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Abstract

Asymmetric information is an important phenomenon in many markets and in particular in

insurance markets. Testing for asymmetric information has become a very important issue in

the literature in the last two decades. Almost all testing procedures that are used in empirical

studies are parametric, which may yield misleading conclusions in the case of misspecification

of either functional or distributional relationships among the variables of interest. Motivated

by the literature on testing conditional independence, we propose a new nonparametric test

for asymmetric information which is applicable in a variety of situations. We demonstrate

that the test works reasonably well through Monte Carlo simulations and apply it to an

automobile insurance data set and a long term care insurance data set. Our empirical results

consolidate Chiappori and Salanié’s (2000) findings that there is no evidence for the presence

of asymmetric information in the French automobile insurance market. While Finkelstein

and McGarry (2006) find no positive correlation between risk and coverage in the long term

care insurance market in the US, our test detects asymmetric information using only the

information that is available to the insurance company and our investigation of the source

of asymmetric information suggests some sort of asymmetric information that is related to

risk preferences as opposed to risk types and thus lends support to Finkelstein and McGarry

(2006).

Keywords: Asymmetric information, Automobile insurance, Long term care insurance,

Conditional independence, Distributional misspecification, Functional misspecification, Non-

linearity, Nonparametric test.

JEL classification codes: C12, C14, D82, D86, G22.

1 Introduction

Since Akerlof (1970) the notion of asymmetric information, comprising adverse selection and moral

hazard, has been explored at a rapid pace. At the same time people observed a wide gap between

the theoretical development and empirical studies in asymmetric information. This gap has
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recently become narrower. In particular, the insurance market has been a fruitful and productive

field for empirical studies. There are two reasons for this. First, insurance contracts are usually

highly standardized and can be described exhaustively by a relatively small set of variables, and

insurees’ performances, i.e., the occurrence of a claim and possibly its cost, are exactly filed in

the database of an insurance company. Second, insurance companies have hundreds of thousands

or even millions of clients and therefore the samples are sufficiently large for econometric studies.

Hence, fields like automobile insurance, annuities and life insurance, crops insurance, long-term

care and health insurance offer a large sample of standardized contracts for which performances

are recorded and therefore are well suited for testing the theoretical predictions of contract theory.

For a detailed justification for using insurance data to test contract theory, see Chiappori and

Salanié (1997). For a recent overview of the issue of testing for adverse selection in insurance

markets, see Cohen and Siegelman (2010). The latter paper covers a large number of empirical

studies in different insurance branches.

In statistical terms, the theoretical notion of asymmetric information implies a positive (condi-

tional) correlation between coverage and risk as both adverse selection and moral hazard predict

this positive correlation. In their seminal paper Chiappori and Salanié (2000) propose both

parametric and nonparametric methods to test this. Their nonparametric tests are restricted

to discrete data with only two categories per variable even though some of the variables in the

data set are continuous and others have far more than two categories. Therefore, in order to

conduct Chiappori and Salanié’s nonparametric test, all variables must be transformed to binary

variables, which often results in a loss of information. Following the lead of Chiappori and Salanié

(2000), most subsequent studies use a variation of their parametric testing procedure which has

become somewhat standard in the empirical contract theory literature. Nevertheless, these para-

metric tests are fragile to both functional and distributional form misspecifications. In actuarial

science the number of claims is modeled in many cases by a Poisson distribution or a negative

binomial distribution. The size of claims is modeled by a generalized gamma distribution, a

log normal distribution, or even more elaborate distributions. For an overview of modeling of

claims in actuarial science, see Kaas et al. (2008), Mikosch (2008) and De Jong and Heller (2008),

among others. They show that modeling claims by a probit model might be insufficient and

more sophisticated models and methods are used by actuaries. For example, in the automobile

insurance market it is common knowledge that the age of the driver has a nonlinear effect on

the probability of an accident, but such a nonlinear effect has rarely been taken into account in

the literature on testing for asymmetric information. For another example, the error term in the

binary model for modeling the choice of an insurance contract may not be either normally or

logistically distributed, and tests for asymmetric information based on the probit or logit model

can therefore yield misleading conclusions in the case of incorrect distributional specification. For

this reason, in this paper we propose a new purely nonparametric test for asymmetric information

based on the notion of conditional independence, which avoids the problem of either functional

or distributional misspecification.
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The absence of asymmetric information means that the choice of a contract  (discrete

variable) provides no information for predicting the “performance” variable  (discrete or con-

tinuous, e.g., the number of claims or the sum of reimbursements), conditional on the vector

 of all exogenous variables (discrete and continuous). Therefore we can transform the prob-

lem of testing the absence of asymmetric information into a test for conditional independence:

 (| ) =  (|) almost surely (a.s.) where, e.g.,  (| ) denotes the conditional cumu-

lative distribution function (CDF) of  given ( )  We propose a nonparametric test statistic

to test the conditional independence of  and  givenWe show that the test statistic is asymp-

totic normally distributed under the null hypothesis of conditional independence (or absence of

asymmetric information) and diverges to infinity in the presence of conditional dependence (or

asymmetric information). Simulations reveal that our test behaves well in finite samples in com-

parison with some existing tests. We then apply our test to a French automobile insurance data

set and a US long term insurance data set and compare our testing results with the results found

in the literature. Our empirical results consolidate Chiappori and Salanié’s (2000) findings that

there is no evidence for the presence of asymmetric information in the French automobile insur-

ance market. While Finkelstein and McGarry (2006) find no positive correlation between risk

and coverage in the long term care insurance market, our test reveals evidence of asymmetric

information using only the information that is available to the insurance company.

The rest of the paper is structured as follows. Section 2 outlines the theory of asymmetric

information. Section 3 reviews the standard statistical tools for testing asymmetric information.

We introduce a new nonparametric test for conditional independence in Section 4. We conduct

a small set of Monte Carlo simulations to examine the performance of the new test in Section 5.

In Section 6 we test for asymmetric information in the two applications mentioned above. Final

remarks are contained in Section 7. All technical details are relegated to the Appendix.

2 The Theory of Asymmetric Information

In their seminal paper Rothschild and Stiglitz (1976) introduce the notion of adverse selection

in insurance markets, which has since then been extended in many directions. For a detailed

survey on adverse selection and the related moral hazard problem, we refer to Dionne, Doherty

and Fombaron (2000) and Winter (2000), respectively. In the basic model, the insureds have

private information about the expected claim, exactly speaking about the probability that a

claim with fixed level occurs, while the insurers do not have this information. There are two

groups with different claim probabilities, the “bad” and “good” risks. The agents have identical

preferences which are moreover perfectly known to the insurer. Additionally, perfect competition

and exclusive contracts are assumed. Exclusive contracts mean that an insuree can buy coverage

only from one insurance company. This allows firms to implement nonlinear (especially convex)

pricing schemes which are typical under asymmetric information. Under this setting insurance

companies offer a menu of contracts in equilibrium: a full insurance which is chosen by the “bad”
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risks and a partial coverage which is bought by the “good” risks. In general, contracts with more

comprehensive coverage are sold at a higher (unitary) premium.

Therefore, one expects a positive correlation between “risk” and “coverage” (conditional on

observables). Since the assumptions in the Rothschild and Stiglitz model are very simplistic

and normally not fulfilled in real applications, an important question to address is how robust

this coverage-risk correlation is. Chiappori et al. (2006) show that the positive correlation prop-

erty extends to much more general models, as already conjectured by Chiappori and Salanié

(2000). Under competitive markets this property is also valid in a very general framework entail-

ing heterogeneous preferences, multiple levels of losses, multidimensional adverse selection plus

possible moral hazard, and even non-expected utility theory. In the case of imperfect competi-

tion some form of positive correlation holds if the agent’s risk aversion is public information. In

the case of private information the property does not necessarily hold (c.f. Jullien, Salanié, and

Salanié (2007)).

While adverse selection concerns “hidden information,”moral hazard deals with “hidden ac-

tion.”Moral hazard occurs when the expected loss (accident probability or level of damage) is

not exogenous, as assumed in the adverse selection case, but depends on some decision or action

made by the subscriber (e.g., effort or prevention) which is neither observable nor contractible.

A higher coverage leads to decreased efforts and therefore to a higher expected loss. Therefore

moral hazard also predicts a positive correlation between “coverage” and “risk”.

Although both phenomena lead to a positive risk-coverage correlation, there is one important

difference: under adverse selection the risk of the potential insuree affects the choice of the con-

tract, whereas under moral hazard the chosen contract influences the behavior and therefore the

expected loss. To disentangle moral hazard from adverse selection is undoubtedly an important

problem in the empirical literature. See Dionne, Michaud, and Dahchour (2012) for the first at-

tempt and Cohen and Siegelman (2010) for an overview of different possible strategies for dealing

with this problem.

In sum, the theory of asymmetric information predicts a positive correlation between (appro-

priately defined) “risk” and “coverage” which should be quite robust.

To proceed, it is worth mentioning that to test for asymmetric information, the researcher

needs to access to the same information which is also available to the insurer and used for pricing.

The theory of adverse selection predicts that the insurance company offers a menu of contracts

to indistinguishable individuals. Individuals are (ex ante) indistinguishable for the insurer if

they share the same characteristics. Therefore the positive risk-coverage correlation is valid only

conditional on the observed characteristics. Different groups of observable equivalent individuals

are offered different menus of contracts with different prices according to their risk exposure.

For the theory of risk classification under asymmetric information we refer to the survey article

Crocker and Snow (2000). Only within each class are the mechanisms described above valid.
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3 Standard Testing Procedures

In this section we review some tests of asymmetric information in the literature. We first outline

the general structure of the problem, which has been first proposed by Dionne, Gourieroux, and

Vanasse (2001, 2006), and then review the parametric and nonparametric testing procedures in

turn.

3.1 General Structure

In the following we denote by  the vector of exogenous control variables to be conditioned

on, by  a decision or choice variable, and by  the endogenous “performance” variable. In

the context of insurance,  usually includes variables that are used for risk classification by the

insurance company,  could be the choice of deductibles, and  could be the number of accidents

or claims or the sum of reimbursements caused by accidents. The distinction of accidents and

claims is a very important point in the empirical literature as not every accident leads to a claim.

Neglecting this issue might lead to biased results. As we shall see, we allow both continuous and

discrete variables in  and  can be continuous or discrete. For concreteness, we assume that

 is a discrete variable. There is no asymmetric information if and only if the prediction of the

endogenous variable  based on  and  jointly coincides with its prediction based on  alone.

As Dionne, Gourieroux, and Vanasse (2001, 2006) first note, this can be formally stated in terms

of the equivalence of two conditional CDFs:

 (| ) =  (|) a.s. (3.1)

where, e.g.,  (| ) denotes the conditional CDF of  given ( ). Intuitively, this means

that the choice of a contract, e.g., the choice of certain deductible, provides no useful information

for predicting the risk, e.g., the number of claims, as long as the risk classes are controlled for.

Equivalently, we can interchange the roles of  and  :

 ( |) =  ( |) a.s. (3.2)

where, e.g.,  ( |) denotes the conditional CDF of  given (). (3.2) says that the

number of claims (or the sum of reimbursements caused by accidents) does not provide useful

information to predict the choice of deductibles as long as we control the risk classes. Either (3.1)

or (3.2) indicates the conditional independence of  and  given .

As a referee kindly points out, there are applications in different insurance markets that

use more general models where all variables can be continuous as in Dionne, Gourieroux, and

Vanasse (2001, 2006). In this case, one can apply some existent tests for conditional independence

(e.g., Delgado and González-Manteiga (2001), Su and White (2007, 2008)) to test for asymmetric

information.
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3.2 Parametric Testing Procedures

Almost all empirical studies analyzing the positive risk-coverage correlation property use one of

the following two types of parametric procedures.

The first approach is to run a regression of  on  and  and test whether the coefficient

of  is zero or not. When  is continuously valued, the regression model is

 = 0 + 1 + 02 +  (3.3)

where  is the error term, 0 and
¡
1 

0
2

¢
are intercept and slope coefficients, respectively, and

the prime denotes transpose. When  is a dummy variable, the regression model is

 = 1(0 + 1 + 02 +   0) (3.4)

where  is assumed to be either normally or logistically distributed, and 1 () = 1 if  is true and

0 otherwise. If  is a discrete variable that has more than two categories, then one can use the

ordered logit model. One obvious drawback of this approach is that it neglects by construction the

potential nonlinear effects of the controlled variables, and a test based on (3.3) is designed to test

the conditional mean independence of  and  given  which is a much weaker condition than

conditional independence at the distributional level. In addition, the distributional assumption in

the probit, logit, or ordered logit model may not hold, and once this happens, tests for asymmetric

information can lead to misleading conclusions.

In one of the first empirical studies Puelz and Snow (1994) consider an ordered logit formu-

lation for the deductible choice variable and find strong evidence for the presence of asymmetric

information in the market for automobile collision insurance in Georgia. But Dionne, Gouri-

eroux, and Vanasse (2001) show that this correlation might be spurious because of the highly

constrained form of the exogenous effects or the misspecification of the functional form used in

the regression. They propose to add the estimate ̂(|) of the conditional expected value of

 given  as a regressor into the ordered logit model to take into account the nonlinear effect

of the risk classification variables, and by accounting for this, they find no residual asymmetric

information in the market for Canadian automobile insurance.

A second and more advanced approach was introduced by Chiappori and Salanié (1997, 2000)

and has become widespread in the empirical contract theory since then. They define two probit

models, one for the choice of the coverage  (either compulsory/basic coverage or comprehensive

coverage) and the other for the occurrence of an accident  (either no accident being blamed for

or at least one accident with fault):(
 = 1(

0 +   0)

 = 1(
0 +   0)

(3.5)

where  and  are independent standard normal errors, and  and  are coefficients. They first
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estimate these two probit models independently, calculate the generalized residuals ̂ and ̂

which have been introduced by Gourieroux et al. (1987), and then construct the following test

statistic

 =
(
P

=1 ̂̂)
2P

=1 ̂
2
 ̂
2


 (3.6)

Under the null of conditional independence, cov( ) = 0 and  is distributed asymptotically

as 2(1). Alternatively, one can estimate a bivariate probit model in which  and  are distrib-

uted as bivariate normal with correlation coefficient  to be estimated, and then test whether

 = 0 or not. They find no evidence of asymmetric information in the French automobile insurance

market.

3.3 Nonparametric Testing Procedures

Motivated by the 2-test for independence in the statistics literature, Chiappori and Salanié

(2000) propose a nonparametric test for asymmetric information by restricting all variables in

  and  to be binary. They choose a set of  exogenous binary variables in , and

construct  ≡ 2 cells in which all individuals have the same values for all variables in . For

each cell they set up a 2× 2 contingency table generated by the binary values of  and , and

conduct a 2-test for independence. This results in  test statistics, each of which is distributed

asymptotically as 2 (1) under the null hypothesis. They aggregate these test statistics in three

ways to obtain three overall test statistics for conditional independence: one is the Kolmogorov-

Smirnoff test statistic that compares the empirical distribution function of the  test statistics

with the CDF of the 2 (1) distribution; the second is to count the number of rejections for the

independence test for each cell which is asymptotically distributed as binomial () under

the null, where  denotes the significance level of the 2 test within each cell; and the third is the

sum of all the test statistics for each individual cell, which is asymptotically 2() distributed

under the null. Again, using these nonparametric methods, they find no evidence for the presence

of asymmetric information in the French automobile insurance market.

4 A New Nonparametric Test

In this section we propose a new nonparametric test for asymmetric information based on the

formulation in (3.1). The null hypothesis is

H0 :  (| ) =  (|) a.s. (4.1)

and the alternative hypothesis is

H1 : Pr { (| ) =  (|)}  1 (4.2)
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We consider the case where  is a discrete random variable (typically a dummy variable),  can

be either discrete or continuous, and  contains both continuous and discrete variables. Note

that early literature on testing for conditional independence mainly focuses on the case where

both  and  are continuously distributed, see, Delgado and González-Manteiga (2001), Su and

White (2007, 2008), Song (2009), Huang and White (2009), Huang (2010), to name just a few.

Even though we restrict our attention mainly on the case where  is discrete, we remark that in

the case of continuous  the proposed test continues to work with little modification.

4.1 The Test Statistic

Given observations {(  )}=1  one could propose a test based on the comparison of two
conditional CDF estimates; one is the conditional CDF of  given  ( (|)) and the other is
the conditional CDF of  given ( ) ( (| )) Nevertheless, for the reason elaborated at the
end of this section, we will compare  (| ) with  (| e) for different values  and e instead.

For more rigorous notation, one could use | (|) (resp. | (| )) to denote the
conditional CDF of  given (resp. ( )) Below we make reference to these CDFs and several

probability density functions (PDFs) by simply using the list of their arguments — for example,

 (  )   ( ) and  () denote the PDFs of (  ), ( ), and  respectively. This

notation is compact, and we hope, sufficiently unambiguous. In addition, even though a PDF is

most commonly associated with continuous distributions, here we use it to denote the Radon-

Nikodym derivative of a CDF with respect to the Lebesgue measure for the continuous component

and the counting measure for the discrete component.

To allow for both continuous and discrete regressors in  write  = (0
 

0
 )

0
where


 denotes a  × 1 vector of continuous regressors in  and 

 denotes a  × 1 vector of
remaining discrete regressors with  ≡ − For simplicity, we assume that none of the discrete
regressors has a natural ordering and each takes only a finite number of values. When some of

the conditioning variables in  have a natural ordering, one can easily modify the corresponding

discrete kernel defined below following either Racine and Li (2004) or Li and Racine (2007, 2008).

We use 
 (resp. 


) to denote the th component of 


 (resp. 


 ), where  = 1 · · ·   (resp.

). We assume that 

 takes  different values in X 

 ≡ {0 1 · · ·   − 1}  = 1 · · ·   and
 takes  different values in Y ≡ {0 1 · · ·   − 1}

Fix  ∈ Y. We consider the estimation of  (| ) by using the local constant (Nadaraya-
Watson) method. [Alternatively, one can consider local linear/polynomial method, but we find

through simulations that the latter method does not yield as satisfactory size behavior as the

local constant method.] For this purpose, we define the kernels for the continuous regressor 


and discrete regressor 
 separately. For the continuous regressor, we choose a product kernel

function  (·) of  (·) and a vector of smoothing parameters  ≡ (1  )
0 Let  (

) ≡
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Π

=1

−1
 

³³

 − 

´


´
and

 ≡ 

¡

 −



¢
=

Y
=1

−1 
¡¡

 −



¢

¢
 (4.3)

where, for example,  ≡ (1 · · ·  )0 For the discrete regressor, we follow Racine and Li (2004)
and Li and Racine (2007, 2008) and use a variation of the kernel function of Aitchison and Aitken

(1976):


³




 

´
=

(
1 if 

 = 


 otherwise
(4.4)

where  ∈ [0 1] is the smoothing parameter. In the special case where  = 0  (· · ·) reduces to
the usual indicator function as used in the nonparametric frequency approach. Similarly,  = 1

leads to a uniform weight function, in which case, the 
 regressor will be completely smoothed

out in the sense that it will not affect the nonparametric estimation result. The product kernel

function for the vector of discrete variables is given by

 ≡ 

³

 




´
≡

Y
=1


1(

 6=
)

  (4.5)

where  ≡ (1 · · ·  )0 Combining (4.3) and (4.5), we obtain the product kernel function for
the conditioning vector :

 ≡  ( ) = 

¡

 −



¢


³

 




´
 (4.6)

We estimate  (| ) by

b (| ) =

1


P
=11


1 ( ≤ )

1


P
=11




(4.7)

where 1

 ≡ 1 ( = )  Then we measure the variation in b (| ) across different values of 

and different observations by

 ≡
−2X
=0

−1X
=+1

X
=1

h b (| )− b (| )
i2
 (

 ) 

where  (·) is a uniformly bounded nonnegative weight function with compact support X  that

lies in the interior of the support of 
  It serves to perform trimming in areas of sparse support.

In the following simulations and empirical studies, we will set  (
 ) = Π


=11( (0025) ≤ 

 ≤
 (0975)) where  () denotes the th sample quantile of 

  We will study the asymptotic

properties of  under H0, a sequence of Pitman local alternatives, and the global alternative

H1. We will show that after being appropriately recentered and scaled,  is asymptotically
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normally distributed under the null and local alternatives, and diverges to infinity under the

global alternative.

4.2 Assumptions

Throughout the paper we use  and  to denote (
0
  )

0
and ( 0

 )
0
 respectively. Similarly,

let  ≡ (0  )0 and  ≡ (0 )0  With a little bit abuse of notation, we use  ()   ( )  and
 () to denote the PDF of  ( ), and  respectively. Frequently we also write  (| )
as  (|  ).

To facilitate our asymptotic analysis, we make the following assumptions.

Assumption A1. The sequence {}=1 is independent and identically distributed (IID) with
CDF .

Assumption A2.  () is uniformly bounded on X × Y × Z, where X ≡ X  × X , X  ≡
X 
1 × · · · × X 


 and Z is the support of   ( ) is bounded away from 0 on X × Y.

Assumption A3. () For each
¡
 

¢ ∈ X  × Y and  ∈ Z,  (|  ) has all partial
derivatives up to order 2 with respect to  and its second order partial derivatives with respect

to  2 (|  )    = 1 · · ·   are uniformly continuous and bounded on X 

() For each ( ) ∈ X × Y | (| )−  (e| ) | ≤  | − e| for all  e ∈ Z
Assumption A4. () The kernel function  : R→ R+ is a continuous, bounded, and symmetric

PDF.

() For some 1 ∞ and 2 ∞ either  (·) is compactly supported such that  () = 0 for
||  1 and |()− (e)| ≤ 2 |− e| for any  e ∈ R; or (·) is differentiable, | () | ≤ 1

and for some 0  1 | () | ≤ 1 ||−0 for all ||  2

Assumption A5. Let ! ≡ Π=1 Let k·k denotes the Euclidean norm. As  → ∞

kk → 0 kk → 0 |||| is of the same order as ||||2  (!)2  log → ∞  (!)12 kk4 → 0

and kk4 !→ 0

Remark 1. The IID assumption in assumption A1 is standard in cross sectional studies. One

could allow dependence but that would complicate the presentation to a large degree. Assump-

tion A2 is standard for kernel estimation with mixed regressors. Assumptions A3-A4 are used

to obtain uniform consistency for kernel estimators; see, e.g., Hansen (2008). Assumption A5

imposes appropriate conditions on the bandwidth. In particular A5 implies that undersmoothing

is required for our test and   4 This is typical in nonparametric tests when a second order

kernel is used in the local constant regression. In the case where  ≥ 4 one has to rely upon the
use higher order kernels.
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4.3 The Asymptotic Distribution of the Test Statistic

Let 2 (| ) ≡Var(1 ( ≤ ) |  =   = ) =  (| ) [1−  (| )] and  ( ; ) ≡
Cov(1 ( ≤ ) 1 ( ≤ ) |  =   = ) =  ( ∧ ̄| )− (| ) (̄| )  where ∧  =
min ( )  Define

0 ≡ 1 ( − 1)
(!)12

−1X
=0

X
∈X

Z Z
 ( )−1 2 (| )  ()  ()  (|)  (4.8)

20 ≡ 22 ( − 1)2
−1X
=0

X
∈X

Z Z Z
 ( )−2  ( ; )2  ()2

×  ()2  (|)  (|)  (4.9)

where 1 = [
R
 ()2 ] and 2 = {

R
[
R
 ()  (− ) ]2} 

Our first result says that after centering, (!)12 is asymptotically normally distributed

under H0.

Theorem 4.1 Suppose Assumptions A.1-A.5 hold. Then under H0 (!)
12−0 → 

¡
0 20

¢


To implement the test, we need to consistently estimate 0 and 20 Define

b ≡ 1 ( − 1)
 (!)12

X
=1

−1X
=0

b ( )
−1 b2 (| )  (


 ) 

b2 ≡ 22 ( − 1)2
 (− 1)

X
=1

X
 6=

−1X
=0

b ( ) (

 ) 

¡



¢


where b (  ) = b ( )
−1 b (  )

−1 b (  ; ) b (  ;  )  b ( ) =
1


P
=1 1




× b2 (| ) = b (| ) [1− b (| )] and b ( ; ) = b ( ∧ ̄| )− b (| ) b (̄| ) 
We demonstrate in the proof of Theorem 4.2 below that b−0 =  (1) and b2− 20 =  (1) 

Then we can compare

 ≡
h
(!)12 − b

i


qb2 (4.10)

to the one-sided critical value  the upper  percentile from the  (0 1) distribution. We reject

the null at level  if   

To examine the asymptotic local power of the test, we consider the following sequence of

Pitman local alternatives:

H1 () :  (| )−  (| ) =  () for a.e.  (4.11)

where  → 0 as  → ∞ and  (·) is a continuous function such that 0 ≡ lim→∞
P−2

=0P−1
=+1[ ( )]

2 ∞ The following theorem establishes the local power of the test.
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Theorem 4.2 Suppose Assumptions A1-A5 hold. Then under H1 () with  = −12(!)−14


→  (00 1) 

Thus, the test has nontrivial power against Pitman local alternatives that converge to zero at

rate −12(!)−14 The asymptotic local power function is given by 1−Φ ( − 00)  where Φ

is the standard normal CDF.

The following theorem establishes the consistency of the test under the global alternative H1
stated in (4.2).

Theorem 4.3 Suppose Assumptions A1-A5 hold. Then under H1 −1(!)−12 = 0 +

 (1)  where  ≡
P−2

=0

P−1
=+1 [ (| )−  (| )]

2  so that  (  )→ 1 under

H1 for any nonstochastic sequence  = 
¡
(!)12

¢


Remark 2. Alternatively, one can consider testing the conditional independence of  and

 given  based upon the comparison of  (|) with  (| )  In this case, the test statistic
would be e ≡

X
=1

h e (|)− e (| )
i2
 (

 ) 

where e (|) and e (| ) are local constant estimates of  (|) and  (| ) by smoothing all
discrete variables in  and ( )  respectively. After being suitably centered and rescaled, e

can be shown to be asymptotically normally distributed. The key assumption for the asymptotic

normality of e would require that the bandwidth ( say) used in smoothing the discrete

variable  tends to zero as  → ∞ Nevertheless, under the null hypothesis of conditional

independence,  is an irrelevant variable in the prediction of  or 1 ( ≤ )  implying that the

optimal bandwidth for  should tend to 1 as  → ∞ (see Li and Racine (2007)). Thus this

creates a dilemma for the choice of  making it extremely difficult to control the finite sample

level of a test based upon e In contrast, when we construct our  test statistic, we obtain

the estimate b (| ) of  (| ) for different values of  without smoothing the discrete

variable  (see (4.7)) and thus avoid the above dilemma.

5 Monte Carlo Simulations

In this section we conduct some Monte Carlo experiments to evaluate the finite sample perform-

ance of our test and compare it with some existing tests.

5.1 Data Generating Processes

We consider three data generating processes (DGPs):
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DGP 1.

 = 1 (  ≤  ()) 

 = 1 ( ≤  ()) 

 () =
h

1 − 052

1 +  (
2)−

1

2 − 05

1

1 + 05


1 + 05


1


2

i


 () =  (
1)


2 −

1 −
2


2 + 05


1


2 + 


1

where  ≡
¡

1


2


1


2

¢0
  (·) is the  (0 1) PDF,  =

q
1 +2

1 +2
2  


1 is

IID  (0 1)  
2 is IID  (0 1)  

¡

1 = 

¢
= 14 for  = 0 1 2 3 

¡

2 = 

¢
= 15 for

 = 0 1 2 3 4  1 is IID  (0 1),  is IID  (0 1), and all these variables are mutually inde-

pendent.  controls the degree of conditional dependence between  and  given  Given 

 and  are conditionally independent when  = 0 and conditionally dependent otherwise.

DGP 2.

 = 1 (  ≤  ()) 

 =  () +  

 () =  (
1)


2 −

1 −
2


2 + 05


1


2 + 2 (


1)
2 

where  ≡
¡

1


2


1


2

¢0
    and  (·) are generated as in DGP 1, and  is taken

to ensure the signal-noise ratio in the equation for  to be 1.

DGP 3.

_ = Φ
³
−2 +

 + 02

 + 



´


 = Φ
³
(−2 + 02

 +
 )(06  + 08)

´


 = 1 ( ≤ _) 

 = 1 (_ ≤ ) 

where Φ (·) is the  (0 1) CDF, 
 is IID  (0 1)  

 is IID with 
¡

 = 

¢
= 12 for  = 0

and 1 
 is IID  (−05 05)    and  are each IID  (0 1) and mutually independent.

Clearly, DGP 1 generates binary  and  variables whereas DGP 2 generates binary 

and continuous  In both DGPs the vector  includes two continuous variables, 

1 and


2, and two discrete variables, 


1 and 

2. DGP 3 tries to mimic an insurance market with

asymmetric information in a simplistic way. The accident probability of an individual (_)

is determined by three variables, two continuous ones (
 


) and a discrete one (


 ),

indicative of gender, say. While the insuree can observe all three variables, the insurance company

can observe only 
 and 

 . The insurance company tries to assess the individual accident

probabilities based on the observed information and requires some mark-up. Without loss of

generality, we standardize the cost in the case of an accident to one. An individual buys insurance
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coverage if it is advantageous for him, i.e., under standardization if the premium is lower than his

accident probability. Finally, we simulate whether an accident occurs depending on the individual

accident probabilities.

5.2 Tests and Implementation

We consider three tests for conditional independence. The first is the two-probit parametric test

(Two-probit) and the second is the nonparametric test proposed by Chiappori and Salanié (2000)

(CS’s NP test), both of which are described in Section 3.2. We compare the performance of these

two tests with our nonparametric test. As the two-probit test and the bivariate probit test tend

to yield very similar results, we present only the results of the former test. To implement the

two-probit test for DGP 2, we first transform the continuous  variable into a binary one by

using the value 0 as a cutoff point.

For DGP 1-2 we consider two different configurations to apply the two-probit test. In Con-

figuration I we consider a “correctly specified ”(nonlinear) probit model where all variables in 

enter the probit equations as specified in DGPs 1-2, but we do not allow the interaction term



1 in DGP 1 or  (


1)
2 in DGP 2 in order to generate residual correlations under the al-

ternative hypothesis (i.e., when  6= 0). For either DGP 1 or DGP 2, we consider the following
nonlinear probit models:

 = 1
¡
  ≤ 0 + 1 (


1) + 2

¡
2
1 

¢
+ 3( (


2) ) + 4 (


1


2)

+5

³

1


1

´
+ 6

³

1

´
+ 7

³

1


2

´´
 = 1

³
 ≤ 0 + 1 (


1)


2 + 2


1 + 3


2


2 + 4


1


2

´
where  =

q
1 +2

1 +2
2 and   and  are each modeled as  (0 1)  In Configuration II we

consider the widely used linear probit model where all variables in  enter the probit equations

linearly and the two probit models become

 = 1
³
  ≤ 0 + 1


1 + 2


2 + 3


1 + 4


2

´
 = 1

³
 ≤ 0 + 1


1 + 2


2 + 3


1 + 4


2

´
where   and  are each modeled as  (0 1)  Note that we have dropped the interaction term

associated with  in the probit equation of  Otherwise there would be symmetric information

independently of the true value of  and no residual correlation can be detected even when  is

nonzero, i.e., the alternative hypothesis holds. The results are reported in columns 4-5 and 6-7

in Table 1 for Configurations I and II, respectively.

For DGP 3 we run two different versions of the two-probit test. In Configuration I we adopt
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a “full information” approach which also uses the variable 
 in both probit equations:

 = 1
³
  ≤ 0 + 1


 + 2


 + 3




´
 = 1

³
 ≤ 0 + 1


 + 2


 + 3




´


In Configuration II we use the correct information set of the insurance company and exclude


 from the above two linear probit equations. The results are reported in columns 4-5

and 6-7 in Table 1 for Configurations I and II, respectively.

To construct our test statistic, we need to choose both kernel and bandwidth. We choose

the Gaussian kernel for the continuous regressor(s):  () = (2)−12 exp
¡−22¢  and select

the bandwidth following the lead of Horowitz and Spokoiny (2001) and Su and Ullah (2009).

Specifically, we use a geometric grid consisting of  points (), where () = (
()
1   

()

 )
0,


()
 = min,  = 1   ( = 2 in DGPs 1-2 and =1 in DGP 3),  = 0 1   − 1,  is the
sample standard deviations of 

 in DGPs 1-2 and 
 in DGP 3, respectively,  = blogc, b·c

denotes the integer part of · and  = (maxmin)
1(−1). Note that undersmoothing is required

for our tests and the choice of bandwidths depends on the dimension  of the continuous variables

in  We set min = 05−1475 max = 3−1475 1 = 2 = 05−2475 in DGPs 1-2, and
min = 05−1425 max = 5−1425 1 = 05−2425 in DGP 3. Write =(1 2)0 for DGPs
1-2 and 1 for DGP 3. For each

¡
() 

¢
 we calculate the test statistic in (4.10) and denote it

as b ¡() ¢  Define
Sup ≡ max

0≤≤N−1
b ³() ´  (5.1)

Even though b ¡() ¢ is asymptotically distributed as  (0 1) under the null for each  the

distribution of Sup is unknown. Fortunately, we can use a bootstrap method to obtain the

bootstrap -values.

Here, we generate the bootstrap data {(∗
  

∗
  

∗
 )}=1 based on the following local bootstrap

procedure:

1. Set (∗
  

∗
 ) = ( ) for each  ∈ {1 · · ·  } 

2. For  = 1 · · ·   given ∗
  draw ∗ from the following local constant nonparametric es-

timate of  (|∗
 ) :

e (|∗
 ) =

P
=1 ( 

∗
 )1 ( ≤ )P

=1 ( 
∗
 )

(5.2)

where e and e are the bandwidth used in the estimation of  (|∗
 ) 

3. Compute the bootstrap test statistic Sup ∗ in the same way as Sup by using {(∗
  

∗
  

∗
 )}=1

instead.

4. Repeat steps 1-3  times to obtain  bootstrap test statistics
n
Sup ∗

o
=1

 Calculate the
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bootstrap -values ∗ ≡ −1
P

=1 1
³
Sup ∗ ≥ Sup

´
and reject the null hypothesis of

conditional independence if ∗is smaller than the prescribed level of significance.

The above procedure combines the local bootstrap procedure of Paparoditis and Politis (2000)

with the rate-optimal test idea of Horowitz and Spokoiny (2001). It works no matter whether

 is discrete or continuous. In the case where  is continuous, we can also generate a smooth

version of ∗ through ∗∗ = ∗ +  where  ≡  () → 0 as  → ∞ and  is drawn from

 (0 1)  In our simulations and applications, we generate ∗ and ∗∗ for the case where  is

discrete and continuous, respectively. When  is continuous, we set  = 
−1(+4) with 

being the sample standard deviation of  Our simulations indicate that the choice of  plays

little role in the performance of our test. For simplicity, we set e = (e1 e)0 and e = 

with e = 
−1(4+) Following Horowitz and Spokoiny (2001) one can justify the asymptotic

validity of the above bootstrap approximation.

5.3 Test Results

Table 1 reports the empirical rejection frequencies of the three tests at 5% and 10% nominal levels

for DGPs 1-3. To save on computational time, we use 250 replications for each sample size  and

200 bootstrap resamples in each replication. We summarize some important findings from Table

1.

First, in terms of level, only our nonparametric smoothing test is well behaved across all

DGPs and all sample sizes under investigation. The two-probit test under Configuration I has

well behaved level for all DGPs under investigation. The two-probit test under Configuration

II tends to be excessively oversized for DGP 1 and moderately oversized for DGP 2. The CS’s

NP test has the correct size for DGP 3 but severe size distortion for DGPs 1-2. In general when

size distortion exists, it tends to be inflated when  increases; see the cases of two-probit test

(Configuration II) and CS’s NP test for DGPs 1-2.

Second, in terms of power, we find that our test has stable power to detect deviations from

conditional independence no matter whether  is discrete or continuous. As either  or 

increases, the power of our nonparametric test increases very quickly. Since the CS’s NP test

is oversized in DGPs 1-2 and there is no way to obtain a size-corrected power for their test, we

cannot compare their test power with ours. When the size of their test is well-behaved in DGP

3, we find that the power of their test is significantly lower than that of ours when the signal of

asymmetric information is not very strong ( = 1) Interestingly, the two-probit test has totally

distinct power behavior under the two configurations. Under Configuration I when the correctly

specified functional form is used in DGP 1-2 or the full information is explored in DGP 3, there

is not much residual information left in the residual so that two-probit test exhibits little power

in detecting residual correlation. In sharp contrast, under Configuration II when the functional

form in the probit models are not correctly accounted for in DGPs 1-2 or only partial information

is explored in DGP 3, the residuals from the two probit models contain much useful information
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Table 1: Finite sample rejection frequency for DGPs 1-3

DGP   Two-probit
(Configuration I)

Two-probit
(Configuration II)

CS’s NP test Our test

5% 10% 5% 10% 5% 10% 5% 10%

1 200 0 0.056 0.092 0.084 0.164 0.152 0.252 0.044 0.088

1 0.048 0.104 0.128 0.208 0.508 0.696 0.052 0.168

2 0.064 0.124 0.120 0.208 0.932 0.968 0.208 0.348

400 0 0.044 0.108 0.140 0.208 0.276 0.400 0.060 0.108

1 0.080 0.152 0.212 0.288 0.908 0.956 0.176 0.312

2 0.100 0.168 0.212 0.372 0.996 1.000 0.664 0.832

600 0 0.052 0.104 0.224 0.316 0.472 0.612 0.056 0.120

1 0.072 0.160 0.276 0.412 0.988 0.976 0.412 0.616

2 0.124 0.192 0.340 0.476 1.000 1.000 0.944 0.976

2 200 0 0.064 0.108 0.052 0.124 0.088 0.160 0.028 0.068

1 0.040 0.084 0.072 0.144 0.196 0.296 0.084 0.204

2 0.056 0.116 0.064 0.132 0.352 0.552 0.164 0.280

400 0 0.068 0.108 0.060 0.120 0.124 0.200 0.036 0.096

1 0.078 0.072 0.080 0.172 0.412 0.576 0.284 0.440

2 0.072 0.132 0.108 0.192 0.644 0.784 0.420 0.576

600 0 0.052 0.112 0.076 0.148 0.176 0.284 0.054 0.112

1 0.040 0.084 0.080 0.172 0.412 0.576 0.528 0.664

2 0.056 0.142 0.132 0.204 0.780 0.884 0.672 0.784

3 200 0 0.024 0.096 0.024 0.088 0.052 0.104 0.060 0.112

1 0.060 0.080 0.380 0.532 0.096 0.156 0.348 0.420

2 0.028 0.096 0.952 0.980 0.720 0.848 0.896 0.940

400 0 0.076 0.100 0.076 0.104 0.044 0.108 0.044 0.100

1 0.068 0.084 0.616 0.712 0.292 0.276 0.508 0.632

2 0.024 0.088 1.000 1.000 0.984 0.996 1.000 1.000

600 0 0.056 0.092 0.056 0.092 0.044 0.092 0.064 0.120

1 0.036 0.096 0.804 0.856 0.412 0.588 0.732 0.796

2 0.036 0.084 1.000 1.000 1.000 1.000 1.000 1.000
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and may exhibit significant residual correlation as expected. Despite the over-size issue of the

two-probit test for DGPs 1-2 under Configuration II, its power is not as good as that of our

nonparametric test.

6 Empirical Applications

In this section we apply our nonparametric test to an automobile insurance data set and a long

term care insurance data set.

6.1 Automobile Insurance

Despite the scarcity of insurance data sets, car insurance has been analyzed for different countries

amongst others by Chiappori and Salanié (1997, 2000), Richaudeau (1999), Cohen (2005), Saito

(2006) and Kim et al. (2009). We first briefly introduce the automobile insurance market in

France where our data set stems from, then discuss configurations of the data set and present our

empirical findings. Noting that the design of automobile insurance is relatively similar in most

countries, we believe that our methodology is broadly applicable.

6.1.1 Principles of the Automobile Insurance in France

In France, like in many other countries, all cars must be insured at the “responsabilité civile” (RC)

level. This is a liability insurance that covers damage inflicted to other drivers and their cars.

Moreover, insurance companies offer additional non-compulsory coverage. The most common

one is called “assurance tous risques” (TR), which also covers damage to the insured car or the

driver in the case of an accident at which he or she is at fault. The insurees can choose from

different comprehensive insurance contracts which vary in the value of the deductible (fixed or

proportional).

A special feature of the car insurance is the so-called “bonus/ malus”, a uniform experience

rating system. At any date/year , the premium is defined as the product of a basis amount

and a “bonus” coefficient. The basic amount can be defined freely by the insurance companies

according to their risk classification but cannot be related to past experience. The past experience

is captured by the so-called “bonus/ malus” coefficient whose evolution is strictly regulated.

Suppose, the bonus coefficient is  at the beginning of the th period. Then the occurrence of

an accident during the period leads to an increase of 25 percent at the end of the period (i.e.,

+1 = 125), whereas an accident-free year implies a reduction of 5 percent at the end (i.e.,

+1 = 095). Additionally, several special rules are applied, which include the permission to

overcharge contracts held by young drivers. But the surcharge is limited to 140 percent of the

basis rate and is forced to decrease by half every year in which the insuree has not had an accident.

The basis amount of the premium is calculated according to different risk classes. Due to

variables like age, sex, profession, area, etc., the insurees are divided into different risk classes

which should reflect their accident probabilities, and the premium to be paid is then determined.
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6.1.2 Configurations of the Data Set

We use a data set of the French federation of insurers (FFSA) which conducted in 1990 a survey

of its members. This data set was also used in Chiappori and Salanié (1997, 2000). With a

sampling rate of 120 the data set consists of 41 variables on 1 120 000 contracts and 25 variables

on 120 000 accidents for the year 1989. For each driver all variables which are used by insurance

companies for pricing their contracts — age of the driver, sex, profession of the driver, year of

drivers license, age of the car, type of the car, use of the car, and area — plus the characteristics

of the contract and the characteristics of the accident, if occurred, are available. We restrict

our analysis to all “young” drivers who obtained their driver license in 1988. In this context

“young” refers not to the actual age but to the driving experience. This reduces the sample size

to  = 6 333.

As Chiappori and Salanié (2000) argue, focusing on young drivers has two major advantages.

In a subsample of young drivers the driving experience is much more homogeneous than that in

the total population in which groups of different experiences are pooled. Therefore the hetero-

geneity problem is mitigated and less severe. The concentration on young drivers also avoids the

problems associated with the experience rating and the resulting bias. The past driving history

is usually observed by the insurance companies. The past driving records are highly informative

on probabilities of accident and used for pricing. The bonus coefficient is a very excellent proxy

for this variable. However, the introduction of this variable is quite delicate because of its endo-

geneity. This problem can be circumvented either by using panel data or by using only data on

beginners. Chiappori and Heckmann (1999) discuss this point in detail. We pursue the second

approach and concentrate on novice drivers.

An important issue in testing for asymmetric information is the distinction between accidents

and claims. The data set of insurance companies comprise claims. But whether an accident —

once it has occurred — is declared to the insurance company and becomes a claim depends on the

decision of the insuree. This decision is mainly determined by the nature of the contract. For ex-

ample, accidents whose damage is below the deductible or is not covered are usually not declared.

Therefore one might expect a positive correlation between the type of contract (coverage) and

the probability of a claim — even in the absence of ex ante moral hazard. One strategy to handle

this problem is to discard all accidents in which only one automobile was involved. Whenever

two cars are involved, a declaration is nearly inevitable.

To make the results comparable with those of Chiappori and Salanié (2000) and to check for

robustness we examine several different configurations of the data set. Let  denote the set of

exogenous control variables for individual . Let  = 0 if individual  buys only the minimum

legal coverage (a RC contract) and 1 if individual  buys any form of comprehensive coverage (a

TR contract). First we consider discrete  where  = 1 if  has at least one accident in which

he or she is judged to be at fault and 0 otherwise (no accident occurred or  is not at fault). Then

we consider the case where  is continuous and defined by the total payments caused by the

insuree, which is also included in the data set. Table 2 summarizes the key figures of the data
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Table 2: Summary statistics for the car insurance data

Sample size 6 333

Contracts under TR 2 335 (369%)

Contracts with one or more accidents 434 (69%)

Note: Percentages are in brackets.

set.

For the variables in  we consider three configurations. In Configuration I we include the

following control variables in  : sex (2), make of car (8), performance of car (6), type of use

(4), type of area (5), profession of driver (8), region (10), age of driver, and age of car, where

numbers in brackets indicate the number of categories for the corresponding discrete variables,

and variables without numbers indicate they are continuous variables. These control variables

are similar to those used by Chiappori and Salanié (2000) for their probit-model- or 2-based

tests except that we do not transform the age of car or driver to discrete variables.

Our nonparametric test requires that the number of observations per cell should not be too

small. So we also consider another two configurations for  In Configuration II we omit the

variable, make of car, which describes the home country of the manufacturer of the car. We think

that the most important part of the information concerning an automobile can be captured by the

performance of the car, so that the omission of this variable should have no significant influence

on the results. For example, the accident probability of an Italian and a French compact car

should not differ significantly, all other things being equal. Additionally, we reduce the number

of categories for some discrete variables according to Column 3 in Table 3. Again, we argue that

merging categories which are nearly identical or closely related does not bias the results.

In Configuration III we use only two categories for each of the seven discrete variables in

. As surveyed above, Salanié and Chiappori (2000) also conduct nonparametric tests where

they code all control variables as binary and apply a 2 independence test to each cell, and then

aggregate the resulting test statistics in three different ways. Our third configuration enables a

direct comparison of our nonparametric test with their nonparametric tests.

Configurations IV - VI correspond to Configurations I - III, respectively. In the settings

IV - VI we only replace the discrete dummy variable  by its continuous counterpart, i.e., by

the total payments caused through accidents by the insuree to the insurance company. In all

configurations, we treat the age of car and the age of driver as continuous variables. See Table 3

for a summary of these configurations.

6.1.3 Empirical Results

In Figure 1 we plot the predicted accident probabilities as a function of the two continuous

variables, namely, age of car and age of driver, conditional on insurance coverage (i.e., RC or

TR contract) by using all variables under Configuration I. We calculate three predictions for

the accident probabilities based on a probit model, our nonparametric local constant estimate,
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Figure 1: Predicted Accident Probabilities
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Table 3: An overview of the data configurations

Variables\Configurations I II III IV V VI

 2 2 2 2 2 2

 2 2 2 X X X

sex 2 2 2 2 2 2

make of car 8 - 2 8 - 2

performance of car 6 6 2 6 6 2

type of use 4 3 2 4 3 2

type of area 5 2 2 5 2 2

profession of driver 9 5 2 9 5 2

region 10 5 2 10 5 2

age of driver X X X X X X

age of car X X X X X X

Note: Integers denote the number of categories for the corresponding discrete variables.

An “X” in the table denotes the corresponding variable is treated as a continuous variable.

and the nonparametric method of Chiappori and Salanié (2000), respectively labeled as Probit

estimates, NP estimates, and CS estimates in the figure. The third one is based on the empirical

probabilities which are used for the nonparametric test by Chiappori and Salanié (2000). In

order to calculate the accident probability for a certain age of driver, say, we restrict to all drivers

with this age, classify them according to five binary risk variables and calculate for each cell

(32 in total) the empirical accident probabilities. For each of these three methods the predicted

probabilities are calculated as the averages of predictions over all observed values of the other

variables in . For example, when we calculate the predicted probabilities for the RC contract

as a function of the age of driver in Figure 1, plot (a), the reported predicted probabilities are

the averages of the estimates of

 (At least one accident occurs | age of driver, other variables in   = 0 )

as a function of the age of driver where the averages are taken over all observed values of the

other variables in 

We summarize some important findings from Figure 1. First, it shows that the probit model

predicts a nearly linear monotonic relationship between the predicted (aggregate) accident prob-

abilities and the age of driver (resp. age of car) under either contract, but our nonparametric

estimates suggest that the relationship between the two may not be monotone in some region

of the data. This indicates that the probit model might be inappropriate for the prediction of

accident probabilities. Second, as expected, the predicted accident probabilities based on the CS

method are not a smooth function of either continuous variable due to the transformation of all

variables into binary variables and the fact that only information for a certain age of driver or car

is used when we calculate the predicted accident probabilities for that age group. Third, when

we focus on the estimated curves of predicted accident probabilities based on either the probit
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Table 4: Bootstrap p values for our nonparametric test under various configurations

Configurations I II III IV V VI VII VIII IX

Bootstrap  values 055 078 053 100 100 100 057 092 057

model or our nonparametric method, we find that the curves under the RC contract (plot (a)

or (c) in the figure) share similar shapes as those under the TR contract (plot (b) or (d) in the

figure), which suggests the lack of asymmetric information at the aggregate/average level.

Table 4 reports the bootstrap -values for our nonparametric test under various configurations

of the data set. We set the number of bootstrap replications  to 500. Table 4 suggests that in

all cases we fail to reject the null hypothesis of absence of asymmetric information at the 10%

significance level. This means that the knowledge of the choice of the contract does not contain

information for predicting the probability of an accident or the other way round, knowing the

number of accidents (discrete) or the caused damages (continuous) is of no value for predicting

the chosen contract. Therefore our test affirms Chiappori and Salanié’s (2000) findings that there

is no evidence of asymmetric information in the market for automobile insurance in France for

young drivers. The results are very robust to different configurations of data.

Recently Kim et al. (2009) have argued that the absence of asymmetric information in most

empirical studies might be due to the dichotomous measurement approach that induces the ex-

cessive bundling of contracts with different deductibles. In reality the insurees can choose between

several deductibles referring to different fields of coverage. But most studies aggregate this choice

opportunities to a binary choice between “compulsory” coverage and “additional” coverage so

that the choice variable  becomes binary. Kim et al. (2009) claim that excessive bundling in

coverage measurements might disguise the existence of asymmetric information. So they apply

a multinomial measurement approach, which is parametric in nature, and demonstrate the evid-

ence of asymmetric information in their data set obtained from a major automobile insurance

company in Korea.

Since our data set also contains the exact level of the chosen deductible, we can investigate

this hypothesis as our test is fully applicable to this problem. A very small proportion of the

contracts has proportional deductibles which are dropped for this analysis. Therefore the sample

size decreases to  = 6 219. We divide the chosen deductible into three (0 − 100, 101 − 1500
and  1500) groups. Configurations VII-IX in Table 4 correspond to Configurations I-III with

the only difference that the deductible now consists of three choices. Clearly, this modification

confirms the absence of asymmetric information in the data. We also tried a finer division for

the deductible so that  has more categories. In all cases, our results are robust in that they all

confirm the absence of asymmetric information in the data. Intuitively speaking, if there is no

asymmetric information in the most important choice between compulsory and comprehensive

insurance, one should not expect asymmetric information in the minor decision of the exact

deductible when the money at stake is not so high.
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6.2 Long-Term Care Insurance

In this subsection we apply our nonparametric test to a long-term care insurance data set. The

long-term care insurance (LTCI) covers an important risk which might lead to poverty among

the elderly. Private information in the long-term care market in the US has been analyzed in

the influential paper by Finkelstein and McGarry (2006). Below we first present a summary of

Finkelstein and McGarry (2006), then describe their data set and finally present our empirical

findings.

6.2.1 The Study of Finkelstein and McGarry (2006)

Finkelstein and McGarry (2006) find no positive correlation between individuals’ insurance cov-

erage and their risk experience even when controlling for the information which is given in the

application form. Insurance coverage is a binary variable indicative of whether an individual had

long-term care insurance in 1995. Risk is another binary variable indicative of whether an indi-

vidual went into a nursing home in the five-year period between 1995 and 2000. Finkelstein and

McGarry (2006) show that individuals have residual private information conditional on the risk

assessment of the insurance company by using individuals’ subjective assessments of the chance

that they will enter a nursing home. They regress the variables insurance coverage and risk on the

insurance companies’ own assessment of the individuals’ risk type (risk classification) in probit

models and take up the subjective assessment as an additional exogenous variable. The subject-

ive assessment is positively correlated with both risk and coverage when the risk classification

of the insurance company is controlled for. They interpret this finding as a direct evidence of

asymmetric information.

Finkelstein and McGarry (2006) argue that an explanation of the difference in the results is

that individuals have private information about both their risk types and their preferences for

insurance coverage. If individuals with private information that they have strong preferences

for insurance are of lower risk, then private information about both risk types and preferences

might operate in offsetting directions. This might finally result in a zero correlation between

risk and coverage despite the presence of asymmetric information. Only through the use of an

“unused observable” (information which is known to the insuree and the econometrician but not

known or used by the insurance company for risk classification), namely, the subjective assessment

mentioned above, could Finkelstein and McGarry (2006) find evidence of asymmetric information.

But it is a very rare situation where such an “unused observable” is available. For this reason

Gan, Huang, and Mayer (2011) propose a finite mixture model instead to account for differences

in preferences for insurance and use it to analyze the data set of Finkelstein and McGarry (2006)

without using any external information like the subjective assessment of individuals.
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Table 5: Summary statistics for the long term care insurance data

Sample size 4 780

Number of insured persons 519 (108%)

Number of persons entering a nursing home 776 (162%)

Note: Percentages are in brackets.

6.2.2 Data Set and Risk Classification

Finkelstein and McGarry (2006) use individual-level survey data from the Asset and Health

Dynamics (AHEAD) cohort of the Health and Retirement Study (HRS). Table 5 summarizes the

key statistics of the data set. For more details about the data set we refer the readers directly to

Finkelstein and McGarry (2006).

In order to conduct the positive correlation test, Finkelstein and McGarry (2006) use binary

variables as proxy variables for risk and coverage as defined above. The data set contains similar

detailed information which is used by insurance companies for risk classification: demographic

information (age, gender, marital status, age of spouse), current health and medical history of

the applicant. To replicate the information set of the insurer, Finkelstein and McGarry (2006)

propose two approaches. First, they control for the insurance companies’ actuarial prediction of

the individual’s risk type. This prediction is also used for pricing of the corresponding contract.

In order to calculate this individual prediction of the probability that the insured will go into a

nursing home over a five-year horizon, Finkelstein and McGarry (2006) apply the same actuarial

model that is employed by insurance companies. The prediction depends nonparametrically on

age, sex, and health state, measured by seven categories defined by the number of limitations to

instrumental activities of daily living (IADLs), the number of limitations to activities of daily

living (ADLs), and the absence of cognitive impairments. The model is described in Robinson

(1996). In this case the exogenous variable  consists only of the insurance companies’ indi-

vidual risk prediction. In a second approach, Finkelstein and McGarry (2006) try to control

for everything the insurance company observes about the individual. They include demographic

information (age, marital status, age of spouse) and over 35 indicator variables for current health

and health history. Moreover, they use income quartile, asset quartile and two-way and three-way

interactions between certain selected variables.

We apply our nonparametric test to Finkelstein and McGarry’s (2006) data set. As such

a huge amount of indicator variables leads to a high number of cells and negligible number of

observations per cell, we modify this setting and apply our test to two different configurations.

We use the actuarial prediction for a claim, i.e., the use of long term care (LTC), as a continuous

variable. Moreover, we use the number of ADLs, a proxy for current health and past health,

sex and marriage status as discrete regressors. The proxy variable is a categorical variable that

indicates the number of diseases/ limitations an individual suffers or suffered. Presumably these

variables capture the decisive determinants on whether an elderly goes to a nursing home or not.

We compile this data set as Configuration I and apply our nonparametric test. In Configuration
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Figure 2: Predicted Probabilities of Entering a Nursing Home

II we additionally include the age of the insuree as a second continuous variable. The results are

presented in the next section.

6.2.3 Empirical Results

In Figure 2 we plot the predicted probabilities of entering a nursing home over a five-year horizon

as a function of the two continuous variables, namely, age and the actuarial prediction for the

use of long term care, conditional on insurance coverage, i.e., with or without LTCI, by using all

variables under Configuration II. As in the case of Figure 1, we calculate predicted probabilities

based on a probit model, our nonparametric local constant estimate, and the nonparametric

method of Chiappori and Salanié (2000), respectively labeled as Probit estimates, NP estimates,
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and CS estimates in Figure 2. In order to calculate the CS’s predicted probabilities as a function

of actuarial prediction that takes values between 0 and 1, we use a grid from 0 to 1 with step size

0.05 (with 21 points in total) to discretize the actuarial prediction. To appreciate the differences

between the curves for individuals with and without LTCI, we follow the kind advice of a referee

and lay the curves in the same plane.

We summarize some important findings from Figure 2. First, it shows that the probit model

predicts a monotonic relationship between the predicted (aggregate) probabilities and age (resp.

actuarial prediction) no matter whether an individual has LTCI or not, but our nonparametric

estimates indicate the relationship between the predicted probabilities and age is monotonic but

the predicted probabilities may depend on the actuarial prediction non-monotonically. Second, as

expected, the predicted probabilities based on the CS’s method are not a smooth function of age

due to the transformation of all variables into binary variables and the fact that only information

for a certain age of individuals is used when we calculate the predicted probabilities for that age

group. But the predicted probabilities are a relatively smoother function of actuarial predication

because we only use 21 points to discretize the latter. In any case, the CS’s predictions are quite

different from ours and those based on the probit model. Third, Figure 2(a) suggests that, both

Probit and our NP methods yield similar estimates of the effects of age on the probability of

entering a nursing home for the two groups of senior people with or without LTCI. Based on the

Probit estimates, individuals with LTCI have lower probability of entering a nursing home than

those without LTCI. But our NP estimates suggest that it is difficult to distinguish the estimated

effects of age on the probability of entering a nursing home for individuals with or without LTCI.

Fourth, Figure 2(b) suggests that our NP estimates are significantly different from the Probit

estimates in terms of the effect of actuarial prediction on the probability of entering a nursing

home. The Probit estimates of the effects of actuarial prediction on the probability of entering

a nursing home are always higher for individuals without LTCI than for individuals with LTCI

regardless the level of actuarial prediction. But this is not the case for our NP estimates. Fifth, our

NP estimates reveal that the probability of entering a nursing home is lower for individuals with

LTCI than those without LTCI when both have relatively low actuarial predictions (02 − 05),
and the probability of entering a nursing home is higher for those those with LTCI than those

without LTCI when both have relatively high actuarial predictions (05 − 1). Interestingly, for
extremely low actuarial predictions (0− 02) the probabilities of entering a nursing home hardly
differ for individuals with and without LTCI. In sum, we think our findings suggest some sort of

asymmetric information that is related to risk preferences as opposed to risk types and thus lend

support to Finkelstein and McGarry (2006).

For the two configurations described above, Table 6 reports the bootstrap -values for our

nonparametric test based on 500 bootstrap resamples. For either configuration, we can reject the

null hypothesis at the 10% significance level. Therefore we conclude that there is some evidence

of asymmetric information in the long-term care insurance market despite the fact that it is

not overwhelmingly strong. The choice of contract contains information about the occurrence

27



Table 6: Bootstrap p values for our nonparametric test for the long term care insurance

Configurations I II

 value 0060 0082

of an accident. This result indicates that a functional and distributional specification is a very

important issue in this field and that probit models might be inappropriate. In order to find some

evidence for asymmetric information in the US long-term care insurance market, Finkelstein and

McGarry (2006) have to resort to the so-called “unused observable”. Our test works without the

need to use such additional information which is only available in some exceptional cases.

7 Concluding Remarks

We propose a new nonparametric test for asymmetric information in this paper and apply it to

a French automobile insurance data set consisting of novice drivers and to the US long term care

insurance market. Our main conclusion for the car insurance data set is that we cannot detect

asymmetric information in the data set despite different configurations of the control variables.

Our nonparametric test does not require specification of any functional or distributional form

among the sets of variables of interest and it is not subject to any misspecification problem given

the right choice of control variables. We also show that excessive bundling does not necessarily

result in a disguise of asymmetric information. Both in the case of the binary choice between

“compulsory” coverage and “additional” coverage and in the case of several deductibles (three

and more groups) we confirm the absence of asymmetric information for young driver in the

French car insurance. Our results are also very strong in contrast to Kim et al. (2009).

Our second application is the US long term care insurance market. While Finkelstein and

McGarry (2006) find no positive correlation between risk and coverage — conditional on the

variables used for risk classification — our test rejects the null hypothesis at the 10% significance

level and therefore we detect the existence of asymmetric information in this market. Whereas

Finkelstein and McGarry (2006) have to use additional information to establish their result, our

test does not require additional information so that the test is widely applicable in most situations.

Our analysis reveals also that a correct functional and distributional specification in this field is

a very important issue and the use of probit models might be inappropriate. This application

shows that our test may have power when other tests do not have.

Since nearly all other classes of insurance, such as the legal protection insurance, private health

insurance, and disability insurance, are structured in the same way as the auto insurance or long

term care insurance, applications to data sets in these subfields are immediate and might help to

gain new insights. Moreover, our test can be applied to more general settings, either to testing

for asymmetric information in other fields or more generally, to testing the general hypothesis of

conditional independence.
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Mathematical Appendix

A Proof of the Main Results

Let B () ≡ { (  )1

 [ (|  )−  (| )]} ( ) and V () ≡ −1

P
=1

(  )1

 [1 ( ≤ )−  (|  )]  ( )  The following lemma establishes the uniform con-

sistency of b (| ) 
Lemma A.1 Suppose Assumptions A1-A5 hold. Then uniformly in (  ) ∈ X × Y × Z we

have: b (| ) − (| ) = B () + V () +  ((1 + 2)
2) =  (1 + 2) where

1 ≡ −12 (!)−12
√
log and 2 ≡ kk2 + kk 

Proof. Write b (| ) = b (| )  b ( ) where b (| ) = 1


P
=1 (  )1


1 ( ≤ )

and b ( ) = 1


P
=1 (  )1


  Then we have

b (| )−  (| ) =
b (| )− b ( ) (| )

 ( )

"
1 +

 ( )− b ( )b ( )
#

= 1 (| ) +2 (| ) 

where 1 (| ) = [b (| )− b ( ) (| )] ( ) and 2 (| ) = [b (| )− b ( )
× (| )][ ( ) − b ( )][ b ( )  ( )] By Theorems 2, 7 and 8 in Hansen (2008) with
little modification to account for discrete regressors, we can readily show that 2 (| ) =
 ((1 + 2)

2) uniformly in ( ) ∈ X × Y For 1 (| )  we have

1 (| ) =
1

 ( )

X
=1

 (  )1

 [1 ( ≤ )−  (| )]

= V () +B () +R () 

where R () = −1
P

=1{ (  )1

 [ (|  )−  (| )] − B ()  ( )} ( ) 

By the same theorems, we can show that V () =  (1) B () = (2) and R () =

 (12) uniformly in ( ) ∈ X ×Y. It follows that b (| ) − (| ) = B ()+V ()

+ ((1+2)
2) =  (1+2) uniformly in ( ) ∈ X ×Y. By the same argument as used

in the proof of Theorem 4.1 of Boente and Fraiman (1991), we can show the above results also

hold uniformly in  ∈ Z under Assumption A3. Then the conclusion follows.

Remark. Following Li and Racine (2008), we can write B () =
P

=1 
2
1 (| ) +P

=1 2 (| )+smaller order term, where1 (| ) ≡ 1
2

R
2 () [2 (| )  ( )+

 ( ) (| )] ( )  2 (| ) ≡
P∈X 

¡e ¢ [ ¡| e ¢  ¡ e ¢− (| )
 ( )] ( )   ( ) ≡ 

¡
  

¢
  (| ) ≡ 

¡
|  ¢ ,  (| )

≡ 2
¡
|  ¢  ()2  and 

¡e ¢ = 1 ¡ 6= e¢Π=1 6=1 ¡ = e¢ 
Proof of Theorems 4.1 and 4.2

We only prove Theorem 4.2, as the proof of Theorem 4.1 is a special case.
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First, we observe that (!)12 = (!)
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Under H1(−12 (!)−14) we prove the theorem by showing that () 1
→ 0 () 2−0

→

¡
0 20

¢
 () 3 =  (1)  () b = 0 +  (1)  and () b2 = 20 +  (1). For (),
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show ()-().

To show (), we first apply Lemma A.1 to obtain
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× [1 ( ≤ )−  (|  )]  ( ) and 
¡
 

¢ ≡ 
¡
  

¢ − 
¡
  

¢
 Noting that

V () = −1
P

=1 
¡
  

¢
and V ( ) −V ( ) = −1

P
=1 

¡
 

¢
, we have 21 =

(!)12

2

P
=1

P−2
=0

P−1
=+1[

P
=1 

¡
 

¢
]2 =  +  +  where  ≡ (!)12

2

P
=1

P
 6=P

 6=
P−2

=0

P−1
=+1 

¡
 

¢
 ( )   ≡ (!)12

2

P
=1

P
=1

P−2
=0

P−1
=+1 

¡
 

¢2
× and  ≡ 2(!)12

2

P
=1

P
 6=
P−2

=0

P−1
=+1 

¡
 

¢
 ( )  Let 

¡
   

¢ ≡
[

¡
 

¢
 ( )  +

¡
  

¢


¡
  

¢
 +  ( )

¡
 

¢
] 3 Then

 =
6 (!)12

2

X
1≤≤

−2X
=0

−1X
=+1


¡
   

¢
=
(− 1) (− 2)


 
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where   ≡ 6(!)12

(−1)(−2)
P
1≤≤

P−2
=0

P−1
=+1 

¡
   

¢
 Note that for all  6=  6= 

 ≡ 
£


¡
   

¢¤
= 0 1 () ≡ 

£


¡
   

¢¤
= 0 and 2(

e) ≡ [(
e )] =

1
3
[ ( ) (

e)] Let 3(e ) ≡ (
e ) − 2(

e) − 2( ) − 2(
e ) By

the Hoeffding decomposition,

  = 3
(2)
 +(3)

 

where 
(2)
 ≡ 2(!)12

(−1)
P
1≤≤

P−2
=0

P−1
=+1 2

¡
 

¢
and 

(3)
 ≡ 6(!)12

(−1)(−2)
P
1≤≤P−2

=0

P−1
=+1 3(   ) Noting that 

£
3 (e )¤ = 0 and that 3 is symmetric in

its arguments by construction, it is straightforward to show that [
(3)
 ] = 0 and [

(3)
 ]2 =

(−3 (!)−1) Hence, (3)
 =  (

−32 (!)−12) = 
¡
−1

¢
by the Chebyshev inequality. It

follows that  =
(−2)
−1   = {1 +  (1)}H +  (1)  where

H ≡ 2 (!)12



X
1≤≤

−2X
=0

−1X
=+1

32
¡
 

¢
=

2 (!)12



X
1≤≤

−2X
=0

−1X
=+1

Z
 ( )

¡
 

¢
 () () 

As H is a second order degenerate  -statistic, it is straightforward but tedious to verify that all

the conditions of Theorem 1 of Hall (1984) are satisfied, implying that a central limit theorem ap-

plies to H : H
→ 

¡
0 lim→∞ 2

¢
 where 2 ≡ 2! [

P−2
=0

P−1
=+1

R
 ( )

¡
 

¢
× () ()]2 = 2!{

P−2
=0

P−1
=+1

R
[ ( )−  ( )]

£


¡
  

¢− 
¡
  

¢¤
 ()

 ()}2 where  denotes expectation with respect to  We now show that lim→∞ 2 = 20
which is defined in (4.9). In view of the fact that  ( )  ( ) = 0 for any  6=  we have

2 = 2!

⎧⎨⎩
−2X
=0

−1X
=+1

Z
[ ( ) 

¡
  

¢
+  ( ) 

¡
  

¢
] () ()

⎫⎬⎭
2

= 2!

⎧⎨⎩
−2X
=0

−1X
=+1

( )

⎫⎬⎭
2

+ 2!

⎧⎨⎩
−2X
=0

−1X
=+1

( )

⎫⎬⎭
2

+4!

⎡⎣−2X
=0

−1X
=+1

( )

−2X
=0

−1X
=+1

( )

⎤⎦
≡ 21 + 22 + 23 say,

where ( ) ≡
R
 ( ) 

¡
  

¢
 () ()  By straightforward but tedious calcula-

tions, one can verify that 21 = 22
P−2

=0 ( − 1− )2 + (1)  22 = 22
P−1

=1 2+ (1) 

and 23 = 42
P−2

=1 ( − 1− ) + (1)  where  =
P

∈X

R R R
 ( )−2  ( ; )2  ()

 (|)  (|)  ()2  It follows that 2 = 22 ( − 1)2
P−2

=0 + (1) = 20+ (1)  Con-

sequently 
→ 

¡
0 20

¢
 By moment calculations, the Chebyshev inequality, and Assumptions
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A1 and A4-A5, we can show that

 =
(!)12

2

X
=1

X
=1

−2X
=0

−1X
=+1

n£


¡
  

¢¤2
+
£


¡
  

¢¤2o
 (

 )

=
(!)12 ( − 1)

2

X
=1

X
=1

−1X
=0

£


¡
  

¢¤2
 (

 ) = 0 +  (1) 

For  it is easy to verify that  () = 0 and 
¡
2
¢
= 

¡
(!)−1

¢
=  (1)  So  =  (1)

by the Chebyshev inequality. Consequently, we have

21 −
→ 

¡
0 20

¢
 (A.2)

Let  () ≡ B () − B ( )  Then 22 =
P−2

=0

P−1
=+1(221 − 222) where

221 ≡ (!)12
P

=1V ( )  ( ) and 222 ≡ (!)12
P

=1V ()  ()  Write

221 = −1 (!)12
X
=1

X
 6=

 ( )
−1 ( )1


 [1 ( ≤ )−  (|  )]  ( ) 

+−1 (!)12
X
=1

 ( )
−1 ()1


 [1 ( ≤ )−  (| )]  ( ) 

≡ 221 +221 say.

Observing that  ( ) = (2) it is straightforward to show that221 =  ((!)
−12 2) =

 (1) under Assumption A5. Noting that  (221) = 0 and 
¡
2
221

¢
= (!22) =

 (1)  we have 221 =  (1) by the Chebyshev inequality. Hence 221 =  (1)  By the

same token, 222 =  (1)  It follows that

22 =  (1)  (A.3)

By Lemma A.1 and Assumption A5, we have 23 =  (!)12 (
2
2) =  (1)  This, in con-

junction with (A.1), (A.2) and (A.3), implies that 2 −
→ 

¡
0 20

¢


Next, we show (). By Lemma A.1, under H1
¡
−12(!)−14

¢
we have 3 =

P−2
=0

P−1
=+1

(31 +32) + 12 (!)14

¡
21 + 22

¢
=
P−2

=0

P−1
=+1 (31 +32) +  (1) 

where31 ≡ −12 (!)14
P

=1[V ( )−V ( )]() and32 ≡ −12 (!)14
P

=1

[B ()−B ()]( ). As in the analysis of 22 we can readily show that 31 =

 (!
12 + −12 (!)−34) =  (1) by Assumption A5. Noting that sup |B ()| = (2),

we have 32 ≤ 12 (!)14 (2)
−1P

=1 |()| =  (
12 kk2 (!)14) =  (1)  Con-

sequently, 3 =  (1) 
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We now show (). Let 1 ≡ 1 (!)
−12 ( − 1)  Then we have

b −0 =
1



X
=1

−1X
=0

h b ( )
−1 b2 (| )−  ( )

−1 2 (| )
i
 (

 )

+
1



X
=1

−1X
=0

n
 ( )

−1 2 (| )  (

 )−[ ( )

−1 2 (| )  (

 )]
o

≡ 1 +2 say.

By the Chebyshev inequality, it is straightforward to show that 2 =  ((!)
−12) =  (1) 

Use the fact that b ( )−  ( ) =  (1 + 2) and b2 (| )−2 (| ) =  (1 + 2)

uniformly in (  ) ∈ X×Y×Z, we can readily show that 1 = (!)−12 (1 + 2) =  (1)

under Assumption A5. Consequently, b −0 =  (1) 

For (), letting 2 ≡ 22 ( − 1)2 we have

b2 − 20

=
2

 (− 1)
X
=1

X
 6=

−1X
=0

hb ( )−  (  )
i
 (


 ) 

¡



¢
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where  ( ) =  ( )
−1  (  )
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−1b (  )
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we can readily show that 1 =  (1 + 2) =  (1)  By the law of large numbers for second

order  -statistic, 2 =  (1)  By moment calculations, 3 =  (2) =  (1)  Thus we haveb2 = 20 +  (1). ¥
Proof of Theorems 4.3

Using the notation defined in the proof of Theorem 4.2, we have −1 = −1 (!)−12 (1+

2+23) Under H1, it is easy to show that −1 (!)−121 =
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 (1 + 2) =  (1)  On the other hand, 
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¡
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¢
=  (1) and b2 =

20 +  (1). It follows that 
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20 and the conclusion follows. ¥
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