bρKP 0.3 0.307 0.092 0.100 0.872 0.300 0.048 0.047 1bγKP 0.3 0.156 0.131 0.138 0.253 1 0.167 0.067 0.069 0.690 1
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Table 1: Parametric Estimates and Hypothesis Tests for DGPs 1-3 (cont.)
n = 200 n = 800

estima- true theoret. simul. sep. joint theoret. simul. sep. joint
tor value mean std dev std dev test test mean std dev std dev test test

DGP 3eρn 0 0.005 0.078 0.090 0.071 -0.002 0.036 0.038 0.058eγn 0 -0.010 0.122 0.126 0.059 0.066 -0.001 0.060 0.063 0.050 0.060bρKP 0 0.007 0.090 0.095 0.056 0.001 0.045 0.043 0.044bγKP 0 -0.018 0.130 0.130 0.063 0.053 -0.001 0.065 0.065 0.054 0.036

eρn 0.3 0.305 0.075 0.085 0.943 0.298 0.035 0.036 1eγn 0 -0.011 0.123 0.126 0.057 0.989 -0.001 0.060 0.063 0.050 1bρKP 0.3 0.309 0.085 0.090 0.915 0.301 0.042 0.040 1bγKP 0 -0.022 0.129 0.130 0.062 0.982 -0.002 0.065 0.062 0.044 1

eρn 0 0.003 0.083 0.099 0.074 -0.000 0.039 0.043 0.058eγn 0.3 0.259 0.120 0.127 0.655 0.839 0.287 0.057 0.060 1 1bρKP 0 0.004 0.091 0.097 0.060 -0.000 0.046 0.045 0.048bγKP 0.3 0.168 0.127 0.130 0.280 0.410 0.174 0.064 0.065 0.780 0.924

eρn 0.3 0.306 0.079 0.092 0.907 0.300 0.037 0.040 1eγn 0.3 0.249 0.120 0.124 0.630 1 0.286 0.058 0.061 1 1bρKP 0.3 0.312 0.088 0.096 0.896 0.300 0.044 0.043 1bγKP 0.3 0.148 0.129 0.132 0.228 0.999 0.173 0.064 0.065 0.774 1

behave quite well in all cases under our investigation. In contrast, the estimates bγKP can be seriously

biased downwards. For example, when (ρ0n, γ
0
n) = (0.3, 0.3) in DGP 1, the average values of bγKP

are 0.073 and 0.093 for n = 200 and 800, respectively. Third, the simulated standard deviations are

largely consistent with theoretical standard deviations in all cases. As the sample size quadruples, we

observe that both sets of standard deviations are roughly halved as predicted by the theory. Fourth,

the rejection rates of the separate and joint tests are reasonably close to the nominal level 5% when

the corresponding null hypothesis is true. When the null hypotheses are not true, we observe larger

values of rejection rates for the tests based upon our semi-parametric estimates (eρn, eγn) than those
based upon Kelejian and Prucha’s estimates (bρKP , bγKP ). This is as expected because bγKP tends to

be biased downwards. For example, consider testing H0 : γ
0
n = 0 in DGP 2 when the true value of

(ρ0n, γ
0
n) is (0.3, 0.3). The rejection rates for our test are 0.624 and 1 respectively for n = 200 and

800, whereas the rejection rates for Kelejian and Prucha’s test are 0.269 and 0.924 respectively for

n = 200 and 800.

Figures 1-2 plot the estimates em(xc, xd) of m(xc, xd) in DGPs 1 and 2, respectively, where
n = 200, (ρ0n, γ

0
n) = (0.3, 0.3), and xd may take four different values: xd ≡ (xd1, xd2) = (0, 0), (1, 0),

(0, 1), and (1, 1). In each sub-graph of Figures 1-2, we plot the true regression curve m
¡
xc, xd

¢
,

the median estimate em ¡xc, xd¢ in the 1000 replications, the upper and lower 5% quantiles of the

estimates em ¡xc, xd¢ in the replications. In each case, we see the median value of the estimatesem ¡xc, xd¢ can trace the true regression curve quite well. As expected, we observe that the variations
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of em ¡xc, xd¢ become larger and larger as xc moves from the centered value (0 here) to the tailed

values (±2 here).
For DGP 1, m

¡
xc, xd

¢
= 1 + xd1 + xd2 + xc (1 + xc) , so there is no interaction between xd1, x

d
2

and xc and the true curves m
¡
xc, xd

¢
for different values of xd parallel to each other. In fact we

can observe this phenomenon for em ¡xc, xd¢ in Figure 1. In contrast, for DGP 2, m
¡
xc, xd

¢
=

1+ xd1 + xd2 + xc + 0.5xd1 exp(x
c) + 0.5xd2(x

c)2, so there are interactions between xd1, x
d
2, and xc, and

the shapes of m(xc, xd) are quite different from each other for different values of xd, depending on

whether xd1 = 0 or 1 as well as x
d
2 = 0 or 1. For example, if x

d ≡ (xd1, xd2) = (0, 0), then m
¡
xc, xd

¢
is a

linear function of xc; if xd ≡ (xd1, xd2) = (1, 0), then m(xc, xd) is an exponentially increasing function

of xc. Figure 2 indicates the estimates em(xc, xd) can capture such features quite well.
In Figure 3 (a)-(b), we plot the true regression curve m(xc, xd) = 1 + xd1 + xd2 + xc1 + xc2+

xd1 cos (0.5πx
c
1) + xd2 sin (0.5πx

c
2) + 0.5x

c
1x

c
2 in DGP 3 and its estimate em(xc, xd) for the case where

xd ≡ (xd1, xd2) = (1, 1), (ρ0n, γ0n) = (0.3, 0.3), and n = 200. We observe that em(xc, xd) can mimic the
shape of m(xc, xd) quite well for such small sample size as n = 200. Figure 3(c) plots the median

estimate ofm(xc, xd) versus xc1 when (x
c
2, x

d
1, x

d
2) = (0, 1, 1), whereas Figure 3(d) plots the estimate of

m(xc, xd) versus xc2 when (x
c
1, x

d
1, x

d
2) = (0, 1, 1). For both subgraphs, we also plot the true regression

curve and the upper and lower 5% quantiles of the estimates em(xc, xd) in the replications. We see
that in each case, our estimates em(xc, xd) move closely with the true regression curve.
7 Concluding remarks

In this paper we propose semi-parametric GMM estimation of SAR models where the error term

may exhibit heteroskedasticity or spatial dependence. When the error term follows a SAR process,

we also demonstrate that the parameter in the error term can be estimated consistently and one

can establish the joint asymptotic distribution for both spatial parameters in the model. Consistent

estimation of the asymptotic variance-covariance matrices are also provided. A small set of Monte

Carlo simulations are conducted to show the proposed estimators are well behaved in finite samples.

Several extensions are possible. First we conjecture that we can extend our analysis to the

case of semi-parametric SARAR or SARMA models, where some of the exogenous regressors are

parametrically specified in the regression model. Second, after the estimation of the semi-parametric

SARAR model, we may consider updating the SPGMM estimators proposed in Section 3, say, by

considering the Cochrane-Orcutt-type transformed model

(In − eγnW2n)Yn = (In − eγnW2n)m (Xn) + ρ0n (In − eγnW2n)W1nYn + εn.

Nevertheless, due to the presence of the nonparametric component m, it is not obvious how one

should proceed along this direction (see Xiao, Linton, Carroll, and Mammen (2003) in the time series

setup). Third, one can extend the analysis in Section 4.3 by considering the joint GMM estimation

of ρ0n and γ0n based on both linear and quadratic moment conditions for εn = (εn,1, · · · , εn,n)0 as in
Liu, Lee, and Bollinger (2008). In the special case where the exogenous regressors enter the SARAR

model linearly and εn,i, i = 1, · · · , n, are i.i.d., they consider the optimal GMM estimation of the
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Figure 1: Estimation of m(xc, xd) in DGP 1 with (ρ0n, γ
0
n) = (0.3, 0.3)
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Figure 3: Estimation of m(xc, xd) in DGP 3 with (ρ0n, γ
0
n) = (0.3, 0.3). Note: (a) True curve with
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onto the xc2 plane.
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finite dimensional parameters within the class of linear and quadratic moment conditions. Yet it is

not clear whether one can extend their approach to our framework and find the best GMM estimator

for the finite dimension parameters ρ0n and γ0n within the class of linear and quadratic moment

conditions. We leave these topics for future research.

Appendix

Let C signify a generic constant whose exact value may vary from case to case. Frequently we

will use two evident facts (see, e.g., Kelejian and Prucha, 1999; Lee, 2002):

Fact 1: If the row and column sums of the n× n matrices B1n and B2n are uniformly bounded

in absolute value, then the row and column sums of B1nB2n are also uniformly bounded in absolute

value.

Fact 2: If the row (resp. column) sums of B1n are uniformly bounded in absolute value and B2n

is a conformable matrix whose elements are uniformly O (on) , then so are the elements of B1nB2n
(resp. B2nB1n).

For example, the row and column sums of G1n = W1n

¡
In − ρ0nW1n

¢−1
are uniformly bounded

by Assumption 1 and Fact 1. Noting that the elements shλ,ij of Shλ are uniformly O(n−1Π
pc
s=1
eh−1s ),

so are elements of G1nShλ or ShλG1n by Assumption 1 and Facts 1-2.

A Some useful results

Here we provide a theorem and a lemma that are used in the proof of the main theorems in the text.

We first consider the linear quadratic forms

Qsn = ε0nAsnεn + a
0
snεn, s = 1, · · · , r

where εn = (εn,1, · · · , εn,n)0 is as defined in Assumption 2, Asn = (asn,ij)i,j=1,··· ,n is an n × n

nonstochastic matrix, and asn = (asn,1, · · · ,asn,n)0 is an n× 1 nonstochastic real vector. Let

Qn = [Q1n, · · · ,Qrn]
0.

Let μQsn
= EQsn and σQstn =cov(Qsn,Qtn) for s, t = 1, · · · , r. Kelejian and Prucha (2010, Lemma

A.1) show

μQsn
=

nX
i=1

asn,iiσ
2
n,i, (A.1)

σQstn = 2
nX
i=1

nX
j=1

asn,ijatn,ijσ
2
n,iσ

2
n,j +

nX
i=1

asn,iatn,iσ
2
n,i

+
nX
i=1

asn,iiatn,ii

h
μ
(4)
n,i − 3σ4n,i

i
+

nX
i=1

(asn,iatn,ii + atn,iasn,ii)μ
(3)
n,i, (A.2)
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where μ
(k)
n,i = E[εkn,i] for k = 3, 4. Clearly, if asn,ii = 0 for all s = 1, · · · , r and i = 1, · · · , n,

μQsn
= 0 and the last two terms in the expression of σQstn drop out. Let μQn

= [μQ1n
, · · · , μQrn

]0,
ΣQn = (σQstn)s,t=1,··· ,r , and ΣQn = Σ

1/2
Qn
(Σ

1/2
Qn
)0. The following theorem is proved in Kelejian and

Prucha (2010).

Theorem A.1 (A CLT for Linear Quadratic Forms) Suppose that for s = 1, 2, · · · , r, Asn is

symmetric and the row (column) sums ofAsn are uniformly bounded. Suppose that supnn−1
Pn

i=1 |asn,i|2+η1
<∞ for some η1 > 0. Suppose that n

−1λmin (ΣQn
) ≥ c for some c > 0. Then

Σ
−1/2
Qn

¡
Qn − μQn

¢ d→ N (0, Ir) ,

where elements of μQn
and ΣQn

are given by (A.1) and (A.2), respectively.

Recall that Shλ = (shλ (xn,1) , ..., shλ (xn,n))
0. Denote the (i, j)th element of Shλ as shλ,ij . To

study the properties of shλ,ij , we need to distinguish whether xcn,j ≡ (xcn,j1, · · ·xcn,jpc)0 is a boundary
point in the compact support X c of f

¡
xc, xd

¢
. Without loss of generality, we assume X c = Πpcs=1Ss,

where Ss ≡ [xs, xs]. A point xcn,j is said to be a boundary point in X c if there exists s ∈ {1, 2, · · · , pc}
such that xcn,js = xs+bshs or x

c
n,js = xs−cshs for some finite positive numbers bs and cs. Otherwise,

we say that xcn,j is not a boundary point. In the following, when xcn,j is a boundary point, we

assume that it is a pure “lower” boundary point such that we can write xcn,j = x + b ¯ hs, where

x = (x1, · · ·xpc)0 and b = (b1, · · · bpc)0. Other cases of boundary points can be analogously analyzed.
Define

Ab (x) =

Ã
κb,0ϕ (x) ϕ (x)κ0b,1

ϕ (x)⊗ κb,1 ϕ (x)⊗ κb,2

!
where κb,0 =

R∞
−bΠ

pc
s=1q (us) du, κb,1 =

R∞
−b uΠ

pc
s=1q (us) du, and κb,2 =

R∞
−b uu

0Πpcs=1q (us) du. Note
that when b =∞, Πb = Π∞ = Π, where Π is defined in Section 3.3.

Lemma A.2 (a)
Pn

j=1 shλ,ij = 1 and
Pn

j=1 shλ,ij
¡
xcn,j − xcn,i

¢
= 0pc×1 for each i;

(b) An,hλ (xn,j) = f (xn,j)A (xn,j) + o (1) for each j;

(c) the row and column sums of Shλ = (shλ,ij) are uniformly bounded in absolute value for

sufficiently large n,

where A = A if xn,j is not a boundary point, and A = Ab if xcn,j = x + b ¯ h. For other cases of

boundary points, A can be similarly defined.

The proof of the above lemma and other lemmata in this paper can be found at http://www.

mysmu.edu/faculty/ljsu/Publications/Spatial_NPGMM_supplement.pdf.
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B Proof of results in Section 3

Proof of Theorem 3.1 . Noting that Yn = ρ0nW1nYn +m (Xn) + Un, we have

√
n
¡eρn − ρ0n

¢
=

(n−1 eY 0
nZn)Ωn[n

−1/2Z0n (In − Shλ)Un]
(n−1 eY 0

nZn)Ωn(n
−1Z 0n

eY n)

+
(n−1 eY 0

nZn)Ωn[n
−1/2Z0n (In − Shλ)m (Xn)]

(n−1 eY 0
nZn)Ωn(n

−1Z0n
eY n)

.

Noting that n−1Z0n
eY n = B + op (1) and Ωn = Ω + op (1) by Assumption 5, it suffices to prove the

theorem by showing that

Tn1 ≡ n−1/2Z0n (In − Shλ)m (Xn) = o (1) (B.1)

and

Tn2 ≡ n−1/2Z0n (In − Shλ)Un d→ N (0,Θ) , (B.2)

because then
√
n
¡eρn − ρ0n

¢
=

B0Ω[n−1/2Z0
n(In−Shλ)Un]

B0ΩB + op (1)
d→ N

³
0, (B0ΩB)−2B0ΩΘΩB

´
.

We first show (B.1). Recall
.
m (x) = ∂m (x) /∂xc. Let

..
m (x) = ∂2m (x) /∂xc∂xc0. Then m (xn,i)−

m (xn,j) =
.
m (xn,j)

0 ¡¡
xcn,i − xcn,j

¢¢
+1
2

¡
xcn,i − xcn,j

¢0 ..
m (xn,j)

¡
xcn,i − xcn,j

¢
+o(khk2) if °°xcn,i − xcn,j

°° ≤
C khk and xdn,i = xdn,j . By Lemma A.2(a),

Tn1 = n−1/2
nX
i=1

zn,i

⎡⎣m (xn,i)− nX
j=1

shλ,ijm (xn,j)

⎤⎦
= n−1/2

nX
i=1

zn,i

nX
j=1

shλ,ij [m (xn,i)−m (xn,j)]

= Tn11 + Tn12 + o(n1/2 khk2),

where

Tn11 =
n−1/2

2

nX
i=1

zn,i

nX
j=1

shλ,ij
1

2

¡
xcn,i − xcn,j

¢0 ..
m (xn,j)

¡
xcn,i − xcn,j

¢
1
¡
xdn,i = xdn,j

¢
and

Tn12 = n−1/2
nX
i=1

zn,i

nX
j=1

shλ,ij [m (xn,i)−m (xn,j)]1
¡
xdn,i 6= xdn,j

¢
.

As in the proof of Lemma A.2(c), let e01
¡
A (x)0A (x)

¢−1
A (x)0 = (a1 (x)

0 , a2 (x)
0). By Assumptions
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3-4 and Lemma A.2(b),

Tn11 =
n−1/2

2

nX
i=1

zn,if
−1 (xn,i)n−1

nX
j=1

h
a1 (xn,i)

0
z
(1)
n,j + a2 (xn,i)

0 ³
z
(1)
n,j ⊗ ((xcn,j − xcn,i)/h)

´i
Khλ,ij

× ¡xcn,i − xcn,j
¢0 ..
m (xn,j)

¡
xcn,i − xcn,j

¢
1
¡
xdn,i = xdn,j

¢ {1 + o (1)}

=
n−1/2

2

nX
i=1

zn,if
−1 (xn,i)

Z £
a1 (xn,i)

0 ϕn (xn,i) + a1 (xn,i)
0 (ϕn (xn,i)⊗ u)

¤
Πpct=1q (ut)

× (h¯ u)0
..
m
¡
xcn,i + h¯ u, xdi

¢
(h¯ u) f

¡
xcn,i + h¯ u, xdn,i

¢
du {1 + o (1)}

= O(n1/2 khk2) = o (1) .

Similarly, one can show that Tn12 = O
¡
n1/2 kλk¢ = o (1) . Hence Tn1 = o (1) .

We now show (B.2). Let c be an arbitrary q × 1 vector with kck = 1. By the Cramér-Wold

device, it suffices to show that c0Tn2
d→ N (0, c0Θc) . Clearly, E [c0Tn2] = 0. Let s2n ≡ E[c0Tn2]2 andeTn2 = c0Tn2/sn. Then by construction, E( eTn2) = 0 and E(eTn2)2 = 1. Write

eTn2 = n−1/2
nX
l=1

nX
j=1

"
c0zn,j −

nX
i=1

c0zn,ishλ,ij

#
an,jlεn,l/sn =

nX
l=1

eεn,l,
where eεn,l ≡ εn,ln

−1/2Pn
j=1 [c

0zn,j −
Pn

i=1 c
0zn,ishλ,ij ] an,jl/sn. By the triangle inequality, Assump-

tion 5, and Lemma A.2(c), we have that for sufficiently large n,¯̄̄̄
¯
nX
i=1

c0zn,ishλ,ij

¯̄̄̄
¯ ≤

nX
i=1

|c0zn,ishλ,ij | ≤ cz

nX
i=1

|shλ,ij | = czC, (B.3)

where cz = sup1≤i≤n,n≥1 kzn,ik . That is, for each j = 1, ..., n, |Pn
i=1 c

0zn,ishλ,ij | is bounded by a
constant for sufficiently large n. Hence by Assumption 3 and the Cr inequality (e.g., Pagan and Ullah

(1999, p. 350)), for some small δ > 0

nX
l=1

E |eεn,l|2+δ
=

n−(2+δ)/2

s2+δn

nX
l=1

¯̄̄̄
¯̄ nX
j=1

"
c0zn,j −

nX
i=1

c0zn,ishλ,ij

#
an,jl

¯̄̄̄
¯̄
2+δ

E |εn,l|2+δ

≤ 22+δn−(2+δ)/2

s2+δn

nX
l=1

¯̄̄̄
¯̄ nX
j=1

c0zn,jan,jl

¯̄̄̄
¯̄
2+δ

+
22+δn−(2+δ)/2

s2+δn

nX
l=1

¯̄̄̄
¯̄ nX
j=1

nX
i=1

c0zn,ishλ,ijan,jl

¯̄̄̄
¯̄
2+δ

≡ Sn1 + Sn2, say.

By Assumptions 2 and 5, Sn1 ≤ Cn−(2+δ)/2

s2+δn

Pn
l=1

¯̄̄Pn
j=1 |an,jl|

¯̄̄2+δ
= O(n−δ/2) = o (1) . Similarly, by

(B.3) and Assumptions 2 and 5, for sufficiently large n, Sn2 ≤ Cn−(2+δ)/2

s2+δn

Pn
l=1

¯̄̄Pn
j=1 |an,jl|

¯̄̄2+δ
=

O(n−δ/2) = o (1) . Hence
Pn

l=1E |eεn,l|2+δ = o (1) . It follows from Theorems 23.6 and 23.11 of David-

son (1994) that eTn2 d→ N (0, 1) . The result then follows from the fact that s2n = n−1c0Z 0n (In − Shλ)An

ΣnA
0
n (In − Shλ)0 Znc → c0Θc by Assumption 5(iii).
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Proof of Theorem 3.2. By definition, fMhλ (x) = eshλ (x)0 (Yn − eρnW1nYn) = eshλ (x)0 (m (Xn)

+Un+
¡
ρ0n − eρn¢W1nYn), where eshλ (x)0 ≡ n−1

¡
An,hλ (x)

0An,hλ (x)
¢−1

An,hλ (x)
0 Zn,h (x)

0diag(khλ (x)) .

It follows that
q
nΠpcs=1

ehs ³fMhλ (x)−Mh (x)
´
= Nn1 +Nn2 +Nn3, where

Nn1 =

q
nΠpcs=1

ehs ¡eshλ (x)0m (Xn)−Mh (x)
¢
, Nn2 =

q
nΠpcs=1

ehseshλ (x)0 Un, and
Nn3 =

¡
ρ0n − eρn¢qnΠpcs=1

ehseshλ (x)0W1nYn.

By Theorem 3.1, eρn − ρ0n = Op(n
−1/2). With this, it is easy to show Nn3 = Op(

q
Πpcs=1

ehs) =
op (1) . We now show that Nn1 and Nn2 contribute to the asymptotic bias and variance of fMhλ (x),

respectively.

By the second order Taylor expression,

m (xn,i) = (1, ((x
c
n,i − xc)/eh)0)Mh (x) +

1

2

¡
xcn,i − xc

¢0 ..
m (x)

¡
xcn,i − xc

¢
+ o(||eh||2) (B.4)

for
°°xcn,i − xc

°° ≤ C||eh|| and xdn,i = xd. Denote eshλ (xn,i, x) as a typical column of eshλ (x)0 , i.e.,eshλ (x)0 = (eshλ (xn,1, x) , · · · , eshλ (xn,n, x)). Noting that
Ipc+1 =

³
An,hλ (x)

0An,hλ (x)
´−1

An,hλ (x)
0An,hλ (x) =

nX
j=1

eshλ (xn,j , x)³1, ((xcn,j − x)/eh)0´ ,
we have Nn1 = Nn11 +Nn12 + op (1) , where

Nn11 =
1

2

q
nΠpcs=1

ehs nX
i=1

eshλ (xn,i, x) ¡xcn,i − xc
¢0 ..
m (x)

¡
xcn,i − xc

¢
1
¡
xdn,i = xd

¢
, and

Nn12 =

q
nΠpcs=1

ehs nX
i=1

eshλ (xn,i, x) [m (xn,i)−m (x)]1
¡
xdn,i 6= xd

¢
.

Recall A∗ (x) =
¡
A (x)0A (x)

¢−1
A (x)0 . Let νn =

q
nΠpcs=1

ehs and qhi,x = Πpct=1qhit,x, where qhit,x ≡eh−1t q((xcn,it − xct)/
eht) for t = 1, 2, · · · , pc, xcn,it is the tth element of xcn,i, and xct is similarly defined.

Then by Lemma A.2(c),

Nn11 =
{1 + o (1)} νn

2
f−1 (x)A∗ (x)n−1

nX
i=1

Ã
z
(1)
n,i

z
(1)
n,i ⊗ (

¡
xcn,i − xc

¢
/eh)

!
qhi,x

¡
xcn,i − xc

¢0 ..
m (x)

× ¡xcn,i − xc
¢
1
¡
xdn,i = xd

¢
=

{1 + o (1)} νn
2

f−1 (x)A∗ (x)
Z pcY

t=1

⎛⎝ ϕ
³
xc + eh¯ u, xd

´
ϕ
³
xc + eh¯ u, xd

´
⊗ u

⎞⎠ q (ut) f(x
c + eh¯ u, xd)

×(eh¯ u)
..
m (x) (eh¯ u)du

=
νn
2
A∗ (x)

Ã
κ21ϕ (x)

Ppc
s=1

eh2smss (x)

0q1pc×1

!
+ o(νn||eh||2).
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Similarly,

Nn12 = {1 + o (1)} νnf−1 (x)A∗ (x)n−1
nX
i=1

Ã
z
(1)
n,i

z
(1)
n,i ⊗ (

¡
xcn,i − xc

¢
/eh)

!
Khλ,i (x)

× [m (xn,i)−m (x)]1
¡
xdn,i 6= xd

¢
= {1 + o (1)} νnf−1 (x)A∗ (x)n−1

nX
i=1

Ã
z
(1)
n,i

z
(1)
n,i ⊗ (

¡
xcn,i − xc

¢
/eh)

!
qhi,x [m (xn,i)−m (x)]

×
(

pdX
s=1

eλs1s(xdn,i, xd)
)
+O(||eλ||2)

= νnf
−1 (x)A∗ (x)

⎛⎜⎝ P
vd∈Xd

£
m
¡
xc, vd

¢−m
¡
xc, xd

¢¤ pdX
s=1

eλs1s(vd, xd)f ¡xc, vd¢ϕ ¡xc, vd¢
0q1pc×1

⎞⎟⎠
+o(νn||eλ||).

where 1s(xdn,i, x
d) is defined in (3.3). So by Assumption 4,

Nn12 =

⎛⎝ q
nΠpcs=1

ehsbλ (x)
0q1pc×1

⎞⎠+ o (1) ,

where bλ (x) is defined in (3.4). Hence

Nn1 =

q
nΠpcs=1

ehsA∗ (x)Ã 1
2κ21ϕ (x)

Ppc
s=1

eh2smss (x) + bλ (x)

0q1pc×1

!
+ o (1) .

Note that Nn2 = (f−1 (x)A∗ (x) + o (1))n−1/2
q
Πpcs=1

ehsZn,h (x)0diag¡khλ (x)¢Un + op (1) . Let

c ≡ (c01, c02)0 with kck = 1, where c1 and c2 are q1 × 1 and q1pc × 1 vectors, respectively. Let

Tn ≡ n−1/2
q
Πpcs=1

ehsc0Z0n,h (x) diag ¡khλ (x)¢Un = n−1/2
q
Πpcs=1

ehs nX
j=1

nX
i=1

ζniKhλ,i (x) an,ijεn,j ,

where ζni ≡ c01z
(1)
n,i+c

0
2(z

(1)
n,i ⊗ ((xcn,i − xc)/eh)). Then E [Tn] = 0, and

S2n ≡ E [Tn]
2

= n−1Πpcs=1ehs nX
j=1

nX
i=1

nX
l=1

ζniζnlKhλ,i (x)Khλ,l (x) an,ijan,ljσ
2
n,j → c0Γc.

Let eTn = Tn/Sn. We can write eTn =Pn
j=1 εn,j , where

εn,j = n−1/2
q
Πpcs=1

ehs nX
i=1

ζniKhλ,i (x) an,ijεn,j/Sn.
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Let ean,ij = |an,ij | /
Pn

l=1 |an,lj | . Then ean,ij ≥ 0 for each i and
Pn

i=1 ean,ij = 1. By Assumptions 2

and 4 and the Jensen’s inequality, we have that for some small δ > 0,

nX
j=1

E |εn,j |2+δ =
n−(2+δ)/2

³
Πpcs=1

ehs´(2+δ)/2
S2+δn

nX
j=1

E

¯̄̄̄
¯εn,j

nX
i=1

ζniKhλ,i (x) an,ij

¯̄̄̄
¯
2+δ

≤
n−(2+δ)/2

³
Πpcs=1

ehs´(2+δ)/2
S2+δn

nX
j=1

E |εn,j |2+δ
¯̄̄̄
¯
nX
l=1

|an,lj |
nX
i=1

|ζni|Khλ,i (x)ean,ij
¯̄̄̄
¯
2+δ

≤
μ2+δn

−(2+δ)/2
³
Πpcs=1

ehs´(2+δ)/2
S2+δn

nX
j=1

¯̄̄̄
¯
nX
l=1

|an,lj |
¯̄̄̄
¯
2+δ nX

i=1

ean,ij |ζni|2+δK2+δ

hλ,i
(x)

=
μ2+δn

−(2+δ)/2
³
Πpcs=1

ehs´(2+δ)/2
S2+δn

nX
j=1

¯̄̄̄
¯
nX
l=1

|an,lj |
¯̄̄̄
¯
1+δ nX

i=1

|an,ij | |ζni|2+δK2+δ

hλ,i
(x)

≤
c1+δa μ2+δn

−(2+δ)/2
³
Πpcs=1

ehs´(2+δ)/2
S2+δn

nX
i=1

|ζni|2+δK2+δ

hλ,i
(x)

nX
j=1

|an,ij |

≤
c2+δa μ2+δn

−(2+δ)/2
³
Πpcs=1

ehs´(2+δ)/2
S2+δn

nX
i=1

|ζni|2+δK2+δ

hλ,i
(x)

= O
³
(nΠpcs=1

ehs)−δ/2´ = o (1) ,

where sup1≤i≤n,n≥1E |εn,i|2+δ ≤ μ2+δ < ∞. It follows from Theorems 23.6 and 23.11 of Davidson

(1994) that eTn d→ N (0, 1) . The result then follows from the fact that S2n → c0Γ (x) c. Consequently,
Nn2

d→ N(0, f−2 (x)A∗ (x)Γ (x)A∗ (x)0). This completes the proof.

C Proof of results in Section 4

We first state a lemma that is used to prove the main results in Section 4.

Lemma C.1 Let An be a real nonstochastic n×n matrix whose row and column sums are uniformly

bounded in absolute value: sup1≤j≤n,n≥1
Pn

i=1 |αn,ij | ≤ cα and sup1≤i≤n,n≥1
Pn

j=1 |αn,ij | ≤ cα for

some cα <∞. Let ϑn = n−1U 0nAnUn and eϑn = n−1 eU 0nAn
eUn. Then

(a) E[ϑn] = O (1) , Var(ϑn) = O(n−1) = o (1) , and ϑn −E[ϑn] = Op

¡
n−1/2

¢
;

(b) n−1/2 eU 0nAn
eUn = n−1/2U 0nAnUn − n−1/2δρnE[U 0nG12nεn] + op (1) , where δρn ≡ eρn − ρ0n, G1n ≡

G01n (An +A0n) and G12n ≡ G1n
¡
In − γ0nW2n

¢−1
.

Proof of Theorem 4.1. The proof of the consistency of eγn follows from the same argument as

that of Theorem 1 in Kelejian and Prucha (2010). One can readily check the conditions of Lemma

3.1 in Pötscher and Prucha (1997) are fulfilled for our problem. We now establish the asymptotic
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normality of eγn. Note that
qn (γn) =

eψn − eΨn
"
γn
γ2n

#
=

"
n−1 eU 0nC1n (γn) eUn
n−1 eU 0nC2n (γn) eUn

#
,

where Ckn (γn) ≡ (In − γnW
0
2n)Akn(In − γnW2n), k = 1, 2. By Assumptions 2 and 6 and Fact 1,

the rows and column sums of Ckn (γn) are uniformly bounded in absolute value. Minimizing Qn in

(4.6) with respect to γn yields the first order conditionµ
∂qn (eγn)
∂γn

¶0
Υnqn (eγn) = 0.

Expanding only qn (eγn) about γ0n in the above expression and reorganizing terms yieldsµ
∂qn (eγn)
∂γn

¶0
Υn

∂qn (γn)

∂γn

√
n
¡eγn − γ0n

¢
= −

µ
∂qn (eγn)
∂γn

¶0
Υn
√
nqn

¡
γ0n
¢
, (C.1)

where γn lies between eγn and γ0n and γn − γ0n = op (1) by the consistency of eγn. Noting that
∂qn(γn)
∂γn

= −eΨn [1, 2γn]0 , we haveµ
∂qn (eγn)
∂γn

¶0
Υn

∂qn (γn)

∂γn
=

"
1

2eγn
#0 eΨ0nΥneΨn

"
1

2γn

#
≡ eΞn.

Let Ξn =

"
1

2γ0n

#0
Ψ0nΥnΨn

"
1

2γ0n

#
. The proof is complete if we can show

eΨn = Ψn + op (1) , Ψn = O (1) , (C.2)

eΞ−1n − Ξ−1n = op (1) with with probability approaching 1 as n→∞, (C.3)

and √
nqn

¡
γ0n
¢
= Φ1/2n,γγξn + op (1) with ξn

d→ N (0, I2) , (C.4)

because then with probability approaching to 1 as n→∞ (w.p.a.1),

√
n
¡eγn − γ0n

¢
= eΞ−1n

"
1

2eγn
#0 eΨ0nΥn hΦ1/2n,γγξn + op (1)

i
= Ξ−1n

"
1

2γ0n

#0
Ψ0nΥnΦ

1/2
n,γγξn + op (1)

= (J 0nΥnJn)
−1

J 0nΥnΦ
1/2
n,γγξn + op (1)

d→ N (0,Ωγ) . (C.5)

First, noting that the elements of eΨn and Ψn are of the forms n−1 eU 0nAn
eUn and n−1E[U 0nAnUn]

respectively, we apply Lemma C.1 to obtain (C.2). It then follows from the consistency of eγn and
γn and the Slutsky lemma that eΞn = Ξn + op (1) . By the assumptions on Υn and Ψn, Ξn ≥¡
1 + 4(γ0n)

2
¢
λmin (Ψ

0
nΨn)λmin (Υn) ≥ c > 0 for some c, which implies that 0 < Ξ−1n <∞. It follows

that w.p.a.1, eΞn is invertible. When this occurs, (C.3) holds.
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Next, note that qn
¡
γ0n
¢
= n−1[eU 0nC01n eUn, eU 0nC02n eUn]0 , where C0kn ≡ Ckn

¡
γ0n
¢
for k = 1, 2. By

Lemma C.1 and the fact that Un =
¡
In − γ0nW2n

¢−1
εn,

n−1/2 eU 0nC0kn eUn = n−1/2U 0nC
0
knUn − n−1/2δρnE[ε0nCknεn] + op (1)

= n−1/2ε0nAknεn − n−1/2δρnE[ε0nCknεn] + op (1) ,

where for k = 1, 2, Ckn is as defined in (4.9):

Ckn = 2
¡
In − γ0nW

0
2n

¢−1
G01nC

0
kn

¡
In − γ0nW2n

¢−1
= 2

¡
In − γ0nW

0
2n

¢−1
G01n

¡
In − γ0nW

0
2n

¢
Akn. (C.6)

By the proof of Theorem 3.1 withAn =
¡
In − γ0nW2n

¢−1
, we have δρn = eρn−ρ0n = n−1(B0ΩB)−1B0ΩZ0n

(In − Shγ)
¡
In − γ0nW2n

¢−1
εn + op

¡
n−1/2

¢
. It follows that

√
nqn

¡
γ0n
¢
= n−1/2

"
ε0nA1nεn + a01nεn
ε0nA2nεn + a02nεn

#
+ op (1) (C.7)

where a0kn, k = 1, 2, are defined in (4.8). Noticing that the diagonal elements of the matrices Akn

(k = 1, 2) are zero, we can apply Theorem A.1 to deduce that the asymptotic variance-covariance

matrix of the vector of linear quadratic forms in (C.7) is given by Φn,γγ = [φnγγ,kl]k,l=1,2, where

φnγγ,kl, k, l = 1, 2, are defined in (4.10).

Noting that the row and column sums of the matrices Akn are uniformly bounded in absolute

value and the elements of akn are uniformly bounded by a finite constant, we can readily see that

Akn ≡ Akn and akn ≡ akn (k = 1, 2) satisfy the first two conditions of Theorem A.1. By assumption,

λmin (Φn,γγ) ≥ cΦγγ > 0, verifying the third condition of Theorem A.1. Thus, by Theorem A.1, we

have

ξn ≡ Φ−1/2n,γγ n
−1/2

"
ε0nA1nεn + a01nεn
ε0nA2nεn + a02nεn

#
d→ N (0, I2) . (C.8)

By the properties of Akn and akn, it is straightforward to verify that the elements of Φn,γγ are

uniformly bounded. It follows from (C.7) and (C.8) that
√
nqn

¡
γ0n
¢
= Φ

1/2
n,γγξn + op (1) .

Proof of Theorem 4.2. We verify the conditions of Theorem A.1 are met. We have verified

in the proof of Theorem 4.1 that the elements of Akn and akn (k = 1, 2) appearing in vn satisfy the

first two conditions in Theorem A.1. Write

P 0n = n−1/2Z0n (In − Shλ)
¡
In − γ0nW2n

¢−1
= n−1/2[pn,1. , . . . pn,q. ]0.

That is p0n,k. denote the kth row of P
0
n. Note that the elements of pn,k. are uniformly bounded by

Assumption 5, Lemma A.2 and Facts 1-2, they satisfy the condition of Theorem A.1 on akn ≡ pn,k. .

By assumption, λmin (Φn) ≥ cΦ > 0. Thus, by Theorem A.1, we have ξan ≡ Φ−1/2n

"
P 0nεn
vn

#
d→

N (0, Iq+2) .

Proof of Theorem 4.3. Let eY ∗n ≡ Yn − em (Xn) , Y
∗
n ≡ Yn − m (Xn) , and q∗n (δn) ≡

(q∗1n (δn) , q
∗
2n (δn))

0, where q∗kn (δn) = n−1E[(Y ∗n − ρnW1nYn)
0
(In − γnW2n)

0
Akn (In − γnW2n) (Y

∗
n
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−ρnW1nYn)] for k = 1, 2. Let Q
∗
n (δn) ≡ q∗n (δn)

0Υ∗nq
∗
n (δn) . By Applying Lemma 3.1 in Pötscher

and Prucha (1997) with Q∗n and Q
∗
n replacing their Rn and Rn, we can prove the consistency of bδn.

To establish the asymptotic normality of bδn, we notice that minimizing Q∗n in (4.12) with respect to
δn yields the first order condition

µ
∂q∗n(δn)
∂δ0n

¶0
Υ∗nq∗n

³bδn´ = 0. By the Taylor expansion for q∗n ³bδn´
we have ⎛⎝∂q∗n

³bδn´
∂δ0n

⎞⎠0

Υn
∂q∗n

¡
δn
¢

∂δ0n

√
n
³bδn − δ0n

´
= −

⎛⎝∂q∗n
³bδn´

∂δ0n

⎞⎠0

Υn
√
nq∗n

¡
δ0n
¢
,

where δn lies between eδn and δ0n and δn − δ0n = op (1) by the consistency of bδn. First, noting thateY ∗n = eUn + ¡eρn − ρ0n
¢
W1nYn, we have

√
nq∗kn

¡
δ0n
¢
= n−1/2 eU 0n ¡In − γ0nW2n

¢0
Akn

¡
In − γ0nW2n

¢ eUn
+2n−1/2

¡eρn − ρ0n
¢
Y 0
nW

0
1n

¡
In − γ0nW2n

¢0
Akn

¡
In − γ0nW2n

¢ eUn
+n−1/2

¡eρn − ρ0n
¢2
Y 0
nW

0
1n

¡
In − γ0nW2n

¢0
Akn

¡
In − γ0nW2n

¢
W1nYn

≡ τkn,1 + 2τkn,2 + τkn,3, say.

By Lemma C.1, τkn,1 = n−1/2U 0n
¡
In − γ0nW2n

¢0
Akn

¡
In − γ0nW2n

¢
Un − 2n−1/2δρnE{U 0nG01n (In−

γ0nW2n)
0Akn

¡
In − γ0nW2n

¢
Un}+op (1) . It is straightforward to show that τkn,2 = n−1/2δρnE{U 0nG01n¡

In − γ0nW2n

¢0
Akn

¡
In − γ0nW2n

¢
Un}+op (1) and τkn,3 = Op

¡
n−1/2

¢
. It follows that

√
nqkn

¡
δ0n
¢
=

n−1/2ε0nAknεn+ op (1) and
√
nq∗n

¡
δ0n
¢
= n−1/2

"
ε0nA1nεn
ε0nA2nεn

#
+ op (1)

d→ N (0, limn→∞Φ∗n) by Theo-

rem A.1.

Second, note that

∂q∗kn
³bδn´

∂ρn
= −2n−1Y 0

nW
0
1n (In − bγnW2n)

0Akn (In − bγnW2n)
³eY ∗n − bρnW1nYn

´
,

= −2n−1Y 0
nW

0
1n

¡
In − γ0nW2n

¢0
Akn

¡
In − γ0nW2n

¢ eUn + op (1)

= −2n−1E
h
U 0nG

0
1n

¡
In − γ0nW2n

¢0
Akn

¡
In − γ0nW2n

¢
Un

i
+ op (1) ,

and

∂q∗kn
³bδn´

∂γn
= −2n−1

³eY ∗n − bρnW1nYn

´0
W 0
2nAkn (In − bγnW2n)

³eY ∗n − bρnW1nYn

´
= −2n−1 eU 0nW 0

2nAkn (In − bγnW2n) eUn + op (1)

= −2n−1E £U 0nW 0
2nAkn

¡
In − γ0nW2n

¢
Un
¤
+ op (1) .

Similar result holds for ∂q∗kn
¡
δn
¢
/∂δ0n. It follows that

µ
∂qn(δn)
∂δ0n

¶0
Υ∗n

∂qn(δn)
∂δ0n

= J∗0n Υ∗nJ∗n + op (1) ,

where J∗n is defined in (4.13). By assumption, λmin (J∗0n Υ∗nJ∗n) ≥ λmin (Υ
∗
n)λmin (J

∗0
n J
∗
n) ≥ c for some
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c > 0 and for sufficiently large n. Consequently,

√
n
³bδn − δ0n

´
= −

⎡⎢⎣
⎛⎝∂q∗n

³bδn´
∂δ0n

⎞⎠0

Υ∗n
∂qn

¡
δn
¢

∂δ0n

⎤⎥⎦
−1⎛⎝∂q∗n

³bδn´
∂δ0n

⎞⎠0

Υn
√
nq∗n

¡
δ0n
¢

= − (J∗0n Υ∗nJ∗n)−1 J∗0n Υ∗n
√
nqn

¡
δ0n
¢
+ op (1)

d→ N (0,Ω∗δ) .

D Proof of results in Section 5

Proof of Theorem 5.1. By assumption, Bn−B = op (1) , and Ωn−Ω = op (1) . By the consistency

of eγn, (C.2), and the definitions of eJn and Jn, eJn−Jn = op (1) . Let eΞn = eJ 0nΥn eJn and Ξn = J 0nΥnJn.
By the proof of Theorem 4.2 (see (C.3)), w.p.a.1, eΞ−1n − Ξ−1n = op (1) . To show the consistency of

the asymptotic variance-covariance estimator, it remains to show that eΦn − Φn = op (1) .

Noting that Φn,ρρ and Φn,ργ involve only one Σn (e.g., Φn,ρρ = n−1P 0nΣnPn), they can regarded
as the special case of Φn,γγ . So we only prove eΦn,γγ−Φn,γγ = op (1) since the proof of eΦn,ρρ−Φn,ρρ =
op (1) and eΦn,ργ−Φn,ργ = op (1) will be similar and simpler. Note that we can write the (k, l) element

of Φn,γγ as

φnγγ,kl = (2n)
−1

nX
i=1

nX
j=1

αkln,ijσ
2
n,iσ

2
n,j + n−1αknF

0
nΣnFnαln ≡ φ⊥n,kl + φ⊥⊥n,kl (D.1)

where αkln,ij ≡ (akn,ij + akn,ji) (aln,ij + aln,ji) ,

αkn ≡ −E[ε0nCknεn] = −2E[U 0n
¡
In − ρ0nW

0
1n

¢−1
W 0
1n

¡
In − γ0nW

0
2n

¢
Aknεn],

F 0n ≡ (B0ΩB)−1B0ΩZ0n (In − Shγ)
¡
In − γ0nW2n

¢−1
.

Similarly, the (k, l) element of eΦn,γγ is
eφnγγ,kl = (2n)−1 nX

i=1

nX
j=1

αkln,ijeε2n,ieε2n,j + n−1eαkn
eF 0neΣn eFneαln ≡ eφ⊥n,kl + eφ⊥⊥n,kl (D.2)

where

eαkn ≡ −2eU 0n(In − eρnW 0
1n)
−1W 0

1n(In − eγnW 0
2n)Akneεn,eF 0n ≡ (B0

nΩnBn)
−1B0

nΩnZ
0
n (In − Shγ) (In − eγnW2n)

−1 .

By Lemma D.1 below, eφ⊥n,kl−φ⊥n,kl = op (1) . By Lemma D.2 below and the Slutsky lemma, eφ⊥⊥n,kl
−φ⊥⊥n,kl = eαkneαln(n

−1 eF 0neΣn eFn)−αknαln(n
−1F 0nΣnFn) = op (1) . Hence eΦn,γγ − Φn,γγ = op (1) .

Lemma D.1 Let σ2n = (σ2n,1, · · · , σ2n,n)0, ε2n = (ε2n,1, · · · , ε2n,n)0, and eε2n = (eε2n,1, · · · ,eε2n,n)0. Let
Λn = n−1

¡
σ2n
¢0
Anσ

2
n, Λn = n−1(ε2n)0Anε

2
n, and eΛn = n−1(eε2n)0Aneε2n, where An are n × n real

35



symmetric and nonstochastic matrices. Suppose that the diagonal elements of An are zero and that

the row and column sums are uniformly bounded in absolute value by ca. Then

(a) E[Λn] = Λn = O (1) , Var(Λn) = o (1) , and hence Λn − Λn = op (1) ;

(b) eΛn − Λn = op (1) .

Lemma D.2 Let cn and dn be n×1 vectors whose elements are uniformly bounded in absolute value
by c. Let eFn, Fn, eαkn, and αkn be as defined in the proof of Theorem 5.1. Recall Σn =diag(σ2n) andeΣn =diag(eε2n), where σ2n and eε2n are as defined in Lemma D.1. Then
(a) n−1c0nΣndn = O (1) , and n−1c0n(eΣn − Σn)dn = Op(n

−1/2) = op (1) ;

(b) n−1F 0nΣnFn = O (1) , and n−1 eF 0neΣn eF 0n − n−1F 0nΣnFn = op (1) ;

(c) eαkn −αkn = op (1) for k = 1, 2.

Proof of Theorem 5.2. The proof is analogous to and simpler than that of Theorem 5.1 and

thus omitted.

Proof of Theorem 5.3. Let Γn (x) ≡ n−1Πpcs=1ehsZ0n,h (x)diag(khλ (x))AnΣnA
0
ndiag(khλ (x))Zn,h (x) ,

where Σn =diag
¡
ε2n
¢
with ε2n = (ε2n,1, · · · , ε2n,n)0. By the triangle inequality, |eΓn (x) − Γn (x) | ≤

|∆n1 (x)|+ |∆n2 (x)| , where ∆n1 (x) ≡ Γn (x)− Γn (x) , and ∆n2 (x) ≡ eΓn (x)− Γn (x) .
First,∆n1 (x) = n−1Πpcs=1ehsPn

i1=1

Pn
i2=1

Pn
i3=1

τh,i1 (x)Khλ,i1
(x) an,i1i2(ε

2
n,i2
−σ2n,i2)an,i2i3Khλ,i3

(x)

×τh,i3 (x) , where τh,i (x) is defined in (2.12). Let τh,i,k (x) denote the kth element of τh,i (x) and
∆ns,kl the (k, l)th element in∆ns (x) (s = 1, 2). Clearly, E [∆n1,kl] = 0.Noting that τh,i,k (x)Khλ,i (x)

is uniformly bounded by C(Πpcs=1ehs)−1 for some constant C by Assumption 4, we have

Var (∆n1,kl)

= (n−1Πpcs=1ehs)2 nX
i1=1

nX
i2=1

nX
i3=1

nX
i4=1

nX
i5=1

τh,i1,k (x)Khλ,i1
(x) an,i1i2E(ε

2
n,i2 − σ2n,i2)

2

×an,i2i3Khλ,i3
(x) τh,i3,l (x) τh,i4,k (x)Khλ,i4

(x) an,i4i2an,i2i5Khλ,i5
(x) τh,i5,l (x)

≤ Cn−1(Πpcs=1ehs)−1 n−1 nX
i1=1

Khλ,i1
(x) |τh,i1,k (x) |

nX
i2=1

|an,i1i2 |
nX

i3=1

|an,i2i3 |
nX

i4=1

|an,i4i2 |
nX

i5=1

|an,i2i5 |

= O((nΠpcs=1
ehs)−1) = o(1).

It follows from the Chebyshev inequality that ∆n1,kl = op(1) for k, l = 1, · · · , pc + 1.
Next, write em (x)−m (x) = [shλ (x)0 (m (Xn) + Un)+shλ (x)

0
W1nYn(ρ

0
n−eρn)] −m (x) = dn1 (x)+

dn2 (x) + dn3 (x) , where dn1 (x) ≡ 1
2

Pn
i=1 shλ (xn,i, x)

¡
xcn,i − xc

¢0 ..
m (x)

¡
xcn,i − xc

¢
1
¡
xdn,i = xd

¢
+Pn

i=1 shλ (xn,i, x) [m (xn,i)−m (x)]1
¡
xdn,i 6= xd

¢
, dn2 (x) ≡ shλ (x)0 Un, and dn3 (x) ≡ −δρneshλ (x)0 Y n.

By assumption and the proof of Theorem 3.2, dn1 (x) = O(||eh||2 + ||eλ||) = o(n−1/4) uniformly in x.

Let dnj,i = dnj (xn,i) and Dnj = (dnj,1, dnj,2, · · · , dnj,n)0 for j = 1, 2, 3. Then

Dn2 = ShλUn, Dn3 = −δρnShλY n, and Dn =
3X

j=1

Dnj . (D.3)

By (D.3) and the definition of eεn, eεn = (In − eγnW2n)
¡
Un −Dn − δρnY n

¢
= −(In − eγnW2n)Dn1 +

(In− eγnW2n)(In−Shλ)Un− δρn(In− eγnW2n)(In−Shλ)Y n. Hence, eεn− εn = eεn− (In− γ0nW2n)Un
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= −(In − eγnW2n)Dn1 − (C3n + δγnC4n)εn − δρn(In − eγnW2n)(In − Shλ)Y n ≡ −η1n − η2n − η3n,

where δγn ≡ eγn − γ0n,

C3n ≡ (In − γ0nW2n)Shλ(In − γ0nW2n)
−1, and C4n ≡W2n(In − Shλ)(In − γ0nW2n)

−1. (D.4)

It follows that

∆n2,kl = n−1Πpcs=1ehs nX
i1=1

nX
i2=1

nX
i3=1

τh,i1k (x)Khλ,i1
(x) an,i1i2(eε2n,i2 − ε2n,i2)an,i2i3Khλ,i3

(x) τh,i3l (x)

= n−1Πpcs=1ehs nX
i1=1

nX
i2=1

nX
i3=1

τh,i1k (x)Khλ,i1
(x) an,i1i2an,i2i3Khλ,i3

(x) τh,i3l (x)

×{η21n,i2 + η22n,i2 + η23n,i2 − 2η1n,i2εn,i2 − 2η2n,i2εn,i2 − 2η3n,i2εn,i2

+2η1n,i2η2n,i2 + 2η1n,i2η3n,i2 + 2η2n,i2η3n,i2} ≡
9X

j=1

∆n2j , say,

where the definitions of ∆n2j are self-evident. ∆n2,kl = op (1) provided ∆n2j = op (1) for j =

1, · · · , 9. The proof of ∆n2j = op (1) is analogous to but simpler than that of ∆1nj = op (1) for

j = 1, · · · , 9 in the proof of Lemma D.1(b). So we only sketch the cases of ∆n21 and ∆n22. Not-

ing that supi
¯̄
η1n,i

¯̄
= op(n

−1/4), we have
¯̄
∆n21

¯̄ ≤ C supi η
2
1n,in

−1Pn
i1=1

|τh,i1,k (x) |Khλ,i1
(x)Pn

i2=1
|an,i1i2 |

Pn
i3=1

|an,i2i3 | = op(n
−1/2) = op (1) . Now, by the triangle and Cauchy-Schwarz in-

equalities,

E|∆n22|

≤ 2n−1Πpcs=1ehs nX
i1=1

nX
i2=1

nX
i3=1

|τh,i1k (x) |Khλ,i1
(x) |an,i1i2 ||an,i2i3 |Khλ,i3

(x) |τh,i3l (x) |
nX

i4=1

c23n,i2i4σ
2
n,i4

+2δ2γnn
−1Πpcs=1ehs nX

i1=1

nX
i2=1

nX
i3=1

|τh,i1k (x) |Khλ,i1
(x) |an,i1i2 ||an,i2i3 |Khλ,i3

(x) |τh,i3l (x) |

×
nX

i4=1

c24n,i2i4σ
2
n,i4 ≡ 2(∆n22,a + δ2γn∆n22,b),

where csn,ij (s = 3, 4) are the (i, j) elements of Csn defined in (D.4). Observe that ∆n22,a ≤
Cσ2 supi,j |c3n,i2i4 |n−1

Pn
i1=1

|τh,i1k (x) |Khλ,i1
(x)

Pn
i2=1

|an,i1i2 |
Pn

i3=1
|an,i2i3 |

Pn
i4=1

|c3n,i2i4 | =
O((nΠpcs=1

ehs)−1), and similarly ∆n22,b ≤ Cσ2 supi,j |c4n,i2i4 |n−1
Pn

i1=1
|τh,i1k (x) |Khλ,i1

(x)
Pn

i2=1

|an,i1i2 |
Pn

i3=1
|an,i2i3 |

Pn
i4=1

|c4n,i2i4 | = O(1). It follows from the Markov inequality that ∆n22 =

Op((nΠ
pc
s=1
ehs)−1)+Op(n

−1) = op (1) . Analogously, we can show that ∆n2j = op (1) for j = 3, · · · , 9.
Hence ∆n2 = op (1) and

||eΓn (x)− Γn (x) || ≤ ||∆n1 (x) ||+ ||∆n2 (x) || = op (1) + op (1) = op (1) . (D.5)

The consistency of efn (x) and eϕn (x) follows from Assumptions 3 and 4, which together with

(D.5), implies eΩn,M (x)− Ωn,M (x) = op (1) by the Slutsky lemma.
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