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Abstract

In this paper we propose a jackknife method to determine individual and time effects in linear

panel data models. We first show that when both the serial and cross-sectional correlation among

the idiosyncratic error terms are weak, our jackknife method can pick up the correct model

with probability approaching one (w.p.a.1). In the presence of moderate or strong degree of

serial correlation, we modify our jackknife criterion function and show that the modified jackknife

method can also select the correct model w.p.a.1. We conduct Monte Carlo simulations to show

that our new methods perform remarkably well in finite samples. We apply our methods to study

() the crime rates in North Carolina, () the determinants of saving rates across countries, and

() the relationship between guns and crime rates in the U.S.
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1 Introduction

Individual effects and time effects are often used in panel data models to model unobserved individual

or time heterogeneity (see, e.g., Arellano (2003), Baltagi (2013), Hsiao (2014), and Wooldridge (2010)

for a review on panel data models). The goal of this paper is to provide practical methods to

determine whether to include individual effects, time effects, both, or neither in linear panel data

models. Specifically, we consider the following four models:

Model 1:  = 0 + 

Model 2:  = 0 +  + 

Model 3:  = 0 +  + 

Model 4:  = 0 +  +  + 

where  = 1    = 1   ,  is a  × 1 vector of regressors that may include lagged dependent
variables,  is an individual effect,  is a time effect, and  is an idiosyncratic error term. We

will treat ’s and ’s as fixed parameters to be estimated despite the fact they can be either fixed

effects or random effects for our purpose. For clarity, we assume that  contains the constant term

in all models and impose restrictions on  or/and  in Models 2-4 to achieve identification for the

individual or time effects. Specifically, we assume that

X
=1

 = 0 in Model 2, (1.1)

X
=1

 = 0 in Model 3, and (1.2)

X
=1

 = 0 and
X
=1

 = 0 in Model 4. (1.3)

The above identification restrictions greatly facilitate the asymptotic analysis in this paper and

make it straightforward to extend the methodology developed here to multi-dimensional panel data

models.1

There are two main motivations for model selection in the above panel setup. First, we usually

can achieve a small mean squared error (MSE) for the estimators of parameters of interest based on

the true model, as shown in our simulation results in Section 3 (see Tables 4A and 4C). Therefore it

is desirable to use the true model for point estimation and inference. In our simulations, we also show

that the MSEs based on the selected model are usually smaller than those based on a single fixed

model by ignoring the true underlying data generating process (DGP). Second, sometimes we may

1For our method discussed below, different identification restrictions, e.g., assuming  = 0 in Model 2 and  = 0

in Model 3, produce identical results.
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be interested in knowing whether the individual/time effects are present, as these effects represent

the unobservable heterogeneity and may have economic meaning. For example, in the wage equation

where  is the hourly wage and  contains variables such as education and working experience,

among others, the individual effects may be thought of as individual’s unobservable ability. We may

be interested in knowing whether the “ability” variable enters the wage equation.

We propose a jackknife or leave-one-out cross-validation (CV) method to select the correct model.2

There are several advantages of our jackknife method in the context of determining fixed effects.

First, the new method is general and easy to implement. It does not require the choice of any tuning

parameter. In all information-criterion-based methods, there is an implicit tuning parameter (e.g., a

Bayesian information criterion (BIC) specifies the penalty term to be proportional to ln ( ) ( )

which works as a tuning parameter). There, to show the consistency of model selection, we often

have the flexibility of choosing alternative tuning parameters. For the procedure based on hypothesis

testing as discussed below, we need to choose the sequence of testing and the nominal level, which

are difficulty to choose in practice. Second, we assume that the cross-section dimension () and

time dimension ( ) pass to infinity simultaneously but allow the relative rate between  and 

to be arbitrary. For example,  can be much slower than  such as  ³ ln ()  Although our

method requires a relatively large  for the asymptotic analysis, it can be applied to the case in

micro-econometrics where  is much smaller than  . Third, our CV method can be applied to

both static and dynamic panel models. We show that when serial correlation and cross-sectional

dependence in the error term are absent or weak, our CV method can choose the correct model with

probability approaching one (w.p.a.1).3 Fourth, we propose a modified CV method that is robust to

strong serial correlation in the static panel models. We show that the modified CV can select the

correct model w.p.a.1. in the presence of strong serial correlation. Fifth, our jackknife method can

be easily extended to nonlinear panels and to multi-level panels where the determination of different

fixed effects is also imperative. Sixth, in our simulations, we show that our jackknife outperforms

other competing methods, such as AIC and BIC in the absence of serial correlation in the error

terms. In the presence of strong serial correlation, only our modified jackknife works well and other

methods, such as jackknife, AIC and BIC, all break down.

In the literature, there exist several tests for testing for the presence of fixed effects in two

2Throughout the paper, we use Jackknife and CV interchangeably. Jackknife is widely used in model selection and

model averaging (see, e.g., Allen (1974), Stone (1974), Geisser (1974), Wahba and Wold (1975), Li (1987), Andrews

(1991), Shao (1993), Burman, Chow and Nolan (1994), Racine (2000), Hansen and Racine (2012), and Lu and Su

(2015)).
3We only allow serial correlation in static panel models. For dynamic panel data models (e.g., panel AR(1) model),

the serial correlation in the error terms (e.g., AR(1) errors) will cause the error terms to be correlated with the lagged

dependent variables. We do not address the endogeneity issue in this paper.
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dimensional panel data models. Most of the tests focus on short static panel models. Let 2

and 2 be the variances of  and  respectively. Under the normality assumption, Breusch and

Pagan (1980, BP hereafter) propose a Lagrange multiplier (LM) test for testing the null hypothesis:

01 : 
2
 = 0 and 

2
 = 0 The BP test can also be applied to test the null hypotheses that02 : 

2
 = 0

(assuming 2 = 0) and that 03 : 
2
 = 0 (assuming 

2
 = 0) (see, e.g., Baltagi, 2013 for a discussion).

Honda (1985) shows that BP test is actually robust to the non-normality and also modifies the test

to a one-sided test. Baltagi, Chang and Li (1992, BCL hereafter) modify the one-side test based

on the results of Gourieroux, Holly and Monfort (1982). BCL also propose conditional LM tests

for testing 04 : 
2
 = 0 (allowing 2  0) and 05 : 

2
 = 0 (allowing 2  0). Moulton and

Randolph (1989) consider the ANOVA F-test. All the tests discussed above assume that the error

terms {  = 1  } are not serially correlated. Bera, Sosa-Escudero, and Yoon (2001) propose
an LM test that allows serial correlation in the error term. Recently, Wu and Li (2014) propose

Hausman-type tests for testing 01 04 and 05 by comparing the variances of the error terms at

different robust levels. Wu and Zhu (2012) extend the Hausman-type tests to short dynamic panel

models.

Potentially, these tests can be used to determine the correct model. For example, we can test

01 04 and 05 sequentially. However, there are several limitations of the approach based on the

hypothesis testing. First, to determine the correct model, three separate tests need to be implemented

sequentially. This involves the multiple testing issue and it is unclear how to choose an appropriate

nominal level.4 In addition, in finite samples, it could occur that 01 is rejected, while neither 04

nor 05 is rejected, in which case it is difficult to decide the correct model. Second, the existing

tests are designed for short panels (i.e.,  is fixed), and it is unclear how the tests behave when 

also goes to infinity. We consider large panels where  and  go to infinity simultaneously and we

allow the relative rates of  and  to be arbitrary. Third, except Wu and Zhu (2012), most existing

tests do not apply to dynamic panel models, i.e., the regressors cannot contain any lagged dependent

variables.

Alternatively, we can consider certain information criteria (IC) such as AIC and BIC. However, to

the best of our knowledge, there is no theoretical analysis of AIC or BIC in the context of determining

fixed effects in panel data. When all four models are allowed, a careful analysis indicates that AIC

is always inconsistent and BIC is consistent in the special case where  and  pass to infinity at the

same rate. In Monte Carlo simulations we compare our jackknife method with AIC and BIC, and

find that our jackknife method generally outperforms this IC-based approach.

In this paper, we only focus on the consistency of model selection and do not address the issue

4There is a large literature on the multiple testing issue for controlling the family-wise error rate (FWER). See, e.g.,

Romano, Shaikh and Wolf (2010) for a review. However, to the best of our knowledge, there is no discussion on how

to address this issue in the context of determining fixed effects.
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of post-selection inference. As is well known in the literature, usually post-selection inference is not

uniformly valid (see, e.g., Leeb and Pötscher (2005)). This is a general and challenging question in

the model selection literature. Despite its importance, it is beyond the scope of this paper to provide

a thorough theory on uniform inference.

The rest of the paper is structured as follows. In Section 2, we propose the jackknife and the

modified jackknife method and study their asymptotic properties. Section 3 reports Monte Carlo

simulation results and compares our new methods with IC-based methods for both static and dynamic

panel data generating processes. In Section 4, we provide three empirical applications. In the first

application, we study the crime rates in North Carolina and find that Model 4 is the correct model.

The second application is about the determinants of saving rates across countries and our methods

select Model 2. In the third application, we investigate the relationship between guns and crime rates

in the U.S. and we determine that Model 4 is the correct model. Section 5 concludes. The proofs of

the main results and some additional results are relegated to the online supplement.

Notation. For an× real matrix  we denote its transpose as 0 and its Frobenius norm as kk
(≡ [tr(0)]12) where ≡ means “is defined as”. Let  ≡  (0)−10 and  ≡  −  where

 denotes an× identity matrix. When  = {} is symmetric, we use max () and min () to
denote its maximum and minimum eigenvalues, respectively. The operator

−→ denotes convergence

in probability. We use ( )→∞ to denote that  and  pass to infinity simultaneously.

2 Methodology and Asymptotic Theory

In this section, we first introduce the jackknife method to determine individual or time effects in

panel data models and then study the consistency of our jackknife estimator. To allow for strong

degree of serial correlation we also propose a modified jackknife criterion function and justify its

asymptotic validity.

2.1 Methodology

Let  = (1   )
0 and  = (01  0)

0
 Define    and  analogously. To facilitate the

presentation, we define the following dummy matrices:

 =

⎛⎝ −1
−0−1

⎞⎠⊗    =  ⊗
⎛⎝ −1
−0−1

⎞⎠  and  = () 

where  is an × 1 vector of ones for any integer  ≥ 1 To unify the notation, we write

(1) =  (2) = ()  
(3) = ()  and (4) = () 
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We use 
()0
 to denote a typical row of () such that () = (

()
11   

()
1   

()
1   

()
 )

0 for

 = 1 2 3 4 Similarly, we use 0 
0
 and 0 to denote a typical row of   and 

respectively. Then we can rewrite Models 1-4 as follows:

Model 1:  = 0 +  ≡ (1)0(1) + 

Model 2:  = 0 + 0 +  ≡ (2)0(2) + 

Model 3:  = 0 + 0 +  ≡ (3)0(3) + 

Model 4:  = 0 + 0 + 0 +  ≡ (4)0(4) + 

where  = (1  −1)0   = (1  −1)0 (1) =  (2) =
¡
0 0

¢0
 (3) =

¡
0 0

¢0
 and

(4) = (0 0 0)0 Note that we have imposed the identification conditions in (1.1)-(1.3) for Models

2-4 in the above representation. In matrix notation, we can write these models simply as

Model 1:  =  +  = (1)(1) + 

Model 2:  =  ++  = (2)(2) + 

Model 3:  =  ++  = (3)(3) + 

Model 4:  =  +++  = (4)(4) + 

Note that Model 1 is nested in Models 2-4, both Models 2 and 3 are nested in Model 4, and0
 = 0

These observations greatly simplify the asymptotic analysis in this paper.

2.1.1 Jackknife without bias correction

The OLS estimator of () based on all observations {( () ) : 1 ≤  ≤  1 ≤  ≤ } is given by

̂
()

=
³
()0()

´−1
()0 for  = 1 2 3 4 (2.1)

We also consider the leave-one-out estimator of () with the ( )th observation deleted:

̂
()
 =

³
()0() − 

()
 

()0


´−1 ³
()0 − 

()
 

´
for  = 1 2 3 4 (2.2)

where  = 1   = 1   . Define the out-of-sample predicted value of  as ̂
()
 = ̂

()0
 

()
 

Our jackknife method is based on the following leave-one-out CV function

 () =
1



X
=1

X
=1

³
 − ̂

()


´2
for  = 1 2 3 4 (2.3)

Let

̂ = argmin
1≤≤4

 ()  (2.4)

Under some regularity conditions, we will show that w.p.a.1, ̂ is given by  when Model  is the

true model.
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2.1.2 Jackknife with bias correction

It is well known that when  is only sequentially exogenous, ̂
(2)
and ̂

(4)
and their jackknife versions

are asymptotically biased because of the presence of the individual fixed effects in Models 2 and 4. It

is worthwhile to examine the jackknife method when we construct the out-of-sample predicted value

based on the bias-corrected versions of the parameter estimators in Models 2 and 4.

Let 1


()
1 denote the leading asymptotic bias of the least squares dummy variable (LSDV) es-

timator of  in Model  It is well known that 
()
1 = 0 for Models 1 and 3 and 

()
1 is  (1) for

Models 2 and 4. Therefore, there is no need for bias correction in Models 1 and 3 and we focus on the

bias correction in Models 2 and 4. Let ̂
()
1 denote an estimator of 

()
1 in Model  for  = 2 4 For

example, ̂
()
1 can be obtained by the half-panel jackknife method of Dhaene and Jochmans (2015).

See Arellano and Hahn (2007) and Fernandez-Val and Weidner (2018) for a review. In the following

study, we consider two scenarios for the bias estimator: (1) ̂
()
1 =  (1) for  = 2 4 and (2)

̂
()
1 =  (1) and

√
 1


(̂
()
1 − 

()
1 ) =  (1) for  = 2 4 Note that Scenario (2) requires that

the full correction of the bias so that it does not contribute to the asymptotic distribution. This

typically puts some restrictions on the relative rates at which  and  pass to infinity.

To proceed, we first define the bias-corrected (BC) jackknife estimators in Models 2 and 4.

Model 2. By leaving out the ( )th observation, the leave-one-out estimator of (2) = (0 0)0 is

̂
(2)
 ≡ (̂

(2)0
1  ̂

(2)0
 )

0 =
³
(2)0(2) − 

(2)
 

(2)0


´−1
((2)0 − 

(2)
 )

where we can also write ̂
(2)
 as follows:

̂
(2)
 =

¡
0
 − 

0


¢−1 h
0
( −̂

(2)
1)− ( − 0̂

(2)
1)

i


The BC version of ̂
(2)
 ≡ (̂

(2)0
1  ̂

(2)0
 )

0 is given by ̆
(2)
 ≡ (̆

(2)0
1  ̆

(2)0
 )

0 where

̆
(2)
1 = ̂

(2)
1 −

1


̂
(2)
1 

̆
(2)
 =

¡
0
 − 

0


¢−1 h
0
( −̆

(2)
1)− ( − 0̆

(2)
1)

i
= ̂

(2)
 − 

1


̂
(2)
1 

where  =
³
0
 − 

0


´−1
[0

 − 
0
]  That is,

̆
(2)
 =

⎛⎝ ̆
(2)
1

̆
(2)


⎞⎠ = ̂
(2)
 −

⎛⎝ 



⎞⎠ 1


̂
(2)
1 ≡ ̂

(2)
 − 

(2)

  (2.5)

Then the out-of-sample predictive value of  based on Model 2 is given by ̆
(2)
 = 

(2)0
 ̆

(2)
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Model 4. Let  =
¡
0 0

¢0
 By leaving out the ( )th observation, the leave-1-out estimator of

(4) = (0 0)0 is

̂
(4)
 ≡ (̂

(4)0
1  ̂

(4)0

)0 =

³
(4)0(4) − 

(4)
 

(4)0


´−1
((4)0 − 

(4)
 )

where we can also write ̂(4)

= (̂

(4)0
  ̂

(4)0
 )

0 as follows:

̂(4)

=
¡
0
 − 

0


¢−1 h
0
( −̂

(4)
1)− ( − 0̂

(4)
1)

i


The BC version of ̂
(4)
 ≡ (̂

(4)0
1  ̂

(4)0

)0 is given by ̆

(4)
 ≡ (̆

(4)0
1  ̆

(4)0

)0 where

̆
(4)
1 = ̂

(4)
1 −

1


̂
(4)
1 

̆(4)


=
¡
0
 − 

0


¢−1 h
0
( −̆

(4)
1)− ( − 0̆

(4)
1)

i
= ̂(4)


− 

1


̂
(4)
1 

where  =
³
0
 − 

0


´−1
[0

 − 
0
]  That is,

̆
(4)
 =

⎛⎝ ̆
(4)
1

̆(4)


⎞⎠ = ̂
(4)
 −

⎛⎝ 



⎞⎠ 1


̂
(4)
1 ≡ ̂

(4)
 − 

(4)

  (2.6)

Then the out-of-sample predictive value of  based on Model 4 is given by ̆
(4)
 = 

(4)0
 ̆

(4)
 

In the above procedure, we correct ̂
()
 for the same bias estimator 1


̂
()
1 for simplicity as all of

these  jackknife estimates differ only in one observation. Based on the BC version ̆
()
1 of ̂

()
1 

we obtain the updated estimators of the fixed effects in Model  = 2 4

For Models 1 and 3 with  = 1 3, we can define ̆
()
 = ̂

()
 and the corresponding out-

of-sample prediction of  is given by ̆
()
 = 

()0
 ̆

()
 . The “bias-corrected” jackknife (or CV)

objective function for Model  is then given by

  () =
1



X
=1

X
=1

³
 − ̆

()


´2
 (2.7)

Let

̆ = argmin
1≤≤4

  ()  (2.8)

Under some regularity conditions, we will show that w.p.a.1, ̆ is given by  when Model  is the

true model.

Remark 1. In panel data models, when the regressors are not strictly exogenous, bias-correction

is typically needed for the estimation and inference of parameters in Models 2 and 4 unless  → 0

as ( ) → ∞. One paramount example is the dynamic panel models, although this can happen
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with static panel models too. There is a large literature on the bias-correction for estimation and

inference in panel data models; see Arellano and Hahn (2007) and Fernandez-Val and Weidner (2018)

for a review. Here our purpose is to select the correct model consistently but not to conduct the

inference. We will show that the consistency of our jackknife method does not depend on whether

the parameter estimators are bias corrected (BC) or not. In fact, as it shall be clear momentarily,

the asymptotic validity of the non-BC version jackknife only requires both  and  pass to infinity

but does not restrict the relative rates at which they pass to infinity. In contrast, the BC version of

jackknife shall put some rate restrictions on  and 

Remark 2. Here we focus on the determination of whether the individual effects, time effects,

both, or neither should enter the model from the out-of-sample predictive power of these effects. Even

though we treat either effects as fixed parameters to be estimated and allow them to be correlated

with the regressors in , they can be either fixed effects or random effects for subsequent estimation

and inference. So far, our jackknife method can only tell whether either the individual effects or time

effects are present or not, but cannot tell whether they are random or fixed effects.5 Note that even

in a random effects model, we have the issue of which effects should be included in the model. For

example, in an experimental setting where the key regressor is randomized and random effect models

are adopted, we still need to consider whether we should include individual or time effects (or both)

for the efficiency consideration. Our method provides a practical solution. In a setting where it is

unclear whether we should use random or fixed effects, we may implement a two-step procedure. In

the first step, we apply our method to determine whether the individual or time effects should be

included in the model. In the second step, we apply the Hausman-Wu type test (see, e.g., Hausman

(1978) and Hausman and Taylor (1981)) to determine whether the effects are “random” or “fixed”.

2.2 Asymptotic theory under weak serial and cross-sectional correlations

In this section we first state some basic assumptions that underline our asymptotic analysis and then

study the asymptotic properties of ̂ and ̆

2.2.1 Basic Assumptions

Let ̄· = −1
P

=1  ̄· = −1P
=1  and ̄·· = ( )−1

P
=1

P
=1  Let ̄· ̄· and ̄·· be

defined analogously. Define

̂ =
1


 0 and ̂

=
1


 0

 for  =   and 

5As suggested by an anonymous referee, we may be able to construct two different CV criteria for the fixed effect

model and random effect model separately. In principle, the value of CV based on the true model (either random effect

or fixed effect) should be minimal, therefore we could distinguish whether the effects are “random” or “fixed”. We leave

the detailed analysis of this approach for future research.
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Let  denote a generic large positive constant whose value may vary across lines. To proceed, we

make the following set of assumptions.

Assumption A.1. (i) () = 0 max1≤≤1≤≤ (4) ≤  and 1


P
=1

P
=1 

2


→ ̄2  0

(ii) max1≤≤1≤≤  kk4 ≤ 

(iii) ̄·· = 

¡
( )−12

¢
and 1


 0 = 

¡
( )−12

¢
.

(iv) There exist positive constants  and ̄ such that 
³
 ≤ min

³
̂

´
≤ max

³
̂
´
≤ ̄

´
→ 1 for  =   and 

(v) 1


P
=1

P
=1  =  (1) and

1


P
=1

P
=1  =  (1) when Model 2, 3, or 4 is true

and applicable.

Assumption A.2. (i) 


P
=1 (̄·)

2 → ̄21  0

(ii) 


P
=1 (̄·)

2 → ̄22  0

(iii) 1


P
=1 ̄·̄· = 

¡
−1 + ( )−12

¢


(iv) 1


P
=1 ̄·̄· = 

¡
−1 + ( )−12

¢


Assumption A.3. (i) If Model 2 is the true model, there exist positive constants  and 

such that

1



X
=1

X
=1

h
 − 0

¡
 0

¢−1
 0

i2 →   0 and (2.9)

1



X
=1

X
=1

∙
 − 

(3)0


³
(3)0(3)

´−1
(3)0

¸2
→ 

 0 (2.10)

(ii) If Model 3 is the true model, there exist positive constants  and 
such that

1



X
=1

X
=1

h
 − 0

¡
 0

¢−1
 0

i2 →   0 and (2.11)

1



X
=1

X
=1

∙
 − 

(2)0


³
(2)0(2)

´−1
(2)0

¸2
→ 

 0 (2.12)

(iii) If Model 4 is the true model, there exist positive constants   
 and 

such that

1



X
=1

X
=1

h
 +  − 0

¡
 0

¢−1
 0 (+)

i2 →   0 (2.13)

and both (2.10) and (2.12) hold.

Assumptions A.1(i)-(ii) impose weak moment conditions on {} and {}  which are frequently
assumed in the literature. The fourth-order moment conditions on {} and {} imply that
1



P
=1

P
=1 kk2 =  (1) and max1≤≤1≤≤ kk =  (( )14) by Markov and Jensen
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inequalities and the union bound. Assumption A.1(iii) is also weak and commonly imposed in panel

data models in the absence of endogeneity. In particular, we permit  to contain lagged depen-

dent variables so that dynamic panel data models are allowed. Assumption A.1(iv) specifies the

usual identification conditions for the OLS or fixed effects (FE) estimation of Models 1-4. For ex-

ample, the condition that min(̂) is bounded below from 0 requires that  should not contain

any time-invariant regressor beyond a constant term; it is allowed to contain a constant term be-

cause we have imposed the identification constraint that
P

=1  = 0 Similarly, the condition that

min(̂
) is bounded below from 0 requires that  should not contain any individual-invariant

regressor beyond a constant term; it is allowed to contain a constant term because we have imposed

the identification constraint that
P

=1  = 0 On the surface, this condition rules out the inclusion

of any time-invariant regressor in Model 2, individual-invariant regressor in Model 3, and both types

of regressors in Model 4. If  contains such regressors, they should be removed from Models 2-4

correspondingly and then we can redefine 
()
 for  = 2 3 4 with such regressors removed. For

example, if  contains a time-invariant regressor other than the constant term, say, , then  will

be omitted from Models 2 and 4 in the estimation procedure, but still kept in Models 1 and 3. The

omission of  in Models 2 and 4 will not cause the endogenous problem, as its effect will be captured

by the individual effects in Models 2 and 4, which are allowed to be correlated with the other regres-

sors in . So the asymptotic analysis below will continue to hold. Assumption A.1(v) essentially

imposes conditions on the interactions between the idiosyncratic error terms and the individual and

time effects, whenever applicable, in Models 2-4. A sufficient condition for it to hold is that both

{} and {} have zero mean and follow a version of weak law of large numbers. The zero

mean condition is commonly assumed in the panel data literature. Note that we allow the individual

effects  and time effects  to be random in the true model (if present) even if we treat them as

fixed parameters in the estimation procedure.

Assumption A.2(i) requires that {  ≥ 1} be weakly serially dependent such that 1


P
=1

P
=1P

=1 () has a finite limit. For example, the latter condition is satisfied by the Davydov in-

equality if {  ≥ 1} is strong mixing with finite (2 + )−th moment and mixing coefficients  (·)
such that  () = − with min1≤≤   (2 + ) ; see, e.g., Bosq (1998, pp.19-20) or the online

supplement of Su, Shi, and Phillips (2016). Similarly, Assumption A.2(ii) requires that {  ≥ 1} be
weakly cross-sectionally dependent such that 1



P
=1

P
=1

P
=1 () has a finite limit. As-

sumption A.2(iii)-(iv) can be verified under both weak serial and cross-sectional correlations by the

Chebyshev inequality and it is easily met in the absence of both serial and cross-sectional correlations.

In the online supplement, we demonstrate that the primitive conditions to ensure Assumption A.2(iii)-

(iv) are: (i) max1≤≤ 
°°° 1 P

=1

P
=1 

∗


°°°2 ≤  (ii) max1≤≤ 
°°° 1 P

=1

P
=1 

∗


°°°2 ≤ 

and (iii) 1


P
=1

P
=1

P
=1

P
=1 | ()| ≤  where ∗ =  −  ()  Analogous condi-
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tions are frequently assumed in the panel data literature to control weak serial and cross-section

dependence; see, e.g., Bai and Ng (2002). It is worth mentioning that ̄21 = ̄2 if there is no

serial correlation among {  ≥ 1}  and ̄22 = ̄2 if there is no cross-sectional correlation among

{  ≥ 1} When serial correlation is present, ̄21 is generally different from ̄2; when cross-sectional

correlation is present, ̄22 is generally different from ̄2

Assumption A.3 specifies conditions to ensure that the underfitted or misspecified models will

never be chosen asymptotically. The interpretations of the conditions in (2.9)-(2.13) are easy. For

example, when Model 2 is the true model, Models 1 and 3 are underfitted and misspecified, respec-

tively. In this case, (2.9) and (2.10) require that the individual effects  when stacked into an

 × 1 vector, should not lie in the column space spanned by the regressor matrix  in Model 1

and (3) in Model 3, respectively. Similarly, when Model 4 is the true model, Models 1, 2, and 3

are all underfitted. In this case, (2.13) requires that  +  when stacked into an  × 1 vector,
should not lie in the column space spanned by the regressor matrix  in Model 1, (2.12) requires

that the time effects  should not lie in the column space spanned by (2) in Model 2, and (2.10)

requires that the individual effects  should not lie in the column space spanned by 
(3) in Model 3.

In short, Assumption A.3 rules out asymptotic multicollinearity between the individual/time effects

and the regressors.

It is worth mentioning that we allow for both cross-sectional and serial dependence of unknown

form in {( )} despite the fact that some of the results derived below need further constraints.
We do not need identical distributions or homoskedasticity along either the cross-section dimension

or the time dimension, neither do we need to assume mean or covariance stationarity along either

dimension. In this sense, we say our results below are applicable to a variety of linear panel data

models in practice.

2.2.2 Asymptotic consistency of the jackknife without bias correction

Theorem 2.1 below studies the asymptotic property of ̂ based on the non-BC jackknife objective

function.

Theorem 2.1 Suppose that Assumptions A.1-A.3 hold. Suppose that max
¡
̄21 ̄

2
2

¢
 2̄2 where

̄21 ̄
2
2 and ̄2 are defined in Assumptions 2(i), 2(ii), and 1(i), respectively. Then

 (̂ =  | Model  is the true model)→ 1 as ( )→∞ for  = 1  4

Remark 3. The proof of Theorem 2.1 is given in Appendix A of the online supplement. To

appreciate the above result, we outline the main idea that underlines our proof. When Model 1

is true, all the other models are overfitted, and we can show that  ( (1)   ()) → 1 for

12



 = 2 3 4 by showing that

 [ (2)− (1)]
→ 2̄2 − ̄21  0

 [ (3)− (1)]
→ 2̄2 − ̄22  0

( ∧  ) [ (4)−  (1)]
→   0

where  = 2 (1 + ) ̄2−
¡
̄21 + ̄22

¢
1 {1 ≥ 1}−

¡
̄21 + ̄22

¢
1 {1  1}   = lim( )→∞

¡


∧ 



¢


1 = lim( )→∞ 

, and ∧  = min ( ) When Model 2 is true, Models 1, 3 and 4 are underfitted,

misspecified and overfitted, respectively, and we can show that  ( (2)   ()) → 1 for  =

1 3 4 by showing that

 (1)−  (2)
→   0

 (3)−  (2)
→ 

 0

 [ (4)− (2)]
→ 2̄2 − ̄22  0

When Model 3 is true, Models 1, 2 and 4 are underfitted, misspecified and overfitted, respectively,

and we can show that  ( (3)   ())→ 1 for  = 1 2 4 by showing that

 (1)−  (3)
→   0

 (2)−  (3)
→ 

 0

 [ (4)−  (3)]
→ 2̄2 − ̄21  0

WhenModel 4 is true, all other models are underfitted, and we can show that  ( (4)   ())→
1 for  = 1 2 3 by showing that

 (1)−  (4)
→   0

 (2)− (4)
→ 

 0

 (3)−  (4)
→ 

 0

As a result,  () has the minimal value among { ()   = 1  4} asymptotically only when
Model  is the true model. Note that here  () is a measure of out-of sample predictive power

and its dominant and first order terms are not related to the mean squared error (MSE) or bias of the

estimator of  at all. The MSE and bias (if exists) only make a second order contribution (namely,

 (( )−1)  (
−2+( )−1)  (

−2+( )−1) or  (
−2+−2) in Models 1—4, respectively)

to  ()  For example, suppose that the true model is the panel AR(1) without individual or time

effects:  = 0 + 1−1 +  where ’s are uncorrelated along both the individual and time

dimensions with Var() = 2 then the estimators of 1 have leading bias 0, −1+1
 0 and −1+1
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in Models 1—4, respectively, and they share the same asymptotic variance
1−21


 In addition, we can

show that

 (1) = 2 +

¡
( )−1

¢


 (2) = 2 +
1


2 +

¡
( )−1 + −2

¢


 (3) = 2 +
1


2 +

¡
( )−1 +−2¢ 

 (4) = 2 +
1

min ( )
(1 + )2 +

¡
−2 + −2

¢


where terms like  (( )−1)  (
−2+( )−1)  (

−2+( )−1) and  (
−2+−2) reflect

the effect of variance and bias (if exists) of the parameter estimators on  () for  = 1 2 3 4

respectively.

Remark 4. Theorem 2.1 indicates that we can choose the correct model w.p.a.1 as ( )→∞

In other words, our jackknife method can choose the correct model consistently as long as the serial

or cross-sectional correlation among the error terms is not strong enough to overtake the average

noise level as represented by ̄2. As remarked above, the additional condition max
¡
̄21 ̄

2
2

¢


2̄2 would be automatically satisfied in the absence of both serial and cross-sectional correlation

among the idiosyncratic error terms. For simplicity, we can consider the special case where there

is no cross-sectional correlation among the error terms. In this case, ̄22 = ̄2 and the condition

max
¡
̄21 ̄

2
2

¢
 2̄2 becomes ̄

2
1  2̄2 Note that the above result does not have any restriction

on the degree of serial or cross-sectional correlation among {} as long as Assumptions A.1(ii)-(v)
are satisfied. More importantly, we do not need any relative rate condition on how  and  pass

to infinity. In fact, our theory allows  =  (ln) such that our method may be applied to micro

panels when  is typically small in comparison with  .

Remark 5. To see when the above additional condition can be met in Theorem 2.1, consider the

case where {  ≥ 1} follows a covariance-stationary AR(1) process with mean zero and variance 2
for each  and is independently and identically distributed (i.i.d.) along the cross-section dimension.

Let  ∈ (−1 1) denote the AR(1) coefficient. Then by straightforward calculations,





X
=1

 (̄·)2 =
1



X
=1


¡
2
¢
+
2



−1X
=1

X
=+1

 () = 2 +
22


−1X
=1

X
=+1

−

= 2

Ã
1 +

22


−1X
=1


¡
1− −+1

¢
1− 

!
→ 2

µ
1 +

2

1− 

¶
= ̄21

In this case, ̄2 = 2 and ̄21  2̄2 provided   1
3  Similarly, if {  ≥ 1} has mean zero and

variance 2 for each   such that Corr( ) =  for all    for some  ∈ (−1 1) and for some

14



economic or geographic distance measure  between units  and  then





X
=1

 (̄·)2 = 2

⎛⎝1 + 2



X
1≤≤



⎞⎠
and ̄22  2̄2 provided lim→∞ 2



P
1≤≤   1

3 
6 We can also consider a stationary -

dependent process for {  ≥ 1} with mean zero and variance 2 for each  (assuming i.i.d. in the

cross-section dimension). In this case, we can show that

̄21 = lim
→∞

⎛⎝2 +
2( − 1)



X
=1

Cov (1 +1)

⎞⎠ =

⎡⎣1 + 2 X
=1

Corr (1 +1)

⎤⎦2
So the condition ̄21  2̄

2
 is satisfied if

P
=1Corr(1 +1) 

1
2  Again, this means that we cannot

have too large time-series correlation. Note that this condition is always satisfied for an invertible

MA(1) process:  =  + −1 where ||  1 and {  ≥ 1} is a white noise with mean 0 and
variance 2, as in this case,

̄21 = lim
→∞

µ
1 +

 − 1


2

1 + 2

¶
2  2

2


where 2 = (1 + 2)2

The above calculations indicate that the serial or cross-sectional correlation among the error

terms cannot be moderately large in order for our jackknife method to work. In the next subsection,

we consider the relaxation of such conditions. Since there is typically no natural ordering among the

individual units, we focus on the relaxation on the serial dependence along the time dimension and

propose a modified jackknife criterion function to handle strong or moderately large degree of serial

correlation.

2.2.3 Asymptotic consistency of the jackknife with bias correction

Theorem 2.2 below studies the asymptotic property of ̆ based on the BC jackknife objective function.

Theorem 2.2 Suppose the conditions in Theorem 2.1 hold. Suppose that one of the following set

of conditions holds: (1) ̂
()
1 =  (1) for  = 2 4 and  2 =  (1)  or (2) ̂

()
1 =  (1) √

 1

(̂
()
1 − 

()
1 ) =  (1) for  = 2 4 and  3 =  (1). Then

 (̆ =  | Model  is the true model)→ 1 as ( )→∞ for  = 1  4

6Of course, we can consider general form of cross-sectional dependence based on certain geographic or economic

distance measure. For example, we can follow the lead of Conley (1999), Kelejian and Prucha (2007), Kim and Sun

(2013), Lee and Robinson (2016) and Su and Qu (2017) and specify the cross-section correlation between  and 

as the diminishing function of the economic distance between units  and  : Corr( ) =  ()  where  is a

decreasing function. For example, Chen et al. (2012, p.75) specify the cross-section correlation between  and  to

be |−| for 1 ≤   ≤  In this case, the last condition requires   1
3
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Remark 6. The proof of Theorem 2.2 is given in the online Appendix. Remark 3 after Theorem

2.1 continues to hold with  () replaced by   () under the additional conditions stated in

the above theorem. Because of the presence of the BC terms in the definitions of ̆
(2)
 and ̆

(4)
 

special attention must be paid to assess the influence of these terms. Theorem 2.2 suggests that if

we only require the estimated bias 1

̂
()
1 be of the same order as the leading bias term 1



()
1 in

Model  = 2 4 the consistency of the BC jackknife or CV method would require  2 =  (1) 

as is typically assumed in the literature on bias correction in panel data models. On the other

hand, if we also require that after bias correction, the bias term does not contribute to the first

order asymptotic distribution of the bias-corrected LSDV estimators in Models 2 and 4, Theorem

2.2 suggests that we can relax the above relative rate condition on ( ) to  3 =  (1) and

continue to ensure the consistency of the BC jackknife method. In our simulations (Sections 3.3 and

3.4) and an empirical application (Section 4.2), we implement both CV methods for dynamic models.

Our simulations suggest that bias correction may or may not help with the model selection, which

depends on the true model. Given that no method dominates the other, in practice, to determine

the correct model, we can try both CV methods (with and without bias-correction) as a simple way

to conduct robustness checks. Of course, if the regressors are not strictly exogenous, we generally

need to implement the bias-correction for estimation and inference after the model selection.

Remark 7. A close examination of the proof of Theorem 2.2 suggests some meaningful findings.

First, the bias correction always plays a second order role in the model selection procedure. When

a model is underfitted, the model specification bias that is of exact order  (1) would dominate the

bias correction that is of exact order 
¡
−1

¢
in Models 2 or 4. When a model is overfitted, the

contributions of the bias correction are reflected through the terms 1 through 8 in the proof.

Let  and  
 denote  () and   ()  respectively, when Model  is the true model.

Specifically, we have demonstrated the following results:

1. When Model 1 is true so that Models 2—4 are all overfitted: The contribution of the bias correc-

tion to  [ 
12− 

11] is given by  [1 + 22] =  (
−1+ ( )−12) (see equation (A.19)

in Appendix A), which is asymptotically negligible in comparison with plim→∞ [12 −
11] = 2̄

2
 − ̄21  0 Similarly, the contribution of the bias correction to ( ∧  )[ 

14 −
 

11] is given by ( ∧  ) [3 + 24] =  (
−1) (see equation (A.24) in Appendix A), which

is asymptotically negligible in comparison with plim→∞( ∧  )[14 − 11] =   0

Recall that no bias correction is needed for Model 3.

2. When Model 2 is true so that only Model 4 is overfitted: The contribution of the bias correction

to  [ 
24 −  

22] is given by

 [5 + 26] = 

¡
−1(−1 + −1)

¢
=  (1)
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if ̂
()
1 =  (1) for  = 2 4 and  2 =  (1)  and given by

 [5 + 26] = 

³
( )−1 +−12−32

´
=  (1)

if ̂
()
1 =  (1) 

√
 1


(̂
()
1 − 

()
1 ) =  (1) for  = 2 4 and  3 =  (1)  [See equations

(A.31) and (A.32) in Appendix A.] In either case, the contribution is asymptotically negligible

in comparison with plim→∞ [24 − 22] = 2̄
2
 − ̄22  0

3. When Model 3 is true so that only Model 4 is overfitted: The contribution of the bias correction

to  [ 
34 −  

33] is given by  [7 + 28] = 

¡
−1 + −1

¢
 which is asymptotically

negligible in comparison with plim→∞ [34 − 33] = 2̄
2
 − ̄21  0

Second, the above discussions also indicate that the additional conditions stated in Theorem 2.2 are

only required to show that Model 2 can be correctly chosen w.p.a.1 when it is the true model. In

other words, these additional conditions will ensure that the overfitted model (Model 4) will not be

selected in large samples when Model 2 is true.

2.3 A modified jackknife criterion function

In this subsection, we consider the panel data model with serially correlated errors and propose a

modified version of the jackknife criterion function. Note that if a generic ARMA process is invertible,

it can be written as an AR(∞) process and well approximated by an AR() process for sufficiently
large  For this reason, we assume that the error process {  ≥ 1} can be approximated by an
AR() process:

 =
∞X
=1

− +  =

⎛⎝ X
=1

−

⎞⎠+
⎛⎝ ∞X

=+1

− + 

⎞⎠
= ρ0−1 +  (2.14)

where  = 1    =  + 1   ρ =
¡
1  

¢0
is a vector of unknown parameters, −1 =

(−1  −)0,  =  +   is an innovation term, and  =
P∞

=+1 − signifies the

approximation error. If {  ≥ 1} is an autoregressive process of order  or less, then  = 0 and

 = 

Let ̂
()
 = − ̂

()0

()
 for  = 1 2 3 4 We propose to estimate the AR() coefficients based

on the residuals from Model 4 (the largest model), i.e., we run the following regression

̂
(4)
 = 1̂

(4)
−1 + 2̂

(4)
−2 + + ̂

(4)
− + ̃ = ρ0̂(4)−1 + ̃ (2.15)

where  = 1   =  + 1   ̂
(4)
−1 = (̂

(4)
−1  ̂

(4)
−)

0 and ̃ = (̂
(4)
 − ) + ρ0(−1 −

̂
(4)
−1) +  Let ρ̂ =

¡
̂1 ̂2 ̂

¢0
denote the OLS estimator of ρ in the above regression. Let
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−1 = (−1  −)

0 and ̂()
−1 = (̂

()
−1  ̂

()
−)

0 We modify the CV criterion function as

 ∗ () =
1

 ( − )

X
=+1

X
=1

h³
 − ρ̂0−1

´
−
³
̂
()
 − ρ̂0̂()−1

´i2
 (2.16)

Let

̃ = argmin
1≤≤4

 ∗ ()  (2.17)

Ideally, when Model  is correctly specified, ( − ρ̂0−1)− (̂
()
 − ρ̂0̂()−1) will approximate the

true innovation term . As long as there is no serial correlation among {} or the serial correlation
is weak, ̃ is given by  w.p.a.1. when Model  is the true model.

Let

Φ () = 1− 1− 2
2 − · · ·− 



where  is the lag operator. Similarly, Φ (1) = 1 − 1 − 2 − · · · −  Let ̆
()
 = Φ ()

()


for  =  + 1   and  = 1 2 3 4 Note that ̆
(1)
 = Φ () ≡ ̆ Let ̄· = −1

P
=+1  for

 = 1  and ̄· = −1P
=1  for  = +1   , where  = − Let −1 = (−1  −)0

and Γ =
1



P
=1

P
=+1 −1

0
−1

To state the next result, we add the following set of assumptions.

Assumption A.4. (i)
P∞

=1 
 6= 0 for any complex number  with || ≤ 1

P∞
=1

¯̄

¯̄
 ∞

32
¡
−1 + −1

¢
=  (1)  and min(Γ) is bounded away from zero in probability as ( )→∞

(ii)  () = 0 max1≤≤+1≤≤ 
¡
4
¢ ≤  and 1



P
=1

P
=+1 

2


→ ̄2  0

(iii) 1


P
=1

P
=+1  = 

¡
( )−12

¢
for  = 1 and ̆ and

°°° 1


P
=1

P
=+1 −1

°°° =


¡
()−12

¢


(iv) 1


P
=1

P
=+1  =  (1) and

1


P
=1

P
=+1 [Φ ()] =  (1) when Model 2,

3, or 4 is true and applicable.

Assumption A.5. (i)



P
=1 (̄·)

2 → ̄21  0

(ii) 


P
=+1 (̄·)

2 → ̄22  0

(iii) 1


P
=1 ̄·̄· = 

¡
−1 + ( )−12

¢


(iv) 1


P
=+1 ̄·̄· = 

¡
−1 + ( )−12

¢


Assumption A.6. (i) If Model 2 is the true model, there exist positive constants ∗ and ∗

such that

1



X
=1

X
=+1

h
Φ (1) − ̆0

¡
 0

¢−1
 0

i2 → ∗  0 and (2.18)

1



X
=1

X
=+1

∙
Φ (1) − ̆

(3)0


³
(3)0(3)

´−1
(3)0

¸2
→ ∗

 0 (2.19)
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(ii) If Model 3 is the true model, there exist positive constants ∗ and ∗
such that

1



X
=1

X
=+1

h
Φ () − ̆0

¡
 0

¢−1
 0

i2 → ∗  0 and (2.20)

1



X
=1

X
=+1

∙
Φ () − ̆

(2)0


³
(2)0(2)

´−1
(2)0

¸2
→ ∗

 0 (2.21)

(iii) If Model 4 is the true model, there exist positive constants ∗  
∗


 and ∗
such that

1



X
=1

X
=+1

h
(Φ (1) +Φ ())− ̆0

¡
 0

¢−1
 0 (+)

i2 → ∗  0 (2.22)

and both (2.19) and (2.21) hold.

Assumption A.4(i) rules out unit root or explosive processes for {  ≥ 1}  Assumption A.4(ii)-
(iv) parallels Assumption A.1(i), (iii) and (v). Assumption A.5(i)-(iv) parallels Assumption A.2(i)-

(iv). Assumption A.6(i)-(iii) is analogous to Assumption A.3(i)-(iii). In the online supplement

(Section C.2), we verify Assumptions A.4 and A.5 under a set of sufficient primitive conditions on

{(   )} 

Theorem 2.3 Suppose that Assumptions A.1-A.2 and A.4-A.6 hold. Suppose that max(̄21 ̄
2
2) 

2̄2 Then

 (̃ =  | Model  is the true model)→ 1 as ( )→∞ for  = 1  4

Remark 8. Theorem 2.3 indicates that the modified jackknife criterion function helps us to

select the correct model w.p.a.1 as ( )→∞ under the weak side condition max(̄21 ̄
2
2)  2̄

2
.

Where there is no serial correlation among {  ≥ 1} such that Φ (1) = Φ () = 1 and  = 

then ̄21 = ̄21 = ̄2 = ̄2 and ̄
2
2 = ̄22 This implies that the result in Theorem 2.3 coincides with

that in Theorem 2.1 in this case. If there is no serial or cross-sectional correlation among {} then
̄21 = ̄22 = ̄2 and max(̄

2
1 ̄

2
2)  2̄

2
 is automatically satisfied. More generally, if {  ≥ 1} is

an AR(∞) process, in the online supplement, we show that when →∞ under certain rate condition,

the approximation error (=
P∞

=+1 −) is asymptotically negligible so that ̄
2
1 = ̄22 = ̄2

is always satisfied.

Remark 9. In the above analysis, we run the pooled AR() regression for ̂
(4)
  A close exami-

nation of the proof of Theorem 2.3 indicates that only the consistency of the pooled OLS estimator

ρ̂ is used. Alternatively, one can allow heterogeneity in both the order of autoregression and its

coefficients. In this case, we use  and ρ  = 1   to denote the order and individual coefficients
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in the autoregressive models and run the AR() regression for {̂(4)   ≥ 1} to estimate ρ by ρ̂ for
 = 1   Then we can modify the jackknife criterion function to be

 ∗ () =
1



X
=1

1

 − 

X
=+1

h³
 − ρ̂0−1

´
−
³
̂
()
() − ρ̂0̂()−1

´i2


Accordingly, we can modify Assumptions A.4-A.6 and establish a result similar to that in Theorem

2.3.

Remark 10. Alternatively, we can rewrite the original model by including  lagged  and 

lagged  (excluding the constant) as additional () regressors via the standard Cochrane—Orcutt

procedure. Take Model 4 as an example. Let ̊ be the  excluding the constant term, i.e.,

 = (1 ̊
0
)
0 Correspondingly, let  = (1 ̊

0
)0 Then, Model 4

 = 0 +  +  +  = (1 ̊
0
)(1 ̊0)

0 +  +  + 

can be rewritten as

 =
¡
1− 1 − − 

¢
1 + ̊

0
̊ + 1−1 + + − −

³
1̊

0
̊−1 + + ̊

0
̊−

´
+
¡
1− 1 − − 

¢
 +

¡
 − 1−1 − − −

¢
+ 

= ̃
0
̃ + ̃ + ̃ + 

where ̃ =
³
1 ̊0 −1   − ̊

0
−1  ̊

0
−

´0
 ̃ is the new vector of regression coeffi-

cients, ̃ =
¡
1− 1 − − 

¢
 and ̃ =

¡
 − 1−1 − − −

¢
 With the new regressor ̃

replacing , we can continue to apply the jackknife criterion function  () as in Section 2.1.

Remark 11. As mentioned above, we regard our AR() model as an approximation for the error

process {  ≥ 1} that does not need to follow the AR() process exactly. Note that our original
jackknife method in Section 2.1 works in the presence of weak serial correlation. Hence, here it is

sufficient to reduce and control the serial correlation among {  ≥ 1}  Despite this fact, we need to
choose the value of . In practice there are several approaches. First, we may use a “rule of thumb”

and let  increase with  e.g.,  = b 14c where b 14c is the nearest integer less than or equal
to  14. Alternatively, we can follow Lee, Okui, and Shintani (2018) by setting max = b 14c and
consider a general-to-specific testing procedure based on -statistic until we reject the null. Third,

we may apply the information criteria, such as AIC and BIC, to the residuals obtained from Model

4 (̂
(4)
 ) to determine . For the implementation, see, e.g., Stock and Watson (2012, Section 14.5).

In general, BIC gives a consistent estimator of  and AIC tends to choose a relatively large  See

Section D in the online supplement for more details.

Remark 12. As a referee points out, the standard jackknife (cross-validation) method is orig-

inally designed for i.i.d. observations. For dependent time series data, various modifications have
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been proposed in the literature. For example, Burman, Chow and Nolan (1994) consider a -block

cross-validation function by removing the th observation and the  observations on its either side to

estimate the regression parameter, which simplifies to the usual leave-one-out cross-validation func-

tion when  = 0 Racine (2000) finds that the -block cross-validation is not consistent in general and

proposes to combine Shao’s (1993) solution of -blocking on independent data with Burman, Chow

and Nolan’s (1994) -blocking on dependent data to yield a -block cross-validation for improved

model-selection. Note that the -block cross-validation requires the selection of one tuning parame-

ter () while the -block cross-validation requires the choices of two tuning parameters ( and )

The minimum sample size ( in our notation) in Racine’s (2000) simulations is 100 in order for his

method to work reasonably well. But we usually do not have so many time series observations in the

panel setup. If  is only 5, 10, or at most 50 as in our simulations, we do not know how these alter-

native methods work and whether it is possible to justify their consistency in determining whether

to include the individual or time effects into a panel data model. At the minimum, our modified

jackknife method offers an easy-to-implement alternative solution to handle serial correlation in the

error terms that only demands the choice of a single tuning parameter () in practice.

3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to examine the finite sample performance of our

jackknife method and compare it with various information criteria (IC). We consider the following

three different cases: () static panel models with possibly serially correlated errors, () dynamic panel

models without exogenous regressors and () dynamic panel models with exogenous regressors.

3.1 Implementation

As a comparison, we consider the commonly used information criterion (IC): AIC and BIC, though

to the best of our knowledge, there is no theoretical analysis of AIC and BIC in the context of

determining fixed effects. Here the number of parameters involved depends on  and  and goes to

infinity, thus the standard theory of AIC and BIC is not directly applicable.

For Model   = 1 2 3 4 define the in-sample residual as ̂
()
 =  − ̂

()0

()
  Then AIC

and BIC for Model  are defined respectively as

 () = ln

µ³
̂()

´2¶
+
2()




 () = ln

µ³
̂()

´2¶
+
log ( ) ()




where
³
̂()

´2
= 1



P
=1

P
=1

³
̂
()


´2
and () is the dimension of 

()
 in the th model.

21



Specifically, (1) =  (2) = + − 1 (3) = +  − 1 and (4) = + +  − 2 We also consider
the modified BIC as

2 () = ln

µ³
̂()

´2¶
+
log (log ( )) ()




We choose the model by minimizing the above three ICs.7

For static panel models, we consider CV (defined in (2.3)) and CV∗ (defined in (2.16)). To

take into account the possible serial correlation, we also apply CV to the augmented regression with

additional  lagged  and  lagged  (excluding the constant), as discussed in Remark 10 above.

We denote it as CV∗∗. For CV∗ and CV∗∗, we need to choose the number of lags  As discussed in

Remark 11, there are several data-driven methods. Here we adopt the testing procedure to determine

 with the maximum value of  being b 14c where b 14c is the nearest integer less than or equal to
 14. Other methods, such as “rule of thumb”, AIC and BIC, give similar results. For dynamic panel

models, we do not consider CV∗ and CV∗∗, as serial correlation can cause the endogenous problem

and in general is not allowed in dynamic panel models. As discussed in Section 2.2 above, we also

implement CV with bias-correction for dynamic models, which we denote as CV-BC. We use the half

panel jackknife method (Dhaene and Jochmans (2015)) to conduct bias-correction.

For all the simulations, we consider different combinations of  and  : ( ) = (10 5)  (50 5) 

(10 10)  (50 10)  (10 50) and (50 50)  The number of replications is 1000.

3.2 Static panel models

We consider the following static fixed-effect data generating processes (DGPs):

DGP 1.1:  = 1 +  +  DGP 1.2:  = 1 +  +  + 

DGP 1.3:  = 1 +  +  +  DGP 1.4:  = 1 +  +  +  + 


where  = 1+  + +  and   and  are mutually independent  (0 1) random variables.

The error term  is generated as

 = −1 + 

where  is a  (0 1) random variable, and  takes different values: 0 13  and
3
4 
8 The additional

simulation results for  = 1
4 and

1
2 are reported in Tables E1 and E2 in Section E of the online

supplement, respectively. Here the true models corresponding to DGPs 1.1-1.4 are Models 1-4,

respectively.

7Following the standard analysis on the consistency of IC, we can show the following results: (1)  and 2

are consistent in selecting the individual or time effects under the restrictive condition that  and  pass to infinity

at the same rate; (2) the  is never consistent; and (3) neither  nor 2 is consistent in general when  and

 pass to infinity at different rates.
8Here the error terms are homoskedastic. We have also considered the DGPs with heteroskedasticy and find that

performances are similar. The details are available upon request.
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Tables 1A, 1B, and 1C present the simulation results for  = 0 13  and
3
4  respectively. When

 = 0 i.e., there is no serial correlation in the error term, our CV performs best. For example,

when  = 10 and  = 10 our CV can choose the correct model with a probability close to 95%.

When  is small ( = 5) and  is large ( = 50), the correct rate of our CV is above 90%. Even

when both  and  are small ( = 5 = 10) our CV can achieve a reasonable correct rate above

70%. The performance of AIC is also good and comparable to that of CV. CV∗ and CV∗∗ which

are robust to possible serial correlation, perform slightly worse than CV when  is relatively large

( = 10 or  = 50). The performance of BIC is poor. For example, when the true model is Model

4 and ( ) = (10 50), BIC can only choose the correct model with a probability of 4%. BIC2

outperforms BIC, but still underperforms CV and AIC.

 = 1
3 is an interesting case, as  = 1

3 is the cut-off point for CV to work. In the dis-

cussion following Theorem 2.1, we show that when  = 1
3  ̄

2
1 = 2̄2 thus the key condition

max
¡
̄21 ̄

2
2

¢
 2̄2 is violated. In our proof, we show that in this case, when the true model is

Model 1,  [ (2)− (1)]
−→ 0 and when the true model is Model 3,  [ (4)−  (3)]

−→ 0

This suggests that CV cannot distinguish Model 1 and Model 2 when the true model is Model 1 and

cannot distinguish Model 3 and Model 4 when the true model is Model 3. Our simulations confirm

the theoretical analysis. For example, when the true model is Model 1 and ( ) = (50 50), CV

selects Model 1 and Model 2 with probabilities of 56% and 44%, respectively. In this case, CV, AIC,

BIC and BIC2 all break down. However, both CV
∗ and CV∗∗, which explicitly take serial correla-

tion into account, perform well in large samples, as suggested by our theory. For example, when

( ) = (50 50)  both CV∗ and CV∗∗ can select the correct model with a probability close to 100%.

For this DGP, CV∗ slightly outperforms CV∗∗ as a whole. However, in general, for CV∗ and CV∗∗

to work well, a relatively large  is required.

When the serial correlation is high, such as  = 3
4  the performances of CV, AIC, BIC and

BIC2 are all poor. In general, CV
∗ and CV∗∗ perform well when the sample is large. For this

DGP, CV∗ outperforms CV∗∗ in general. For example, when ( ) = (50 50)  CV∗ can choose

the correct model with a probability close to 100%. However, when the true model is Model 4 and

( ) = (50 50)  CV∗∗ can only choose the correct model with a probability of 45%. Also, when 

or  is small, CV∗ and CV∗∗ can perform poorly. This suggests that when serial correlation is high,

a large sample is required.

To examine the effect of model misspecification, in Table 4A, we compare the mean squared errors

(MSEs) of the estimators of the slope coefficient ( = 1) using the four different models and the model

selected by our CV when  = 09 It is clear that for this DGP, the correct model achieves the smallest

MSE. For example, when the true model is Model 1 and ( ) = (10 10)  the MSE based on Model

9The results for  = 1
3 and

3
4 are avaiable upon request.

23



4 is about 3.5 times as large as that based on Model 1. When  is relatively large, the MSEs based

on our selected models are almost the same as those based on the true models. When  is small,

our model selection can also achieve MSE reduction, compared with say, the largest model, Model

4. Table 4B reports the performance of post-selection inference by presenting the empirical coverage

and length of the 95% confidence intervals (CI). We find that for this DGP, the empirical coverage

and length based on our selected model are similar to those based on the true models, especially

when  is relatively large.

In sum, for static panel models, when there is no serial correlation or serial correlation is low, CV,

CV∗, CV∗∗ and AIC all work well. In the absence of serial correlation, CV is the best performer. When

serial correlation is high, only CV∗ and CV∗∗ work in large samples and CV∗ generally outperforms

CV∗∗ Also it is noted that a relatively large  is required for CV∗ and CV∗∗ to work well in the

presence of high correlation.

3.3 Dynamic panel models without exogenous regressors

We consider the following dynamic panel DGPs:

DGP 2.1:  = 1 + −1 +  DGP 2.2:  = 1 + −1 +  + 

DGP 2.3:  = 1 + −1 +  +  DGP 2.4:  = 1 + −1 +  +  + 


where   and  are mutually independent  (0 1) random variables and  = 3
4  The additional

simulation results for  = 1
4 and

1
2 are reported in Tables E3 and E4 in Section E of the online

supplement, respectively.

Tables 2 reports the simulations results for  = 3
4  For most cases, our CV and CV-BC can select

the correct method with a high probability and dominate other methods. Despite its inconsistency,

AIC performs slightly worse than CV and CV-BC. For example, when the true model is Model 1,

( ) = (10 10), CV, CV-BC and AIC choose the correct model with probabilities of 71%, 85% and

63%, respectively. Between CV and CV-BC, it is unclear which one is dominant. In general, when

the true model is Model 1 or Model 3, CV-BC outperforms CV. Nevertheless, when the true model

is Model 2 or Model 4, CV outperforms CV-BC. The performance of BIC is poor in many cases. For

example, when the true model is Model 2 and ( ) = (50 10)  BIC selects the correct model with

zero probability. The performance of BIC2 is better than that of BIC, but still worse than those of

CV and AIC in general.

Table 4C shows the MSEs of estimators of  based on the four models and the selected model by

CV when  = 3
4 . We consider both the non-bias corrected estimator and bias corrected estimator. For

the bias correction, we adopt the half panel jackknife method as proposed in Dhaene and Jochmans

(2015). For both types of estimators, the estimator based on the true model has the smallest MSE.
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For example, when true model is Model 1 and ( ) = (10 10)  the MSEs of the non-bias corrected

estimator based on Model 4 is about 10 times as large as that based on Model 1, and the MSE of

the bias corrected estimator based on Model 4 is about 5 times as large as that based on Model 1.

The MSEs based on our selected models are close to those based on the true models when  is large.

When  is small, in general, our model selection can also achieve a smaller MSE than a single fixed

model. Table 4D shows that the empirical coverage and length of the 95% CI based on our selected

model are comparable to those based on the true models, especially when  is large.

3.4 Dynamic panel models with exogenous regressors

We consider the following dynamic panel DGPs with 5 exogenous regressors:

DGP 3.1:  = 1 + −1 +
5X

=1

02 + 

DGP 3.2:  = 1 + −1 +
5X

=1

02 +  + 

DGP 3.3:  = 1 + −1 +
5X

=1

02 +  + 

DGP 3.4:  = 1 + −1 +
5X

=1

02 +  +  + 

where 1 = 1+++  and 2 3 4 5    and  are mutually independent

 (0 1) random variables, and  = 3
4  The additional simulation results for  =

1
4 and

1
2 are reported

in Tables E5 and E6 in Section E of the online supplement, respectively.

Table 3 represents the frequency of the model selected for  = 3
4  The simulation results are

similar to those in the dynamic models without exogenous regressors. In general, our CV and CV-

BC perform best, followed by AIC. CV, CV-BC and AIC all can select the correct model with a

high probability, especially when the sample size is large. For example, when ( ) = (50 50) 

the correct probabilities are all close to 100%. Again, between CV and CV-BC, there is no clearly

dominant one. BIC performs poorly when the true model is Model 2 or Model 4. BIC2 outperforms

BIC, but still underperforms CV, CV-BC and AIC.

4 Empirical Applications

In this section we consider three empirical applications that illustrate the usefulness of our method

in selecting individual or time effects in panel data models.
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4.1 Application I: Crime rates in North Carolina

Cornwell and Trumbull (1994) study the crime rates using the panel data on 90 counties in North

Carolina over the period 1981 — 1987. The vector of explanatory variables  includes: (1) the

probability of arrest, measured by the ratio of arrests to offences, (2) the probability of conviction

given arrest, measured by the ratio of convictions to arrests, (3) the probability of a prison sentence

given a conviction, measured by the proportion of total convictions resulting in prison sentences, (4)

the average prison sentence in days, (5) the number of police per capita, (6) the population density,

measured by the county population divided by the county land area, (7) the percentage of young

male, measured by the proportion of the county’s population that is male and between the ages of

15 and 24, and (8− 16) the average weekly wage in the county in the following nine industries: ()
construction, () transportation, utilities and communication, () wholesale and retail trade, ()

finance, insurance and real estate, () services, () manufacturing, () federal government, ()

state government and () local government. All the variables are in logarithm. Hence we have a

static panel with  = 90  = 7 and  = 17 (including the constant). The same dataset is also used

in Baltagi (2006) and Wu and Li (2014).

Table 5A presents the values of AIC, BIC, BIC2, CV, CV
∗, and CV∗∗ where the number of lags 

used in CV∗ and CV∗∗ is 1. All these methods determine that Model 4 (i.e., including both individual

and time fixed effects) is the correct model. For the value of  both AIC and BIC choose  = 0

while the testing procedure determines  = 1

Table 5B reports the estimates and 95% CIs for the coefficient on the probability of arrest.10 For

the estimator without bias-correction, we consider both the non-clustered and clustered standard

errors (SEs) where the clustered SEs are robust to the serial correlation in the error terms. Based

on the selected Model 4, the point estimate is around -0.355 and the coefficient is significant at the

5% level. With bias-correction, the estimate is similar, -0.330.

4.2 Application II: Cross-country saving rates

Su, Shi, and Phillips (2016) use a dynamic panel data model to study the determinants of savings

rates. Following Edwards (1996), they let  be the ratio of savings to GDP for country  in year ,

and let  include () its CPI-based inflation rate, () its real interest rate, () its per capita GDP

growth rate and () its lagged saving rate, i.e., −1 Their dataset includes 56 countries over the

period of 1995 — 2010. Hence, we have a dynamic panel data model with  = 56  = 15 and  = 5

(including the constant).

Table 6A shows the values of AIC, BIC, BIC2, CV and CV-BC. AIC, BIC2, and CV all select

Model 2, while BIC and CV-BC selects Model 1. We conclude that Model 2 (i.e., including individual

10The results for other coefficients are available upon request.
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fixed effects only) is likely to be the correct model for the following reasons. First, Model 1 is rarely

used in empirical research. Second, the performance of BIC is poor in the simulations. Third, the

values of CV are less than or equal to the values of CV-BC. If we combine all values of CV and

CV-BC, Model 2 will be chosen.

Table 6B presents the estimation and inference results for the coefficient on the per capita GDP

growth rate.11 Given the dynamic specification, we report both the non-bias corrected and bias-

corrected results. The bias-correction is based on the half panel jackknife method as proposed in

Dhaene and Jochmans (2015). Based on the selected Model 2, the bias-corrected estimate is 0.178

with the 95% CI of [0.074, 0.281].

4.3 Application III: Guns and crime in the U.S.

In the paper “Shooting down the ‘More Guns less Crime’ hypothesis”, Ayres and Donohue (2003)

consider how the “shall-issue” law affects the crime rates in the U.S., where the “shall-issue” law

refers to whether local authorities can issue a concealed weapon permit if the applicants meet certain

determinate criteria. So, here  is the logarithms of the violent crime rate for state  in year 

which are measured by incidents per 100,000 members of the population. The key regressor in 

is the “shall-issue” variable, which is 1 if the state has a shall-carry law in effect in that year and

0 otherwise. Other controls in  include () the incarceration rate in the state in the previous

year, which is measured by sentenced prisoners per 100,000 residents, () the population density

per square mile of land area, divided by 1000, () the real per capita personal income in the state,

in thousands of dollars, () the state population, in millions of people, () the percentage of state

population that is male with an age between 10 and 29, () the percentage of state population that

is white with an age between 10 to 64 and () the percentage of state population that is black with

an age between 10 and 64. The dataset contains 50 US states and the District of Columbia ( = 51)

over the period of 1977 — 1999 ( = 23). The dataset is also discussed in the textbook by Stock and

Watson (2012).

We consider a static panel model, where the dimension of  is  = 9 (including constant). Table

7A shows the results for the model selection. All the information criteria and CV methods select

Model 4 (i.e., including both individual and time fixed effects). For the value of  both AIC and

BIC determine  = 1 while the testing procedure determines  = 2 Considering this, we report the

values of CV∗ and CV∗∗ with  = 1 and  = 2.

In this application, the coefficient on the “shall issue” is often the parameter of interest. Table

7B reports the estimation and inference results. We find that the effect of the “shall issue” is not

significant at the 5% level based on the selected Model 4. When we do not implement bias-correction,

11The results for other coefficients are available upon request.
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the estimate is -0.028 with the 95% CI of [-0.106, 0.050] using the clustered SEs. When we implement

bias-correction, the estimate is 0.015 with the 95% CI of [-0.027, 0.056]. In this application, whether

to include individual fixed effects makes a difference. If we do not include individual effects, the

effects of the “shall issue” are in general negative and significant at the 5% level. However, after

including individual fixed effects, the significance is gone.

5 Conclusion

In this paper, we propose a jackknife method to determine fixed effects in panel data models based on

the leave-one-out cross validation (CV) criterion function. We show that when the serial correlation

and cross-sectional dependence in the error terms are weak, our new method can consistently select

the correct model. We also modify the CV criterion function to take into account the strong serial

correlation in the error term. Our simulations suggest that our new method outperforms the methods

based on the information criteria such as AIC and BIC. We provide three empirical applications on

() the crime rates in North Carolina, () the determinants of saving rates across countries, and ()

the relationship between guns and crime rates in the U.S.

Several extensions are possible. First, our method can be extended to multidimensional panel

data models where there are many ways of incorporating fixed effects (see, e.g., Balazsi, Matyas, and

Wansbeek (2017) for a review and Lu et al. (2019) for some ongoing work). Therefore, it is even

more imperative to select an appropriate specification of fixed effects in multidimensional panels.

Second, given the fact that there is no natural ordering along the cross-section dimension in general,

it is not easy to extend our jackknife method as in Section 2.3 to allow for strong or moderate degree

of cross-section dependence in the standard two-way or one-way panel. If cross-section dependence

is a concern, one can follow Bai (2009) and consider the determination of individual effects, time

effects, and interactive fixed effects (IFEs) in the following model

 = 0 +  +  + 0 + 

where  is an  × 1 vector of factors and  is an  × 1 vector of factor loadings. The above
equation models the cross-section dependence explicitly. Conceptually, we can apply the jackknife

idea to the above models to select the number of factors and to determine the presence of  and/or

 simultaneously. The major difficulty lies in the fact that after deleting one observation, the panel

data becomes unbalanced, which is not easy to deal with due to the presence of unobservable factors

(see, e.g., Bai, Liao and Yang (2015)). When the regressors also share the factor structure as in

Pesaran (2006), we conjecture that we can augment Models 1-4 by the cross-sectional means of the

dependent and independent variables and then apply our jackknife method. Alternatively, we could
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model cross-sectional dependence using certain metric of economic distance, as in Conley (1999). We

shall explore these topics in our future research.
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Table 1A: Frequency of the model selected: static panels,  = 0

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .80 .06 .11 .03 .04 .74 .02 .20 .05 .01 .82 .13 .06 .05 .04 .86

(50,5) .90 0 .10 0 0 .84 0 .16 .01 0 .99 0 0 0 0 1

AIC (10,10) .90 .06 .04 .01 .01 .91 0 .08 .01 0 .90 .09 0 .01 .01 .98

(50,10) .96 0 .04 0 0 .93 0 .07 0 0 1 0 0 0 0 1

(10,50) .97 .03 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .99 0 .01 0 .49 .46 .04 .01 .23 0 .77 0 .74 .02 .06 .18

(50,5) 1 0 0 0 .51 0 .49 0 .03 0 .97 0 .52 0 .48 0

BIC (10,10) 1 0 0 0 .14 .86 0 0 .20 0 .80 0 .74 .03 .01 .22

(50,10) 1 0 0 0 .41 .39 .20 0 0 0 1 0 .54 0 .41 .05

(10,50) 1 0 0 0 0 1 0 0 .35 .28 .37 0 .40 .56 0 .04

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .44 .20 .17 .20 0 .59 .01 .41 .02 .02 .56 .40 0 .04 .01 .95

(50,5) .85 .01 .14 .01 0 .76 0 .24 0 0 .98 .02 0 0 0 1

BIC2 (10,10) .65 .13 .16 .06 0 .74 0 .26 0 0 .76 .24 0 0 0 1

(50,10) .93 0 .07 0 0 .90 0 .11 0 0 1 0 0 0 0 1

(10,50) .94 .06 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .87 .03 .10 0 .08 .80 .03 .08 .07 .01 .90 .03 .15 .07 .08 .70

(50,5) .90 0 .10 0 0 .90 .01 .09 .01 0 1 0 0 0 .02 .98

CV (10,10) .93 .04 .03 0 .01 .96 0 .03 .01 0 .95 .04 .01 .02 .01 .96

(50,10) .96 0 .04 0 0 .97 0 .04 0 0 1 0 0 0 0 1

(10,50) .97 .03 0 0 0 1 0 0 0 0 .98 .02 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .68 .20 .09 .03 .04 .83 .03 .11 .07 .03 .72 .19 .10 .10 .05 .76

(50,5) .79 .12 .08 .01 0 .89 0 .11 0 0 .87 .12 0 .01 0 1

CV∗ (10,10) .85 .11 .04 .01 .01 .95 0 .04 .01 0 .88 .10 .01 .02 .01 .96

(50,10) .94 .01 .05 0 0 .95 0 .05 0 0 .99 .01 0 0 0 1

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .81 .08 .10 .02 .16 .69 .07 .08 .11 .02 .80 .08 .15 .09 .19 .58

(50,5) .89 0 .11 0 .15 .51 .28 .06 .01 0 .99 0 .02 .01 .49 .49

CV∗∗ (10,10) .89 .07 .03 0 .01 .95 0 .04 .01 0 .91 .08 .01 .02 .02 .94

(50,10) .96 0 .04 0 0 .95 0 .05 0 0 1 0 0 0 0 1

(10,50) .97 .03 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 1B: Frequency of the model selected: static panels,  = 13

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .41 .42 .05 .13 .01 .78 .01 .20 .03 .03 .38 .56 .02 .05 .01 .92

(50,5) .41 .46 .03 .10 0 .83 0 .17 0 0 .41 .59 0 0 0 1

AIC (10,10) .47 .44 .03 .06 .01 .89 0 .11 .01 0 .44 .55 0 .01 .01 .98

(50,10) .45 .49 .02 .04 0 .91 0 .09 0 0 .44 .56 0 0 0 1

(10,50) .57 .43 0 0 0 1 0 0 0 0 .48 .52 0 0 0 1

(50,50) .53 .47 0 0 0 1 0 0 0 0 .49 .51 0 0 0 1

(10,5) .95 .04 .01 0 .31 .66 .02 .01 .27 .01 .67 .05 .55 .05 .04 .36

(50,5) 1 0 0 0 .55 .02 .43 0 .04 0 .97 0 .57 0 .43 0

BIC (10,10) .99 .01 0 0 .10 .90 0 0 .27 .01 .70 .01 .61 .06 .01 .32

(50,10) 1 0 0 0 .28 .65 .07 0 0 0 1 0 .49 0 .29 .22

(10,50) 1 0 0 0 0 1 0 0 .38 .45 .17 0 .37 .61 0 .02

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .14 .45 .05 .36 0 .58 0 .42 .01 .02 .16 .81 0 .03 0 .97

(50,5) .15 .63 .02 .20 0 .76 0 .24 0 0 .15 .85 0 0 0 1

BIC2 (10,10) .24 .52 .05 .20 0 .74 0 .25 0 0 .25 .75 0 0 0 1

(50,10) .28 .62 .02 .09 0 .89 0 .12 0 0 .28 .72 0 0 0 1

(10,50) .47 .52 .01 0 0 .99 0 .01 0 0 .41 .59 0 0 0 1

(50,50) .60 .40 0 0 0 1 0 0 0 0 .56 .44 0 0 0 1

(10,5) .55 .36 .05 .04 .03 .87 .01 .09 .05 .03 .57 .35 .07 .08 .04 .82

(50,5) .64 .29 .05 .03 0 .90 0 .11 .01 0 .68 .31 0 0 0 1

CV (10,10) .54 .42 .02 .02 .01 .94 0 .05 .01 .01 .57 .41 0 .02 .01 .97

(50,10) .55 .41 .02 .02 0 .95 0 .05 0 0 .58 .42 0 0 0 1

(10,50) .58 .42 0 0 0 1 0 0 0 0 .58 .43 0 0 0 1

(50,50) .56 .44 0 0 0 1 0 0 0 0 .56 .44 0 0 0 1

(10,5) .50 .40 .05 .05 .03 .86 .01 .10 .04 .04 .52 .40 .06 .07 .03 .83

(50,5) .58 .34 .04 .04 0 .89 0 .11 .01 0 .62 .37 0 0 0 1

CV∗ (10,10) .64 .31 .04 .02 .02 .93 0 .06 .01 .01 .67 .31 .01 .02 .02 .95

(50,10) .85 .10 .04 .01 0 .95 0 .05 0 0 .90 .10 0 0 0 1

(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .57 .34 .05 .04 .08 .80 .02 .09 .05 .04 .58 .33 .07 .08 .09 .76

(50,5) .67 .26 .05 .03 .02 .85 .03 .10 .01 0 .72 .28 0 .01 .06 .93

CV∗∗ (10,10) .67 .28 .04 .02 .18 .74 .03 .04 .01 .01 .71 .28 .01 .02 .30 .67

(50,10) .92 .03 .05 0 .09 .75 .13 .03 0 0 .97 .03 0 0 .34 .66

(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 1C: Frequency of the model selected: static panels,  = 34

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .02 .77 0 .21 .01 .78 0 .21 0 .05 .02 .93 0 .05 0 .94

(50,5) 0 .80 0 .20 0 .80 0 .20 0 0 0 1 0 0 0 1

AIC (10,10) .01 .84 0 .14 0 .85 0 .15 0 .03 .01 .96 0 .03 0 .97

(50,10) 0 .87 0 .13 0 .87 0 .13 0 0 0 1 0 0 0 1

(10,50) .02 .95 0 .03 0 .97 0 .03 0 .01 .01 .98 0 .01 0 .99

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,5) .20 .77 0 .03 .05 .91 0 .04 .11 .16 .10 .63 .13 .18 .01 .68

(50,5) .52 .48 0 .01 .06 .93 .01 .01 .06 .01 .44 .50 .10 .02 .03 .86

BIC (10,10) .24 .75 0 .01 .04 .95 0 .01 .19 .36 .08 .38 .19 .38 .01 .42

(50,10) .47 .53 0 0 .01 .99 0 0 .02 0 .42 .56 .06 .01 0 .94

(10,50) .47 .53 0 0 0 1 0 0 .25 .76 0 0 .23 .77 0 0

(50,50) .77 .23 0 0 0 1 0 0 0 0 .74 .26 0 0 0 1

(10,5) .01 .61 0 .38 0 .62 0 .38 0 .02 .01 .97 0 .02 0 .98

(50,5) 0 .75 0 .25 0 .75 0 .25 0 0 0 1 0 0 0 1

BIC2 (10,10) 0 .74 0 .26 0 .74 0 .26 0 .01 .01 .98 0 .01 0 .99

(50,10) 0 .84 0 .16 0 .84 0 .16 0 0 0 1 0 0 0 1

(10,50) .01 .94 0 .05 0 .95 0 .05 0 .01 .01 .99 0 .01 0 1

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,5) .04 .85 0 .11 .01 .88 0 .11 .01 .08 .04 .87 .01 .08 .01 .91

(50,5) 0 .87 0 .13 0 .87 0 .13 0 0 0 1 0 0 0 1

CV (10,10) .02 .90 .01 .08 0 .92 0 .08 .01 .06 .03 .91 0 .06 0 .94

(50,10) 0 .91 0 .09 0 .91 0 .09 0 0 0 1 0 0 0 1

(10,50) .02 .96 0 .02 0 .98 0 .02 0 .02 .03 .95 0 .02 0 .98

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,5) .08 .79 .01 .12 .02 .85 .01 .12 .01 .07 .09 .83 .01 .07 .03 .89

(50,5) 0 .87 0 .12 0 .88 0 .12 0 0 0 1 0 0 0 1

CV∗ (10,10) .30 .63 .02 .05 .04 .90 0 .07 .01 0 .32 .68 0 .01 .05 .94

(50,10) .15 .79 .01 .05 0 .94 0 .06 0 0 .17 .83 0 0 0 1

(10,50) .70 .30 0 0 .01 .99 0 0 0 0 .68 .32 0 0 0 1

(50,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(10,5) .25 .62 .04 .10 .21 .65 .04 .11 .03 .06 .26 .65 .03 .06 .24 .67

(50,5) .54 .34 .07 .05 .43 .39 .12 .06 0 0 .62 .38 0 0 .57 .42

CV∗∗ (10,10) .66 .29 .03 .02 .53 .41 .04 .02 .01 0 .73 .26 .01 0 .64 .36

(50,10) .87 .09 .04 0 .65 .23 .11 .01 0 0 .91 .09 0 0 .82 .19

(10,50) .91 .09 0 0 .33 .67 0 0 0 0 .92 .08 0 0 .54 .46

(50,50) 1 0 0 0 .18 .82 0 0 0 0 1 0 0 0 .55 .45
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Table 2: Frequency of the model selected: dynamic panels without exogenous regressors,  = 34

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .37 .45 .04 .15 .09 .70 .01 .20 .03 .03 .34 .60 .01 .05 .08 .87

(50,5) .44 .44 .05 .07 .01 .84 0 .15 0 0 .45 .54 0 0 .01 .99

AIC (10,10) .63 .30 .03 .03 .05 .87 0 .08 .01 0 .61 .39 0 0 .05 .95

(50,10) .83 .12 .03 .02 0 .93 0 .08 0 0 .85 .16 0 0 0 1

(10,50) .92 .08 0 0 0 1 0 0 0 0 .89 .12 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .97 .03 0 0 .87 .12 0 0 .20 .01 .76 .04 .15 .02 .71 .12

(50,5) 1 0 0 0 1 0 0 0 .03 0 .98 0 .02 0 .98 0

BIC (10,10) 1 0 0 0 .95 .05 0 0 .12 0 .87 .01 .09 .01 .85 .05

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

(10,50) 1 0 0 0 .08 .92 0 0 .09 0 .91 0 .03 .05 .08 .84

(50,50) 1 0 0 0 .91 .10 0 0 0 0 1 0 0 0 .90 .10

(10,5) .09 .52 .03 .36 0 .60 0 .40 0 .02 .10 .88 0 .03 0 .97

(50,5) .13 .65 .02 .20 0 .77 0 .23 0 0 .14 .86 0 0 0 1

BIC2 (10,10) .33 .45 .05 .17 .01 .75 0 .24 0 0 .35 .65 0 0 .01 .99

(50,10) .66 .26 .04 .04 0 .90 0 .10 0 0 .68 .33 0 0 0 1

(10,50) .89 .11 0 0 0 1 0 0 0 0 .84 .17 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .54 .36 .05 .05 .20 .69 .03 .08 .05 .03 .58 .34 .02 .07 .29 .63

(50,5) .70 .21 .07 .02 .09 .83 .01 .07 0 0 .78 .21 0 0 .12 .88

CV (10,10) .71 .26 .02 .01 .08 .88 0 .04 .01 0 .76 .23 0 .01 .14 .85

(50,10) .89 .07 .03 .01 .01 .95 0 .04 0 0 .92 .08 0 0 .01 .99

(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .74 .16 .07 .02 .51 .38 .06 .05 .06 .01 .77 .16 .04 .04 .58 .35

(50,5) .90 .02 .08 0 .66 .24 .08 .02 0 0 .98 .02 0 0 .76 .24

CV-BC (10,10) .85 .12 .03 .01 .39 .58 .01 .02 .01 0 .89 .10 .01 0 .46 .53

(50,10) .95 .01 .04 0 .34 .60 .02 .04 0 0 .99 .01 0 0 .39 .61

(10,50) .95 .05 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 3: Frequency of the model selected: dynamic panels with exogenous regressors,  = 34

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .37 .38 .06 .20 .14 .56 .04 .26 .04 .04 .35 .57 .02 .06 .14 .78

(50,5) .59 .25 .06 .10 .10 .64 .02 .24 0 0 .61 .39 0 0 .11 .89

AIC (10,10) .64 .27 .03 .06 .13 .76 .01 .10 0 0 .61 .38 .01 .01 .14 .84

(50,10) .88 .07 .03 .02 .04 .85 0 .11 0 0 .89 .11 0 0 .05 .95

(10,50) .93 .08 0 0 0 1 0 0 0 0 .88 .12 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .95 .04 .01 0 .86 .11 .01 .01 .27 .01 .66 .06 .35 .02 .53 .11

(50,5) 1 0 0 0 1 0 0 0 .03 0 .97 0 .04 0 .96 0

BIC (10,10) 1 0 0 0 .96 .04 0 0 .26 0 .74 0 .48 .01 .49 .03

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 .01 0 .99 0

(10,50) 1 0 0 0 .38 .62 0 0 .44 .24 .32 0 .98 .01 0 .01

(50,50) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

(10,5) .11 .41 .05 .45 .02 .48 .01 .49 .01 .03 .13 .83 0 .04 .03 .93

(50,5) .23 .47 .04 .27 .01 .64 0 .35 0 0 .24 .76 0 0 .01 .99

BIC2 (10,10) .36 .39 .07 .18 .02 .69 .02 .27 0 0 .37 .63 0 0 .04 .96

(50,10) .75 .16 .05 .04 .01 .83 0 .16 0 0 .78 .22 0 0 .01 .99

(10,50) .89 .11 0 0 0 1 0 0 0 0 .84 .17 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .65 .23 .07 .05 .41 .45 .06 .07 .09 .04 .66 .21 .10 .07 .44 .39

(50,5) .82 .08 .08 .02 .36 .48 .07 .09 0 0 .89 .10 0 0 .47 .53

CV (10,10) .78 .19 .02 .01 .24 .71 .01 .03 .01 .01 .81 .17 .03 .01 .37 .59

(50,10) .93 .03 .03 0 .08 .85 .01 .06 0 0 .96 .04 0 0 .13 .87

(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .84 .05 .10 .02 .74 .13 .11 .03 .12 .01 .82 .05 .15 .02 .73 .09

(50,5) .91 0 .08 0 .78 .05 .14 .02 .01 0 .99 .01 0 0 .92 .07

CV-BC (10,10) .89 .07 .03 0 .57 .39 .03 .02 .01 0 .92 .07 .04 .01 .61 .34

(50,10) .96 0 .03 0 .56 .33 .08 .04 0 0 1 0 0 0 .68 .33

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

35



Table 4A: MSEs×1000: static panels,  = 0
Adopted Model M1 M2 M3 M4 Selected by CV

True Model

N=10 T=5 8.03 14.56 11.41 29.77 9.83

N=50 T=5 1.45 2.82 2.05 5.23 1.61

M1 N=10 T=10 3.79 6.32 5.83 13.16 4.16

N=50 T=10 0.71 1.23 1.02 2.31 0.73

N=10 T=50 0.68 1.03 0.99 2.16 0.69

N=50 T=50 0.14 0.21 0.21 0.41 0.14

N=10 T=5 165.85 14.56 300.24 29.77 36.35

N=50 T=5 148.68 2.82 262.69 5.23 5.11

M2 N=10 T=10 145.62 6.32 295.26 13.16 6.99

N=50 T=10 130.7 1.23 259.24 2.31 1.31

N=10 T=50 128.66 1.03 287.75 2.16 1.03

N=50 T=50 117.76 0.21 258.94 0.41 0.21

N=10 T=5 94.25 250.15 11.41 29.77 14.62

N=50 T=5 82.01 223.07 2.05 5.23 2.05

M3 N=10 T=10 102.06 245.89 5.83 13.16 6.66

N=50 T=10 94.97 235.31 1.02 2.31 1.02

N=10 T=50 109.93 249.80 0.99 2.16 1.01

N=50 T=50 107.42 246.93 0.21 0.41 0.21

N=10 T=5 427.81 250.15 300.24 29.77 103.77

N=50 T=5 404.04 223.07 262.69 5.23 9.38

M4 N=10 T=10 440.18 245.89 295.26 13.16 17.93

N=50 T=10 422.87 235.31 259.24 2.31 2.31

N=10 T=50 448.25 249.80 287.75 2.16 2.16

N=50 T=50 441.74 246.93 258.94 0.41 0.41
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Table 4B: Coverages and length of 95% CIs: static panels,  = 0

Coverages Length

Adopted Model M1 M2 M3 M4 CV M1 M2 M3 M4 CV

True Model

N=10 T=5 0.93 0.90 0.92 0.88 0.91 0.32 0.39 0.37 0.54 0.32

N=50 T=5 0.96 0.91 0.94 0.91 0.94 0.15 0.18 0.17 0.25 0.15

M1 N=10 T=10 0.93 0.92 0.92 0.90 0.92 0.23 0.28 0.26 0.38 0.23

N=50 T=10 0.96 0.93 0.95 0.94 0.96 0.10 0.13 0.12 0.17 0.10

N=10 T=50 0.94 0.95 0.94 0.94 0.94 0.10 0.12 0.12 0.17 0.10

N=50 T=50 0.95 0.95 0.95 0.95 0.95 0.05 0.06 0.05 0.08 0.05

N=10 T=5 0.13 0.90 0.07 0.88 0.81 0.40 0.39 0.45 0.54 0.40

N=50 T=5 0.00 0.91 0.00 0.91 0.89 0.19 0.18 0.21 0.25 0.19

M2 N=10 T=10 0.05 0.92 0.02 0.90 0.91 0.29 0.28 0.32 0.38 0.28

N=50 T=10 0.00 0.93 0.00 0.94 0.93 0.13 0.13 0.15 0.17 0.13

N=10 T=50 0.00 0.95 0.00 0.94 0.95 0.13 0.12 0.14 0.17 0.12

N=50 T=50 0.00 0.95 0.00 0.95 0.95 0.06 0.06 0.07 0.08 0.06

N=10 T=5 0.34 0.17 0.92 0.88 0.89 0.38 0.46 0.37 0.54 0.37

N=50 T=5 0.11 0.04 0.94 0.91 0.94 0.18 0.21 0.17 0.25 0.17

M3 N=10 T=10 0.09 0.03 0.92 0.90 0.91 0.28 0.33 0.26 0.38 0.27

N=50 T=10 0.01 0.00 0.95 0.94 0.95 0.13 0.15 0.12 0.17 0.12

N=10 T=50 0.00 0.00 0.94 0.94 0.94 0.13 0.15 0.12 0.17 0.12

N=50 T=50 0.00 0.00 0.95 0.95 0.95 0.06 0.07 0.05 0.08 0.05

N=10 T=5 0.01 0.17 0.07 0.88 0.66 0.41 0.46 0.45 0.54 0.49

N=50 T=5 0.00 0.04 0.00 0.91 0.89 0.19 0.21 0.21 0.25 0.24

M4 N=10 T=10 0.00 0.03 0.02 0.90 0.88 0.29 0.33 0.32 0.38 0.38

N=50 T=10 0.00 0.00 0.00 0.94 0.94 0.13 0.15 0.15 0.17 0.17

N=10 T=50 0.00 0.00 0.00 0.94 0.94 0.13 0.15 0.14 0.17 0.17

N=50 T=50 0.00 0.00 0.00 0.95 0.95 0.06 0.07 0.07 0.08 0.08
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Table 4C: MSEs×1000: dynamic panels without exogenous regressors,  = 34
Non-bias correction Bias correction

Adopted M M1 M2 M3 M4 CV M1 M2 M3 M4 CV

True M

N=10 T=5 11.78 208.92 11.13 214.24 124.20 12.47 88.12 11.64 98.40 55.41

N=50 T=5 1.90 174.56 1.87 174.77 51.53 1.96 19.85 1.93 19.96 8.95

M1 N=10 T=10 5.55 57.34 5.40 58.74 30.10 5.41 25.20 5.52 28.49 13.30

N=50 T=10 0.95 45.78 0.94 45.91 6.53 0.94 4.69 0.95 4.80 1.71

N=10 T=50 0.84 2.48 0.92 2.64 1.25 0.85 1.51 0.94 1.69 0.95

N=50 T=50 0.17 1.61 0.17 1.62 0.17 0.17 0.32 0.17 0.32 0.17

N=10 T=5 47.88 208.92 49.05 214.24 200.23 47.28 88.12 48.72 98.40 84.22

N=50 T=5 47.65 174.56 47.88 174.77 167.70 47.51 19.85 47.80 19.96 23.21

M2 N=10 T=10 46.82 57.34 48.10 58.74 60.86 46.54 25.20 47.92 28.49 24.83

N=50 T=10 47.76 45.78 48.00 45.91 46.19 47.71 4.69 47.98 4.80 4.97

N=10 T=50 46.77 2.48 48.04 2.64 2.48 46.86 1.51 48.11 1.69 1.51

N=50 T=50 47.74 1.61 47.98 1.62 1.61 47.75 0.32 47.99 0.32 0.32

N=10 T=5 38.70 261.27 11.13 214.24 116.90 62.42 201.05 11.64 98.40 55.80

N=50 T=5 23.14 235.57 1.87 174.77 49.00 40.55 142.49 1.93 19.96 8.60

M3 N=10 T=10 20.31 79.86 5.40 58.74 28.02 24.37 56.13 5.52 28.49 13.06

N=50 T=10 13.41 72.01 0.94 45.91 6.38 17.73 39.64 0.95 4.80 1.72

N=10 T=50 3.16 5.09 0.92 2.64 1.34 3.85 4.59 0.94 1.69 1.05

N=50 T=50 2.41 4.35 0.17 1.62 0.17 3.02 3.56 0.17 0.32 0.17

N=10 T=5 37.69 261.27 49.05 214.24 192.47 35.79 201.05 48.72 98.40 89.18

N=50 T=5 38.03 235.57 47.88 174.77 165.80 36.60 142.49 47.80 19.96 23.82

M4 N=10 T=10 36.30 79.86 48.10 58.74 63.45 36.09 56.13 47.92 28.49 28.45

N=50 T=10 37.51 72.01 48.00 45.91 46.21 37.25 39.64 47.98 4.80 5.10

N=10 T=50 36.75 5.09 48.04 2.64 2.64 37.13 4.59 48.11 1.69 1.69

N=50 T=50 37.62 4.35 47.98 1.62 1.62 37.87 3.56 47.99 0.32 0.32
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Table 4D: Coverages and length of 95% CIs (bias-corrected): dynamic panels without exogenous regressors,  = 34

Coverages Length

Adopted Model M1 M2 M3 M4 CV M1 M2 M 3 M4 CV

True Model

N=10 T=5 0.91 0.70 0.91 0.66 0.75 0.37 0.62 0.36 0.62 0.45

N=50 T=5 0.94 0.67 0.93 0.66 0.83 0.16 0.28 0.16 0.28 0.19

M1 N=10 T=10 0.93 0.72 0.91 0.70 0.84 0.26 0.36 0.26 0.36 0.29

N=50 T=10 0.94 0.77 0.94 0.76 0.91 0.12 0.16 0.12 0.16 0.12

N=10 T=50 0.95 0.88 0.94 0.88 0.94 0.12 0.12 0.12 0.12 0.12

N=50 T=50 0.96 0.88 0.96 0.89 0.96 0.05 0.06 0.05 0.06 0.05

N=10 T=5 0.01 0.70 0.01 0.66 0.50 0.14 0.62 0.13 0.62 0.49

N=50 T=5 0.00 0.67 0.00 0.66 0.59 0.06 0.28 0.06 0.28 0.26

M2 N=10 T=10 0.00 0.72 0.00 0.70 0.68 0.10 0.36 0.09 0.36 0.34

N=50 T=10 0.00 0.77 0.00 0.76 0.76 0.04 0.16 0.04 0.16 0.16

N=10 T=50 0.00 0.88 0.00 0.88 0.88 0.04 0.12 0.04 0.12 0.12

N=50 T=50 0.00 0.88 0.00 0.89 0.88 0.02 0.06 0.02 0.06 0.06

N=10 T=5 0.57 0.50 0.91 0.66 0.77 0.42 0.62 0.36 0.63 0.44

N=50 T=5 0.36 0.29 0.93 0.67 0.83 0.19 0.28 0.16 0.28 0.19

M3 N=10 T=10 0.64 0.49 0.91 0.70 0.84 0.29 0.36 0.26 0.36 0.28

N=50 T=10 0.30 0.27 0.94 0.76 0.91 0.13 0.16 0.12 0.16 0.12

N=10 T=50 0.68 0.66 0.94 0.88 0.93 0.12 0.12 0.12 0.12 0.12

N=50 T=50 0.36 0.36 0.96 0.89 0.96 0.05 0.06 0.05 0.06 0.05

N=10 T=5 0.12 0.50 0.01 0.66 0.42 0.18 0.62 0.13 0.63 0.45

N=50 T=5 0.01 0.29 0.00 0.67 0.57 0.08 0.28 0.06 0.28 0.25

M4 N=10 T=10 0.03 0.49 0.00 0.70 0.63 0.13 0.36 0.09 0.36 0.32

N=50 T=10 0.00 0.27 0.00 0.76 0.76 0.06 0.16 0.04 0.16 0.16

N=10 T=50 0.00 0.66 0.00 0.88 0.88 0.06 0.12 0.04 0.12 0.12

N=50 T=50 0.00 0.36 0.00 0.89 0.89 0.03 0.06 0.02 0.06 0.06

Table 5A: Application I: Crime rates in North Carolina (N=90, T=7, k=17)

A: Model selection

CV∗ CV∗∗

Model AIC BIC BIC2 CV ( = 1) ( = 1)

Model 1 -2.121 -2.001 -2.125 0.124 0.094 0.028

Model 2 -3.773 -3.025 -3.796 0.025 0.023 0.026

Model 3 -2.124 -1.962 -2.129 0.124 0.094 0.027

Model 4 -3.823 -3.032 -3.847 0.024 0.022 0.025

Selected M4 M4 M4 M4 M4 M4

Table 5B: Application I: Crime rates in North Carolina (N=90, T=7, k=17)

B: Inference for the coefficient on the “probability of arrest”

Non-bias correction Bias correction

Model Estimates 95% CI1 95% CI2 Estimates 95% CI1

Model 1 -0.530 [-0.655, -0.406] [-0.785, -0.276] -0.525 [-0.653, -0.398]

Model 2 -0.385 [-0.473, -0.297] [-0.500, -0.270] -0.393 [-0.487, -0.300]

Model 3 -0.521 [-0.646, -0.396] [-0.778, -0.264] -0.512 [-0.638, -0.387]

Model 4 -0.355 [-0.441, -0.269] [-0.470, -0.240] -0.330 [-0.423, -0.237]

Selected -0.355 [-0.441, -0.269] [-0.470, -0.240] -0.330 [-0.423, -0.237]

Notes: CI1 and CI2 stand for the CIs based on the non-clustered and clustered standard errors, respectively.
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Table 6A: Application II: Cross-country saving rates (N=56, T=15, k=5)

A: Model selection

Model AIC BIC BIC2 CV CV-BC

Model 1 2.547 2.576 2.547 12.844 12.844

Model 2 2.505 2.843 2.498 12.459 13.201

Model 3 2.555 2.663 2.553 12.953 12.953

Model 4 2.512 2.929 2.504 12.584 13.340

Selected M2 M1 M2 M2 M1

Table 6B: Application II: Cross-country saving rates (N=56, T=15, k=5)

B: Inference for the coefficient on the “GDP growth”

Non-bias correction Bias correction

Model Estimates 95% CI1 Estimates 95% CI1

Model 1 0.190 [0.108, 0.273] 0.192 [0.107, 0.277]

Model 2 0.188 [0.088, 0.288] 0.178 [0.074, 0.281]

Model 3 0.160 [0.072, 0.248] 0.163 [0.073, 0.253]

Model 4 0.149 [0.039, 0.258] 0.146 [0.031, 0.262]

Selected 0.188 [0.088, 0.288] 0.178 [0.074, 0.281]

Notes: CI1 stands for the CIs based on the non-clustered standard errors.

Table 7A: Application III: Guns and crime in the U.S. (N=51, T=23, k=9)

A: Model selection

CV∗ CV∗∗ CV∗ CV∗∗

Model AIC BIC BIC2 CV ( = 1) ( = 1) ( = 2) ( = 2)

Model 1 -1.6911 -1.6522 -1.6914 0.1860 0.0165 0.0073 0.0177 0.0071

Model 2 -3.6072 -3.3523 -3.6094 0.0274 0.0080 0.0072 0.0077 0.0069

Model 3 -1.7198 -1.5859 -1.7210 0.1816 0.0140 0.0061 0.0155 0.0062

Model 4 -3.8653 -3.5154 -3.8684 0.0211 0.0063 0.0059 0.0062 0.0058

Selected M4 M4 M4 M4 M4 M4 M4 M4

Table 7B: Application III: Guns and crime in the U.S. (N=51, T=23, k=9)

B: Inference for the coefficient of the “shall issue”

Non-bias correction Bias correction

Model Estimates 95% CI1 95% CI2 Estimates 95% CI1

Model 1 -0.368 [-0.436, -0.301] [-0.589, -0.148] -0.364 [-0.442, -0.287]

Model 2 -0.046 [-0.084, -0.008] [-0.127, 0.035] -0.022 [-0.066, 0.022]

Model 3 -0.288 [-0.359, -0.217] [-0.526, -0.050] -0.282 [-0.359, -0.204]

Model 4 -0.028 [-0.065, 0.009] [-0.106, 0.050] 0.015 [-0.027, 0.056]

Selected -0.028 [-0.065, 0.009] [-0.106, 0.050] 0.015 [-0.027, 0.056]

Notes: CI1 and CI2 stand for the CIs based on the non-clustered and clustered standard errors, respectively.
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This supplement is composed of five parts. Appendix A contains the proofs of the main results in

the paper. Appendix B contains the proofs of the technical lemmas used in Appendix A. Section C

provides some primitive conditions to verify Assumptions A.2(iii)-(iv) and A.4-A.5 in the paper. Ap-

pendix D discusses how to choose  in our modified jackknife and contains some additional simulation

results. Appendix E contains additional simulation results for the DGPs in the main text.
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→  (A.7)

where  = 2 (1 + ) ̄2−
¡
̄21 + ̄22

¢
1 {1 ≥ 1}−

¡
̄21 + ̄22

¢
1 {1  1}   = lim( )→∞

¡


∧ 



¢


1 = lim( )→∞ 

 and the convergence holds by Assumptions A.1(i) and A.2(i)-(ii). Combining

(A.5)-(A.7) yields  (11  1)→ 1 for  = 2 3 4 provided max
¡
̄21 ̄

2
2

¢
 2̄2

5



Case 2: Model 2 is the true model. In this case, Models 1, 3 and 4 are underfitted,

misspecified and overfitted, respectively, and we will show that  (22  2)→ 1 for = 1 3 4

Let  =  +  and  = (11  1   1   )
0. Note that  = +  where

 = (1  −1)0 Following the steps to obtain (A.4), we can show that

 − ̂
(1)
 =  − 0

³
̂
(1)
 − (1)

´
= 1

³
 − 0

(1)


´
 (A.8)

where 
()


=
¡
()0()

¢−1
()0 for  = 1 2 3 4 Then 21 =

1


P
=1

P
=1( −

0
(1)

)2+ 1



P
=1

P
=1(

2
1−1)(−0(1)

)2 ≡ 7+8. It is easy to show that by Assumptions

A.1 and A.3(i)

7 =
1



X
=1

X
=1

³
 − 0

¡
 0

¢−1
 0+  − 0

¡
 0

¢−1
 0

´2
=

1



X
=1

X
=1

³
 − 0

¡
 0

¢−1
 0

´2
+

1



X
=1

X
=1

2 +  (1)
→  + ̄2.

This result, in conjunction with (A.2) and the DCT, implies that 8 =  (1)  In addition, we can

follow the analysis in Case 1 and readily show that 22 =
1



P
=1

P
=1 

2
 +  (1)

→ ̄2. It

follows that

21 − 22
→   0 (A.9)

To study 23 we observe that

 − ̂
(3)
 =  − 

(3)0


³
̂
(3)
 − (3)

´
= 3

³
 − 

(3)0
 

(3)


´
 (A.10)

and 23 =
1



P
=1

P
=1

³
 − 

(3)0
 

(3)


´2
+ 1



P
=1

P
=1

³
23 − 1

´³
 − 

(3)0
 

(3)


´2 ≡
9 + 10. By Assumptions A.1(i), A.1(iii) and A.3(i), Lemmas A.4-A.5, and (A.2), we can readily

show that

9 =
1



X
=1

X
=1

µ
 − 

(3)0


³
(3)0(3)

´−1
(3)0+  − 

(3)0
 

(3)


¶2
=

1



X
=1

X
=1

µ
 − 

(3)0


³
(3)0(3)

´−1
(3)0

¶2
+

1



X
=1

X
=1

2 +  (1)
→ 

+ ̄2

and 10 =  (1)  It follows that

23 − 22
→ 

 0 (A.11)

To study 24 noting that

 − ̂
(4)
 =  − 

(4)0


³
̂
(4)
 − (4)

´
= 4

³
 − 

(4)0
 

(4)


´
 (A.12)
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we have

24 − 22 =
1



X
=1

X
=1

∙
24

³
 − 

(4)0
 

(4)


´2 − 22

³
 − 

(2)0
 

(2)


´2¸

=
1



X
=1

X
=1

¡
24 − 22

¢
2 +

1



X
=1

X
=1

∙
24

³

(4)0
 

(4)


´2 − 22

³

(2)0
 

(2)


´2¸

− 2



X
=1

X
=1

h
24

(4)0
 

(4)
 − 22

(2)0
 

(2)


i
≡ 11 +12 − 213 say.

Following the analysis of 14 −11 in Case 1 and applying Lemma A.5(ii) and (iv), Lemma A.6

and (A.2), we can readily show that

11 =
2



X
=1

X
=1

³

(4)
 − 

(2)


´
2 +  (

−1)

=
2



X
=1

X
=1

[
 − 1


+ ( −)
0∗


( −)

− ( −)
0∗


( −)]

2
 +  (

−1)

= −1 2



X
=1

X
=1

2 +  (
−1)

12 =
1



X
=1

X
=1

∙³

(4)0
 

(4)


´2 − ³(2)0 
(2)


´2¸
+  (

−1) =
1



X
=1

̄2· +  (
−1) and

13 =
1



X
=1

X
=1

h


(4)0
 

(4)
 − 

(2)0
 

(2)


i
+  (

−1) =
1



X
=1

̄2· +  (
−1)

It follows that

 [24 − 22] =
2



X
=1

X
=1

2 −




X
=1

̄2· +  (1)
→ 2̄2 − ̄22 (A.13)

where the convergence holds by Assumptions A.1(i) and A.2(ii).

By (A.9), (A.11), and (A.13), we have  (22  2) → 1 as ( ) → ∞ for  = 1 3 4

provided ̄22  2̄
2


Case 3: Model 3 is the true model. This case parallels Case 2 and we can analogously show

that

31 − 33
→   0

32 − 33
→ 

 0

 [34 − 33]
→ 2̄2 − ̄21  0

provided ̄21  2̄
2
 Then  (33  3)→ 1 for  = 1 2 4
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Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we

will show that  (44  4) → 1 for  = 1 2 3 Let  =  +   =  +  + 

 = (11  1   1   )
0 and  = (11  1   1   )

0. Note
that  =  +  +  where  = (1  −1)0 Let 

()


=
¡
()0()

¢−1
()0 and


()


=
¡
()0()

¢−1
()0 for  = 1 2 3 4 Following the steps to obtain (A.4), now we can

show that

 − ̂
(1)
 =  − 0(̂

(1)
 − (1)) = 1

³
 − 0

(1)


´
 (A.14)

As in Case 2, we can show that by Assumptions A.1 and A.3(iii),

41 =
1



X
=1

X
=1

21

h
 − 0

(1)


i2
=

1



X
=1

X
=1

h
 +  − 0

¡
 0

¢−1
 0 (+)

i2
+

1



X
=1

X
=1

2 +  (1)

→  + ̄2

Similarly, we have by Assumptions A.1 and A.3(iii)

42 =
1



X
=1

X
=1

22

h
 − 

(2)0
 

(2)


i2
=

1



X
=1

X
=1

∙
 − 

(2)0


³
(2)0(2)

´−1
(2)0

¸2
+

1



X
=1

X
=1

2 +  (1)
→ 

+ ̄2

43 =
1



X
=1

X
=1

23

h
 − 

(3)0
 

(3)


i2
=

1



X
=1

X
=1

∙
 − 

(3)0


³
(3)0(3)

´−1
(3)0

¸2
+

1



X
=1

X
=1

2 +  (1)
→ 

+ ̄2

44 =
1



X
=1

X
=1

4

h
 − 

(4)0
 

(4)


i2
+

1



X
=1

X
=1

2 +  (1)
→ ̄2

Then  (44  4)→ 1 as ( )→∞ for  = 1 2 3 ¥

Proof of Theorem 2.2. As before, we will use  
 to denote   () when the true model is

given by Model 

Case 1: Model 1 is the true model. We will show that 
¡
 

11   
1

¢→ 1 for = 2 3 4

Since ̆
()
 = ̂

()
 and ̆

()
 = ̂

()
 for  = 1 3 we have by (A.4)

 − ̆
()
 =  − ̂

()
 = 

³
 − 

()0
 

()


´
for  = 1 3 (A.15)

By (2.5) and (A.3)-(A.4), we have


()0
 (̆

()
 − ()) = 

()0
 (̂

()
 − ())− 

()0



()



= − 
()


1− 
()


 +
1

1− 
()



()0
 

()
 − 

()0



()
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and

 − ̆
()
 =  − 

()0


³
̆
()
 − ()

´
= 

³
 − 

()0
 

()


´
+ 

()0



()

 for  = 2 4 (A.16)

It follows that

 
1 =

⎧⎪⎨⎪⎩
1



P
=1

P
=1 

2


³
 − 

()0
 

()


´2
for  = 1 3

1


P
=1

P
=1

³
( − 

()0
 

()
 ) + 

()0



()



´2
for  = 2 4



We first study  
12 −  

11 We make the following decomposition:

 
12 −  

11 =
1



X
=1

X
=1

∙³
2( − 

(2)0
 

(2)
 ) + 

(2)0



(2)



´2
− 21

³
 − 

(1)0
 

(1)


´2¸
= (12 − 11)

+
1



X
=1

X
=1

³

(2)0



(2)



´2
+

2



X
=1

X
=1

2

³
 − 

(2)0
 

(2)


´

(2)0



(2)



≡ (12 − 11) +1 + 22 say. (A.17)

where by (A.5) we have

 [12 − 11] =
2



X
=1

X
=1

2 −




X
=1

̄2· +  (1)
→ 2̄2 − ̄21 (A.18)

To study1 and2 let  = 0 (
0
)

−1
Noting that (

0
)

−1 = −1(−1− 1

−10−1)

by (B.1),  = −10(−1− 1

−10−1) =

−1


 By the updated formula for OLS estima-

tion,

 =
¡
0
 − 

0


¢−1 £
0
 − 

0


¤
=

∙¡
0


¢−1
+

1

1− 

¡
0


¢−1


0


¡
0


¢−1¸ £
0
 − 

0


¤
=

¡
0


¢−1
0
 +

1

1− 

¡
0


¢−1


0


¡
0


¢−1
0
 −

1

1− 

¡
0


¢−1


0


and

0 = 0
¡
0


¢−1
0
 +



1− 
0

¡
0


¢−1
0
 −



1− 
0

=
1

1− 
0

¡
0


¢−1
0
 −



1− 
0

Then

1 =
1

 3

X
=1

X
=1

h
0̂

(2)
1 + 0̂

(2)
1

i2
=

1

 3

X
=1

X
=1

£
vec(

0
)
¤0
vec(̂

(2)
1 ̂

(2)0
1 ) +  (

−2) =  (
−2)
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For 2 we have 2 =
1

̄2̂

(2)
1  where

̄2 =
1



X
=1

X
=1

2

³
 − 

(2)0
 

(2)


´ ¡
0 + 0

¢
=

1



X
=1

X
=1

2
0
 −

1



X
=1

X
=1

2
(2)0
 

(2)
 0 +

1



X
=1

X
=1

2
0


− 1



X
=1

X
=1

2
(2)0
 5

(2)
 0

≡ 21 −22 +23 −24

By the triangle inequality and (A.2),

k21k ≤
°°°°° 1



X
=1

X
=1


0


°°°°°+max
|2 − 1| 1



X
=1

X
=1

°°0°°
=  (( )−12) + (

−1 + ( )−12) =  (
−1 + ( )−12)

By (A.2) and Lemma A.5(ii)

k22k =

°°°°° 1



X
=1

X
=1

2
(2)
 

0


°°°°°
≤ max


|2|

(°°°°° 1

 2

X
=1

X
=1

³

(2)


´2°°°°°
)(

1



X
=1

X
=1

kk2
)12

= 

Ã
1



X
=1

̄2· +

³
( )−1 + −2

´!12
 (1) =  (

−12)

To improve the probability bound for 22 we make the following decomposition

22 =
1



X
=1

X
=1


(2)
 

0
 +

1



X
=1

X
=1

(2 − 1)(2) 
0
 ≡ 221 +222

It is easy to show that 222 ≤ max |2 − 1| 1


P
=1

P
=1

°°°(2) 
0


°°° =  (
−1 + ( )−12)

· (
−12) = 

¡
−32 +−12−1

¢
by (A.2) and the rough above bound for k22k. Let 2

denote a  × ( + − 1) selection matrix such that  = 2
(2)
  Then

0221 =
1



X
=1

X
=1

2
(2)
 

(2)0


³
(2)0(2)

´−1
(2)0 =

1


2

(2)0 =
1


 0 =  (( )−12)

It follows that 22 = 

¡
−32 + ( )−12

¢
 For 23 we can apply (A.2) and show that

23 =
1



X
=1

X
=1

2

∙
1

1− 
0

¡
0


¢−1
0
 −



1− 
0

¸

=
1



X
=1

X
=1


0


¡
0


¢−1
0
 + (

−1(−1 + ( )−12) =  (
−1 + ( )−12)
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where the last equality follows from Lemma A.4(i). Next, 24 =
1



P
=1

P
=1 

(2)0
 

(2)
 0

+ 1
2

P
=1

P
=1 (2 − 1)(2)0 

(2)
 0 ≡ 241 +242 Note that

k242k ≤ max

|2 − 1|

(°°°°° 1



X
=1

X
=1

³

(2)


´2°°°°°
)12(

1



X
=1

X
=1

°°0°°2
)12

=  (
−1 + ( )−12) (

−12) (1) =  (
−12(−1 + ( )−12)

In addition, using (A.2) we can readily show that

241 =
1



X
=1

X
=1


(2)0


³
(2)0(2)

´−1
(2)0

∙
1

1− 
0

¡
0


¢−1
0
 −



1− 
0

¸

=
1



X
=1

X
=1

 0(2)
³
(2)0(2)

´−1

(2)
 

0


¡
0


¢−1
0
 + (

−1 + ( )−12)

≡ ̄241 + (
−1 + ( )−12)

where

̄241 =
1


 0(2)

³
(2)0(2)

´−1
(2)0

=
1



¡
 0 0

¢⎛⎝ ∗


−∗




−0∗


(0
)

−1 +0∗


⎞⎠⎡⎣  0

0


⎤⎦
=

1


{ 0∗


 0 −  0∗


 0 +  0}

≡ 2411 −2412 +2413

where we recall that ∗
 = ( 0)

−1
and  =  0 (

0
)

−1
 By Lemma A.4(i), we can

readily show that

2411 =

µ
1


 0

¶¡
∗



¢ 1


 0 =  (( )−12)

2412 =

µ
1


 0

¶¡
∗



¢ 1


 0 =  (

−1 + ( )−12)

2413 =
1


 0 =  (

−1 + ( )−12)

Then 241 =  (
−1+( )−12) 24 =  (

−1+( )−12) and 2 = −1 (
−1+( )−12)

Then

 [1 + 22] =  (
−1 + ( )−12) (A.19)

Combining (A.17)-(A.19) yields


h
 

12 − 
11

i
=

2



X
=1

X
=1

2 −




X
=1

̄2· +  (1)
→ 2̄2 − ̄21 (A.20)

Next, by the proof of Theorem 2.1,


h
 

13 −  
11

i
=  [13 − 11]

→ 2̄2 − ̄22 (A.21)
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Note that

 
14 −  

11 =
1



X
=1

X
=1

∙³
4( − 

(4)0
 

(4)
 ) + 

(2)0



(2)



´2
− 21

³
 − 

(1)0
 

(1)


´2¸
= (14 − 11)

+
1



X
=1

X
=1

³

(4)0



(4)



´2
+

2



X
=1

X
=1

4

³
 − 

(4)0
 

(4)


´

(4)0



(4)



≡ (14 − 11) +3 + 24 (A.22)

where by (A.7)

( ∧  ) [14 − 11]

= ( ∧  )
"¡
−1 +−1¢ 2



X
=1

X
=1

2 −
1



X
=1

̄2· −
1



X
=1

̄2·

#
+  (1)

→  (A.23)

To study3 and4 let  = 0 (
0
)

−1
Noting that (

0
)

−1 =diag(−1(−1−
1

−10−1) 

−1(−1 − 1

−10−1))

 = −10(−1 −
1


−10−1) +−10(−1 −

1


−10−1)

=
 − 1


+
 − 1


=
 +  − 2




By the updated formula for OLS estimators,

 =
¡
0
 − 

0


¢−1 £
0
 − 

0


¤
=

∙¡
0


¢−1
+

1

1− 

¡
0


¢−1


0


¡
0


¢−1¸ £
0
 − 

0


¤
=

¡
0


¢−1
0
 +

1

1− 

¡
0


¢−1


0


¡
0


¢−1
0


− 1

1− 

¡
0


¢−1


0


and 0 =
1

1−
0
 (

0
)

−1
0
 − 

1−
0
 Then 3 =

1
 3

P
=1

P
=1[

0
̂
(4)
1

+0̂
(4)
1 ]

2 = 1
 3

P
=1

P
=1 [vec(

0
)]

0
vec(̂

(4)
1 ̂

(4)0
1 )+ (

−2) =  (
−2) For 4 we have

4 =
1

̄4̂

(4)
1 

̄4 ≡ 1



X
=1

X
=1

4

³
 − 

(4)0
 

(4)


´ ¡
0 + 0

¢
=

1



X
=1

X
=1

4
0
 −

1



X
=1

X
=1

4
(4)0
 

(4)
 0

+
1



X
=1

X
=1

4
0
 −

1



X
=1

X
=1

4
(4)0
 

(4)
 0

≡ 41 −42 +43 −44
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As in the analysis of 21 and 22 we can apply (A.2) and Lemma A.5(iv) to obtain

k41k ≤
°°°°° 1



X
=1

X
=1


0


°°°°°+max
|4 − 1| 1



X
=1

X
=1

°°0°°
=  (( )−12) + (

−1 + ( )−12) =  (
−1 +−1)

and

k42k =

°°°°° 1



X
=1

X
=1

4
(4)
 

0


°°°°°
≤ max


|4|

(°°°°° 1



X
=1

X
=1

³

(4)


´2°°°°°
)(

1



X
=1

X
=1

kk2
)12

= 

Ã
1



X
=1

̄2· +
1



X
=1

̄2· + (( )−1 + −2)

!12
 (1) =  (

−12 +−12)

To improve the probability bound for 42 we make the following decomposition:

42 =
1



X
=1

X
=1


(4)
 

0
 +

1

 2

X
=1

X
=1

(4 − 1)(4) 
0
 ≡ 421 +422

It is easy to show that422 ≤ max |4 − 1| 1


P
=1

P
=1

°°°(4) 
0


°°° = 

¡
−1 +−1¢ (

−12

+−12) = 

¡
−32 +−32¢ by (A.2) and the above rough bound for k42k. Let 4 denote a

 × ( + +  − 2) selection matrix such that  = 4
(4)
  Then

0421 =
1



X
=1

X
=1

4
(4)
 

(4)0


³
(4)0(4)

´−1
(4)0 =

1


4

(4)0 =
1


 0 =  (( )−12)

Then 42 =  (
−32 +−32 + ( )−12) =  (

−1 + −1) For 43 we can apply (A.2) and
show that

43 =
1



X
=1

X
=1

4

∙
1

1− 
0

¡
0


¢−1
0
 −



1− 
0

¸

=
1



X
=1

X
=1


0


¡
0


¢−1
0
 + (

−1 + −1)

=  (
−1 + −1) + (

−1 + −1) =  (
−1 + −1)

where the last line follows from Lemma A.4(iii). Note that 44 =
1



P
=1

P
=1 

(4)0
 

(4)
 0

+ 1


P
=1

P
=1(4 − 1)(4)0 

(4)
 0 ≡ 441 +442 For the second term, we have

k442k ≤ max

|4 − 1|

(°°°°° 1



X
=1

X
=1

³

(4)


´2°°°°°
)12(

1



X
=1

X
=1

°°0°°2
)12

=  (
−1 + −1) (

−12 + −12)) (1) =  (
−32 + −32)
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For the first term, we can apply (A.2) to obtain that

441 =
1



X
=1

X
=1


(4)0


³
(4)0(4)

´−1
(4)0

∙
1

1− 
0

¡
0


¢−1
0
 −



1− 
0

¸

=
1



X
=1

X
=1

 0
³
(4)0(4)

´−1
(4)0(4) 

0


¡
0


¢−1
0
 +

¡
−1 + −1

¢
≡ ̄441 +

¡
−1 + −1

¢


where ̄441 =
1


 0
¡
(4)0(4)

¢−1
(4)0 (

0
)

−1
0
 Following the analysis of ̄241 and using

Lemmas A.2 and A.4(iii), we can show that ̄441 = 

¡
−1 + −1

¢
 Then 44 = 

¡
−1 + −1

¢
and 4 = −1

¡
−1 + −1

¢
 It follows that

( ∧  ) [3 + 24] = ( ∧  )

¡
−1

¡
−1 + −1

¢¢
= 

¡
−1

¢
 (A.24)

Combining (A.22)-(A.24) yields

( ∧  )
h
 

14 −  
11

i
= ( ∧  )

"¡
−1 +−1¢ 2



X
=1

X
=1

2 −
1



X
=1

̄2· −
1



X
=1

̄2·

#
+  (1)

→  (A.25)

Combining (A.20), (A.21) and (A.25) yields 
¡
 

11   
1

¢ → 1 for  = 2 3 4 provided

max
¡
̄21 ̄

2
2

¢
 2̄2

Case 2: Model 2 is the true model. We will show that 
¡
 

22   
2

¢→ 1 for = 1 3 4

Noting that ̆
(1)
 = ̂

(1)
  we have 


21 = 21

→ +̄
2
 by the proof of Theorem 2.1. In addition,

we can readily show  
22 =

1


P
=1

P
=1( − ̆

(2)
 )

2 = 1


P
=1

P
=1 

2
2( − 

(2)0
 

(2)
 +


(2)0



(2)

 )
2 = 1



P
=1

P
=1 

2
 +  (1)

→ ̄2 It follows that

 
21 −  

22
→   0 (A.26)

For  
23 observing that ̆

(3)
 = ̂

(3)
 , we have 


23 = 23

→ 
+ ̄2 by the proof of Theorem

2.1. It follows that

 
23 −  

22
→ 

 0 (A.27)

To study  
24 note that

 − ̆
()
 =  − 

()0


³
̆
()
 − ()

´
= 

³
 − 

()0
 

()


´
+ 

()0



()

 for  = 2 4 (A.28)
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where the last  − 1 elements of (4) are all zeros when Model 2 is the true model. Then

 
24 −  

22

=
1



X
=1

X
=1

½h
4( − 

(4)0
 

(4)
 ) + 

(4)0



(4)



i2
−
h
2( − 

(2)0
 

(2)
 ) + 

(2)0



(2)



i2¾

= (24 −22) +
1



X
=1

X
=1

∙³

(4)0



(4)



´2
−
³

(2)0



(2)



´2¸

+
2



X
=1

X
=1

h
4

³
 − 

(4)0
 

(4)


´

(4)0



(4)

 − 2

³
 − 

(2)0
 

(2)


´

(2)0



(2)



i
≡ (24 −22) +5 + 26 (A.29)

where by (A.13) we have

 [24 − 22] =
2



X
=1

X
=1

2 −




X
=1

̄2· +  (1)
→ 2̄2 − ̄22 (A.30)

To study 5 and 6 recall that  = 0 (
0
)

−1
 =

+−2


and 0 =
1

1−
0
 (

0
)

−1
0
 − 

1−
0
 Then we can show that

5 =
1



X
=1

X
=1

∙³

(4)0



(4)



´2
−
³

(2)0



(2)



´2¸

=
1

 3

X
=1

X
=1

∙³
0̂

(4)
1 + 0̂

(4)
1

´2 − ³0̂(2)1 + 0̂
(2)
1

´2¸

=
1

 3

X
=1

X
=1

£
vec(

0
)
¤0
vec

³
̂
(4)
1 ̂

(4)0
1 − ̂

(2)
1 ̂

(2)0
1

´
+ −2 (

−1 + −1) =  (
−2)

which is  (
−1) provided  2 =  (1)  Under the additional condition that

√
 1


(̂
()
1 −()1 ) =

 (1) for  = 2 4 noting that 
(2)
1 = 

(4)
1 when Model 2 is the true model, we have 1


(̂
(4)
1 − ̂

(2)
1 ) =

1

[(̂
(4)
1 −(4)1 )−(̂(2)1 −(2)1 )] =  (( )−12). This implies that 5 = 

³
1
 2

°°°̂(4)1 ̂
(4)0
1 − ̂

(2)
1 ̂

(2)0
1

°°°´ =
 (( )−1 + −1 ( )−12) which is 

¡
−1¢ under the weaker condition  3 =  (1) 

By the definition of 
(2)

 in (2.5) and that of 
(4)

 in (2.6), we have

6 =
1



X
=1

X
=1

h
4( − 

(4)0
 

(4)
 )

(4)0



(4)

 − 2( − 
(2)0
 

(2)
 )

(2)0



(2)



i
=

1



³
̄4̂

(4)
1 − ̄2̂

(2)
1

´
= −1[ (

−1 + −1)− (
−1 + ( )−12)] = −1 (

−1 + −1)

where ̄4 =
1



P
=1

P
=1 4( − 

(4)0
 

(4)
 )(0 + 0) = 

¡
−1 + −1

¢
and ̄2 =

1


P
=1

P
=1 2( − 

(2)0
 

(2)
 )(0 + 0) = 

¡
−1 + ( )−12

¢
 Note 6 = 

¡
−1¢

under the weaker condition  2 =  (1)  To obtain a better control on the probability bound for 6
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under the additional condition that
√
 1


(̂
()
1 − 

()
1 ) =  (1) for  = 2 4 we make the following

expansion:

6 =
1



¡
̄4 − ̄2

¢
̂
(4)
1 +

1


̄2

³
̂
(4)
1 − ̂

(2)
1

´
≡ 1


61̂

(4)
1 +62

where 61 ≡ ̄4−̄2 and 62 ≡ ̄2
1

(̂
(4)
1 −̂(2)1 ) = 

¡
−1 + ( )−12

¢

¡
( )−12

¢
= 

¡
−1¢

if  3 =  (1)  Using (A.2), we can readily show that

61 =
1



X
=1

X
=1

³
 − 

(4)0
 

(4)


´ ¡
0 + 0

¢− 1



X
=1

X
=1

³
 − 

(2)0
 

(2)


´ ¡
0 + 0

¢
+ (

¡
−1 + −1

¢2
) + ((

−1 + ( )−12)2)

= − 1



X
=1

X
=1

³

(4)0
 

(4)
 − 

(2)0
 

(2)


´
0 +

1



X
=1

X
=1


¡
0 − 0

¢
− 1



X
=1

X
=1

³

(4)0
 

(4)
 0 − 

(2)0
 

(2)
 0

´
+ (

−2 + −2)

≡ −611 +612 −613 + (
−2 + −2)

Using the definitions of the selection matrices 4 and 2 defined above, we have 0611 =
1



P
=1

P
=1

(4
(4)
 

(4)0
 

(4)
 − 2

(2)
 

(2)0
 

(2)
 ) = 1



¡
4

(4)0 − 2
(2)0

¢
= 1


( 0 − 0) = 0 For 612

we apply the fact that 0 =
1

1−
0
 (

0
)

−1
0
 − 

1−
0
 and 0 =

1
1−

0
 (

0
)

−1
0
 − 

1−
0
 and (A.2) to obtain that

612 =
1



X
=1

X
=1


¡
0 − 0

¢
= ̄612 + ((

−1 + −1)2) + ((
−1 + ( )−12)2) = ̄612 +

¡
−2 + −2

¢


where ̄612 =
1



P
=1

P
=1 [

0
 (

0
)

−1
0
−0 (0

)
−1

0
] By Lemma A.4(i)

and (iii) and Assumptions A.1(iii) and A.2(iv), ̄612 =
1


P
=1 ̄·̄

0·−̄··̄0·· =  (
−1+( )−12)

Then 612 =  (
−1 + ( )−12) For 613 we have

613 =
1



X
=1

X
=1

³

(4)0
 

(4)
 0 − 

(2)0
 

(2)
 0

´
= ̄613 +

¡
−2 + −2

¢


where ̄613 =
1



P
=1

P
=1[

(4)0
 

(4)
 

0
 (

0
)

−1
0
−(2)0 

(2)
 

0
 (

0
)

−1
0
]Note

that ̄613 =
1


 0[(4)

¡
(4)0(4)

¢−1
(4)0

−(2)
¡
(2)0(2)

¢−1
(2)0 ] ≡ ̄6131− ̄6132

16



By Lemma A.1,

̄6132

=
1


 0 ()

×
⎛⎝ ∗


−∗


 0 (

0
)

−1

− (0
)

−1
0
∗


(0

)
−1 [−1 +0

∗


 0 (
0
)

−1]

⎞⎠⎛⎝  0

0


⎞⎠
=

1


 0
¡
∗


 0 − ∗


 0 +∗


 0 +  + ∗


 0

¢


=
1



©
 0 + 2 0∗


 0

ª
=

1


 0 + (( )−12)

where we use the fact that ( 1


 0)
¡
∗



¢
( 1


 0) =  (( )−12). Similarly, by

Lemma A.2

̄6131 =
1


 0 ()

×

⎛⎜⎜⎝
∗


−∗


 −∗




−0∗


(0
)

−1 +0∗


 0∗




−0∗


0
∗


 (0
)

−1 +0
∗




⎞⎟⎟⎠
⎛⎜⎜⎝

 0

0


0


⎞⎟⎟⎠


=
1


 0
n
∗


 0 +

³¡
0


¢−1
+0

∗




´
0
 +

³¡
0


¢−1
+0

∗




´
0


−2
0


∗


 0 − 2
0


∗


 0 + 2
0


∗



0


ª




=
1


 0
©
∗


 0

+  + ∗


 0 + 
+ 

∗


 0

−2∗


 0
− 2

∗


 0
+ 2

∗


 0

ª


=
1


 0 + (( )−12 +−1)

where we use the notation defined in Lemma A.2 with1 and2 replaced by and respectively.

It follows that ̄613 =  (( )−12 +−1) and 613 =  (( )−12 +−1) Consequently, we
have shown that 61 =  (( )−12+−1) and 6 = 1


61̂

(4)
1 +62 = −1 (( )−12+−1) =


¡
−1¢ provided that  3 =  (1)  In sum, under Scenario (1): ̂

()
1 =  (1) for  = 2 4 and

 2 =  (1)  we have

 [5 + 26] = 

¡
−1(−1 + −1)

¢
=  (1) ; (A.31)

and under Scenario (2): ̂
()
1 =  (1) 

√
 1


(̂
()
1 −()1 ) =  (1) for = 2 4 and 3 =  (1) 

we have

 [5 + 26] = 

³
( )−1 +−12−32

´
=  (1) . (A.32)

Combining (A.29)-(A.32) yields that


h
 

24 −  
24

i
=

2



X
=1

X
=1

2 −




X
=1

̄2· +  (1)
→ 2̄2 − ̄22 (A.33)
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By (A.26), (A.27), and (A.33), we have 
¡
 

22   
2

¢ → 1 as ( ) → ∞ for  = 1 3 4

provided ̄22  2̄
2


Case 3: Model 3 is the true model. Noting that  
3 = 3 for  = 1 3 we have

 
31 −  

33 = 31 − 33
→   0 (A.34)

Next we want to show that

 
32 −  

33
→ 

 0 (A.35)

Let (=  + ) and 
(2)

be defined as in the proof of Theorem 2.1. Note that

 
32 =

1



X
=1

X
=1

h
2( − 

(2)0
 

(2)

) + 

(2)0



(2)



i2
= 32 +

1



X
=1

X
=1

³

(2)0



(2)



´2
+

2



X
=1

X
=1

2( − 
(2)0
 

(2)

)
(2)0



(2)

 

where 32 =
1



P
=1

P
=1[2( − 

(2)0
 

(2)

)]2

→ 
+ ̄2 by the proof of Theorem 2.1. It

is easy to show that the last two terms in the last display are  (
−2) and  (

−1) respectively. In
addition,  

33 = 33 =
1



P
=1

P
=1[3(−

(3)0
 

(3)
 )]2

→ ̄2. Consequently, (A.35) follows.

Now, we show that


h
 

34 −  
33

i
→ 2̄2 − ̄21  0 (A.36)

provided ̄21  2̄
2
 Note that

 
34 −  

33

=
1



X
=1

X
=1

h
4( − 

(4)0
 

(4)
 ) + 

(4)0



(4)



i2
− 1



X
=1

X
=1

23

h
 − 

(3)0
 

(3)


i2
= (34 −33) +

1



X
=1

X
=1

h

(4)0



(4)



i2
+

2



X
=1

X
=1

4

h
 − 

(4)0
 

(4)


i

(4)0



(4)



≡ (34 −33) +7 + 28

where  [34−33] → 2̄2−̄21 by the proof of Theorem 2.1. Apparently, 7 = 1
3

P
=1

P
=1[(

0
+

0)̂
(4)
1 ]

2 = 

¡
−2

¢
 For 8 we can apply (A.2) to show that

8 =
1

 2

X
=1

X
=1

4[ − 
(4)0
 

(4)
 ](0 + 0)̂

(4)
1 =

1


̄8̂

(4)
1 + −1

¡
−1 + −1

¢
where ̄8 =

1


P
=1

P
=1[−(4)0 

(4)
 ](0+0) By straightforward calculations, we can

show that ̄8 = 

¡
−1 + −1

¢
 Then

 [7 + 28] = 

¡
−1 + −1

¢
 (A.37)

Consequently, (A.36) follows. Combining (A.34), (A.35), and (A.36), we conclude that 
¡
 

33   
3

¢→
1 for  = 1 2 4
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Case 4: Model 4 is the true model. We will show that 
¡
 

44   
4

¢→ 1 for = 1 2 3

Let      
()


and 
()


be as defined in the proof of Theorem 2.1. Noting that no

bias correction is needed for Models 1 and 3, we have by the proof of Theorem 2.1,

 
41 = 41

→  + ̄2 and  
43 = 43

→ 
+ ̄2

Next, we study  
42 Note that

 
42 =

1



X
=1

X
=1

h
2( − 

(2)0
 

(2)

) + 

(2)0



(2)



i2
= 42 +

1



X
=1

X
=1

³

(2)0



(2)



´2
+

2



X
=1

X
=1

2( − 
(2)0
 

(2)

)
(2)0



(2)



where 42 =
1



P
=1

P
=1 

2
2

h
 − 

(2)0
 

(2)


i2 → 
+ ̄2 by the proof of Theorem 2.1.

It is straightforward to show that the second and third terms in the last display are  (
−2) and

 (
−1) respectively. Then we have  

42
→ 

+ ̄2 For 

44 we have

 
44 =

1



X
=1

X
=1

h
4( − 

(4)0
 

(4)
 ) + 

(4)0



(4)



i2
=  

42 +
1



X
=1

X
=1

³

(4)0



(4)



´2
+

2



X
=1

X
=1

4( − 
(4)0
 

(4)
 )

(4)0



(4)

 

where  
42 =

1


P
=1

P
=1[4(−(4)0 

(4)
 )]2

→ ̄2 by the proof of Theorem 2.1. It is straight-

forward to show that the second and third terms in the last display are  (
−2) and  (

−1)
respectively. It follows that  

44
→ ̄2 Consequently, we must have 

¡
 

44   
4

¢ → 1 as

( )→∞ for  = 1 2 3 ¥

To prove Theorem 2.3, we introduce some notation and three new lemmas. The proofs of these

lemmas can be found in the online supplement. Let û = (̂+1  ̂ )
0 Û = (û01  û0 )

0


ẑ = (̂  ̂−1)0 and Ẑ = (ẑ01  ẑ0 )
0
 where ̂ = ̂

(4)
 = (̂

(4)
   ̂

(4)
−+1)

0 for  =    − 1
Let u = (+1   )

0 U = (u01 u0 )
0
  = (̈  ̈−1)0 and Z = (z01  z0 )

0
 where

̈ = (̈  ̈−+1)0 and ̈ =  − ̄· − ̄· + ̄·· for  =    − 1 Let ̈ =  − ̄· − ̄· + ̄··
where ̄· ̄· and ̄·· are defined analogously to ̄· ̄· and ̄·· Let ̆

()
 = 

()
 − 

()
−1ρ where


()
−1 = (

()
−1  

()
−) for  = 1 2 3 4

Lemma A.7 Suppose Assumptions A.1, A.2 and A.4 hold. Then kρ̂− ρk =  ( ).

Lemma A.8 Let  =
1



P
=1

P
=+1 ̆

()0


¡
()0()

¢−1
()0 for  = 1 2 3 4 Sup-

pose that Assumptions A.1, A.2(iii)-(iv), A.4(iii), and A.5(iii)-(iv) hold. Then

(i) 1 = 

¡
( )−1

¢


(ii) 2 =
Φ(1)


P
=1

P
=+1 ̄· + (( )−1 + −2)

(iii) 3 =
1



P
=1

P
=+1 Φ()̄· + (( )−1 +−2)
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(iv) 4 =
Φ(1)


P
=1

P
=+1 ̄· +

1


P
=1

P
=+1 Φ()̄· + (

−2 + −2) 4 −
2 =

1


P
=1

P
=+1 Φ()̄·+ (( )−1+−2) and4−3 =

Φ(1)


P
=1

P
=+1 ̄·

+ (( )−1 + −2)

Lemma A.9 Let  = 1


P
=1

P
=+1

³
̆
()0


¡
()0()

¢−1
()0

´2
for  = 1 2 3 4

Suppose that Assumptions A.1, A.2(iii)-(iv), A.4(iii), and A.5(iii)-(iv) hold. Then

(i) 1 = 

¡
( )−1

¢


(ii) 2 = (Φ(1))
2 1


P
=1 ̄

2
· +

¡
( )−1 + −2

¢


(iii) 3 =
1


P
=+1[Φ()̄·]

2 + (( )−1 +−2)
(iv) 4 = (Φ(1))2 1



P
=1 ̄

2
· +

1


P
=+1[Φ()̄·]

2 +  (
−2 + −2) 4 − 2 =

1


P
=+1 [Φ()̄·]

2+

¡
( )−1 +−2¢  and 4−3 = [Φ(1)]

2 1


P
=1 ̄

2
·+

¡
( )−1 + −2

¢


Proof of Theorem 2.3. Noting that ( − ρ̂0−1)− (̂
()
 − ρ̂0̂()−1) = ( − ρ0−1)− (̂

()
 −

ρ0̂()
−1) +(ρ̂− ρ)0(̂()−1 − 

−1) we have

 ∗ () =
1



X
=1

X
=+1

h
( − ρ̂0−1)− (̂

()
 − ρ̂0̂()−1)

i2
=

1



X
=1

X
=+1

h
( − ρ0−1)− (̂

()
 − ρ0̂()−1)

i2
+
(ρ̂− ρ)0


X
=1

X
=+1

(̂()
−1 − 

−1)(̂
()
−1 − 

−1)
0(ρ̂− ρ)

+
2(ρ̂− ρ)0


X
=1

X
=+1

(̂()
−1 − 

−1)
h
( − ρ0−1)− (̂

()
 − ρ0̂()−1)

i
≡  ∗1 () +  ∗2 () + 2

∗
3 () 

As in the proof of Theorem 2.1, we will use  ∗ and  ∗ () to denote 
∗ () and  ∗ ()

when the true model is Model . Note that  ∗ =
P3

=1
∗
 () 

Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted models and

we will show that 
¡
 ∗11   ∗1

¢→ 1 for  = 2 3 4 When Model 1 is the true model, we have

by (A.4)

( − ρ0−1)− (̂
()
 − ρ0̂()−1) = [ − 

()0
 

()
 ]−

X
=1

−[− − 
()0
−

()
 ]

= [ − ̆
()0
 

()
 ] +

X
=1

κ [− − 
()0
−

()
 ](A.38)

where  = (1− 
()
 )−1 and κ = − − for  = 1 2 3 4 and  = 1   By Lemma

A.6, we have

max

|κ | =  ( ) for  = 1 2 3 4 and  = 1   (A.39)
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Note that

 ∗1 (1) =
1



X
=1

X
=+1

2[ − ̆
()0
 

()
 ]2 +

1



X
=1

X
=+1

⎧⎨⎩
X

=1

κ [− − 
()0
−

()
 ]

⎫⎬⎭
2

+
2



X
=1

X
=+1

X
=1

κ [ − ̆
()0
 

()
 ][− − 

()0
−

()
 ]

≡  ∗1 (1 1) +  ∗1 (1 2) + 2
∗
1 (1 3)  say.

We first study  ∗12 (1) −  ∗11 (1)  Following the study of 12 − 11 in the proof of Theorem

2.1, we can readily apply Lemmas A.8(i)-(ii) and A.9(i)-(ii), Assumptions A.4(ii) and A.5(i) to show

that


£
 ∗12 (1 1)−  ∗11 (1 1)

¤
=

2



X
=1

X
=+1

2 +
Φ(1)

2



X
=1

̄2· −
2Φ(1)



X
=1

X
=+1

̄· +  (1)

=
2



X
=1

X
=+1

2 +
Φ(1)

2



X
=1

̄2· −
2Φ(1)



X
=1

̄·̄· +  (1)

=

⎛⎝ 2



X
=1

X
=+1

2 −




X
=1

̄2·

⎞⎠+ 



X
=1

[̄· −Φ(1)̄·]2 +  (1)

→ 2̄2 − ̄21

where we use the fact that ̄· = 1


P
=+1  =

1


P
=+1

³
 − 0−1ρ

´
= Φ(1)̄· + 

¡
−1

¢


Similarly, using (A.39) and following the analysis of 12−11 we can readily show that [ ∗12 (1 2)
− ∗11 (1 2)] =  (1) and [

∗
12 (1 3)− ∗11 (1 3)] =  (1)  It follows that 

£
 ∗12 (1)−  ∗11 (1)

¤
→ 2̄2 − ̄21

By (A.4) and (A.38),

 ∗1 (2) =
(ρ̂− ρ)0


X
=1

X
=+1

(̂()
−1 − 

−1)(̂
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−1 − 

−1)
0(ρ̂− ρ)

=

X
1=1

X
2=1

(̂1 − 1)(̂2 − 2)1 (1 1 2)  and

 ∗1 (3) =
(ρ̂− ρ)0


X
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X
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−1)
h
( − ρ0−1)− (̂
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 − ρ0̂()−1)

i
=

X
1=1

(̂1 − 1) {1 (2 1) +1 (3 1)} 
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where

1 (1 1 2) =
1



X
=1

X
=+1

−1−2[−1 − 
()0
−1

()
 ][−2 − 

()0
−2

()
 ]

1 (2 1) =
1



X
=1

X
=+1

−1[−1 − 
()0
−1
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 ]

h
 − ̆

()0
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i


1 (3 1) =
1



X
=1

X
=+1

X
=1

−1κ [−1 − 
()0
−1

()
 ][− − 

()0
−

()
 ]

As in the analysis of 12 − 11 we can readily show that 12 (1 1 2) − 11 (1 1 2) =



¡
−1

¢
and 1 ( 1) = 

¡
( )−1

¢
for  = 2 3 uniformly in 1 2 = 1   Then by Lemma

A.7


£
 ∗12 (2)−  ∗11 (2)

¤
=  kρ̂− ρk2 (1) =  (

32 ) =  (1)  and


£
 ∗12 (3)−  ∗11 (3)

¤
=
√
 kρ̂− ρk (1) =  (

32 ) =  (1) 

In sum, we have


£
 ∗12 −  ∗11

¤
=

⎛⎝ 2



X
=1

X
=+1

2 −




X
=1

̄2·

⎞⎠+ 



X
=1

[̄· −Φ(1)̄·]2 +  (1)

→ 2̄2 − ̄21 (A.40)

Similarly, by using Lemma A.8(i) and (iii), Lemma A.9(i) and (iii), Assumptions A.4(ii) and A.5(ii)

we can show that


£
 ∗13 −  ∗11

¤
=

⎛⎝ 2



X
=1

X
=+1

2 −




X
=+1

̄2·

⎞⎠+ 



X
=+1

[̄· −Φ()̄·]2 +  (1)

→ 2̄2 − ̄22 (A.41)

where we use the fact that ̄· = 1


P
=1  =

1


P
=1Φ () = Φ () ̄· By using Lemma A.8(iv)

and Lemma A.9(i) and (iv),

( ∧ ) [14 − 11]

= ( ∧ )
⎧⎨⎩¡−1 +−1¢ 2



X
=1

X
=+1

2 −
1



X
=1

̄2· −
1



X
=+1

̄2·

⎫⎬⎭+  (1)

→ 2 (1 + ) ̄2 −
¡
̄21 + ̄22

¢
1 {1 ≥ 1}−

¡
̄21 + ̄22

¢
1 {1  1}  (A.42)

where  = lim( )→∞
³


∧ 



´
and 1 = lim( )→∞ 


. Combining (A.40)-(A.42) yields  ( ∗11

  ∗1)→ 1 for  = 2 3 4 provided max
¡
̄21 ̄

2
2

¢
 2̄2

Case 2: Model 2 is the true model. In this case, Model 1 is underfitted, Model 3 is misspecified,

and Model 4 is overfitted; and we will show that 
¡
 ∗22   ∗2

¢ → 1 for  = 1 3 4 Let 

22



and  be as defined in the proof of Theorem 2.1. Following the steps to obtain (A.8), we can show

that

( − ̂
(1)
 )− ρ0(−1 − ̂(1)

−1) = 1[ − 0
(1)

]−

X
=1

−1[− − 0−
(1)

]

= 1[Φ(1) +  − ̆0
(1)

] +

X
=1

κ1 [− − 0−
(1)

](A.43)

where 
()


=
¡
()0()

¢−1
()0 for  = 1 2 3 4 Then
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X
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X
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h
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+
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X
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X
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⎧⎨⎩
X
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]
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2

+
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X
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X
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X
=1

1κ1 [Φ(1) +  − ̆0
(1)

][− − 0−

(1)

]

≡ 21 (1) +21 (2) + 221 (3)  say.

It is easy to show that by Assumptions A.1, A.4(ii)-(iv), and A.6(i)
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1



X
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X
=+1

h
Φ(1) − ̆0

¡
 0

¢−1
 0
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+

1



X
=1

X
=+1

2 +  (1)
→ ∗ + ̄2

In addition, 2 (2) =  (1) for  = 2 3 Thus 
∗
21 = ∗ + ̄2 Following the analysis in Case 1

and noting that
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 )− ρ0(−1 − ̂(2)

−1) = 2

h
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i
−

X
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−
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i
= 2

h
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i
+

X
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h
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(2)0
−
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we can readily show that  ∗22 =
1



P
=1

P
=+1 

2
 +  (1)

→ ̄2. It follows that

 ∗21 −  ∗22
→ ∗  0 (A.44)

To study  ∗23 noting that

( − ̂
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]
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(3)
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X
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−
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] (A.45)
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we can follow the analysis of  ∗21 and show that by Assumptions A.4(ii)-(iv) and A.6(i)

 ∗23 =
1



X
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X
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( − ̂

(3)
 )− ρ0(−1 − ̂(3)

−1)
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X
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h
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(3)


i2
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X
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∙
Φ(1) − ̆
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(3)0(3)
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X
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2 +  (1)
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It follows that

 ∗23 −  ∗22
→ ∗

 0 (A.46)

To study  ∗24 noting that

( − ̂
(4)
 )− ρ0(−1 − ̂(4)
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(4)0
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 ]−

X
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 ]
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we have
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For 24 (1)  we make further decomposition:
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i
≡ 24 (1 1) +24 (1 2)− 224 (1 3)  say.
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Following the analysis of  ∗14 − ∗11 in Case 1 and that of 24 −21 in the proof of Theorem

2.1, and applying Lemmas A.8(ii) and (iv) and A.9, (A.2) and (A.39), we can readily show that
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X
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X
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X
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¡
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It follows that ·24 (1) = 2


P
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P
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2
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P
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2·+ 


P
=+1 [· −Φ()̄·]2+ (1) 

Similarly, we can show that 24 () = 
¡
−1¢ for  = 2 3 Consequently, we have by Assumptions

A.4(ii) and A.5(ii)
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X
=1

X
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X
=+1

2· +  (1)
→ 2̄2 − ̄22 (A.48)

By (A.44), (A.46), and (A.48), we have 
¡
 ∗22   ∗2

¢ → 1 as ( ) → ∞ for  = 1 3 4

provided ̄22  2̄
2


Case 3: Model 3 is the true model. This case parallels Case 2 and we can follow the analysis

in Case 2 and show that 
¡
 ∗33   ∗3

¢→ 1 for  = 1 2 4 The details are omitted for brevity.

Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will

show that 
¡
 ∗44   ∗4

¢→ 1 for  = 1 2 3 Let    and  be as defined in the

proof of Theorem 2.1. Following the steps to obtain (A.38), now we can show that

( − ̂
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] (A.49)

where 
()


=
¡
()0()
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()0 for  = 1 2 3 4 As in Case 2, we can show that by

Assumptions A.4(ii)-(iv) and A.6(iii),
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Similarly, we have
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→ ̄2 Then 
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 = 1 2 3 ¥

B Proofs of the Technical Lemmas

Proof of Lemma A.1. Noting that  0
 =

⎛⎝  0  0

0 0

⎞⎠  the lemma follows from the

standard inversion formula for a 2× 2 partitioned matrix. See, e.g., Bernstein (2005, p.45). ¥
Proof of Lemma A.2. By Lemma A.1,

¡
 0


¢−1
=

⎛⎝ ∗
 −∗


0 (0)−1

− (0)−10∗
 (0)−1 + (0)−10∗


0 (0)−1

⎞⎠ 

Noting that 0
12 = 0 we have (0)−1 =

⎛⎝ (0
11)

−1

(0
22)

−1

⎞⎠  and  0 (0)−1 =

 0(1 (
0
11)

−1
 2 (

0
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−1) = (1 2)  Combining the above results yields the desired result.
¥

Proof of Lemma A.3. (i) Noting that 0
 = 

¡
−1 + −10−1

¢
 we have

¡
0


¢−1
= −1(−1 − 1


−10−1) (B.1)

and
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´

=
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26



By straightforward but tedious algebra we can show that
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¡
0


¢−1
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The result then follows from Assumption A.1(iii).

(ii) The proof is analogous to that of (i) and thus omitted. The main difference is that one now
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¡
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0
 =

¡
 

0


¢⊗
⎛⎝ −1 − 1


−10−1 − 1


−1

− 1

0−1

−1


⎞⎠ 
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where the second equality follows from the results in (i)-(ii) and the last equality follows by Assump-

tion A.1(iii). ¥

Proof of Lemma A.4. (i) Following the proof of Lemma A.3(i), we have
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where we use the fact that 1


P
=1 ̄·̄· = 

¡
−1

¢
and ̄·· = 

¡
( )−12

¢
by Assumptions

A.2(iii) and A.1(iii).

(ii) The proof is analogous to that of (i) and thus omitted.

(iii) Noting that  (
0
)
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0
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0
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0
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0
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0
 the results follow

from (i)-(ii). ¥

Proof of Lemma A.5. (i) 1 ≤
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by Assumption A.1(iii)-
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It follows that 2 =
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P
=1 ̄

2
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−2 + ( )−1)
(iii) The proof is analogous to that of (ii) and thus omitted.

(iv) By Lemma A.2
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In addition, by Lemma A.4(i)-(ii) and Assumption A.1(iii)-(iv), we have
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Proof of Lemma A.6. (i)max 
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For  ≤ −1  contains 1 in one place and zeros elsewhere, implying that 0
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0

µ
−1 − 1


−10−1

¶
 = 0−1

µ
−1 − 1


−10−1

¶
−1 =

 − 1


for  = 1  

These observations, in conjunction with (B.1), imply that

0
¡
0


¢−1
 = −10

µ
−1 − 1


−10−1

¶
 = −1

 − 1


for all   (B.3)

Next, notice that
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where 1 =
£
min
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1
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¢¤−1
=  (1) by Assumption A.1(iv). By Assumption A.1(ii) and

Markov inequality,
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where the last inequality follows from the fact that  (
0
)

−1
0
 is a projection matrix with

maximum eigenvalue 1. It follows that 
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(iii) Let 0 denote a typical row of  such that  = (11  1   1   )
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Noting that
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In addition, following the arguments as used in the analysis of ( −)
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and (B.6) we have
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Noting that  = () and 0
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In addition, following the arguments as used in the analysis of ( −)
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and (B.9), we can show that
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(vi) The proof of (vi) is analogous to that of (v). The major difference is now we need to apply

the fact that  0 (
0
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 = ̄· − ̄··
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Proof of Lemma A.7. Let kksp denotes the spectral norm of  Note that
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°°°Ẑ0Ẑ− Z0Z°°°
sp
=  ( ) (ii)

°°° 1


Z0Z−Γ
°°°
sp
=  (1) (iii)

1
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°°°Ẑ0Û− Z0U°°°
=  (1) (

12 ) =  (
12 )

where the second inequality follows from the eigenvalue stability inequality, and the last line follows
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where we use the fact that by (i)-(iii),°°°°°
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To show (i), we reparametrize Model 4 as

 = ∗0
∗ + ∗ +  + 

where ∗ and ∗ correspond to  and  after one removes the constant term, and ∗ incorporates
the intercept term now. Let ̈∗ = ∗ − ̄∗· − ̄∗· + ̄∗·· where ̄∗· ̄
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The analysis of (iii) is similar to that in (i) and thus omitted.
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Proof of Lemma A.8. (i) Noting that ̆
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Proof of Lemma A.9. (i) Noting that ̆
(1)
 = −−1ρ ≡ ̆ we can readily apply Assumptions

A.1(iv)-(v) and A.4(i) to show that

1 =  0
¡
 0

¢−1 1



X
=1

X
=+1

̆̆
0


¡
 0

¢−1
 0

≤
°°°°°
µ
1


 0

¶−1°°°°°
2 °°°° 1


 0

°°°°2
°°°°°° 1



X
=1

X
=+1

̆̆
0


°°°°°° = 

¡
( )−1

¢


38
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0


̆̆
0
 ̆̆

0


⎞⎠, we have
2 =  0(2)

³
(2)0(2)

´−1 1



X
=1

X
=+1

̆
(2)
 ̆

(2)0


³
(2)0(2)

´−1
(2)0

=
¡
 0 0

¢⎛⎝ ∗


−∗




−0∗


(0
)

−1 +0∗


⎞⎠ 1



X
=1

X
=+1

̆
(2)
 ̆

(2)0


×
⎛⎝ ∗


−∗




−0∗


(0
)

−1 +0∗


⎞⎠⎛⎝  0

0


⎞⎠
=

¡
 01 

0
2

¢ 1



X
=1

X
=+1

̆
(2)
 ̆

(2)0


⎛⎝ 1

2

⎞⎠
=  01

1



X
=1

X
=+1

̆̆
0
1 +  02

1



X
=1

X
=+1

̆̆
0
2 + 2

0
1

1



X
=1

X
=+1

̆̆
0
2

≡ 21 + 22 + 223 say,

where 1 = ∗0


 0 −∗0



0
 and 2 = −0∗0


 0 + (0

)
−1

0
 +0∗0




0
 It

is easy to show that 21 =  (( )−1 + −2) by Assumptions A.1(iv)-(v) and Lemma A.4(i).
For 22 we have 22 = 221+222+223 − 2224− 2225 +2226 where

221 =  0∗



1



X
=1

X
=+1

̆̆
0


0


∗0


 0

222 =  0

¡
0


¢−1 1



X
=1

X
=+1

̆̆
0


¡
0


¢−1
0


223 =  0
0


∗



1



X
=1

X
=+1

̆̆
0


0


∗0



0


224 =  0∗



1



X
=1

X
=+1

̆̆
0


¡
0


¢−1
0


225 =  0∗



1



X
=1

X
=+1

̆̆
0


0


∗0



0


and

226 =  0

¡
0


¢−1 1



X
=1

X
=+1

̆̆
0


0


∗0



0


Noting that ̆0
0
 = ̆0 (

0
)

−1
0
 = Φ(1) (̄· − ̄··)0  we have


1



X
=1

X
=+1

̆̆
0


0
 = Φ(1)

2 1



X
=1

(̄· − ̄··) (̄· − ̄··)0 =  (1) 
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This result, in conjunction with Assumption A.1(iv)-(v) and Lemma A.5(i), implies that

221 ≤
°°°°°°

1



X
=1

X
=+1

̆̆
0


0


°°°°°°
°°°°°
µ
1


 0

¶−1°°°°°
2 °°°° 1


 0

°°°°2 =  (( )−1)

223 ≤
°°°°°°

1



X
=1

X
=+1

̆̆
0


0


°°°°°°
°°°°°
µ
1


 0

¶−1°°°°°
2 °°°° 1




0


°°°°2 =  (
−2 + ( )−1)

Noting that ̆0 (
0
)

−1
0
 = Φ(1) (̄· − ̄··)  we have

222 =  0

¡
0


¢−1 1


X
=1

X
=+1

̆̆
0


¡
0


¢−1
0
 = Φ(1)

2 1



X
=1

(̄· − ̄··)2

= Φ(1)2
1



X
=1

̄2· + (( )−1)

Analogously, we can show that 22 =  (
−2+( )−1) for  = 4 5 6 and 23 =  (

−2+
( )−1) It follows that 2 = Φ(1)

2 1


P
=1 ̄

2
· +

¡
( )−1 + −2

¢


(iii) The proof is analogous to that of (ii) with the major difference as outlined in the proof of

Lemma A.8(iii).

(iv) The proof is a combination of (ii) and (iii) as in that of Lemma A.5(iv) and thus omitted. ¥

C Verification of Some Assumptions

In this section, we verify Assumptions A.2(iii)-(iv) and A.4-A.5 based on some primitive conditions.

C.1 Verification of the rate conditions in Assumption A.2(iii)-(iv)

In this subsection, we verify the rate conditions in Assumption A.2(iii)-(iv). Recall that we use  to

denote a generic positive constant whose value can change across lines. Let ∗ =  − (). To

verify the rate conditions in Assumption A.2(iii)-(iv), we add the following assumptions.

Assumption A.2∗ (i) max1≤≤ 
°°° 1 P

=1

P
=1 

∗


°°°2 ≤ ;

(ii) max1≤≤ 
°°° 1 P

=1

P
=1 

∗


°°°2 ≤ ;

(iii) 1


P
=1

P
=1

P
=1

P
=1 | ()| ≤ 

The conditions of the above type are frequently assumed in the panel data literature to control

weak serial and cross-section dependence; see, e.g., Bai and Ng (2002). Below we first show that As-

sumption A.2*, in conjunction with Assumption A.1(i)-(ii), is sufficient for Assumptions A.2(iii)-(iv),

and then give more primitive conditions to ensure Assumption A.2*(i). Similar primitive conditions

can ensure Assumption A.2*(ii) by relying upon some mixing conditions in random field to handle

weak cross-sectional dependence.
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First, we verify Assumption A.2(iii): 1


P
=1 ̄·̄· =  (

−1+( )−12). Let ̄∗· = ̄·−(̄·)
Then

1



X
=1

̄·̄· =
1



X
=1

 (̄·) ̄· +
1



X
=1

̄∗·̄· ≡ 1 +2 say.

For 1 we have 1 =
1



P
=1

P
=1 (̄·). Note that  (1) = 0 and

 k1k2 =
1

2 2

X
=1

X
=1

X
=1

X
=1

 (̄·)0 (̄·) ()

≤ 

2 2

X
=1

X
=1

X
=1

X
=1

| ()| = (( )−1)

where the last equality follows from Assumption A.2*(iii). Then 1 =  (( )−12) by Chebyshev
inequality. For 2 we apply the Jensen inequality and Assumption A.2*(i) to obtain


h
k2k2

i
= 

⎡⎣Ã 1


X
=1

1

 2

X
=1

X
=1

∗

!2⎤⎦ ≤ 1



X
=1



⎡⎣Ã 1

 2

X
=1

X
=1

∗

!2⎤⎦ ≤ 

 2


It follows that 2 = 

¡
−1

¢
by Chebyshev inequality. In sum, we have shown 1



P
=1 ̄·̄· =

 (
−1 + ( )−12)

Next, we verify Assumption A.2(iv): 1


P
=1 ̄·̄· =  (

−1+( )−12) Let ̄∗· = ̄·−(̄·)
Then

1



X
=1

̄·̄· =
1



X
=1

 (̄·) ̄· +
1



X
=1

̄∗·̄· ≡ 3 +4 say.

For 3 we have 3 =
1



P
=1

P
=1 (̄·). Note that  (3) = 0 and


³
k3k2

´
≤ 1

2 2

X
=1

X
=1

X
=1

X
=1

 (̄·)0 (̄·) ()

≤ 

2 2

X
=1

X
=1

X
=1

X
=1

| ()| = (( )−1) by Assumption A.2*(iii).

Hence 3 = 

¡
( )−12

¢
by Chebyshev inequality. For 4 we have by Jensen inequality and

Assumption A.2∗(ii)


h
k4k2

i
= 

⎛⎝ 1


X
=1

1

2

X
=1

X
=1

∗

⎞⎠ ≤ 1



X
=1



⎛⎝ 1

2

X
=1

X
=1

∗

⎞⎠2 ≤ 

2


It follows that 4 = 

¡
−1¢ by Chebyshev inequality. In sum, we have that 1



P
=1 ̄·̄· =

 (
−1 + ( )−12)

Now, we provide a set of sufficient primitive conditions for Assumption A.2∗(i).

41



Assumption A.2∗ (i.a) max kk4(1+)   and max ||4(1+) ∞ for some   0;

(i.b) For each  = 1   {( )  ≥ 1} is a strong stationary strong mixing process with
mixing coefficients  (·) such that max

P
=1 

2 ()
(1+)   for some  ∞

Assumption A.2*(i.a) strengthens the moment conditions in Assumption A.1(i)-(ii) slightly for the

application of Davydov inequality. Assumption A.2∗(i.b) requires that {( )  ≥ 1} be strong
mixing. This condition is a standard condition assumed for dynamic panels when the individual

effect is assumed to be fixed. For example, for a dynamic panel autoregressive process of order one

(PAR(1)), it is strong mixing with the mixing coefficient  () decaying to zero at a rate proportional

to || as long as the autoregressive coefficient  is strictly less than 1 in absolute value. In this
case, Assumption A.2*(i.b) is automatically satisfied for all  ∈ (−1 1)  If the individual effect is
random, then we can replace the strong mixing condition by the corresponding conditional mixing

condition: {( )  ≥ 1} is conditionally strong mixing with mixing coefficients  (·) given the
individual effect. See Prakasa Rao (2009) for the definition of conditional strong mixing, and Hahn

and Kuersteiner (2011) and Su and Chen (2013) for the applications of conditional strong mixing in

dynamic panels.

We now show that Assumption A.2∗(i.a)-(i.b) is sufficient for Assumption A.2*(i). By Cauchy-
Schwarz inequality,

max




°°°°° 1
X
=1

X
=1

∗

°°°°°
2

≤ 2max




°°°°° 1
X
=1

∗

°°°°°
2

+ 2max




°°°°°° 1
X

1≤6=≤
∗

°°°°°°
2



It is easy to see that under Assumption A1(i)-(ii), the first term on the right hand side of the above

equation is bounded from the above by

max


2



X
=1

 k∗k2 ≤ 2max


 k∗k2 ≤ 

For the second term, by straightforward moment calculations for second-order degenerate U-statitics

(see, e.g., Lemma A.2(ii) in Gao (2007, p.194)), we have 2max
°°° 1 P1≤6=≤ 

∗


°°°2 ≤  under

Assumption A.2∗(i.a)-(i.b). Consequently, max
°°° 1 P

=1

P
=1 

∗


°°°2 ≤  for some  ∞

C.2 Verification of Assumptions A.4 and A.5

In this subsection, we verify the conditions in Assumption A.4(ii)-(iv) and A.5(i)-(iv) under some

primitive conditions when {  ≥ 1} is a generic stationary and invertible ARMA process. For

simplicity, we focus on the case where ’s are independent along the cross-section dimension.

The invertibility of the ARMA process implies that we can write {  ≥ 1} as an AR(∞) process
and approximate it by an AR() process for sufficiently large  :

 =
∞X
=1

− +  =

⎛⎝ X
=1

−

⎞⎠+
⎛⎝ ∞X

=+1

− + 

⎞⎠
= ρ0−1 + 
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where ρ =
¡
1  

¢0
 −1 = (−1  −)0  =  +   =

P∞
=+1 − signifies

the approximation error, and  is the error term with mean zero and variance 2. Note that

 = 0 if {  ≥ 1} is an autoregressive process of order  or less. Let  = (1  )
0 and

 = (1  )
0  Let  (0 1  −1) denote the th order joint cumulant of

¡
0 1  −1

¢
where 1  −1 and  are integers. Let Φ (·) be defined as in Section 2.3.
Assumption A.4∗ (i)

P∞
=1 

 6= 0 for any complex number  with || ≤ 1
P∞

=1

¯̄

¯̄
 ∞

32(−1 + −1) =  (1)  and ( )12
P∞

=+1

¯̄

¯̄
=  (1) 

(ii) For each  {  ≥ 1} is strictly stationary and ergodic such that  (|F−1) = 0 where

F−1 =  (−1 −2   −1) is the -field generated by {−1 −2   −1} 
¡
2
¢
= 2

and max
P∞

1=−∞ 
P∞

−1=−∞  (0 1  −1)   for  = 2 3 4; {  } are independent
along the individual dimension; 1



P
=1 

2
 → ̄2 as  →∞.

(iii)  () = 0  (|−1 −2   −1 ) = 0 (4 ) ≤  and (4 ) ≤ 

Assumption A.4*(i) is similar to Assumption A.4(i) except that now we do not impose any con-

dition on min (Γ) but require ( )12
P∞

=+1

¯̄

¯̄
=  (1)  Following Lee, Okui and Shintani

(2018, LOS hereafter), we can easily show that the condition on min (Γ) is satisfied under Assump-

tion A.4*(i)-(ii). The condition ( )12
P∞

=+1

¯̄

¯̄
=  (1) is weaker than the requirement that

( )12
P∞

=+1

¯̄

¯̄
=  (1) in LOS because we do not consider bias correction in our setup. As-

sumption A.4∗(ii) imposes that ’s are independent along the individual dimension and a martingale
difference sequence (m.d.s.) along the time dimension. The independence assumption can be relaxed

to allow for certain weak form cross-sectional dependence at more lengthy arguments. The m.d.s.

sequence is also assumed in Gonçalves and Kilian (2007) in the time series setup and it is weaker than

the i.i.d. requirement in Lewis and Reinsel (1985) and LOS. Note that Assumption A.4*(ii) implies

that {  ≥ 1} is a stationary process for each  and can be represented by an infinite order moving
average (MA(∞)) process, and the approximation error  =

P∞
=+1 − is well behaved in

the sense of mean square errors. Assumption A.4*(iii) is used to verify A.4(iv).

First, we verify Assumption A.4(ii). Assumption A.4*(i)-(ii) ensures that {} has mean zero
and finite fourth moment and  () =

P∞
=+1  (−) +  () = 0 Let  =

P∞
=+1

¯̄

¯̄


Then  = 0 if  = 0 Without loss of generality, we assume that   0 Note that Assumption

A.4*(i) implies that  = (( )−12) =  (1) and
P∞

=+1

¯̄

¯̄4 ≤ max≥+1 ¯̄ ¯̄3  ≤ 4 =  (1) 

Then by Jensen inequality

max


(4) = max




⎛⎝ ∞X
=+1

−

⎞⎠4

≤ 4max




⎛⎝ 1



∞X
=+1

¯̄

¯̄ |− |

⎞⎠4

≤ 3max


∞X
=+1

¯̄

¯̄4
(4−) ≤ 3

∞X
=+1

¯̄

¯̄4
= (1)

It follows that max(
4
) ≤ 8max(4) + 8max(4) ≤  ∞ In addition, by the law of

large numbers, we have 1


P
=1

P
=+1 

2
 = ̄2 +  (1), where ̄

2
 = lim→∞ 1



P
=1 

2
 So in

this case, ̄2 = ̄2
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Next, we verify Assumption A.4(iii) for  = ̆ as the case for  = 1 is easier. Noting that

̆ =  − −1ρ, we have

1



X
=1

X
=+1

̆ =
1



X
=1

X
=+1

̆ +
1



X
=1

X
=+1

̆ ≡ 11 + 12 say.

Note that

 k11k ≤ 1



X
=1

X
=+1

 k̆k ≤ 1



X
=1

X
=+1

n
 k̆k2

o12 ©

°°2°°ª12

≤ 

∞X
=+1

¯̄

¯̄
= 

³
( )−12

´
where we use the fact that

max


 k̆k2 = 2max


 kk2 + 2max



°°−1ρ°°2

≤ 2max


 kk2 + 2max


X
=1

X
1=1

1(
0
−−1)

≤ 2max


 kk2
⎧⎨⎩1 +

⎛⎝ ∞X
=1

¯̄

¯̄⎞⎠2⎫⎬⎭ ≤  ∞

and that by Assumption A.4*(i),

max


(2) = max


∞X
=+1

∞X
0=+1

0(−−0) ≤ 

⎛⎝ ∞X
=+1

¯̄

¯̄⎞⎠2 = 

¡
( )−1

¢


It follows that 11 = 

¡
( )−12

¢
by Markov inequality For 12, we have  (12) = 0 and for

any nonrandom vector  ∈ R with kk = 1

Var
¡
012

¢
=

1

()
2

0
X
=1

Var

⎛⎝ X
=+1

̆

⎞⎠ =
1

()
2

0
X
=1

X
=+1

X
=+1


¡
̆̆

0


¢


=
1

()
2

0
X
=1

X
=+1


¡
̆̆

0

2


¢
 = (()

−1)

Then 12 = 

¡
( )−12

¢
by Chebyshev inequality. Consequently, we have shown that 1



P
=1

P
=+1

̆ = 

¡
( )−12

¢
 Analogously, we can verify the last condition in A.4(iii).

Next, we verify Assumption A.4(iv). Note that

1



X
=1

X
=+1

 =
1



X
=1

X
=+1

 +
1



X
=1

X
=+1

 ≡ 21 + 22
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By Assumption A.4*(iii), we have  (22) = 0 and Var(22) =
1

()
2

P
=1

³P
=+1 

´2
=


¡
−1¢  So 22 =  (1). 21 =  (1) by Markov inequality and the fact that

 |21| ≤ 1



X
=1

X
=+1

 || ≤ 1



X
=1

X
=+1

©

¡
2
¢
(2)

ª12 ≤ 

∞X
=+1

¯̄

¯̄
=  (1) 

Similarly, we have

1



X
=1

X
=+1

[Φ ()] =
1



X
=1

X
=+1

[Φ ()] +
1



X
=1

X
=+1

[Φ ()] ≡ 31 + 32

Following the analysis of 21 we can readily show that 31 =  (1) by Markov inequality. For 32

we have  (32) = 0 and

Var (32) =
1

2 2

X
=1

X
1=1

X
=+1


¡
1[Φ ()]

2
¢
= 

¡
−1

¢


So 32 =  (1) 

Next, we verify that Assumption A.5(i) is satisfied with ̄21 = ̄2. Noting that ̄· =
1


P
=+1(

+) = ̄· + ̄· with ̄· = 1


P
=+1  and ̄· = 1



P
=+1  we have





X
=1

(̄·)2 =




X
=1

(̄·)2 +




X
=1

̄2· +
2


X
=1

̄·̄· ≡ 11 + 12 + 13 say.

11 =  (1) by Markov inequality and the fact that

 (11) =




X
=1



⎛⎝ 1



X
=+1



⎞⎠2 ≤ 1



X
=1

X
=+1


¡
2

¢ ≤  max


(2)

≤ 

⎛⎝√ ∞X
=+1

¯̄

¯̄⎞⎠2 =  (1) 

By Assumption A.4*(ii),  (12) =
1



P
=1

P
=+1

¡
2
¢
= 1



P
=1 

2
 = ̄2 + (1) and

Var (12) =


2
Var

⎧⎨⎩
X
=1

⎛⎝ 1



X
=+1



⎞⎠2⎫⎬⎭ =
1

2

X
=1

Var

⎧⎨⎩
⎛⎝ X

=+1



⎞⎠2⎫⎬⎭ = 
¡
−1¢ 

It follows that 12 = ̄2 +  (1) By the Cauchy-Schwarz inequality, 13 ≤ 2 (1112)12 =  (1) 

Then



P
=1 (̄·)

2 = ̄2 +  (1)

Next, we verify that Assumption A.5(ii) is satisfied with ̄22 = ̄2. Noting that ̄· =
1


P
=1(

+) = ̄· + ̄· with ̄· = 1


P
=1  and ̄· = 1



P
=1  we have





X
=+1

(̄·)2 =




X
=+1

(̄·)2 +




X
=+1

̄2· +
2



X
=+1

̄·̄· ≡ 21 + 22 + 23 say.
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21 =  (1) by Markov inequality and the fact that

 (21) =




X
=+1



Ã
1



X
=1



!2
≤ 1



X
=1

X
=+1


¡
2

¢ ≤  max


(2)

≤ 

⎛⎝√ ∞X
=+1

¯̄

¯̄⎞⎠2 =  (1) 

By Assumption A.4*(ii),  (22) =
1



P
=1

P
=+1

¡
2
¢
= 1



P
=1 

2
 = ̄2 + (1) and

Var (22) =


 2
Var

⎧⎨⎩
X

=+1

Ã
1



X
=1



!2⎫⎬⎭ =
1

 2

X
=+1

Var

⎧⎨⎩
Ã

X
=1



!2⎫⎬⎭ = 
¡
−1

¢


It follows that 22 = ̄2+ (1) By Cauchy-Schwarz inequality, 23 ≤ 2 (2122)12 =  (1)  Then



P
=+1 (̄·)

2 = ̄2 +  (1)

To verify Assumption A.5(iii), note that

1



X
=1

̄·̄· =
1

 2

X
=1

X
=1

X
=1

 ()  +
1

 2

X
=1

X
=1

X
=1

∗ ≡ 31 + 32 say.

For 31 we have

31 =
1

 2

X
=1

X
=1

X
=1

 ()  +
1

 2

X
=1

X
=1

X
=1

 ()  ≡ 311 + 312 say.

Under Assumption A.4*(i)-(ii), we can readily show that 312 = 

¡
( )−12

¢
by Chebyshev

inequality. For 311 we have

 |31| ≤ 1

 2

X
=1

X
=1

X
=1

k ()k | ()| ≤ max


£

°°2°°¤12 = (( )−12)

Then 31 = 

¡
( )−12

¢
 For 32 we have

32 =
1

 2

X
=1

X
=1

X
=1

∗ +
1

 2

X
=1

X
=1

X
=1

∗ ≡ 321 + 322 say.

Following the verification of Assumption A.2(iii), we can readily show that 322 = 

¡
−1

¢
 For

321 we have

 k321k ≤ 1

 2

X
=1

X
=1

X
=1

k (∗)k ≤ max


X
=1

X
=1

X
=1

£
(2)

¤12 ≤ 

∞X
=+1

¯̄

¯̄
= (( )−12)

It follows that 32 = 

¡
( )−12 + −1

¢
and 1



P
=1 ̄·̄· = 

¡
( )−12 + −1

¢
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To verify Assumption A.5(iv), note that

1


̄·̄· =

1

2

X
=+1

X
=1

X
=1

 ()  +
1

2

X
=+1

X
=1

X
=1

∗ ≡ 41 + 42 say.

For 41 we have

41 =
1

2

X
=+1

X
=1

X
=1

 ()  +
1

2

X
=+1

X
=1

X
=1

 ()  ≡ 411 + 412 say.

Following the analysis of 21 we can readily show that 412 = 

¡
( )−12

¢
by Chebyshev in-

equality. For 411 we have

 |41| ≤ 1

2

X
=+1

X
=1

X
=1

k ()k | ()| ≤ max


£

°°2°°¤12 = (( )−12)

Then 41 = 

¡
( )−12

¢
 For 42 we have

42 =
1

2

X
=+1

X
=1

X
=1

∗ +
1

2

X
=+1

X
=1

X
=1

∗ ≡ 421 + 422 say.

Following the verification of Assumption A.2(iv), we can readily show that 422 = 

¡
−1¢  For

421 we have

 k421k ≤ 1

2

X
=+1

X
=1

X
=1

 (∗) ≤ 
1

2

X
=+1

X
=1

X
=1

£
(2)

¤12
≤ 

∞X
=+1

¯̄

¯̄
= (( )−12)

It follows that 42 = 

¡
( )−12 + −1

¢
and 1


̄·̄· = 

¡
( )−12 +−1¢ 

D Choice of  in the Modified Jackknife

As discussed in Remark 11 in the main paper, there are several practical approaches to choose  in

the modified jackknife method.

First, we can use a “rule of thumb” and let  increase with  e.g.,  = b 14c where b 14c is
the nearest integer less than or equal to  14.

Second, we can follow Lee, Okui, and Shintani (2018) by setting max = b 14c and consider a
general-to-specific testing procedure based on -statistic until we reject the null. Specifically, we first

run the following auxiliary regression using the pooled OLS

̂
(4)
 = 1̂

(4)
−1 + 2̂

(4)
−2 + + max ̂

(4)
−max + ̃

and test max = 0 using t-statistics. If it is rejected, we conclude that  = max If we fail to reject

it, we eliminate the maxth lag and run the regression with max − 1 lags, and test max−1 = 0 We
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continue this procedure until we reject the null. Note that here ̂
(4)
 ’s are estimated. To take this

into account, Wooldridge (2010, p. 311) argues that for the pooled OLS, we should use the fully

robust standard errors (robust to both heteroskedasticity and serial correlation, see equation (7.26)

in Wooldridge (2010, p. 171)). Another issue is that we need to choose the nominal level to decide

whether to reject. In our simulations below, we choose the conventional 5% level.

Third, we can apply the information criteria, such as AIC and BIC, to the residuals obtained

from Model 4 (̂
(4)
 ) to determine . For the implementation, see, e.g., Stock and Watson (2012,

Section 14.5). In general, BIC gives a consistent estimator of  and AIC tends to choose a relatively

large 

We conduct simulations to examine the finite sample performance of four methods above, labelled

as rule of thumb, testing, AIC, and BIC, respectively. We consider three DGPs which are the same

as those in Section 3.2 except that now the errors follow AR(1)  MA(1) and ARMA(1 1) processes,

respectively. Specifically,  is generated respectively as

DGP D.1:  = 05−1 + 

DGP D.2:  =  + 05−1 and

DGP D.3:  = 075−1 +  + 05−1

where  is an  (0 1) random variable.

Tables D1-D3 present the simulations results for DGPs D.1-D.3, respectively. For DGPs D.1 and

D.2 with AR(1) and MA(1) errors respectively, both CV∗ and CV∗∗ work well. For the ARMA errors,
CV∗ works well when  is large and outperforms CV∗∗ in general. This suggests that CV∗∗ which
is based on the Cochrane—Orcutt procedure relies strongly on the AR() assumption more. Among

the four methods of selecting  there is no dominant one. When the sample size is large and CV∗ is
used, all four methods can select the true model with a high probability.

E Additional Simulation Results

E.1 Static panel models

We consider the same DGPs as in Section 3.2 except that here  = 1
4 or

1
2  The results for  =

1
4 and

 = 1
2 are reported Tables E1 and E2, respectively.

First, consider  = 1
4  i.e., there is weak serial correlation in the error term. When  is relatively

large ( = 10 or  = 50), our CV∗ and CV∗∗ perform best overall, as suggested by our theory.

Between CV∗ and CV∗∗, it is not apparent which one dominates. For example, when the true model
is Model 1, CV∗∗ outperforms CV∗, but when the true model is Model 2, CV∗ outperforms CV∗∗
When  is small, CV∗∗ can perform poorly. CV also performs reasonably well, as our theory suggests
that CV can consistently select the correct model when the serial correlation is weak (  1

3 for this

DGP). When  is small ( = 5), CV can even outperform CV∗ and CV∗∗. The performance of AIC
is slightly worse than that of CV. Both BIC (e.g., when the true model is Model 3 or 4) and BIC2

(e.g., when the true model is Model 3) perform poorly.

48



Second, consider  = 1
2  The results are similar to those in the case of  =

3
4 reported in the main

text. In general, CV∗ and CV∗∗ perform well when the sample size is large. The performance of CV,

AIC, BIC and BIC2 are all poor.

E.2 Dynamic panel models without exogenous regressors

We consider the same DGPs as in Section 3.3 except that here  = 1
4 or

1
2  The results for  =

1
4 and

 = 1
2 are reported Tables E3 and E4, respectively. In general, the results are similar to the case of

 = 3
4 presented in the main text.

E.3 Dynamic panel models with exogenous regressors

We consider the same DGPs as in Section 3.4 except that here  = 1
4 or

1
2  The results for  =

1
4

and  = 1
2 are reported Tables E5 and E6, respectively. Again, in general, the results are similar to

the case of  = 3
4 presented in the main text.
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Table D1: Frequency of the model selected with selected  (DGP D.1:  = 05−1 + )

Selection

of lag p True M Model 1 Model 2 Model 3 Model 4

in CV∗ Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

and CV∗∗ (N,T)

(10,10) .21 .68 .01 .10 .01 .87 0 .12 0 .01 .18 .81 0 .02 0 .98

AIC (50,10) .04 .87 0 .09 0 .91 0 .09 0 0 .03 .97 0 0 0 1

(10,50) .27 .72 0 0 0 1 0 0 0 0 .22 .78 0 0 0 1

(50,50) .04 .96 0 0 0 1 0 0 0 0 .03 .97 0 0 0 1

(10,10) .89 .11 0 0 .09 .91 0 0 .36 .04 .49 .10 .51 .12 .01 .36

BIC (50,10) 1 0 0 0 .20 .78 .02 0 .01 0 1 0 .43 0 .16 .42

(10,50) .98 .02 0 0 0 1 0 0 .39 .58 .03 0 .37 .62 0 .01

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .08 .67 .02 .23 0 .74 0 .25 0 .01 .09 .90 0 .01 0 .99

BIC2 (50,10) .01 .87 0 .12 0 .88 0 .13 0 0 .01 .99 0 0 0 1

(10,50) .22 .77 0 .01 0 .99 0 .01 0 0 .18 .82 0 0 0 1

(50,50) .06 .94 0 0 0 1 0 0 0 0 .04 .96 0 0 0 1

(10,10) .25 .69 .01 .05 .01 .93 0 .06 .01 .02 .28 .69 0 .03 .01 .97

CV (50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .28 .72 0 0 0 1 0 0 0 0 .29 .71 0 0 0 1

(50,50) .04 .96 0 0 0 1 0 0 0 0 .05 .95 0 0 0 1

(10,10) .58 .36 .03 .03 .03 .91 0 .06 .01 .01 .61 .37 .01 .01 .03 .95

CV∗ (50,10) .69 .26 .03 .01 0 .95 0 .05 0 0 .74 .27 0 0 0 1

rule (10,50) .87 .13 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

of (50,50) .99 .01 0 0 0 1 0 0 0 0 .99 .01 0 0 0 1

thumb (10,10) .81 .14 .04 .01 .42 .51 .05 .02 .01 .01 .84 .14 .01 .01 .58 .40
 14


CV∗∗ (50,10) .95 .01 .05 0 .31 .44 .23 .02 0 0 .99 .01 0 0 .69 .31

(10,50) .93 .07 0 0 .01 .99 0 0 0 0 .95 .06 0 0 .09 .91

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .25 .69 .01 .05 .01 .93 0 .06 .01 .02 .28 .69 0 .03 .01 .96

CV∗ (50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .90 .10 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

BIC (50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .25 .69 .01 .05 .01 .93 0 .06 .01 .02 .28 .69 0 .03 .01 .96

CV∗∗ (50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 .02 .98

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .31 .63 .02 .05 .01 .92 0 .06 .01 .02 .34 .64 .01 .02 .01 .96

CV∗ (50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .91 .09 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

AIC (50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .32 .62 .02 .05 .09 .84 .01 .06 .01 .02 .35 .63 .01 .02 .11 .87

CV∗∗ (50,10) .06 .88 0 .06 0 .93 0 .06 0 0 .06 .94 0 0 .01 .99

(10,50) .95 .05 0 0 0 1 0 0 0 0 .96 .04 0 0 .02 .98

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .56 .38 .03 .03 03 .91 0 .06 .01 0 .58 .40 .01 .01 03 .95

CV∗ (50,10) .69 .26 .03 .01 0 .95 0 .05 0 0 .74 .27 0 0 0 1

(10,50) .90 10 0 0 0 1 0 0 0 0 .89 .11 0 0 0 1

Testing (50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .74 .21 .04 .02 .40 .52 .05 .03 .01 0 .77 .22 .01 .01 .55 .43

CV∗∗ (50,10) .95 .01 .05 0 .31 .44 .23 .02 0 0 .99 .01 0 0 .69 .31

(10,50) .94 .06 0 0 0 1 0 0 0 0 .95 .05 0 0 .03 .97

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table D2: Frequency of the model selected with selected  (DGP D.2:  =  + 05−1)
Selection

of lag p True M Model 1 Model 2 Model 3 Model 4

in CV∗ Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

and CV∗∗ ( )
(10,10) .55 .36 .04 .05 .01 .88 0 .11 .01 .01 .53 .45 .01 .01 .01 .97

AIC (50,10) .59 .35 .02 .04 0 .92 0 .09 0 0 .58 .42 0 0 0 1

(10,50) .65 .35 0 0 0 1 0 0 0 0 .57 .43 0 0 0 1

(50,50) .73 .27 0 0 0 1 0 0 0 0 .70 .30 0 0 0 1

(10,10) .99 .01 0 0 .16 .84 0 0 .35 .01 .63 .01 .75 .05 .01 .19

BIC (50,10) 1 0 0 0 .46 .44 .11 0 0 0 1 0 .64 0 .29 .07

(10,50) 1 0 0 0 0 1 0 0 .49 .43 .08 0 .47 .53 0 0

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .29 .47 .06 .18 0 .74 0 .26 0 0 .31 .68 0 0 0 1

BIC2 (50,10) .41 .49 .03 .07 0 .88 0 .12 0 0 .42 .58 0 0 0 1

(10,50) .57 .43 0 0 0 .99 0 .01 0 0 .49 .51 0 0 0 1

(50,50) .78 .22 0 0 0 1 0 0 0 0 .75 .25 0 0 0 1

(10,10) .62 .33 .03 .02 .01 .94 0 .05 .01 .01 .65 .33 .02 .03 .01 .94

CV (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .66 .34 0 0 0 1 0 0 0 0 .66 .34 0 0 0 1

(50,50) .75 .25 0 0 0 1 0 0 0 0 .75 .25 0 0 0 1

(10,10) .82 .12 .04 .01 .04 .91 0 .05 .01 0 .86 .13 .02 .01 .04 .93

CV∗ (50,10) .94 .01 .05 0 0 .94 0 .06 0 0 .99 .01 0 0 0 1

rule (10,50) .86 .14 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

of (50,50) .99 .01 0 0 0 1 0 0 0 0 .99 .01 0 0 0 1

thumb (10,10) .91 .04 .05 0 .46 .45 .07 .02 .01 0 .95 .04 .02 .01 .67 .31
 14


CV∗∗ (50,10) .94 0 .06 0 .33 .27 .39 .01 0 0 1 0 0 0 .84 .16

(10,50) .91 .09 0 0 0 1 0 0 0 0 .91 .09 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .62 .33 .03 .02 .01 .94 0 .05 .01 .01 .65 .33 .02 .03 .01 .94

CV∗ (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .92 .08 0 0 0 1 0 0 0 0 .92 .08 0 0 0 1

BIC (50,50) .86 .14 0 0 0 1 0 0 0 0 .86 .14 0 0 0 1

(10,10) .62 .33 .03 .02 .01 .94 0 .05 .01 .01 .65 .33 .02 .03 .01 .94

CV∗∗ (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1

(50,50) .86 .14 0 0 0 1 0 0 0 0 .86 .14 0 0 0 1

(10,10) .62 .33 .03 .02 .01 .93 0 .06 .01 .01 .64 .34 .02 .02 .01 .95

CV∗ (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .89 .11 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

AIC (50,50) .99 .01 0 0 0 1 0 0 0 0 .99 .01 0 0 0 1

(10,10) .64 .31 .04 .02 .05 .88 .01 .05 .01 .01 .67 .31 .02 .02 .08 .88

CV∗∗ (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .80 .15 .04 .01 .04 .91 0 .05 .01 0 .84 .15 .02 .01 .04 .93

CV∗ (50,10) .94 .01 .05 0 0 .94 0 .06 0 0 .99 .01 0 0 0 1

(10,50) .86 .14 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

Testing (50,50) .99 .01 0 0 0 1 0 0 0 0 .99 .01 0 0 0 1

(10,10) .86 .09 .05 .01 .43 .49 .06 .03 .01 0 .91 .08 .02 .01 .61 .36

CV∗∗ (50,10) .94 0 .06 0 .33 .27 .39 .01 0 0 1 0 0 0 .84 .16

(10,50) .91 .09 0 0 0 1 0 0 0 0 .91 .09 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table D3: Frequency of the model selected with selected  (DGP D.3:  = 075−1 +  + 05−1)
Selection

of lag p True M Model 1 Model 2 Model 3 Model 4

in CV∗ Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

and CV∗∗ ( )
(10,10) 0 .83 0 .16 0 .84 0 .16 0 .17 0 .82 0 .17 0 .82

AIC (50,10) 0 .87 0 .14 0 .87 0 .14 0 0 0 1 0 0 0 1

(10,50) .01 .95 0 .04 0 .97 0 .04 0 .32 .01 .67 0 .32 0 .68

(50,50) 0 .97 0 .03 0 .97 0 .03 0 0 0 1 0 0 0 1

(10,10) .14 .85 0 .01 .06 .93 0 .01 .17 .66 .01 .17 .15 .68 0 .17

BIC (50,10) .16 .84 0 0 .02 .98 0 0 .05 .05 .10 .80 .08 .05 0 .87

(10,50) .37 .63 0 0 .03 .97 0 0 .27 .73 0 0 .26 .74 0 0

(50,50) .52 .48 0 0 0 1 0 0 .20 .50 .18 .12 .27 .56 0 .17

(10,10) 0 .74 0 .26 0 .74 0 .26 0 .07 0 .93 0 .07 0 .93

BIC2 (50,10) 0 .84 0 .17 0 .84 0 .17 0 0 0 1 0 0 0 1

(10,50) .01 .93 0 .06 0 .94 0 .07 0 .21 .01 .78 0 .21 0 .79

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,10) .01 .88 0 .11 0 .89 0 .11 0 .27 .01 .72 .01 .27 0 .72

CV (50,10) 0 .90 0 .11 0 .90 0 .11 0 0 0 1 0 0 0 1

(10,50) .02 .96 0 .02 0 .98 0 .02 0 .42 .01 .56 0 .43 0 .57

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,10) .37 .56 .03 .05 .14 .79 .01 .06 .01 0 .41 .58 0 .01 .14 .85

CV∗ (50,10) .41 .51 .03 .05 .01 .90 0 .08 0 0 .46 .54 0 0 .01 .99

rule (10,50) .47 .52 0 0 .02 .97 0 .01 0 0 .48 .52 0 0 .01 .99

of (50,50) .63 .37 0 0 0 .99 0 .01 0 0 .62 .38 0 0 0 1

thumb (10,10) .76 .19 .04 .02 .72 .22 .04 .02 0 0 .81 .19 0 0 .79 .20
 14


CV∗∗ (50,10) .92 .03 .05 0 .87 .04 .09 0 0 0 .97 .03 0 0 .97 .03

(10,50) .82 .18 0 0 .49 .51 0 0 0 0 .82 .18 0 0 .64 .37

(50,50) .96 .04 0 0 .46 .54 0 0 0 0 .97 .03 0 0 .71 .29

(10,10) .29 .61 .02 .08 .10 .79 .01 .10 .01 .01 .33 .65 0 .02 .10 .88

CV∗ (50,10) .38 .53 .03 .06 .01 .89 0 .09 0 0 .42 .58 0 0 .01 .99

(10,50) .52 .48 0 0 .03 .96 0 .01 0 0 .52 .48 0 0 .01 .99

BIC (50,50) .79 .21 0 0 0 1 0 0 0 0 .78 .22 0 0 0 1

(10,10) .62 .30 .03 .05 .59 .33 .03 .05 0 .01 .67 .31 0 .01 .66 .33

CV∗∗ (50,10) .73 .21 .04 .03 .69 .21 .07 .03 0 0 .77 .23 0 0 .77 .23

(10,50) .85 .15 0 0 .56 .44 0 0 0 0 .85 .15 0 0 .69 .31

(50,50) .97 .03 0 0 .73 .27 0 0 0 0 .98 .02 0 0 .84 .16

(10,10) .17 .72 .02 .10 .05 .83 .01 .11 0 0 .21 .79 0 0 .06 .94

CV∗ (50,10) .04 .85 0 .11 0 .88 0 .12 0 0 .04 .96 0 0 0 1

(10,50) .48 .52 0 0 .02 .97 0 .01 0 0 .49 .51 0 0 .01 .99

AIC (50,50) .63 .37 0 0 0 .99 0 .01 0 0 .62 .38 0 0 0 1

(10,10) .56 .37 .03 .04 .50 .43 .03 .04 0 0 .64 .36 0 0 .60 .40

CV∗∗ (50,10) .54 .40 .04 .03 .41 .49 .07 .03 0 0 .59 .41 0 0 .53 .47

(10,50) .84 .16 0 0 .53 .47 0 0 0 0 .84 .16 0 0 .67 .33

(50,50) .96 .04 0 0 .47 .53 0 0 0 0 .97 .03 0 0 .71 .29

(10,10) .37 .56 .03 .05 .14 .79 .01 .06 .01 0 .41 .58 0 .01 .14 .85

CV∗ (50,10) .41 .51 .03 .05 .01 .90 0 .08 0 0 .46 .54 0 0 .01 .99

(10,50) .47 .52 0 0 .02 .97 0 .01 0 0 .48 .52 0 0 .01 .99

Testing (50,50) .63 .37 0 0 0 .99 0 .01 0 0 .62 .38 0 0 0 1

(10,10) .76 .19 .04 .02 .72 .22 .04 .02 0 0 .81 .19 0 0 .79 .20

CV∗∗ (50,10) .92 .03 .05 0 .87 .04 .09 0 0 0 .97 .03 0 0 .97 .03

(10,50) .82 .18 0 0 .49 .51 0 0 0 0 .82 .18 0 0 .64 .37

(50,50) .96 .04 0 0 .46 .54 0 0 0 0 .97 .03 0 0 .71 .29

52



Table E1: Frequency of the model selected: static panels,  = 14

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .53 .31 .06 .10 .02 .78 .01 .20 .03 .02 .51 .43 .02 .05 .02 .91

(50,5) .69 .20 .06 .05 0 .82 0 .18 .01 0 .73 .26 0 0 0 1

AIC (10,10) .61 .32 .03 .04 .01 .89 0 .10 .01 0 .58 .42 0 .01 .01 .98

(50,10) .76 .19 .03 .02 0 .92 0 .09 0 0 .77 .24 0 0 0 1

(10,50) .72 .28 0 0 0 1 0 0 0 0 .63 .37 0 0 0 1

(50,50) .86 .15 0 0 0 1 0 0 0 0 .83 .17 0 0 0 1

(10,5) .98 .02 .01 0 .36 .61 .02 .01 .25 .01 .72 .03 .61 .04 .05 .30

(50,5) 1 0 0 0 .53 .01 .46 0 .03 0 .97 0 .55 0 .45 0

BIC (10,10) 1 0 0 0 .11 .89 0 0 .24 0 .75 .01 .65 .05 .01 .29

(50,10) 1 0 0 0 .31 .59 .10 0 0 0 1 0 .51 0 .33 .16

(10,50) 1 0 0 0 0 1 0 0 .37 .39 .24 0 .38 .60 0 .02

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .20 .40 .07 .33 0 .58 0 .41 .01 .02 .23 .74 0 .03 0 .96

(50,5) .40 .41 .05 .14 0 .76 0 .24 0 0 .42 .58 0 0 0 1

BIC2 (10,10) .34 .43 .08 .16 0 .74 0 .26 0 0 .37 .63 0 0 0 1

(50,10) .59 .33 .04 .04 0 .89 0 .11 0 0 .59 .41 0 0 0 1

(10,50) .65 .35 0 0 0 1 0 .01 0 0 .54 .46 0 0 0 1

(50,50) .88 .12 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

(10,5) .67 .24 .06 .03 .04 .86 .02 .09 .05 .02 .69 .24 .09 .06 .05 .80

(50,5) .84 .08 .06 .01 0 .90 0 .10 .01 0 .90 .09 0 0 0 1

CV (10,10) .69 .27 .03 .01 .01 .95 0 .04 .01 .01 .71 .27 0 .02 .01 .97

(50,10) .84 .13 .03 .01 0 .95 0 .05 0 0 .87 .13 0 0 0 1

(10,50) .73 .27 0 0 0 1 0 0 0 0 .72 .28 0 0 0 1

(50,50) .87 .13 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

(10,5) .59 .32 .05 .04 .03 .85 .02 .10 .05 .03 .61 .31 .08 .07 .04 .81

(50,5) .67 .26 .05 .03 0 .89 0 .11 0 0 .72 .28 0 0 0 1

CV∗ (10,10) .72 .23 .03 .01 .01 .94 0 .05 .01 .01 .75 .23 .01 .02 .01 .96

(50,10) .89 .07 .04 0 0 .95 0 .05 0 0 .93 .07 0 0 0 1

(10,50) .94 .06 0 0 0 1 0 0 0 0 .94 .06 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .67 .24 .06 .03 .09 .79 .03 .09 .06 .03 .68 .23 .10 .07 .10 .73

(50,5) .87 .06 .07 .01 .06 .77 .08 .09 .01 0 .93 .06 0 .01 .17 .82

CV∗∗ (10,10) .74 .22 .04 .01 .10 .84 .02 .05 .01 0 .76 .22 .01 .02 .15 .82

(50,10) .90 .06 .04 0 .03 .88 .06 .04 0 0 .94 .06 0 0 .16 .84

(10,50) .95 .05 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table E2: Frequency of the model selected: static panels,  = 12

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .18 .62 .02 .18 .01 .77 0 .22 .02 .03 .17 .78 .01 .05 .01 .94

(50,5) .02 .79 0 .19 0 .81 0 .19 0 0 .02 .98 0 0 0 1

AIC (10,10) .21 .68 .01 .10 .01 .87 0 .12 0 .01 .18 .81 0 .02 0 .98

(50,10) .04 .87 0 .09 0 .91 0 .09 0 0 .03 .97 0 0 0 1

(10,50) .27 .72 0 0 0 1 0 0 0 0 .22 .78 0 0 0 1

(50,50) .04 .96 0 0 0 1 0 0 0 0 .03 .97 0 0 0 1

(10,5) .78 .21 0 .01 .21 .77 .01 .02 .27 .04 .47 .22 .42 .08 .03 .47

(50,5) 1 0 0 0 .55 .16 .30 0 .05 0 .95 0 .62 0 .33 .05

BIC (10,10) .89 .11 0 0 .09 .91 0 0 .36 .04 .49 .10 .51 .12 .01 .36

(50,10) 1 0 0 0 .20 .78 .02 0 .01 0 1 0 .43 0 .16 .42

(10,50) .98 .02 0 0 0 1 0 0 .39 .58 .03 0 .37 .62 0 .01

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .05 .55 .02 .39 0 .59 0 .41 0 .02 .05 .93 0 .02 0 .97

(50,5) 0 .75 0 .25 0 .75 0 .25 0 0 0 1 0 0 0 1

BIC2 (10,10) .08 .67 .02 .23 0 .74 0 .25 0 .01 .09 .90 0 .01 0 .99

(50,10) .01 .87 0 .12 0 .88 0 .13 0 0 .01 .99 0 0 0 1

(10,50) .22 .77 0 .01 0 .99 0 .01 0 0 .18 .82 0 0 0 1

(50,50) .06 .94 0 0 0 1 0 0 0 0 .04 .96 0 0 0 1

(10,5) .28 .63 .03 .07 .02 .89 0 .09 .04 .06 .30 .61 .03 .08 .02 .87

(50,5) .07 .82 .01 .11 0 .88 0 .12 0 0 .08 .92 0 .01 0 1

CV (10,10) .25 .69 .01 .05 .01 .93 0 .06 .01 .02 .28 .69 0 .03 .01 .97

(50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .28 .72 0 0 0 1 0 0 0 0 .29 .71 0 0 0 1

(50,50) .04 .96 0 0 0 1 0 0 0 0 .05 .95 0 0 0 1

(10,5) .29 .62 .03 .07 .02 .88 0 .10 .03 .05 .31 .61 .04 .07 .03 .86

(50,5) .10 .79 .01 .11 0 .88 0 .12 0 0 .11 .89 0 0 0 1

CV∗ (10,10) .56 .38 .03 .03 .03 .91 0 .06 .01 0 .58 .40 .01 .01 .03 .95

(50,10) .69 .26 .03 .01 0 .95 0 .05 0 0 .74 .27 0 0 0 1

(10,50) .90 .10 0 0 0 1 0 0 0 0 .89 .11 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .34 .56 .04 .06 .11 .77 .02 .09 .04 .05 .36 .55 .04 .07 .13 .76

(50,5) .17 .71 .02 .10 .09 .76 .05 .10 0 0 .19 .80 0 0 .14 .86

CV∗∗ (10,10) .74 .21 .04 .02 .40 .52 .05 .03 .01 0 .77 .22 .01 .01 .55 .43

(50,10) .95 .01 .05 0 .31 .44 .23 .02 0 0 .99 .01 0 0 .69 .31

(10,50) .94 .06 0 0 0 1 0 0 0 0 .95 .05 0 0 .03 .97

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table E3: Frequency of the model selected: dynamic panels without exogenous regressors,  = 14

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .66 .19 .08 .08 .04 .74 0 .21 .05 .01 .65 .29 0 .05 .04 .91

(50,5) .88 .03 .08 .01 0 .85 0 .15 0 0 .95 .04 0 0 0 1

AIC (10,10) .85 .10 .04 .02 .01 .91 0 .09 .01 0 .85 .15 0 .01 0 .99

(50,10) .96 0 .04 0 0 .93 0 .07 0 0 .99 .01 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .92 .08 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .99 0 0 0 .71 .27 .01 .01 .21 0 .79 0 .14 .04 .56 .27

(50,5) 1 0 0 0 1 0 0 0 .03 0 .97 0 .02 0 .98 0

BIC (10,10) 1 0 0 0 .41 .59 0 0 .11 0 .89 0 .07 .05 .31 .57

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

(10,50) 1 0 0 0 0 1 0 0 .08 0 .92 0 0 .08 0 .92

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .28 .34 .10 .28 0 .60 0 .40 .01 .01 .36 .62 0 .02 0 .98

(50,5) .71 .15 .09 .05 0 .78 0 .22 0 0 .79 .21 0 0 0 1

BIC2 (10,10) .57 .22 .12 .09 0 .76 0 .24 0 0 .65 .34 0 0 0 1

(50,10) .92 .02 .06 0 0 .89 0 .11 0 0 .97 .03 0 0 0 1

(10,50) .93 .07 0 0 0 1 0 0 0 0 .89 .12 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .79 .12 .08 .02 .09 .80 .01 .10 .07 .01 .81 .12 .01 .07 .13 .79

(50,5) .91 .01 .08 0 0 .92 0 .08 .01 0 .99 .01 0 0 .01 .99

CV (10,10) .89 .08 .03 .01 .01 .95 0 .04 .01 0 .91 .08 0 .01 .01 .98

(50,10) .96 0 .04 0 0 .96 0 .04 0 0 1 0 0 0 0 1

(10,50) .96 .05 0 0 0 1 0 0 0 0 .96 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .85 .06 .08 .01 .24 .65 .03 .09 .07 .01 .87 .06 .02 .05 .30 .63

(50,5) .92 0 .08 0 .12 .80 .02 .06 .01 0 .99 0 0 0 .16 .84

CV-BC (10,10) .92 .05 .03 .01 .02 .94 0 .04 .01 0 .94 .05 0 .01 .02 .97

(50,10) .96 0 .04 0 0 .96 0 .04 0 0 1 0 0 0 0 1

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table E4: Frequency of the model selected: dynamic panels without exogenous regressors,  = 12

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .56 .27 .06 .11 .06 .73 .01 .21 .04 .02 .54 .40 .01 .04 .06 .90

(50,5) .78 .12 .07 .03 0 .85 0 .15 0 0 .84 .15 0 0 0 1

AIC (10,10) .80 .14 .04 .02 .01 .91 0 .09 .01 0 .78 .22 0 .01 .01 .99

(50,10) .94 .02 .04 0 0 .93 0 .07 0 0 .98 .02 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .92 .09 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .98 .01 0 0 .82 .17 .01 .01 .21 0 .78 .02 .15 .03 .65 .18

(50,5) 1 0 0 0 1 0 0 0 .02 0 .98 0 .02 0 .98 0

BIC (10,10) 1 0 0 0 .76 .24 0 0 .12 0 .88 0 .10 .02 .64 .24

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

(10,50) 1 0 0 0 0 1 0 0 .09 0 .92 0 0 .07 0 .93

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .19 .42 .07 .32 0 .60 0 .40 .01 .02 .25 .73 0 .02 .01 .97

(50,5) .48 .35 .07 .10 0 .77 0 .23 0 0 .53 .47 0 0 0 1

BIC2 (10,10) .51 .28 .09 .12 0 .76 0 .24 0 0 .55 .45 0 0 0 1

(50,10) .88 .05 .06 .01 0 .90 0 .10 0 0 .94 .06 0 0 0 1

(10,50) .92 .08 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .70 .20 .07 .04 .13 .75 .02 .09 .06 .02 .73 .20 .01 .07 .22 .70

(50,5) .88 .04 .08 0 .03 .89 .01 .07 0 0 .97 .03 0 0 .05 .95

CV (10,10) .84 .12 .03 .01 .01 .95 0 .04 .01 0 .88 .11 0 .01 .03 .96

(50,10) .95 .01 .04 0 0 .96 0 .04 0 0 .99 .01 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .79 .12 .08 .02 .39 .50 .05 .06 .06 .01 .83 .11 .03 .05 .46 .46

(50,5) .91 .01 .08 0 .40 .50 .05 .05 .01 0 .99 0 0 0 .47 .53

CV-BC (10,10) .91 .06 .03 0 .09 .87 .01 .04 .01 0 .93 .06 0 .01 .14 .85

(50,10) .96 0 .04 0 0 .96 0 .04 0 0 1 0 0 0 0 1

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table E5: Frequency of the model selected: dynamic panels with exogenous regressors,  = 14

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .59 .18 .11 .13 .09 .62 .04 .26 .05 .02 .60 .33 .04 .05 .11 .80

(50,5) .87 .03 .09 .01 .01 .77 .02 .20 0 0 .96 .04 0 0 .05 .95

AIC (10,10) .81 .11 .05 .03 .01 .88 .01 .11 0 0 .80 .20 .01 .01 .02 .96

(50,10) .95 0 .04 0 0 .91 0 .09 0 0 1 0 0 0 0 1

(10,50) .94 .06 0 0 0 1 0 0 0 0 .91 .09 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .99 .01 .01 0 .78 .18 .03 .02 .26 0 .72 .02 .49 .02 .36 .13

(50,5) 1 0 0 0 .96 0 .04 0 .03 0 .97 0 .09 0 .92 0

BIC (10,10) 1 0 0 0 .68 .32 0 0 .23 0 .77 0 .71 .01 .17 .11

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 .02 0 .98 0

(10,50) 1 0 0 0 0 1 0 0 .38 .28 .33 0 .79 .18 0 .03

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .26 .29 .10 .36 .01 .49 .01 .48 .02 .02 .32 .65 0 .03 .02 .95

(50,5) .72 .11 .12 .06 0 .71 0 .29 0 0 .81 .19 0 0 0 1

BIC2 (10,10) .55 .21 .12 .13 0 .71 0 .28 0 0 .62 .38 0 0 0 1

(50,10) .91 .01 .07 0 0 .87 0 .13 0 0 .98 .02 0 0 0 1

(10,50) .92 .08 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .79 .10 .09 .02 .31 .54 .07 .08 .10 .01 .79 .10 .16 .07 .35 .43

(50,5) .92 0 .08 0 .10 .73 .10 .08 .01 0 .99 0 0 0 .27 .73

CV (10,10) .91 .06 .02 .01 .03 .93 .01 .03 .01 .01 .92 .06 .03 .02 .09 .86

(50,10) .96 0 .04 0 0 .96 0 .04 0 0 1 0 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .87 .02 .10 .01 .60 .22 .14 .04 .11 0 .87 .02 .25 .02 .59 .15

(50,5) .92 0 .08 0 .30 .33 .31 .06 .01 0 .99 0 .01 0 .66 .33

CV-BC (10,10) .95 .03 .03 0 .08 .88 .01 .03 .01 .01 .95 .03 .04 .02 .18 .76

(50,10) .96 0 .04 0 0 .96 0 .04 0 0 1 0 0 0 0 1

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table E6: Frequency of the model selected: dynamic panels with exogenous regressors.  = 12

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N.T)

(10.5) .50 .25 .09 .16 .11 .59 .04 .26 .05 .03 .50 .43 .03 .05 .13 .79

(50.5) .81 .08 .08 .03 .04 .71 .03 .22 0 0 .87 .12 0 0 .07 .92

AIC (10.10) .77 .14 .05 .04 .04 .85 .01 .11 0 0 .76 .24 .01 .01 .06 .93

(50.10) .95 .01 .04 0 0 .90 0 .10 0 0 .99 .01 0 0 0 1

(10.50) .94 .06 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10.5) .97 .02 .01 0 .83 .14 .02 .01 .27 .01 .70 .03 .42 .02 .44 .12

(50.5) 1 0 0 0 .99 0 .01 0 .03 0 .97 0 .05 0 .95 0

BIC (10.10) 1 0 0 0 .87 .13 0 0 .24 0 .76 0 .63 .01 .29 .07

(50.10) 1 0 0 0 1 0 0 0 0 0 1 0 .01 0 .99 0

(10.50) 1 0 0 0 .01 1 0 0 .40 .27 .33 0 .92 .06 0 .02

(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 .01 .99

(10.5) .19 .34 .07 .40 .02 .48 .01 .49 .01 .02 .23 .73 0 .03 .02 .94

(50.5) .56 .22 .09 .13 0 .68 0 .32 0 0 .62 .38 0 0 .01 .99

BIC2 (10.10) .50 .26 .10 .14 0 .71 .01 .28 0 0 .55 .45 0 0 .01 .99

(50.10) .89 .03 .07 .01 0 .86 0 .14 0 0 .95 .05 0 0 0 1

(10.50) .91 .09 0 0 0 1 0 0 0 0 .87 .14 0 0 0 1

(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10.5) .75 .13 .08 .04 .37 .48 .07 .08 .10 .02 .75 .13 .14 .07 .40 .40

(50.5) .90 .01 .08 0 .23 .58 .10 .09 .01 0 .98 .01 0 0 .39 .61

CV (10.10) .87 .10 .02 .01 .08 .88 .01 .03 .01 .01 .88 .10 .03 .02 .18 .78

(50.10) .96 0 .04 0 0 .95 0 .04 0 0 1 0 0 0 .01 .99

(10.50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .86 .03 .10 .01 .68 .17 .12 .03 .11 .01 .86 .03 .21 .02 .66 .11

(50,5) .92 0 .08 0 .55 .15 .26 .04 .01 0 .99 0 0 0 .83 .17

CV-BC (10,10) .94 .03 .03 0 .26 .68 .02 .04 .02 .01 .94 .04 .04 .02 .40 .54

(50,10) .96 0 .04 0 .04 .88 .02 .06 0 0 1 0 0 0 .11 .89

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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