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Abstract  

Besides traditional domains (e.g., resource allocation, 
data mining applications), algorithms for medoid 
computation and related problems will play an 
important role in numerous emerging fields, such as 
location based services and sensor networks. Since 
the k-medoid problem is NP hard, all existing work 
deals with approximate solutions on relatively small 
datasets. This paper aims at efficient methods for 
very large spatial databases, motivated by: (i) the 
high and ever increasing availability of spatial data, 
and (ii) the need for novel query types and improved 
services. The proposed solutions exploit the intrinsic 
grouping properties of a data partition index in order 
to read only a small part of the dataset. Compared to 
previous approaches, we achieve results of 
comparable or better quality at a small fraction of the 
CPU and I/O costs (seconds as opposed to hours, and 
tens of node accesses instead of thousands). In 
addition, we study medoid-aggregate queries, where 
k is not known in advance, but we are asked to 
compute a medoid set that leads to an average 
distance close to a user-specified value. Similarly, 
medoid-optimization queries aim at minimizing both 
the number of medoids k and the average distance. 
We also consider the max version for the 
aforementioned problems, where the goal is to 
minimize the maximum (instead of the average) 
distance between any object and its closest medoid.  
Finally, we investigate bichromatic and weighted 
medoid versions for all query types, as well as, 
maximum capacity and dynamic medoids.  

Keywords: Spatial databases, Query processing, 
Medoid queries  

1. Introduction 

Consider that a franchise plans to open k branches in 
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a city, so that the average distance from each 
residential block to the closest branch is minimized. 
This is an instance of the k-medoids problem, where 
residential blocks constitute the input dataset and the 
k branch locations correspond to the medoids. 
Efficient solutions to medoid queries are essential in 
several applications related to resource allocation and 
spatial decision making. Since the problem is NP-
hard [GJ79], research has focused on approximate 
algorithms. Despite a bulk of methods for small and 
moderate size datasets, currently there exists no 
technique applicable to very large databases.  

More formally, given a set P of points, we wish 
to find a set of medoids R ⊆ P with cardinality k that 
minimizes the average (avg) Euclidean distance ||p-
r(p)|| between each point p ∈ P and its closest 
medoid r(p) ∈ R. Equivalently, our aim is to 
minimize the function 

( ) || ( ) ||
| | p P

1
C R p r p

P ∈

= −∑  

under the constraint that R ⊆ P and |R| = k. Figure 1.1 
shows an example, where the points of P are 
residential blocks, k = 3 and R = {h, o, t}. The three 
medoids h, o, t are candidate locations for service 
facilities (e.g., franchise branches), so that the 
average distance C(R) from each block to its closest 
facility is minimized.  
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Figure 1.1: Example k-medoid query 

In addition to conventional queries, we introduce and 
solve several alternative forms of the k-medoid 
problem with practical relevance. In medoid-
aggregate (MA) queries, the value of k is not known 
in advance, but the goal is to select a minimal set R 
of medoids, such that C(R) best approximates an 
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input value T. Considering again the franchise 
example, instead of specifying the number of 
facilities, we seek the minimum set of branches that 
leads to an average distance (between each 
residential block and the closest branch) of about T = 
500 meters. A medoid-optimization (MO) query asks 
for the minimal medoid set that achieves the smallest 
value of a function f, which is monotonically 
increasing with both the number of medoids |R| and 
the resulting C(R). In the running example, assume 
that we also take into account the construction cost of 
each branch and we wish to minimize function 
f(C(R), |R|) = C(R) + 5⋅|R| in order to achieve the best 
tradeoff between the number of branches and the 
average distance.  

Interesting variants of the above three query types 
arise when the quality of a medoid set is determined 
by the maximum distance between the input points 
and their closest medoid; i.e., when C(R) = maxp∈P 
||p-r(p)||. For instance, in the franchise example our 
goal may be to minimize the maximum distance 
between the residential blocks and their closest 
branches, potentially achieving a desired C(R) with 
the minimal set of branches (MA), or minimizing a 
cost function (MO). Furthermore, all the above query 
types can be extended to their bichromatic versions, 
where the candidate medoids belong to a dataset 
different from that of the data points, e.g., there is a 
distinct set of potential branch sites. In the weighted 
version of the problem, each data point (e.g., 
residential block) is assigned a numeric weight 
indicating its importance (e.g., depending on the 
number of its residents). Another interesting instance 
is the maximum capacity medoids, where each 
medoid (e.g., branch) can serve up to a maximum 
number of data points (e.g., blocks). Finally, in the 
dynamic version of the problem, dataset P receives 
point insertions and deletions, and our task is to 
maintain the medoid set without re-computation from 
scratch.   

In addition to resource allocation and data 
mining, medoid queries arise in a wide variety of 
modern applications including mobile computing and 
sensor networks. For example, consider a number of 
users accessing a location based service through their 
mobile devices (cellular phones, PDAs). To save 
communication cost, the devices select super-nodes 
among them, which collect, aggregate and forward to 
the location server messages received from their 
vicinity. Due to the error prone nature of the wireless 
medium, the devices should be close to some super-
node. Therefore, selecting super-nodes is actually a 
medoid computation task. If the number of super-
nodes is fixed, then this is a k-medoid problem. On 
the other hand, if packet loss/signal attenuation is 

unacceptably high when the communication range 
exceeds T distance units, then the case corresponds to 
an MA query. 

Medoid queries also arise in the field of sensor 
networks. Typically, in order to prolong the battery 
life, only a fraction of the sensors are kept awake, 
and used as representatives for a particular region of 
the monitored area [XWZ+05]. If the application 
requires that only k sensors should be awake, then the 
best representatives are the k medoids. On the other 
hand, if the sensing range of each unit is T, then a 
MA query returns a set of representatives that 
roughly cover the entire monitored area. Since the 
sensing coverage of the area essentially determines 
the accuracy of the acquired measurements, there 
exists a tradeoff between the number of sensors that 
stay awake and the achieved accuracy. In this case, a 
MO query with an appropriately selected cost 
function f, computes the optimal number of 
representatives and their locations. 

In this paper, we propose TPAQ (Tree-based 
PArtition Querying), a methodology that can 
efficiently process all the above query types. TPAQ 
avoids reading the entire dataset by exploiting the 
grouping properties of a data partition method on P. 
It initially traverses the index top-down, stopping at 
an appropriate level and placing the corresponding 
entries into groups according to proximity. Finally, it 
returns the most centrally located point within each 
group as the corresponding medoid. Compared to 
previous approaches, TPAQ achieves solutions of 
comparable or better quality, at a small fraction of the 
cost (seconds as opposed to hours). The rest of the 
paper is organized as follows. Section 2 reviews 
related work. Section 3 introduces key concepts and 
describes the general framework of TPAQ. Section 4 
considers k-medoid queries. Sections 5 and 6 focus 
on MA and MO queries, respectively. Section 7 
discusses the application of TPAQ to bichromatic, 
weighted and other related query types. Section 8 
presents experimental results using both real and 
synthetic datasets. Finally, Section 9 concludes the 
paper. 

2. Background 

Although our techniques can be used with any data 
partition method, here we assume R*-trees [BKSS90] 
due to their popularity. Section 2.1 overviews R*-
trees and their application to nearest neighbor 
queries. Section 2.2 presents existing algorithms for 
k-medoids and related problems. 

2.1. R-trees and Nearest Neighbor Search 

We illustrate our examples with the R*-tree of Figure 
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2.1, containing the data points of Figure 1.1, 
assuming a capacity of four entries per node. Points 
that are nearby in space (e.g., a, b, c, d) are inserted 
into the same leaf node (N3). Leaf nodes are 
recursively grouped in a bottom-up manner 
according to their proximity, up to the top-most level 
that consists of a single root. Each node is 
represented as a minimum bounding rectangle 
(MBR) enclosing all the points in its sub-tree. The 
nodes of an R*-tree are meant to be compact, have 
small margin and achieve minimal overlap among 
nodes of the same level [TSS00]. Additionally, in 
practice, nodes at the same level contain a similar 
number of data points, due to a minimum utilization 
constraint (typically, 40%). These properties imply 
that the R*-tree (or any other data partition method 
based on similar concepts) provides a natural way to 
partition P according to object proximity and group 
cardinality criteria. Furthermore, the R*-tree is a 
standard index for spatial query processing. 
Specialized structures may yield solutions of better 
quality for k-medoid problems, but would have 
limited applicability in existing systems, where R-
trees are prevalent.  
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(a) R-tree node extents and locations 
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(b) R-tree data structure 

Figure 2.1: R-tree example 

With few exceptions (discussed in the next 
subsection), the R-tree family of indexes has been 
used exclusively for spatial queries such as range 
search, nearest neighbors and spatial joins. A nearest 
neighbor (NN) query retrieves the data object that is 
closest to an input point q. R-tree algorithms for 
processing NN queries utilize some metrics to prune 
the search space. The most common such metric is 
mindist(N,q), which is defined as the minimum 
possible distance between q and any point in the sub-
tree rooted at node N. Figure 2.1 shows the mindist 
between q and nodes N1 and N2. The algorithm of 

[RKV95] traverses the tree in a depth-first manner: 
starting from the root, it first visits the node with the 
minimum mindist (i.e., N1 in our example). The 
process is repeated recursively until a leaf node (N4) 
is reached, where the first potential nearest neighbor 
(point e) is found. Subsequently, the algorithm only 
visits entries whose minimum distance is less than ||e-
q||. In the example, N3 and N5 are pruned since their 
mindist from q is greater than ||e-q||. Similarly, when 
backtracking to the upper level, node N2 is also 
excluded and the process terminates with e as the 
result. The extension to k (>1) NNs is 
straightforward. Hjaltason and Samet [HS99] 
propose a best-first variation which is I/O optimal 
(i.e., it only visits nodes that may contain NNs) and 
incremental (the number of NNs does need to be 
known in advance). 

2.2. k-Medoids and Related Problems 

A number of approximation schemes for k-medoids1 
and related problems appear in the literature 
[ARR98]. Most of this work, however, is largely 
theoretical in nature. Kaufmann and Rousseeuw 
[KR90] propose partitioning around medoids 
(PAM), a practical algorithm based on the hill 
climbing paradigm. In particular, PAM starts with a 
random set of k medoids R0 ⊆ P. At each iteration i, 
it updates the current set Ri of medoids by 
exhaustively considering all neighbor sets Ri' that 
result from Ri by exchanging one of its elements with 
another object. For each of these k·(|P|-k) 
alternatives, it computes the function C(Ri') and 
chooses as Ri+1 the one that achieves the lowest 
value. It stops when no further improvement is 
possible. Since computing C(Ri') requires O(|P|) 
distance calculations, PAM is prohibitively 
expensive for large |P|. Clustering large applications 
(CLARA) [KR90] alleviates the problem by 
generating random samples from P and executing 
PAM on those. Ng and Han [NH94] propose 
clustering large applications based on randomized 
search (CLARANS) as an extension to PAM. 
CLARANS draws a random sample of size 
maxneighbors from all the k·(|P|-k) possible neighbor 
sets Ri' of Ri. It performs numlocal restarts and 
selects the best local minimum as the final answer. 

Although CLARANS is more scalable than PAM, 
it is inefficient for disk-resident datasets because 
each computation of C(Ri') requires a scan of the 
entire database. Assuming that P is indexed with an 
                                                           
1 If the selected points (R) do not necessarily belong to the 
dataset P (i.e., they are arbitrary points in the Euclidean 
space), the problem is known as Euclidean k-medians 
[ARR98]. 
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R-tree, Ester et al. [EKX95a, EKX95b] develop 
focusing on representatives (FOR). FOR takes the 
most centrally located point of each leaf node and 
forms a sample set, which is considered as 
representative of the entire set P. Then, it applies 
CLARANS on this sample to find the k medoids. 
Although FOR is more efficient than CLARANS, it 
still has to read the entire dataset in order to extract 
the representatives. Furthermore, in very large 
databases, the leaf level population may still be too 
high for the efficient application of CLARANS (the 
experiments of [EKX95a] use R-trees with only 
50,559 points and 1,027 leaf nodes). 

Regarding the max case, to the best of our 
knowledge, there does not exist any method for disk-
resident data. For in-memory processing, the method 
of [G85] answers max k-medoid queries in O(k⋅|P|) 
time with an approximation factor of 2. In other 
words, the returned medoid set is guaranteed to 
achieve a maximum distance C(R) that is no more 
than two times larger than the optimal one. The 
algorithm proceeds as follows. The first medoid is 
randomly selected from P and forms set R1. The 
second medoid is the point in P that lies furthest from 
the point in R1. These two medoids form R2. In 
general, the ith medoid is the one that has the 
maximum distance from any point in Ri-1. Finally, the 
set Rk is returned as the result. The algorithm is 
simple and works well in practice. However, its 
adaptation for large datasets would be very expensive 
in terms of both CPU and I/O cost, since in order to 
find the ith medoid it has to scan the entire dataset 
and compute the distance between every data point 
and all elements of Ri-1.   

A problem related to k-medoids is min-dist 
optimal-location (MDOL) computation. Given a set 
of data points P, a set of existing facilities, and a 
user-specified spatial region Q (i.e., range for a new 
facility), a MDOL query computes the location in Q 
which, if a new facility is built there, minimizes the 
average distance between each data point and its 
closest facility. The main difference with respect to 
k-medoids is that the output of a MDOL query is a 
single point (as opposed to k) that does not 
necessarily belong to P, but it can be anywhere in Q.  
Zhang et al. [ZDXT06] propose an exact method for 
this problem. This method is complementary to the 
proposed algorithms since it can be used to increase 
the cardinality of an existing medoid set, when there 
is a need for incremental processing (e.g., a franchise 
chain decides to add a new branch in a given area).    
 The k-medoid problem is related to clustering. 
Clustering methods designed for large databases 
include DBSCAN [EKSX96], BIRCH [ZRL96], 
CURE [GRS98] and OPTICS [ABKS99]. However, 

the objective of clustering is to partition data objects 
in groups (clusters) such that objects within the same 
group are more similar to each other than to points in 
other groups. Figure 2.2a depicts a 2-way clustering 
for a dataset, while Figure 2.2b shows the two 
medoids in the avg case. Clearly, assigning a facility 
per cluster would not achieve the purpose of 
minimizing the average distance between points and 
facilities. Furthermore, the number of clusters 
depends on the data characteristics, whereas the 
number of medoids is an input parameter determined 
by the application requirements.  
 Extensive work on medoids and clustering has 
been carried out in the areas of statistics [H75, KR90, 
HTF01], machine learning [PM99, PM00, HE03] and 
data mining [EKSX96, FPSU96]. However, the focus 
there is on assessing the statistical quality of a given 
clustering, usually based on assumptions about the 
data distribution [HTF01, KR90, PM00, HE03]. Only 
few approaches aim at dynamically discovering the 
number of clusters [PM00, HE03]. Besides tackling a 
problem of different nature, existing algorithms are 
computationally intensive and unsuitable for disk-
resident datasets. In summary, there is need for 
methods that fully exploit spatial access methods and 
can answer several types of medoid queries. 

 

 
(a) 2 clusters 

 
(b) 2 medoids 

Figure 2.2: Clustering versus medoids problem 

3. General Framework and Definitions  

The TPAQ framework traverses the R-tree in a top-
down manner, stopping at the topmost level that 
provides enough information for answering the given 
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query. In the case of k-medoids, this decision 
depends on the number of entries at the level. On the 
other hand, for MA and MO queries, the selection of 
the partitioning level is also based on the spatial 
extents and (in the avg case) on the expected 
cardinality of its entries. Next, TPAQ groups the 
entries of the partitioning level into slots. For given k, 
this procedure is performed by a fast slotting 
algorithm. For MA and MO, multiple calls of the 
slotting algorithm might be required. The last step 
returns the NN of each slot center as the medoid of 
the corresponding partition. We first provide some 
basic definitions, which are used throughout the 
paper. We focus on un-weighted, monochromatic 
queries, i.e., all data points have the same importance 
(i.e., unit weight) and each medoid is a data point. 
The extension to bichromatic, weighted and other 
queries is discussed in Section 7.  

Definition 1 [Extended entry]: An extended entry 
e consists of an R-tree entry N, augmented with 
information about the underlying data points, i.e., e = 
〈c, w, N〉, where the weight w is the expected number 
of points in the sub-tree rooted at N. The center c is a 
vector of co-ordinates that corresponds to the 
geometric centroid of N, assuming that the points in 
the sub-tree of N are uniformly distributed.   

Definition 2 [Slot]: A slot s consists of a set E of 
extended entries, along with aggregate information 
about them. Formally, a slot s is defined as s = 〈c, w, 
E〉, where w is the expected number of points 
represented by s, 

.
e E

w e w
∈

= ∑ . 

In the avg case, vector c is the weighted center of s, 

. .
e E

1
c e w e c

w ∈

= ⋅∑ . 

In the max case, vector c is the center of the minimum 
enclosing circle of all the entry centers e.c in s; i.e., c 
is the center of the circle enclosing e.c ∀e∈E that has 
the minimum possible radius.    

A fundamental operation is the insertion of an 
extended entry e into a slot s. The pseudo-code for 
this function in the avg case is shown in Figure 3.1. 
The insertion computes the new center taking into 
account the relative positions and weights of the slot 
s and the entry e, e.g., if s and e have the same 
weights, the new center is at the midpoint of the line 
segment connecting s.c and e.c. In the max case, the 
new slot center is computed as the center of the 
minimum circle enclosing e.c and all the entry 
centers currently in s. We use the incremental 
algorithm of [W91] that finds the new slot center in 
expected constant time. 

Function InsertEntry (extended entry e, slot s) 
1. s.c = (e.w·e.c + s.w·s.c) / (e.w + s.w) 
2. s.w = e.w + s.w 
3. s.E = s.E ∪{e} 

Figure 3.1: The InsertEntry function for avg 

In the subsequent sections, we describe the 
algorithmic details for each query type. For every 
considered medoid problem, we first present the avg 
case, followed by max. Note that, similar to PAM, 
CLARA, CLARANS and FOR, TPAQ aims at 
efficient processing without theoretical guarantees on 
the quality of the medoid set. Meaningful quality 
bounds are impossible because TPAQ is based on the 
underlying R-trees, which are heuristic-based 
structures. Nevertheless, as we show in the 
experimental evaluation, TPAQ computes medoid 
sets that are better than those of the existing methods 
at a small fraction of the cost (usually several orders 
of magnitude faster). Furthermore, it is more general 
in terms of the problem variants it can process. Table 
3.1 summarizes the frequently used symbols. 

Symbol Description 
P Set of data points 

||p1-p2|| Euclidean distance between points p1 and p2 
R Set of medoids 
k Number of medoids k = |R| 

r(p) Closest medoid of p ∈ P 
C(R) Average/maximum distance achieved by R  

T Target distance (for MA queries) 
N R-tree node 
E Set of entries ei = 〈ci, wi, Ni〉 
S Set of slots sj = 〈cj, wj, Ej〉 

Table 3.1: Frequently used symbols 

4. k-Medoid Queries 

Given an avg k-medoid query, TPAQ finds the top-
most level with k' ≥ k entries. For example, if k = 3 in 
the tree of Figure 2.1, TPAQ descends to level 1, 
which contains k'=7 entries, N3 through N9. The 
weights of these entries are computed as follows. 
Since |P| = 23, the weight of the root node Nroot is 
wroot = 23. Assuming that the entries of Nroot are 
equally distributed between the two children N1 and 
N2, w1 = w2 = N/2 = 11.5 (the true cardinalities are 11 
and 12, respectively). The process is repeated for the 
children of N1 (w3 = w4 = w5 = w1/3 = 3.83) and N2 

(w6 = w7 = w8 = w9 = w2/4 = 2.87). Figure 4.1 
illustrates the algorithm for computing the initial set 
of entries. Note that InitEntries assumes that k does 
not exceed the number of leaf nodes. This is not 
restrictive because the lowest level typically contains 
several thousand nodes (e.g., in our datasets, between 
3,000 and 60,000), which is sufficient for all ranges 
of k that are of practical interest. If needed, larger 
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values of k can be accommodated by splitting leaf 
level nodes. 

Function InitEntries (P, k) 
1. Load the root of the R-tree of P 
2. Initialize list={e}, where e = 〈Nroot.c, |P|, Nroot〉 
3. While list contains fewer than k extended entries  
4.    Initialize an empty list next_level_entries 
5.    For each e=〈c, w, N〉 in list do 
6.      Let num be the number of child entries in node N 
7.      For each entry Ni in node N do 
8.        wi = w/num  // the expected cardinality of Ni 
9.        Insert extended entry 〈Ni.c, wi, Ni〉 to 

next_level_entries  
10.    Set list = next_level_entries  
11. Return list 

Figure 4.1: The InitEntries function  

The next step merges the k' initial entries in order to 
obtain exactly k groups. Initially, k out of the k' 
entries are selected as slot seeds, i.e., each of the 
chosen entries forms a singleton slot. Clearly, the 
seed locations play an important role in the quality of 
the final answer. The seeds should capture the 
distribution of points in P, i.e., dense areas should 
contain many seeds. Our approach for seed selection 
is based on space-filling curves, which map a multi-
dimensional space into a linear order. Among several 
alternatives, Hilbert curves best preserve the locality 
of points [KF93, BJFS01]. Therefore, we first 
Hilbert-sort the k' entries and select every mth entry as 
a seed, where m = k'/k. This procedure is fast and 
produces well-spaced seeds that follow the data 
distribution. Returning to our example, Figure 4.2 
shows the level 1 MBRs (for the R-tree of Figure 
2.1) and the output seeds s1 = N4, s2 = N9 and s3 = N7 
according to their Hilbert order. Recall that each slot 
is represented by its weight (e.g., s1.w= w4=3.83), its 
center (e.g., s1.c is the centroid of N4) and its MBR. 

s1

s2

s3

N3

N4

N5

N6

N7
N8

N9

slot centers slot MBRs node MBRs

 
Figure 4.2: Hilbert seeds on example dataset 

Then, each of the remaining (k'-k) entries is inserted 
into the k seed slots, based on proximity criteria. 
More specifically, for each entry e, we choose the 
slot s whose weighted center s.c is closest to the 
entry's center e.c. In the running example, assuming 
that N3 is considered first, it is inserted into the slot s1 

using the InsertEntry function of Figure 3.1. The 
center of s1 is updated to the midpoint of N3 and N4's 
centers, as shown in Figure 4.3a. TPAQ proceeds in 
this manner, until the final slots and weighted centers 
are computed as shown in Figure 4.3b. 
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(a) Insertion of N3 
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(b) Final slot contents 

Figure 4.3: Insertion of entries into slots 

After grouping all entries into exactly k slots, we find 
one medoid per slot by performing a nearest-
neighbor query. The query point is the slot's 
weighted center s.c, and the search space is the set of 
entries s.E. Since all the levels of the R-tree down to 
the partition level have already been loaded in 
memory, the NN queries incur very few node 
accesses and negligible CPU cost. Observe that an 
actual medoid (i.e., a point in P that minimizes the 
average distance) is more likely to be closer to s.c 
than simply to the center of the MBR of s. The 
intuition is that s.c captures information about the 
point distribution within s. The NN queries on these 
points return the final medoids R = {h, o, t}.  
 Figure 4.4 shows the complete TPAQ k-medoid 
computation algorithm. The problem of seeding the 
slot table is similar to that encountered in spatial hash 
joins, where the number of buckets is bounded by the 
available main memory [LR95, LR98, MP03]. 
However, our ultimate goals are different. First, in 
the case of hash joins, the table capacity is an upper 
bound. Reaching it is desirable in order to exploit 
available memory as much as possible, but falling 
slightly short is not a problem. In contrast, we want 
exactly k slots. Second, in our case slots should 
minimize the average distance C(R) on one dataset, 
whereas slot selection in spatial joins attempts to 
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minimize the number of intersection tests that must 
be performed between objects that belong to different 
datasets. 

Algorithm TPAQ (P, k) 
1. Initialize a set S=∅, and empty list 
2. Set E = the set of entries returned by InitEntries (P, k) 
3. Hilbert-sort the centers of the entries in E and store 

them in a sorted list sorted_list 
4. For i=1 to k do //compute the slot seeds 
5.    Form a slot containing the (i⋅|E|/k)-th entry of 

sorted_list and insert it into S  
6. For each entry e in E (apart from the ones selected as 

seeds) do 
7.    Find the slot s in S with the minimum distance ||e.c – 

s.c||  
8.    InsertEntry (e, s)  
9. For each s∈S do 
10.    Perform a NN search at s.c on the points under s.E 
11.    Append the retrieved point to list 
12. Return list 

Figure 4.4: The TPAQ algorithm  

TPAQ follows similar steps for the max case. The 
function InitEntries proceeds as before, but without 
computing the expected cardinality for entries and 
slots; in the max version of the problem, we use only 
the geometric centroids of the R-tree entries. We 
apply the algorithm of [G85], discussed in Section 
2.2, to select seeds. In particular, if E is the set of 
entries in the partitioning level, we compute the k-
medoids over their centers e.c. Then, we insert the 
remaining entries in E one by one into the slot with 
the closest center. Finally, we perform a NN search at 
the center of each slot to retrieve the actual 
corresponding medoid. Recall that the center of each 
slot is the center of the minimum circle enclosing its 
entries’ centers. Returning to our running example, if 
a 3-medoid query is given in the tree of Figure 2.1, 
level 1 is chosen as the partitioning level. Among the 
entries of level 1, assume that the algorithm of [G85] 
returns the centers of N4, N6 and N9 as the seeds. The 
insertion of the remaining entries into the created 
slots (s1, s2, and s3) results in the partitioning shown 
in Figure 4.5.  

s1

N3

N4

N5

N6 N7
N8

N9

s3

s2slot centers

slot MBRs

entry centers

s1.c
d

n

v

r1

r2

r3

 
Figure 4.5: A 3-medoid query in the max case 

The three circles correspond to the minimum circles 
enclosing the centers of nodes in each slot. The final 
step of the TPAQ algorithm retrieves the NNs of s1.c, 
s2.c, and s3.c, which are points d, v and n, 
respectively. The returned medoid set is R={d, v, n}.  

5. Medoid-Aggregate Queries 

A medoid-aggregate (MA) query specifies the 
desired distance T (between points and medoids), and 
asks for the minimal medoid set R that achieves 
C(R) = T. Consider the example of Figure 5.1 for the 
avg case, and assume that we know a priori all the 
optimal i-medoid sets Ri and the corresponding C(Ri), 
for i=1,...,23. If C(R4) is the average distance that 
best approximates T (compared to C(Ri) ∀i≠4), set R4 
is returned as the result of the query. The proposed 
algorithm, TPAQ-MA, is based on the fact that, as 
the number of medoids |R| increases, the 
corresponding C(R) decreases, in both the avg and 
the max case. TPAQ-MA first descends the R-tree of 
P down to an appropriate partitioning level. Next, it 
estimates the value of |R| that achieves the average 
distance C(R) closest to T and returns the 
corresponding medoid set R.  

f k

o

t

target average 
distance T

 
Figure 5.1: MA query example in the avg case 

Consider first the avg case. The initial step of TPAQ-
MA is to determine the partitioning level. The 
algorithm selects for partitioning the top-most level 
whose minimum possible distance (MPD) does not 
exceed T. The MPD of a level is the smallest C(R) 
that can be achieved if partitioning takes place in this 
level. According to the methodology of Section 4, 
MPD equals to the C(R) resulting if we extract one 
medoid from each entry in the level. Since computing 
the exact C(R) requires scanning the entire dataset P, 
we use an estimate of C(R) as the MPD. In particular, 
for each entry e of the level, we assume that the 
underlying points are distributed uniformly2 in its 
MBR, and that the corresponding medoid is at e.c. 
The average distance C̄(e) between e.c and the points 
in e is given by the following lemma.  

                                                           
2 This is a reasonable assumption for low-dimensional R-
trees [TSS00]. 
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Lemma 5.1: If the points in e are uniformly 
distributed in its MBR, then their average distance 
from e.c is  

2 21
( ) ln ln

3 2 8 8

D B D A A D B
C e

A D A B D B

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
, 

where A and B are the side lengths of the MBR of e 
and D is its diagonal length.  

Proof: If we translate the MBR of e so that its 
center e.c falls at the origin (0,0), C̄(e) is the average 
distance of points (x,y) ∈ [-A/2,A/2]× [-B/2,B/2] from 
(0,0). Hence,  

2 2
2 2

2 2

1
( )  

A B

A B
C e x y dxdy

AB − −
= +∫ ∫ , 

which evaluates to the quantity of Lemma 5.1.  
 The MPD of each level is estimated by averaging 
C̄(e) over all e∈E, where E is the set of entries at the 
level:  

1
MPD . ( )

| | e E

e w C e
P ∈

= ⋅∑  

TPAQ-MA applies the InitEntries function to select 
the top-most level that has MPD ≤ T. The pseudo-
code of InitEntries is the same as shown in Figure 
4.1, after replacing the while-condition of line 3 with 
the expression: "the estimated MPD is more than T". 
Returning to our running example, the root node Nroot 
of the R-tree of P has MPD=C̄(Nroot), which is higher 
than T. Therefore, InitEntries proceeds with level 2 
(containing entries N1 and N2), whose MPD is also 
higher than T. Next, it loads the level 1 nodes and 
computes the MPD over the entries N3 to N9. The 
MPD is less than T, and level 1 is selected for 
partitioning. InitEntries returns a list containing 7 
extended entries corresponding to N3 up to N9.  

The next step of TPAQ-MA is to determine the 
number of medoids that best approximate the value 
T. If E is the set of entries in the partitioning level, 
then the candidate values for |R| range between 1 and 
|E|. TPAQ-MA assumes that C(R) decreases as |R| 
increases3, and performs binary search in order to 
find the value of |R| that yields the average distance 
closest to T. This procedure considers O(log|E|) 
different values for |R|, and creates slots for each of 
them as discussed in Section 4. Since the exact 
evaluation of C(R) for every examined |R| would be 
very expensive, we produce an estimate C̄(S) of C(R) 
for the corresponding set of slots S. Particularly, we 

                                                           
3 Although this assumption is true for optimal medoid sets, 
it may not always hold for approximate solutions, in which 
case TPAQ-MA may be trapped in a local minimum. Nev-
ertheless, violations of the assumption occur in very large 
medoid sets and do not have a significant effect on the 
quality of the solution.  

assume that the medoid of each slot s is located at s.c, 
and that the average distance from the points in every 
entry e∈s equals the distance ||e.c – s.c||. Hence, the 
estimated value for C(R) is given by the formula:  

1
( ) . || . . ||

| | s S e s

C S e w e c s c
P ∈ ∈

= ⋅ −∑∑ , 

where S is the set of slots produced by partitioning 
the entries in E into |R| groups. Note that we could 
use a more accurate estimator assuming uniformity 
within each entry e∈s, similar to Lemma 5.1. 
However, the derived expression would be more 
complex and more expensive to evaluate, because 
now we need the average distance from s.c (as 
opposed to the center e.c of the entry’s MBR). The 
overall TPAQ-MA algorithm is shown in Figure 5.2. 

Algorithm TPAQ-MA (P, T) 
1. Initialize an empty list 
2. Set E = set of the entries at the topmost level with 

MPD≤T 
3. low=1; high=|E| 
4. while low≤high do 
5.    mid=(low+high)/2 
6.    Group the entries in E into mid slots 
7.    S = the set of created slots 
8.    If C̄(S) < T , set high=mid 
9.    Else, set low=mid      
10. For each s∈S do 
11.    Perform a NN search at s.c on the points under s.E 
12.    Append the retrieved point to list 
13. Return list 

Figure 5.2: The TPAQ-MA algorithm  

In the example of Figure 2.1, the partitioning level 
contains entries E={N3, N4, N5, N6, N7, N8, N9}. The 
binary search considers values of |R| between 1 and 
7. Starting with |R| = (1+7)/2=4, the algorithm creates 
S with 4 slots, as shown in Figure 5.3. It computes C̄
(S), which is lower than T. It recursively continues 
the search for |R|∈[1,4] in the same way, and decides 
that |R|=4 yields a value of C̄(S) that best 
approximates T. Finally, similar to TPQA, TPAQ-
MA performs a NN search at the center s.c of the 
slots corresponding to |R|=4, and returns the retrieved 
points (f, k, t and o) as the result. 

N3

N4

N5

N6
N7

N8

N9

a
b

c
d

e

f

g

h
i

j

k

l

m

n

o
qr

s
t

u

v

w

s1

s2

s3

s4

 
Figure 5.3: Entries and final slots 
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Consider now the max version of the MA problem. 
InitEntries chooses for partitioning the top-most level 
with minimum possible distance (MPD) less than or 
equal to T. The MPD of a level is an estimated upper 
bound for the maximum distance C(R), assuming that 
we return a medoid at the center of each of the level’s 
entries. Given an R-tree entry e and assuming that we 
can find a medoid at e.c (i.e., the crossing point of its 
MBR diagonals), then the maximum possible 
distance of any point in e from the medoid is half the 
MBR diagonal length. Therefore, the MPD of a level 
is computed as the half of the maximum entry 
diagonal in the level. In other words, C̄(e)=D/2 
(where D is the diagonal of e), and MPD=maxe∈EC̄(e) 
(where E is the set of entries in the given level). 

Similar to the avg case, in order to determine the 
number of medoids that best approximate the target 
distance T, we perform binary search. If E is the set 
of entries in the partitioning level, then the candidate 
|R| values range between 1 and |E|. For each 
considered |R|, we use the max slotting algorithm 
(described in Section 4). Let S be the set of slots for a 
value of |R|. To estimate the achieved C(R) (i.e., to 
compute C̄(S)), we assume that the maximum 
distance within each slot s equals the radius of the 
minimum circle enclosing the entry centers in s. For 
example, if level 1 is selected for partitioning and 
|R|=3, the slotting produces the grouping shown in 
Figure 4.5. C(R) is estimated as the maximum radius 
of the three circles, that is, C̄(S)=max{r1, r2, r3}=r1. 
Formally, if MincircRadius(s) is the radius of the 
smallest circle enclosing e.c ∀e∈s, then C̄(S) = 
maxs∈S MincircRadius(s). When the binary search 
terminates, we retrieve the medoids corresponding to 
the best value of |R|. The algorithm of Figure 5.2 
directly applies to max MA queries, by using the max 
versions of MPD and C̄(S), and by implementing line 
6 with the max slotting algorithm.  

6. Medoid-Optimization Queries 

In real-world scenarios, opening a facility has some 
cost. Thus, users may wish to find a good tradeoff 
between overall cost and coverage (i.e., the average 
or maximum distance between clients and their 
closest facilities). If the relative importance of these 
conflicting factors is given by a user-specified cost 
function f(C(R), |R|), the aim of a MO query is to find 
the medoid set R that minimizes f. The TPAQ 
methodology applies to this problem, provided that f 
is increasing on both C(R) and |R|. Consider the 
example of Figure 1.1 in the avg case, and let f(C(R), 
|R|) be C(R) + Costpm⋅|R|, where Costpm is the cost per 
medoid. Assume that we know a priori all the optimal 
i-medoid sets Ri and the corresponding C(Ri), for 

i=1,...,23. If the plot of f(C(Ri), |Ri|) versus |Ri| is as 
shown in Figure 6.1, then the optimal |R| is 3 and the 
result of the query is {h, o, t} (as in Figure 1.1). 
TPAQ-MO is based on the observation that f(C(Ri), 
|Ri|) has a single minimum. Hence, it applies a 
gradient descent technique to decide the partitioning 
level and the optimal number of medoids |R|.  

number of medoids
1 2 3 4

 f(C(Ri),|Ri|)

...5 6 7

cost of root
(1 root MBR-medoid)

cost of level 2
(2 root entries - medoids)

cost of level 1
(7 leaf node MBRs - medoids)

C(Ri)

Costpm·|Ri|

 
Figure 6.1: f(C(Ri), |Ri|) versus # of medoids 

In both the avg and max cases, TPAQ-MO initially 
descends the R-tree of P and for each candidate level, 
it computes its cost. We define the cost of a level as 
the value f(MPD, |E|), where E is the set of its entries. 
TPAQ-MO selects for partitioning the top-most level 
whose cost is greater than the cost of the previous 
one (i.e., at the first detected increase in the curve of 
Figure 6.1). If the MPD estimations are accurate, 
then the medoid set that minimizes f has size |R| 
between 1 and |E| (the number of entries at the 
partitioning level). The traversal of the R-tree down 
to the appropriate level is performed by the 
InitEntries function of Figure 4.1 by modifying the 
while-condition in line 3 to: "the cost of the current 
level is less than the cost of the previous one". In 
Figure 2.1, InitEntries compares the costs of the root 
entry (1 medoid) and level 2 (two medoids – one for 
each root entry). Since the cost of level 2 is less than 
that of the root, it proceeds with level 1, whose cost 
is larger than that of level 2. Thus, level 1 is selected 
for partitioning and InitEntries returns the set of 
extended entries from N3 to N9.  

Given the set of entries E at the partitioning level, 
the next step of TPAQ-MO is to compute the optimal 
value for |R|, which lies between 1 and |E|. To 
perform this task, TPAQ-MO uses a gradient descent 
method which considers O(log3/2|E|) different values 
for |R|. Consider the example of Figure 6.2, where we 
want to find the value xopt∈[low, high] that minimizes 
a given function h(x). We split the search interval 
into three equal sub-intervals, defined by 
mid1=(2·low+high)/3 and mid2=(low+2·high)/3. Next, 
we compute h(mid1) and h(mid2). Assuming that 
h(mid1) < h(mid2), we distinguish two cases; either 
xopt∈[low, mid1] (as shown in Figure 6.2a), or 
xopt∈[mid1, mid2] (Figure 6.2b). In other words, the 
search interval is restricted to [low, mid2]. 
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Symmetrically, if h(mid1) > h(mid2), then the search 
interval becomes [mid1, high]. Otherwise, if h(mid1) 
= h(mid2), the search is restricted to interval [mid1, 
mid2]. The xopt can be found by recursively applying 
the same procedure to the new search interval. If xopt 
is an integer, then the search terminates in 
O(log3/2(high-low)) steps.  
 

x

h(x)

low highmid 1 mid 2

minimum

 

 

x

h(x)

low highmid 1 mid 2

minimum

(a) xopt∈[low, mid1] (b) xopt∈[mid1, mid2] 
Figure 6.2: Computing the minimum of a function h  

We use the above technique to determine the optimal 
value of |R|, starting with low=1 and high=|E|. For 
each considered |R|, we compute the set of slots S in 
the way presented in Section 4, and estimate the 
corresponding C(R) as the quantity C̄(S) discussed in 
Section 5. The gradient descent method returns the 
value of |R| that minimizes f(C̄(S), |R|). Finally, the 
result of TPAQ-MO is the set of points retrieved by a 
NN search at the center of each slot s∈S of the 
corresponding partitioning. Figure 6.3 shows the 
overall TPAQ-MO algorithm. The algorithm works 
for both avg and max MO queries, by using the 
corresponding MPD and C̄(S) functions, and the 
appropriate slotting algorithms. In our running 
example, for the avg case, level 1 is the partitioning 
level, and |R|=3 is selected as the best medoid set 
size. The slots and the returned medoids (i.e., h, o 
and t) are the same as in Figure 4.3.  

Algorithm TPAQ-MO (P, f) 
1. Initialize an empty list 
2. Set E = set of the entries at the topmost level with cost 

greater than that of the previous level 
3. low=1; high=|E| 
4. while low+2<high do 
5.    mid1=(2·low+high)/3; mid2=(low+2·high)/3 
6.    Group the entries in E into mid1 slots 
7.    S1 = the set of created slots 
8.    Group the entries in E into mid2 slots 
9.    S2 = the set of created slots 
10.    If f(C̄(S1), mid1) < f(C̄(S2), mid2) 
11.       Set high=mid2 and S=S1  
12.    Else, if f(C̄(S1), mid1) > f(C̄(S2), mid2) 
13.       Set low=mid1 and S=S2   
14.    Else, if f(C̄(S1), mid1) = f(C̄(S2), mid2) 
15.       Set low=mid1, high=mid2 and S=S1      
16. For each s∈S do 
17.    Perform a NN search at s.c on the points under s.E 
18.    Append the retrieved point to list 
19. Return list 

Figure 6.3: The TPAQ-MO algorithm  

7. Discussion 

All the above medoid queries have a bichromatic 
version, in which the candidate medoids belong to a 
dataset M which is different from that of the data 
points P. Set M may be a subset of P, or a set 
completely disjoint with P. For instance, the 
locations for potential franchise branches may be 
restricted to industrial buildings. The definitions of k-
medoid, MA and MO queries (for both the avg and 
max versions) remain the same, but the reported 
medoid set R is a subset of M. TPAQ can easily 
capture bichromatic queries by performing its final 
step (i.e., NN queries) on M instead of P. Since the 
other steps remain the same, the performance is 
similar to the conventional (monochromatic) case.  
 In weighted queries, each data point is assigned a 
non-negative number indicating its importance (e.g., 
the weight of a residential block could be the number 
of its residents). Processing in the max case is 
identical to its un-weighted counterpart. However, 
the application of TPAQ to avg weighted queries 
requires an aggregate R*-tree [TP04], or any other 
aggregate data partition method. The aggregate R*-
tree has the same structure and update algorithms as 
the regular R*-tree, except that each entry also stores 
the sum of weights of the data points in its sub-tree. 
The only necessary modification to TPAQ is using 
the sum of weights instead of the estimated entry 
cardinality e.w. For k-medoid queries, this affects the 
InsertEntry function (i.e., the calculation of the new 
slot center and weight upon the insertion of an entry), 
while for MA and MO it also affects the computation 
of the MPD and C̄(S) estimates.  
 Even for un-weighted avg queries, the use of 
aggregate R-trees can improve the accuracy of 
TPAQ. If each R-tree entry additionally contains the 
number and geometric centroid (i.e., the average x 
and y coordinate) of the points in its sub-tree, we can 
replace the estimations of e.w and e.c with these (i.e., 
the exact) values, respectively, leading to higher 
accuracy. The algorithmic modifications to TPAQ 
are similar to the weighted case. 
 In several practical scenarios, a medoid query 
may include additional capacity/service constraints. 
For instance, an application may require that a 
facility (i.e., medoid) can only serve up to a 
maximum number of clients (data points). Another 
application may require that each facility is assigned 
roughly the same number of clients (i.e., about 
|P|/|R|, where |R| is the number of medoids). We refer 
to this class of problems as maximum capacity 
medoids. To deal with maximum capacity queries, 
TPAQ returns in addition to the medoids, an 
assignment of the data points to them. In particular, 
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as a first step, TPAQ retrieves the medoids in the 
way described in the previous sections (depending on 
the problem type; i.e., k-medoid, MA or MO). In a 
second step, TPAQ computes the assignment of the 
data points similar to the method of [AHA92].  
 The algorithm of [AHA92] computes a weight ai 
for each medoid so that if each point p is assigned 
according to distance function4 pow(p, r(p)) =  ||p-
r(p)||2 - ai (where ai is the weight of r(p)), then the 
capacity constraints are satisfied. Initially, all weights 
are equal. Depending on the number of points 
assigned to each medoid, their weights respectively 
decrease or increase. This hill climbing process is 
repeated until all constraints are satisfied. Note that 
the technique cannot be used as is, since it requires 
reading the entire dataset at every iteration. To avoid 
this problem, we can use the expected cardinalities 
and centroids of the entries at the partitioning level; 
we estimate the number of points assigned to each 
medoid assuming that the e.w points of every entry e 
are assigned to medoid r(e.c) (according to the pow 
function). To conclude the discussion about 
maximum capacity queries, the output of TPAQ is 
the set of medoids R and their corresponding weights 
ai (i = 1,...,|R|). Given this information, the 
assignment of the data points is implicit. 
 TPAQ is targeted to static datasets. However, it 
can easily capture dynamic instances of the problem; 
when a batch of updates (insertions and deletions) 
takes place in dataset P, we can re-use the previous 
result to compute the new medoid set. In particular, if 
the updates do not affect the partitioning level (i.e., 
the number and MBRs of its entries remain the 
same), then we have to perform anew only the final 
step of TPAQ (i.e., NN queries at slot centers s.c). 
Actually, the NN search can be avoided for slots s 
where (i) the currently reported medoid is not deleted 
or (ii) an inserted point lies closer to s.c. In case (i) 
the medoid for s remains the same, while in case (ii) 
the new medoid is the closest inserted point to s.c. A 
NN search in s is required only if the current medoid 
is deleted and no new point lies closer to s.c. Note 
that if the updates affect the partitioning level, then 
we have to re-compute the medoids from scratch.   
 The above method works well when updates are 
infrequent, but it is slow for very dynamic datasets. 
To cope with high update rates, it is a common 
practice to store the data in main memory (e.g., 
[MXA04, YPK05, MHP05]). In this setting, a 
straightforward adaptation of TPAQ would be to use 
an in-memory R-tree, and evaluate the query as 

                                                           
4 Formally, this is called the power function and results in a 
space partitioning known as the power diagram (a variation 
of the Voronoi diagram). 

discussed above. This, however, would be expensive 
due to the slow R-tree updates. To overcome this 
problem, we could index the data points with a B-
tree, sorted on their Hilbert values. In the case of k-
medoid queries, we continuously report every mth 
point as a medoid, where m = |P|/k. For MA (MO) 
queries, when they are first installed at the system, 
we can determine |R| using a binary search (hill 
climbing) method similar to Section 5 (6). Since 
computing C(R) for each considered |R| is expensive, 
we can use an estimate. Particularly, we may apply a 
regular grid, and maintain on-the-fly for each cell the 
number of data points falling therein. We estimate 
C(R) assuming that all points inside a cell are 
assigned to the medoid closest to its centroid. To 
maintain the medoids in subsequent update cycles, if 
the estimate of C(R) deviates from parameter T (if the 
estimated value of cost function f deviates from its 
previous value) by a percentage larger than some 
threshold, then we re-compute |R| as described above. 
Otherwise, we simply report the new |R| medoids.   

8. Experimental Evaluation 

In this section we evaluate the performance of the 
proposed methods for k-medoid, medoid-aggregate 
and optimization queries. For each of these three 
problems, we first present our experimental results 
for avg, and then for max, using both synthetic and 
real datasets. The synthetic ones (SKW) follow a 
Zipf distribution with parameter α=0.8, and have 
cardinality 256K, 512K, 1M, 2M and 4M points. The 
real datasets are (i) NA, with 569,120 points 
(available at www.maproom.psu.edu/dcw), and (ii) 
LA, with 1,314,620 points (available at 
www.rtreeportal.org). All datasets are normalized to 
cover the same space with extent 104×104 and 
indexed by an R*-tree [BKSS90] whose block size 
ranges between 1 and 4Kbytes. For the experiments 
we use a 3GHz Pentium CPU. 

8.1. k-Medoid Queries 

First, we focus on k-medoid queries and compare 
TPAQ against FOR, which, as discussed in Section 
2.2, is the only other method that utilizes R-trees for 
computing k-medoids. For TPAQ, we use the depth-
first algorithm of [RKV95] to retrieve the nearest 
neighbor of each computed centroid. In the case of 
FOR we have to set the parameters numlocal 
(number of restarts) and maxneighbors (sample size 
of the possible neighbor sets) of the CLARANS 
component. Ester et al. [EKSX95a] suggest setting 
numlocal = 2 and maxneighbors = k⋅(M-k)/800, 
where M is the number of leaf nodes in the R-tree of 
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P. With these parameters, FOR terminates in several 
hours for most experiments. Therefore, we set 
maxneighbors = k⋅(M-k)/(8000⋅logM) and keep 
numlocal = 2. These values speed up FOR 
considerably, while the deterioration of the resulting 
solutions, with respect to the suggested values of 
numlocal and maxneighbors, is small. Regarding the 
max case, there is currently no other algorithm for 
disk-resident data. For the sake of comparison 
however, we adapted FOR to max k-medoid queries 
by defining C(R) to be the maximum distance 
between objects and medoids; i.e., the CLARANS 
component of FOR exchanges the current medoid set 
Ri with a neighbor one Ri', only if the maximum 
distance achieved by Ri' is smaller than that of Ri. All 
FOR results presented in this section are average 
values over 10 runs of the algorithm. This is 
necessary because the performance of FOR depends 
on the random choices of CLARANS. The 
algorithms are compared for different data cardinality 
|P|, number of medoids k and block size. Table 8.1 
summarizes the parameters along with their ranges 
and default values. In each experiment we vary a 
single parameter, while setting the remaining ones to 
their default (median) values. 

Parameter Range Default 
Data cardinality |P| 256K – 4M 1M 

Number of medoids k 1 – 512 32 
Block size 1KB – 4KB 2KB 

Table 8.1: Parameter values 

We first measure the effect of |P| in the avg case. 
Figure 8.1a shows the running time of TPAQ and 
FOR for SKW, when k=32 and |P| ranges between 
256K and 4M. TPAQ is 2 to 4 orders of magnitude 
faster than FOR. Even for |P| = 4M objects, our 
method terminates in less than 0.04 seconds (while 
FOR needs more than 3 minutes). Figure 8.1b shows 
the I/O cost (number of node accesses) for the same 
experiment. FOR is around 2 to 3 orders of 
magnitude more expensive than TPAQ since it reads 
the entire dataset once. Both the CPU and the I/O 
costs of TPAQ are relatively stable and small, 
because partitioning takes place at a high tree level.  
 The cost improvements of TPAQ come with no 
compromise in answer quality. Figure 8.1c shows the 
average distance C(R) achieved by the two 
algorithms. TPAQ outperforms FOR in all cases. An 
interesting observation is that the average distance 
for FOR drops when the cardinality of the dataset |P| 
increases. This happens because higher |P| implies 
more possible “paths” to a local minimum. To 
summarize, the results of Figure 8.1 verify that 
TPAQ scales gracefully with the dataset cardinality 
and incurs much lower cost than FOR, without 

sacrificing the medoid quality. 
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Figure 8.1: Performance versus |P| (SKW, avg) 

The next set of experiments studies the performance 
of TPAQ and FOR in the avg case, when k varies 
between 1 and 512, using a SKW dataset of 
cardinality |P| = 1M. Figure 8.2a compares the 
running time of the methods. In both cases, TPAQ is 
3 orders of magnitude faster than FOR. It is worth 
mentioning that for k=512 our method terminates in 
2.5 seconds, while FOR requires around 1 hour and 
20 minutes. For k=512, both the partitioning into 
slots of TPAQ and the CLARANS component of 
FOR are applied on an input of size 14,184; the input 
of the TPAQ partitioning algorithm consists of the 
extended entries at the leaf level, while the input of 
CLARANS is the set of actual representatives 
retrieved in each leaf node. The large difference in 
CPU time verifies the efficiency of our partitioning 
algorithm.  
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Figure 8.2: Performance versus k (SKW, avg) 

Figure 8.2b shows the effect of k on the I/O cost. The 
node accesses of FOR are constant and equal to the 
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total number of nodes in the R-tree of P (i.e., 
14,391). On the other hand, TPAQ accesses more 
nodes as k increases. This happens because (i) it 
needs to descend more R-tree levels in order to find 
one with a sufficient number (i.e., k) of entries, and 
(ii) it performs more NN queries (i.e., k) at the final 
step. However, TPAQ is always more efficient than 
FOR; in the worst case TPAQ reads all R-tree nodes 
up to level 1 (this is the situation for k=512), while 
FOR reads the entire dataset P for any value of k. 
Figure 8.2c compares the accuracy of the methods. 
TPAQ achieves lower C(R), for all values of k.  

In order to confirm the generality of our 
observations, Figures 8.3 and 8.4 repeat the above 
experiment for real datasets NA and LA. TPAQ 
outperforms FOR by orders of magnitude in terms of 
both CPU time (Figures 8.3a and 8.4a for NA and 
LA, respectively) and number of node accesses 
(Figures 8.3b and 8.4b). Regarding the average 
distance C(R), the methods achieve similar results, 
with TPAQ being the winner. Note that the CPU and 
I/O costs of the methods are higher for LA, since it is 
larger and its R-tree has more entries per level. The 
achieved C(R) values are lower for NA, because it is 
more skewed than LA (i.e., the objects are 
concentrated in a smaller area of the workspace). 
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Figure 8.3: Performance versus k (NA, avg) 
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Figure 8.4: Performance versus k (LA, avg) 

Figures 8.5a and 8.6a show the running time of 
TPAQ and FOR on 32-medoid avg queries as a 
function of the block size for datasets NA and LA. 
When the block size increases, the number of leaf 
nodes drops. Thus the CPU cost of FOR decreases 
because its expensive CLARANS step processes 
fewer representatives. TPAQ does not necessarily 
follow the same trend. For NA, the running time 
drops, since the number of entries at the partitioning 
level is 618, 143 and 33 for block size 1KB, 2KB and 
4KB, respectively. For LA the populations of the 
partitioning levels are 43, 313 and 77, respectively, 
yielding higher running time in the 2KB case. 
Concerning the I/O cost, larger block size implies 
smaller R-tree height, and fewer nodes per level. 
Therefore, both methods are less costly (as illustrated 
in Figures 8.5b and 8.6b). Independently of the block 
size, TPAQ incurs much fewer node accesses than 
FOR. Finally, Figures 8.5c and 8.6c illustrate the 
effect of the block size on the quality of the retrieved 
medoid set. In all cases, the average distance 
achieved by TPAQ is lower than that of FOR.   
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Figure 8.5: Performance versus block size (NA, avg) 
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Figure 8.6: Performance versus block size (LA, avg) 

Next, we focus on max k-medoid queries. We 
perform the same experiments as in the avg case, 
with identical ranges and default values for the 
examined parameters (shown in Table 8.1). For 
brevity, we omit the results for NA. Figure 8.7 
compares TPAQ and FOR on 32-medoid queries 
over SKW datasets of varying cardinality. As in 
Figure 8.1, our method outperforms FOR by orders 
of magnitude in both CPU and I/O cost. This is due 
to the fact that FOR reads from the disk the entire 
input dataset, and that its CLARANS component is 
much more expensive than our max slotting 
algorithm. Concerning the quality of the retrieved 
medoid sets (Figure 8.7c), TPAQ is better with a 
large margin. This is expected, since FOR was 
originally designed for the avg k-medoid problem. 
FOR converges to bad local minima when 
CLARANS considers swapping a current medoid 
with another representative because it selects the 
latter randomly among the set of representatives. 
Since the representatives follow the data distribution, 
the choices of CLARANS are biased towards dense 
areas of the workspace. Even though this behavior is 
desirable in avg k-medoid queries, it is clearly 
unsuitable for the max case, because even a single 
object at a sparse area can lead to a large C(R).  
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Figure 8.7: Performance versus |P| (SKW, max) 

Figures 8.8 and 8.9 examine the effect of k on TPAQ 
and FOR over the SKW and LA datasets. The CPU 
cost of both methods increases with k. Larger values 

of k incur higher I/O cost for TPAQ for the reasons 
explained in the context of Figure 8.2b. FOR 
performs a constant number of node accesses since it 
always reads the entire dataset. Regarding the quality 
of the returned medoid sets, our algorithm achieves 
much lower maximum distance C(R). The diagrams 
for NA are similar and omitted. 
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Figure 8.8: Performance versus k (SKW, max) 
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Figure 8.9: Performance versus k (LA, max) 

The final experiment for k-medoid queries measures 
the effect of the block size on the performance of the 
algorithms in the max case. Figure 8.10 presents the 
results for 32-medoid queries over the LA dataset, 
where the block size varies between 1, 2 and 4 KB. 
The CPU cost of FOR drops for higher block size, 
since there are fewer leaf nodes and CLARANS runs 
over fewer representatives. On the other hand, similar 
to Figure 8.6, the running time of TPAQ is higher for 
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block size 2K, because the partitioning level contains 
more entries than in the 1K and 4K cases. The 
number of node accesses for both algorithms drops 
for larger blocks, because the R-tree contains fewer 
nodes. Figure 8.10c illustrates the obtained maximum 
distance; TPAQ achieves better C(R) in all cases.  
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Figure 8.10: Performance vs. block size (LA, max) 

8.2. Medoid-Aggregate Queries 

In this section we study the performance of TPAQ-
MA, starting with the avg case. We use datasets 
SKW (with 1M objects) and LA, and vary T from 
100 to 1500 (recall that our datasets cover a space 
with extent 104×104). Since there is no existing 
algorithm for processing such queries on large 
indexed datasets, we compare TPAQ-MA against an 
exhaustive algorithm (EXH) that works as follows. 
Let E be the set of entries at the partitioning level of 
TPAQ-MA. EXH computes and evaluates all the 
medoid sets for |R|=1 up to |R|=|E|, by performing 
partitioning of E into slots with the technique 
presented in Section 4. EXH returns the medoid set 
that yields the closest average distance to T. Note that 
EXH is prohibitively expensive in practice because, 
for each examined value of |R|, it scans the entire 
dataset P in order to exactly evaluate C(R). 
Therefore, we exclude EXH from the CPU and I/O 
cost charts. 

Figure 8.11a shows the C(R) for TPAQ-MA 
versus T on SKW. Clearly, the average distance 
returned by TPAQ-MA approximates the desired 
distance (dotted line) very well. Figure 8.11b plots 
the deviation percentage between the average 
distances achieved by TPAQ-MA and EXH. The 
deviation is below 9% in all cases, except for T=300 
where it equals 13.4%. Interestingly, for T=1500, 
TPAQ-MA returns exactly the same result as EXH 
with |R|=5. Figures 8.11c and 8.11d illustrate the 
running time and the node accesses of our method, 
respectively. For T=100, both costs are relatively 

high (100.8 seconds and 1839 node accesses) 
compared to larger values of T. The reason is that 
when T=100, partitioning takes place at level 1 (leaf 
level, which contains 14,184 entries) and returns 
|R|=1272 medoids, incurring many computations and 
I/O operations. In all the other cases, partitioning 
takes place at level 2 (containing 203 entries), and 
TPAQ-MA runs in less than 0.11 seconds and reads 
fewer than 251 pages.  

0

200

400

600

800

1000

1200

1400

1600

100 300 500 700 900 1100 1300 1500

C(R)

T

desired average distance C(R)

required average distance T

 

Dev. from EXH (%)

T
0

2

4

6

8

10

12

14

100 300 500 700 900 1100 1300 1500

(a) Average Distance (b) Dev. from EXH 
CPU Time (sec)

T

1

10

100 300 500 700 900 1100 1300 1500

10
2

10
3

10
-1

10
-2

 

Node Accesses

T

10
2

10
3

1

10

100 300 500 700 900 1100 1300 1500

10
4

(c) CPU Time (b) Node Accesses 
Figure 8.11: Performance versus T (SKW, avg) 

Figure 8.12 repeats the above experiment for the LA 
dataset. Figures 8.12a and 8.12b compare the average 
distance achieved by TPAQ-MA with the input value 
T and the result of EXH, respectively. The deviation 
from EXH is always smaller than 8.6%, while for 
T=1500 the answer of TPAQ-MA is the same as 
EXH. Concerning the efficiency of TPAQ-MA, we 
observe that the algorithm has, in general, very low 
CPU and I/O cost. The highest cost is again in the 
case of T=100 for the reasons explained in the 
context of Figure 8.11; TPAQ-MA partitions 19,186 
entries into slots and extracts |R|=296 medoids, 
taking in total 105.6 seconds and performing 781 
node accesses.  
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Figure 8.12: Performance versus T (LA, avg) 

In Figures 8.13 and 8.14 we examine the 
performance of TPAQ-MA in the max case, using 
datasets SKW and LA. We compare again with the 



 16

EXH algorithm. It is implemented as explained in the 
beginning of the subsection, the difference being that 
now it uses the max k-medoid TPAQ algorithm. For 
max, the range of T is from 500 to 1500. We do not 
use the same range as in the previous two 
experiments (i.e., 100 to 1500), because for T<500 
the number of required medoids becomes very high 
and EXH requires numerous hours to complete. As 
shown in Figures 8.13a and 8.14a, the maximum 
distance of TPAC-MA is close to the desired value T. 
In general, the deviation from EXH (illustrated in 
Figures 8.13b and 8.14b) is low, and in the worst 
case it reaches 6.1% for SKW and 11.6% for LA. 
The algorithm terminates in less than 21 seconds in 
all cases, and incurs a small number of node 
accesses.   
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Figure 8.13: Performance versus T (SKW, max) 
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Figure 8.14: Performance versus T (LA, max) 

8.3. Medoid-Optimization Queries 

Finally, we experiment on the performance of 
TPAQ-MO, using datasets SKW (with 1M objects) 
and LA. We process optimization queries with 
f(C(R), |R|) = C(R) + Costpm⋅|R|, where Costpm is the 
cost per medoid and ranges between 1 and 256. 
TPAQ-MO is again compared with an exhaustive 
algorithm (EXH), which in the MO case, (i) 

computes all the medoid sets with |R| from 1 to |E|, 
by performing partitioning into slots in the same level 
as TPAQ-MO, (ii) calculates the (average or 
maximum) distance C(R) achieved for each 
considered set, and (iii) returns the one that 
minimizes function f. 

First, we experiment on avg MO queries. Figure 
8.15a plots the deviation percentage (between the 
values of f achieved by TPAQ-MO and EXH) as a 
function of the cost Costpm per medoid. The deviation 
does not exceed 1.8% in any case. Interestingly, 
TPAQ-MO returns exactly the same medoid sets as 
EXH for many values of Costpm, verifying the 
effectiveness of the gradient descent technique and 
the accuracy of the estimators described in Section 6. 
Figures 8.15b and 8.15c show the CPU and I/O costs 
of the algorithm. In both charts, the cost of TPAQ-
MO is much higher when Costpm≤8. In these cases 
the running time is between 147 and 157 seconds and 
the number of node accesses ranges between 251 and 
430. The returned medoid sets have size |R| between 
33 and 174. On the other hand, when Costpm>8 the 
CPU time is less than 0.1 seconds and the incurred 
node accesses are fewer than 60. The answer 
contains from 3 to 24 medoids. This large difference 
is explained by the fact that when Costpm≤8 
partitioning takes place in level 1 (with 14,184 
entries), while for Costpm>8 the partitioning level is 
level 2 (with 203 entries). 
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Figure 8.15: Performance versus Costpm (SKW, avg) 

In Figure 8.16 we repeat the above experiment for 
the LA dataset. The performance of TPAQ-MO is 
very similar to the SKW case. The deviation of 
TPAQ-MO from EXH is 0.07% and 1.82% for 
Costpm equal to 4 and 8, respectively. For all the other 
values of Costpm our algorithm retrieves the same 
medoid set as EXH. The cost of TPAQ-MO is plotted 
in Figures 8.16b and 8.16c. There is a large 
difference in both the CPU time and the node 
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accesses for Costpm≤4 and Costpm>4. The reason for 
this behavior is the same as in Figure 8.15. 
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Figure 8.16: Performance versus Costpm (LA, avg) 

In the last two experiments we focus on max MO 
queries. Figures 8.17 and 8.18 illustrate the 
performance of TPAQ-MO when Costpm varies 
between 1 and 256. The deviation from EXH is 
usually small. For SKW the maximum deviation is 
7.5%. For LA the deviation is in general higher; on 
the average it is around 10% with maximum value 
22.3% (for Costpm=8). TPAQ-MO performs worse 
for LA, because it contains large empty areas. On the 
other hand, SKW (even though it is very skewed) 
covers the whole workspace. Concerning the running 
time of TPAQ-MO, it does not exceed 43 seconds in 
any case. As in Figures 8.15 and 8.16, both the I/O 
and the CPU costs drop when partitioning takes place 
to a higher level. For SKW (for LA), the partitioning 
level is level 1 for Costpm ≤16 (for Costpm ≤4), while 
for higher Costpm it is level 2. 
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Figure 8.17: Performance versus Costpm (SKW, max) 
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Figure 8.18: Performance versus Costpm (LA, max) 

9. Conclusion 

This paper studies k-medoids and related problems in 
large databases. In particular, we consider k-medoid, 
medoid-aggregate (MA) and medoid-optimization 
(MO) queries. We propose TPAQ (Tree-based 
PArtition Querying), a framework for their efficient 
processing that works for both their avg and max 
versions. TPAQ provides high-quality answers 
almost instantaneously, thus facilitating data analysis, 
especially in time-critical resource allocation 
applications. Our techniques exploit the data 
partitioning properties of an existing spatial access 
method on the dataset. TPAQ processes a query in 
three steps. Initially, it descends the index, and stops 
at the topmost level that provides sufficient 
information about the underlying data distribution. 
Next, it partitions the entries of the selected level into 
a number of slots. In the case of k-medoid queries, 
the number of slots is equal to k. For MA and MO, 
this number is decided using binary search and a 
gradient descend method, respectively, in 
conjunction with some (average or maximum) 
distance estimators. Finally, TPAQ issues a NN 
query to retrieve one medoid for each slot. An 
extensive experimental evaluation shows that TPAQ 
outperforms the state-of-the-art method for k-medoid 
queries by orders of magnitude, and achieves results 
of better or comparable quality. Our empirical study 
also illustrates the effectiveness of TPAQ for 
processing MA and MO queries, in both avg and max 
cases. In the future, we plan to extend the proposed 
methodology to high-dimensional spaces, using 
appropriate data partition indexes [BKK96].  
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