
 1

Kyriakos Mouratidis1, Dimitris Papadias2, Spiros Papadimitriou3

Tree-based Partition Querying:
A Methodology for Computing Medoids in Large Spatial Datasets

Abstract

Besides traditional domains (e.g., resource allocation,
data mining applications), algorithms for medoid
computation and related problems will play an
important role in numerous emerging fields, such as
location based services and sensor networks. Since
the k-medoid problem is NP hard, all existing work
deals with approximate solutions on relatively small
datasets. This paper aims at efficient methods for
very large spatial databases, motivated by: (i) the
high and ever increasing availability of spatial data,
and (ii) the need for novel query types and improved
services. The proposed solutions exploit the intrinsic
grouping properties of a data partition index in order
to read only a small part of the dataset. Compared to
previous approaches, we achieve results of
comparable or better quality at a small fraction of the
CPU and I/O costs (seconds as opposed to hours, and
tens of node accesses instead of thousands). In
addition, we study medoid-aggregate queries, where
k is not known in advance, but we are asked to
compute a medoid set that leads to an average
distance close to a user-specified value. Similarly,
medoid-optimization queries aim at minimizing both
the number of medoids k and the average distance.
We also consider the max version for the
aforementioned problems, where the goal is to
minimize the maximum (instead of the average)
distance between any object and its closest medoid.
Finally, we investigate bichromatic and weighted
medoid versions for all query types, as well as,
maximum capacity and dynamic medoids.

Keywords: Spatial databases, Query processing,
Medoid queries

1. Introduction

Consider that a franchise plans to open k branches in

1
Singapore Management University

kyriakos@smu.edu.sg
2
Hong Kong University of Science and Technology

dimitris@cs.ust.hk
3
IBM T.J. Watson Research Center

spapadim@us.ibm.com

a city, so that the average distance from each
residential block to the closest branch is minimized.
This is an instance of the k-medoids problem, where
residential blocks constitute the input dataset and the
k branch locations correspond to the medoids.
Efficient solutions to medoid queries are essential in
several applications related to resource allocation and
spatial decision making. Since the problem is NP-
hard [GJ79], research has focused on approximate
algorithms. Despite a bulk of methods for small and
moderate size datasets, currently there exists no
technique applicable to very large databases.

More formally, given a set P of points, we wish
to find a set of medoids R ⊆ P with cardinality k that
minimizes the average (avg) Euclidean distance ||p-
r(p)|| between each point p ∈ P and its closest
medoid r(p) ∈ R. Equivalently, our aim is to
minimize the function

() || () ||
| | p P

1
C R p r p

P ∈

= −∑

under the constraint that R ⊆ P and |R| = k. Figure 1.1
shows an example, where the points of P are
residential blocks, k = 3 and R = {h, o, t}. The three
medoids h, o, t are candidate locations for service
facilities (e.g., franchise branches), so that the
average distance C(R) from each block to its closest
facility is minimized.

a
b

c

d

e

f

g

h
i

j

k

l

m

n

o

p

x

r s

t
u

v

w

Figure 1.1: Example k-medoid query

In addition to conventional queries, we introduce and
solve several alternative forms of the k-medoid
problem with practical relevance. In medoid-
aggregate (MA) queries, the value of k is not known
in advance, but the goal is to select a minimal set R
of medoids, such that C(R) best approximates an

 2

input value T. Considering again the franchise
example, instead of specifying the number of
facilities, we seek the minimum set of branches that
leads to an average distance (between each
residential block and the closest branch) of about T =
500 meters. A medoid-optimization (MO) query asks
for the minimal medoid set that achieves the smallest
value of a function f, which is monotonically
increasing with both the number of medoids |R| and
the resulting C(R). In the running example, assume
that we also take into account the construction cost of
each branch and we wish to minimize function
f(C(R), |R|) = C(R) + 5⋅|R| in order to achieve the best
tradeoff between the number of branches and the
average distance.

Interesting variants of the above three query types
arise when the quality of a medoid set is determined
by the maximum distance between the input points
and their closest medoid; i.e., when C(R) = maxp∈P
||p-r(p)||. For instance, in the franchise example our
goal may be to minimize the maximum distance
between the residential blocks and their closest
branches, potentially achieving a desired C(R) with
the minimal set of branches (MA), or minimizing a
cost function (MO). Furthermore, all the above query
types can be extended to their bichromatic versions,
where the candidate medoids belong to a dataset
different from that of the data points, e.g., there is a
distinct set of potential branch sites. In the weighted
version of the problem, each data point (e.g.,
residential block) is assigned a numeric weight
indicating its importance (e.g., depending on the
number of its residents). Another interesting instance
is the maximum capacity medoids, where each
medoid (e.g., branch) can serve up to a maximum
number of data points (e.g., blocks). Finally, in the
dynamic version of the problem, dataset P receives
point insertions and deletions, and our task is to
maintain the medoid set without re-computation from
scratch.

In addition to resource allocation and data
mining, medoid queries arise in a wide variety of
modern applications including mobile computing and
sensor networks. For example, consider a number of
users accessing a location based service through their
mobile devices (cellular phones, PDAs). To save
communication cost, the devices select super-nodes
among them, which collect, aggregate and forward to
the location server messages received from their
vicinity. Due to the error prone nature of the wireless
medium, the devices should be close to some super-
node. Therefore, selecting super-nodes is actually a
medoid computation task. If the number of super-
nodes is fixed, then this is a k-medoid problem. On
the other hand, if packet loss/signal attenuation is

unacceptably high when the communication range
exceeds T distance units, then the case corresponds to
an MA query.

Medoid queries also arise in the field of sensor
networks. Typically, in order to prolong the battery
life, only a fraction of the sensors are kept awake,
and used as representatives for a particular region of
the monitored area [XWZ+05]. If the application
requires that only k sensors should be awake, then the
best representatives are the k medoids. On the other
hand, if the sensing range of each unit is T, then a
MA query returns a set of representatives that
roughly cover the entire monitored area. Since the
sensing coverage of the area essentially determines
the accuracy of the acquired measurements, there
exists a tradeoff between the number of sensors that
stay awake and the achieved accuracy. In this case, a
MO query with an appropriately selected cost
function f, computes the optimal number of
representatives and their locations.

In this paper, we propose TPAQ (Tree-based
PArtition Querying), a methodology that can
efficiently process all the above query types. TPAQ
avoids reading the entire dataset by exploiting the
grouping properties of a data partition method on P.
It initially traverses the index top-down, stopping at
an appropriate level and placing the corresponding
entries into groups according to proximity. Finally, it
returns the most centrally located point within each
group as the corresponding medoid. Compared to
previous approaches, TPAQ achieves solutions of
comparable or better quality, at a small fraction of the
cost (seconds as opposed to hours). The rest of the
paper is organized as follows. Section 2 reviews
related work. Section 3 introduces key concepts and
describes the general framework of TPAQ. Section 4
considers k-medoid queries. Sections 5 and 6 focus
on MA and MO queries, respectively. Section 7
discusses the application of TPAQ to bichromatic,
weighted and other related query types. Section 8
presents experimental results using both real and
synthetic datasets. Finally, Section 9 concludes the
paper.

2. Background

Although our techniques can be used with any data
partition method, here we assume R*-trees [BKSS90]
due to their popularity. Section 2.1 overviews R*-
trees and their application to nearest neighbor
queries. Section 2.2 presents existing algorithms for
k-medoids and related problems.

2.1. R-trees and Nearest Neighbor Search

We illustrate our examples with the R*-tree of Figure

 3

2.1, containing the data points of Figure 1.1,
assuming a capacity of four entries per node. Points
that are nearby in space (e.g., a, b, c, d) are inserted
into the same leaf node (N3). Leaf nodes are
recursively grouped in a bottom-up manner
according to their proximity, up to the top-most level
that consists of a single root. Each node is
represented as a minimum bounding rectangle
(MBR) enclosing all the points in its sub-tree. The
nodes of an R*-tree are meant to be compact, have
small margin and achieve minimal overlap among
nodes of the same level [TSS00]. Additionally, in
practice, nodes at the same level contain a similar
number of data points, due to a minimum utilization
constraint (typically, 40%). These properties imply
that the R*-tree (or any other data partition method
based on similar concepts) provides a natural way to
partition P according to object proximity and group
cardinality criteria. Furthermore, the R*-tree is a
standard index for spatial query processing.
Specialized structures may yield solutions of better
quality for k-medoid problems, but would have
limited applicability in existing systems, where R-
trees are prevalent.

N2

N1

N3

N4

N5

N6
N7

N8

N9

a
b

c

d

e

f

g

h
i

j

k

l

m

n

o

p

xr

s
t

u

v

w

q

mindist(N1,q)

mindist (N2,q)

(a) R-tree node extents and locations

a b c d i j k

e f g h

N3 N4 N5

Nroot

N6 N7 N8 N9

N1 N2

N1 N2

N3 N5

N4

N6

N7

N8

N9

l m n o

p x r s

t u

v w

level 0

level 1

level 2

(b) R-tree data structure

Figure 2.1: R-tree example

With few exceptions (discussed in the next
subsection), the R-tree family of indexes has been
used exclusively for spatial queries such as range
search, nearest neighbors and spatial joins. A nearest
neighbor (NN) query retrieves the data object that is
closest to an input point q. R-tree algorithms for
processing NN queries utilize some metrics to prune
the search space. The most common such metric is
mindist(N,q), which is defined as the minimum
possible distance between q and any point in the sub-
tree rooted at node N. Figure 2.1 shows the mindist
between q and nodes N1 and N2. The algorithm of

[RKV95] traverses the tree in a depth-first manner:
starting from the root, it first visits the node with the
minimum mindist (i.e., N1 in our example). The
process is repeated recursively until a leaf node (N4)
is reached, where the first potential nearest neighbor
(point e) is found. Subsequently, the algorithm only
visits entries whose minimum distance is less than ||e-
q||. In the example, N3 and N5 are pruned since their
mindist from q is greater than ||e-q||. Similarly, when
backtracking to the upper level, node N2 is also
excluded and the process terminates with e as the
result. The extension to k (>1) NNs is
straightforward. Hjaltason and Samet [HS99]
propose a best-first variation which is I/O optimal
(i.e., it only visits nodes that may contain NNs) and
incremental (the number of NNs does need to be
known in advance).

2.2. k-Medoids and Related Problems

A number of approximation schemes for k-medoids1
and related problems appear in the literature
[ARR98]. Most of this work, however, is largely
theoretical in nature. Kaufmann and Rousseeuw
[KR90] propose partitioning around medoids
(PAM), a practical algorithm based on the hill
climbing paradigm. In particular, PAM starts with a
random set of k medoids R0 ⊆ P. At each iteration i,
it updates the current set Ri of medoids by
exhaustively considering all neighbor sets Ri' that
result from Ri by exchanging one of its elements with
another object. For each of these k·(|P|-k)
alternatives, it computes the function C(Ri') and
chooses as Ri+1 the one that achieves the lowest
value. It stops when no further improvement is
possible. Since computing C(Ri') requires O(|P|)
distance calculations, PAM is prohibitively
expensive for large |P|. Clustering large applications
(CLARA) [KR90] alleviates the problem by
generating random samples from P and executing
PAM on those. Ng and Han [NH94] propose
clustering large applications based on randomized
search (CLARANS) as an extension to PAM.
CLARANS draws a random sample of size
maxneighbors from all the k·(|P|-k) possible neighbor
sets Ri' of Ri. It performs numlocal restarts and
selects the best local minimum as the final answer.

Although CLARANS is more scalable than PAM,
it is inefficient for disk-resident datasets because
each computation of C(Ri') requires a scan of the
entire database. Assuming that P is indexed with an

1 If the selected points (R) do not necessarily belong to the
dataset P (i.e., they are arbitrary points in the Euclidean
space), the problem is known as Euclidean k-medians
[ARR98].

 4

R-tree, Ester et al. [EKX95a, EKX95b] develop
focusing on representatives (FOR). FOR takes the
most centrally located point of each leaf node and
forms a sample set, which is considered as
representative of the entire set P. Then, it applies
CLARANS on this sample to find the k medoids.
Although FOR is more efficient than CLARANS, it
still has to read the entire dataset in order to extract
the representatives. Furthermore, in very large
databases, the leaf level population may still be too
high for the efficient application of CLARANS (the
experiments of [EKX95a] use R-trees with only
50,559 points and 1,027 leaf nodes).

Regarding the max case, to the best of our
knowledge, there does not exist any method for disk-
resident data. For in-memory processing, the method
of [G85] answers max k-medoid queries in O(k⋅|P|)
time with an approximation factor of 2. In other
words, the returned medoid set is guaranteed to
achieve a maximum distance C(R) that is no more
than two times larger than the optimal one. The
algorithm proceeds as follows. The first medoid is
randomly selected from P and forms set R1. The
second medoid is the point in P that lies furthest from
the point in R1. These two medoids form R2. In
general, the ith medoid is the one that has the
maximum distance from any point in Ri-1. Finally, the
set Rk is returned as the result. The algorithm is
simple and works well in practice. However, its
adaptation for large datasets would be very expensive
in terms of both CPU and I/O cost, since in order to
find the ith medoid it has to scan the entire dataset
and compute the distance between every data point
and all elements of Ri-1.

A problem related to k-medoids is min-dist
optimal-location (MDOL) computation. Given a set
of data points P, a set of existing facilities, and a
user-specified spatial region Q (i.e., range for a new
facility), a MDOL query computes the location in Q
which, if a new facility is built there, minimizes the
average distance between each data point and its
closest facility. The main difference with respect to
k-medoids is that the output of a MDOL query is a
single point (as opposed to k) that does not
necessarily belong to P, but it can be anywhere in Q.
Zhang et al. [ZDXT06] propose an exact method for
this problem. This method is complementary to the
proposed algorithms since it can be used to increase
the cardinality of an existing medoid set, when there
is a need for incremental processing (e.g., a franchise
chain decides to add a new branch in a given area).
 The k-medoid problem is related to clustering.
Clustering methods designed for large databases
include DBSCAN [EKSX96], BIRCH [ZRL96],
CURE [GRS98] and OPTICS [ABKS99]. However,

the objective of clustering is to partition data objects
in groups (clusters) such that objects within the same
group are more similar to each other than to points in
other groups. Figure 2.2a depicts a 2-way clustering
for a dataset, while Figure 2.2b shows the two
medoids in the avg case. Clearly, assigning a facility
per cluster would not achieve the purpose of
minimizing the average distance between points and
facilities. Furthermore, the number of clusters
depends on the data characteristics, whereas the
number of medoids is an input parameter determined
by the application requirements.
 Extensive work on medoids and clustering has
been carried out in the areas of statistics [H75, KR90,
HTF01], machine learning [PM99, PM00, HE03] and
data mining [EKSX96, FPSU96]. However, the focus
there is on assessing the statistical quality of a given
clustering, usually based on assumptions about the
data distribution [HTF01, KR90, PM00, HE03]. Only
few approaches aim at dynamically discovering the
number of clusters [PM00, HE03]. Besides tackling a
problem of different nature, existing algorithms are
computationally intensive and unsuitable for disk-
resident datasets. In summary, there is need for
methods that fully exploit spatial access methods and
can answer several types of medoid queries.

(a) 2 clusters

(b) 2 medoids

Figure 2.2: Clustering versus medoids problem

3. General Framework and Definitions

The TPAQ framework traverses the R-tree in a top-
down manner, stopping at the topmost level that
provides enough information for answering the given

 5

query. In the case of k-medoids, this decision
depends on the number of entries at the level. On the
other hand, for MA and MO queries, the selection of
the partitioning level is also based on the spatial
extents and (in the avg case) on the expected
cardinality of its entries. Next, TPAQ groups the
entries of the partitioning level into slots. For given k,
this procedure is performed by a fast slotting
algorithm. For MA and MO, multiple calls of the
slotting algorithm might be required. The last step
returns the NN of each slot center as the medoid of
the corresponding partition. We first provide some
basic definitions, which are used throughout the
paper. We focus on un-weighted, monochromatic
queries, i.e., all data points have the same importance
(i.e., unit weight) and each medoid is a data point.
The extension to bichromatic, weighted and other
queries is discussed in Section 7.

Definition 1 [Extended entry]: An extended entry
e consists of an R-tree entry N, augmented with
information about the underlying data points, i.e., e =
〈c, w, N〉, where the weight w is the expected number
of points in the sub-tree rooted at N. The center c is a
vector of co-ordinates that corresponds to the
geometric centroid of N, assuming that the points in
the sub-tree of N are uniformly distributed.

Definition 2 [Slot]: A slot s consists of a set E of
extended entries, along with aggregate information
about them. Formally, a slot s is defined as s = 〈c, w,
E〉, where w is the expected number of points
represented by s,

.
e E

w e w
∈

= ∑ .

In the avg case, vector c is the weighted center of s,

. .
e E

1
c e w e c

w ∈

= ⋅∑ .

In the max case, vector c is the center of the minimum
enclosing circle of all the entry centers e.c in s; i.e., c
is the center of the circle enclosing e.c ∀e∈E that has
the minimum possible radius.

A fundamental operation is the insertion of an
extended entry e into a slot s. The pseudo-code for
this function in the avg case is shown in Figure 3.1.
The insertion computes the new center taking into
account the relative positions and weights of the slot
s and the entry e, e.g., if s and e have the same
weights, the new center is at the midpoint of the line
segment connecting s.c and e.c. In the max case, the
new slot center is computed as the center of the
minimum circle enclosing e.c and all the entry
centers currently in s. We use the incremental
algorithm of [W91] that finds the new slot center in
expected constant time.

Function InsertEntry (extended entry e, slot s)
1. s.c = (e.w·e.c + s.w·s.c) / (e.w + s.w)
2. s.w = e.w + s.w
3. s.E = s.E ∪{e}

Figure 3.1: The InsertEntry function for avg

In the subsequent sections, we describe the
algorithmic details for each query type. For every
considered medoid problem, we first present the avg
case, followed by max. Note that, similar to PAM,
CLARA, CLARANS and FOR, TPAQ aims at
efficient processing without theoretical guarantees on
the quality of the medoid set. Meaningful quality
bounds are impossible because TPAQ is based on the
underlying R-trees, which are heuristic-based
structures. Nevertheless, as we show in the
experimental evaluation, TPAQ computes medoid
sets that are better than those of the existing methods
at a small fraction of the cost (usually several orders
of magnitude faster). Furthermore, it is more general
in terms of the problem variants it can process. Table
3.1 summarizes the frequently used symbols.

Symbol Description
P Set of data points

||p1-p2|| Euclidean distance between points p1 and p2
R Set of medoids
k Number of medoids k = |R|

r(p) Closest medoid of p ∈ P
C(R) Average/maximum distance achieved by R

T Target distance (for MA queries)
N R-tree node
E Set of entries ei = 〈ci, wi, Ni〉
S Set of slots sj = 〈cj, wj, Ej〉

Table 3.1: Frequently used symbols

4. k-Medoid Queries

Given an avg k-medoid query, TPAQ finds the top-
most level with k' ≥ k entries. For example, if k = 3 in
the tree of Figure 2.1, TPAQ descends to level 1,
which contains k'=7 entries, N3 through N9. The
weights of these entries are computed as follows.
Since |P| = 23, the weight of the root node Nroot is
wroot = 23. Assuming that the entries of Nroot are
equally distributed between the two children N1 and
N2, w1 = w2 = N/2 = 11.5 (the true cardinalities are 11
and 12, respectively). The process is repeated for the
children of N1 (w3 = w4 = w5 = w1/3 = 3.83) and N2

(w6 = w7 = w8 = w9 = w2/4 = 2.87). Figure 4.1
illustrates the algorithm for computing the initial set
of entries. Note that InitEntries assumes that k does
not exceed the number of leaf nodes. This is not
restrictive because the lowest level typically contains
several thousand nodes (e.g., in our datasets, between
3,000 and 60,000), which is sufficient for all ranges
of k that are of practical interest. If needed, larger

 6

values of k can be accommodated by splitting leaf
level nodes.

Function InitEntries (P, k)
1. Load the root of the R-tree of P
2. Initialize list={e}, where e = 〈Nroot.c, |P|, Nroot〉
3. While list contains fewer than k extended entries
4. Initialize an empty list next_level_entries
5. For each e=〈c, w, N〉 in list do
6. Let num be the number of child entries in node N
7. For each entry Ni in node N do
8. wi = w/num // the expected cardinality of Ni
9. Insert extended entry 〈Ni.c, wi, Ni〉 to

next_level_entries
10. Set list = next_level_entries
11. Return list

Figure 4.1: The InitEntries function

The next step merges the k' initial entries in order to
obtain exactly k groups. Initially, k out of the k'
entries are selected as slot seeds, i.e., each of the
chosen entries forms a singleton slot. Clearly, the
seed locations play an important role in the quality of
the final answer. The seeds should capture the
distribution of points in P, i.e., dense areas should
contain many seeds. Our approach for seed selection
is based on space-filling curves, which map a multi-
dimensional space into a linear order. Among several
alternatives, Hilbert curves best preserve the locality
of points [KF93, BJFS01]. Therefore, we first
Hilbert-sort the k' entries and select every mth entry as
a seed, where m = k'/k. This procedure is fast and
produces well-spaced seeds that follow the data
distribution. Returning to our example, Figure 4.2
shows the level 1 MBRs (for the R-tree of Figure
2.1) and the output seeds s1 = N4, s2 = N9 and s3 = N7
according to their Hilbert order. Recall that each slot
is represented by its weight (e.g., s1.w= w4=3.83), its
center (e.g., s1.c is the centroid of N4) and its MBR.

s1

s2

s3

N3

N4

N5

N6

N7
N8

N9

slot centers slot MBRs node MBRs

Figure 4.2: Hilbert seeds on example dataset

Then, each of the remaining (k'-k) entries is inserted
into the k seed slots, based on proximity criteria.
More specifically, for each entry e, we choose the
slot s whose weighted center s.c is closest to the
entry's center e.c. In the running example, assuming
that N3 is considered first, it is inserted into the slot s1

using the InsertEntry function of Figure 3.1. The
center of s1 is updated to the midpoint of N3 and N4's
centers, as shown in Figure 4.3a. TPAQ proceeds in
this manner, until the final slots and weighted centers
are computed as shown in Figure 4.3b.

s2

s3

N3

N4

N5

N6

N7
N8

N9

new MBR of s1

s1

(a) Insertion of N3

s1

s2

s3

N3

N4

N5

N6

N
7

N8

N9

h

t

o

(b) Final slot contents

Figure 4.3: Insertion of entries into slots

After grouping all entries into exactly k slots, we find
one medoid per slot by performing a nearest-
neighbor query. The query point is the slot's
weighted center s.c, and the search space is the set of
entries s.E. Since all the levels of the R-tree down to
the partition level have already been loaded in
memory, the NN queries incur very few node
accesses and negligible CPU cost. Observe that an
actual medoid (i.e., a point in P that minimizes the
average distance) is more likely to be closer to s.c
than simply to the center of the MBR of s. The
intuition is that s.c captures information about the
point distribution within s. The NN queries on these
points return the final medoids R = {h, o, t}.
 Figure 4.4 shows the complete TPAQ k-medoid
computation algorithm. The problem of seeding the
slot table is similar to that encountered in spatial hash
joins, where the number of buckets is bounded by the
available main memory [LR95, LR98, MP03].
However, our ultimate goals are different. First, in
the case of hash joins, the table capacity is an upper
bound. Reaching it is desirable in order to exploit
available memory as much as possible, but falling
slightly short is not a problem. In contrast, we want
exactly k slots. Second, in our case slots should
minimize the average distance C(R) on one dataset,
whereas slot selection in spatial joins attempts to

 7

minimize the number of intersection tests that must
be performed between objects that belong to different
datasets.

Algorithm TPAQ (P, k)
1. Initialize a set S=∅, and empty list
2. Set E = the set of entries returned by InitEntries (P, k)
3. Hilbert-sort the centers of the entries in E and store

them in a sorted list sorted_list
4. For i=1 to k do //compute the slot seeds
5. Form a slot containing the (i⋅|E|/k)-th entry of

sorted_list and insert it into S
6. For each entry e in E (apart from the ones selected as

seeds) do
7. Find the slot s in S with the minimum distance ||e.c –

s.c||
8. InsertEntry (e, s)
9. For each s∈S do
10. Perform a NN search at s.c on the points under s.E
11. Append the retrieved point to list
12. Return list

Figure 4.4: The TPAQ algorithm

TPAQ follows similar steps for the max case. The
function InitEntries proceeds as before, but without
computing the expected cardinality for entries and
slots; in the max version of the problem, we use only
the geometric centroids of the R-tree entries. We
apply the algorithm of [G85], discussed in Section
2.2, to select seeds. In particular, if E is the set of
entries in the partitioning level, we compute the k-
medoids over their centers e.c. Then, we insert the
remaining entries in E one by one into the slot with
the closest center. Finally, we perform a NN search at
the center of each slot to retrieve the actual
corresponding medoid. Recall that the center of each
slot is the center of the minimum circle enclosing its
entries’ centers. Returning to our running example, if
a 3-medoid query is given in the tree of Figure 2.1,
level 1 is chosen as the partitioning level. Among the
entries of level 1, assume that the algorithm of [G85]
returns the centers of N4, N6 and N9 as the seeds. The
insertion of the remaining entries into the created
slots (s1, s2, and s3) results in the partitioning shown
in Figure 4.5.

s1

N3

N4

N5

N6 N7
N8

N9

s3

s2slot centers

slot MBRs

entry centers

s1.c
d

n

v

r1

r2

r3

Figure 4.5: A 3-medoid query in the max case

The three circles correspond to the minimum circles
enclosing the centers of nodes in each slot. The final
step of the TPAQ algorithm retrieves the NNs of s1.c,
s2.c, and s3.c, which are points d, v and n,
respectively. The returned medoid set is R={d, v, n}.

5. Medoid-Aggregate Queries

A medoid-aggregate (MA) query specifies the
desired distance T (between points and medoids), and
asks for the minimal medoid set R that achieves
C(R) = T. Consider the example of Figure 5.1 for the
avg case, and assume that we know a priori all the
optimal i-medoid sets Ri and the corresponding C(Ri),
for i=1,...,23. If C(R4) is the average distance that
best approximates T (compared to C(Ri) ∀i≠4), set R4
is returned as the result of the query. The proposed
algorithm, TPAQ-MA, is based on the fact that, as
the number of medoids |R| increases, the
corresponding C(R) decreases, in both the avg and
the max case. TPAQ-MA first descends the R-tree of
P down to an appropriate partitioning level. Next, it
estimates the value of |R| that achieves the average
distance C(R) closest to T and returns the
corresponding medoid set R.

f k

o

t

target average
distance T

Figure 5.1: MA query example in the avg case

Consider first the avg case. The initial step of TPAQ-
MA is to determine the partitioning level. The
algorithm selects for partitioning the top-most level
whose minimum possible distance (MPD) does not
exceed T. The MPD of a level is the smallest C(R)
that can be achieved if partitioning takes place in this
level. According to the methodology of Section 4,
MPD equals to the C(R) resulting if we extract one
medoid from each entry in the level. Since computing
the exact C(R) requires scanning the entire dataset P,
we use an estimate of C(R) as the MPD. In particular,
for each entry e of the level, we assume that the
underlying points are distributed uniformly2 in its
MBR, and that the corresponding medoid is at e.c.
The average distance C̄(e) between e.c and the points
in e is given by the following lemma.

2 This is a reasonable assumption for low-dimensional R-
trees [TSS00].

 8

Lemma 5.1: If the points in e are uniformly
distributed in its MBR, then their average distance
from e.c is

2 21
() ln ln

3 2 8 8

D B D A A D B
C e

A D A B D B

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
,

where A and B are the side lengths of the MBR of e
and D is its diagonal length.

Proof: If we translate the MBR of e so that its
center e.c falls at the origin (0,0), C̄(e) is the average
distance of points (x,y) ∈ [-A/2,A/2]× [-B/2,B/2] from
(0,0). Hence,

2 2
2 2

2 2

1
()

A B

A B
C e x y dxdy

AB − −
= +∫ ∫ ,

which evaluates to the quantity of Lemma 5.1.
 The MPD of each level is estimated by averaging
C̄(e) over all e∈E, where E is the set of entries at the
level:

1
MPD . ()

| | e E

e w C e
P ∈

= ⋅∑

TPAQ-MA applies the InitEntries function to select
the top-most level that has MPD ≤ T. The pseudo-
code of InitEntries is the same as shown in Figure
4.1, after replacing the while-condition of line 3 with
the expression: "the estimated MPD is more than T".
Returning to our running example, the root node Nroot
of the R-tree of P has MPD=C̄(Nroot), which is higher
than T. Therefore, InitEntries proceeds with level 2
(containing entries N1 and N2), whose MPD is also
higher than T. Next, it loads the level 1 nodes and
computes the MPD over the entries N3 to N9. The
MPD is less than T, and level 1 is selected for
partitioning. InitEntries returns a list containing 7
extended entries corresponding to N3 up to N9.

The next step of TPAQ-MA is to determine the
number of medoids that best approximate the value
T. If E is the set of entries in the partitioning level,
then the candidate values for |R| range between 1 and
|E|. TPAQ-MA assumes that C(R) decreases as |R|
increases3, and performs binary search in order to
find the value of |R| that yields the average distance
closest to T. This procedure considers O(log|E|)
different values for |R|, and creates slots for each of
them as discussed in Section 4. Since the exact
evaluation of C(R) for every examined |R| would be
very expensive, we produce an estimate C̄(S) of C(R)
for the corresponding set of slots S. Particularly, we

3 Although this assumption is true for optimal medoid sets,
it may not always hold for approximate solutions, in which
case TPAQ-MA may be trapped in a local minimum. Nev-
ertheless, violations of the assumption occur in very large
medoid sets and do not have a significant effect on the
quality of the solution.

assume that the medoid of each slot s is located at s.c,
and that the average distance from the points in every
entry e∈s equals the distance ||e.c – s.c||. Hence, the
estimated value for C(R) is given by the formula:

1
() . || . . ||

| | s S e s

C S e w e c s c
P ∈ ∈

= ⋅ −∑∑ ,

where S is the set of slots produced by partitioning
the entries in E into |R| groups. Note that we could
use a more accurate estimator assuming uniformity
within each entry e∈s, similar to Lemma 5.1.
However, the derived expression would be more
complex and more expensive to evaluate, because
now we need the average distance from s.c (as
opposed to the center e.c of the entry’s MBR). The
overall TPAQ-MA algorithm is shown in Figure 5.2.

Algorithm TPAQ-MA (P, T)
1. Initialize an empty list
2. Set E = set of the entries at the topmost level with

MPD≤T
3. low=1; high=|E|
4. while low≤high do
5. mid=(low+high)/2
6. Group the entries in E into mid slots
7. S = the set of created slots
8. If C̄(S) < T , set high=mid
9. Else, set low=mid
10. For each s∈S do
11. Perform a NN search at s.c on the points under s.E
12. Append the retrieved point to list
13. Return list

Figure 5.2: The TPAQ-MA algorithm

In the example of Figure 2.1, the partitioning level
contains entries E={N3, N4, N5, N6, N7, N8, N9}. The
binary search considers values of |R| between 1 and
7. Starting with |R| = (1+7)/2=4, the algorithm creates
S with 4 slots, as shown in Figure 5.3. It computes C̄
(S), which is lower than T. It recursively continues
the search for |R|∈[1,4] in the same way, and decides
that |R|=4 yields a value of C̄(S) that best
approximates T. Finally, similar to TPQA, TPAQ-
MA performs a NN search at the center s.c of the
slots corresponding to |R|=4, and returns the retrieved
points (f, k, t and o) as the result.

N3

N4

N5

N6
N7

N8

N9

a
b

c
d

e

f

g

h
i

j

k

l

m

n

o
qr

s
t

u

v

w

s1

s2

s3

s4

Figure 5.3: Entries and final slots

 9

Consider now the max version of the MA problem.
InitEntries chooses for partitioning the top-most level
with minimum possible distance (MPD) less than or
equal to T. The MPD of a level is an estimated upper
bound for the maximum distance C(R), assuming that
we return a medoid at the center of each of the level’s
entries. Given an R-tree entry e and assuming that we
can find a medoid at e.c (i.e., the crossing point of its
MBR diagonals), then the maximum possible
distance of any point in e from the medoid is half the
MBR diagonal length. Therefore, the MPD of a level
is computed as the half of the maximum entry
diagonal in the level. In other words, C̄(e)=D/2
(where D is the diagonal of e), and MPD=maxe∈EC̄(e)
(where E is the set of entries in the given level).

Similar to the avg case, in order to determine the
number of medoids that best approximate the target
distance T, we perform binary search. If E is the set
of entries in the partitioning level, then the candidate
|R| values range between 1 and |E|. For each
considered |R|, we use the max slotting algorithm
(described in Section 4). Let S be the set of slots for a
value of |R|. To estimate the achieved C(R) (i.e., to
compute C̄(S)), we assume that the maximum
distance within each slot s equals the radius of the
minimum circle enclosing the entry centers in s. For
example, if level 1 is selected for partitioning and
|R|=3, the slotting produces the grouping shown in
Figure 4.5. C(R) is estimated as the maximum radius
of the three circles, that is, C̄(S)=max{r1, r2, r3}=r1.
Formally, if MincircRadius(s) is the radius of the
smallest circle enclosing e.c ∀e∈s, then C̄(S) =
maxs∈S MincircRadius(s). When the binary search
terminates, we retrieve the medoids corresponding to
the best value of |R|. The algorithm of Figure 5.2
directly applies to max MA queries, by using the max
versions of MPD and C̄(S), and by implementing line
6 with the max slotting algorithm.

6. Medoid-Optimization Queries

In real-world scenarios, opening a facility has some
cost. Thus, users may wish to find a good tradeoff
between overall cost and coverage (i.e., the average
or maximum distance between clients and their
closest facilities). If the relative importance of these
conflicting factors is given by a user-specified cost
function f(C(R), |R|), the aim of a MO query is to find
the medoid set R that minimizes f. The TPAQ
methodology applies to this problem, provided that f
is increasing on both C(R) and |R|. Consider the
example of Figure 1.1 in the avg case, and let f(C(R),
|R|) be C(R) + Costpm⋅|R|, where Costpm is the cost per
medoid. Assume that we know a priori all the optimal
i-medoid sets Ri and the corresponding C(Ri), for

i=1,...,23. If the plot of f(C(Ri), |Ri|) versus |Ri| is as
shown in Figure 6.1, then the optimal |R| is 3 and the
result of the query is {h, o, t} (as in Figure 1.1).
TPAQ-MO is based on the observation that f(C(Ri),
|Ri|) has a single minimum. Hence, it applies a
gradient descent technique to decide the partitioning
level and the optimal number of medoids |R|.

number of medoids
1 2 3 4

 f(C(Ri),|Ri|)

...5 6 7

cost of root
(1 root MBR-medoid)

cost of level 2
(2 root entries - medoids)

cost of level 1
(7 leaf node MBRs - medoids)

C(Ri)

Costpm·|Ri|

Figure 6.1: f(C(Ri), |Ri|) versus # of medoids

In both the avg and max cases, TPAQ-MO initially
descends the R-tree of P and for each candidate level,
it computes its cost. We define the cost of a level as
the value f(MPD, |E|), where E is the set of its entries.
TPAQ-MO selects for partitioning the top-most level
whose cost is greater than the cost of the previous
one (i.e., at the first detected increase in the curve of
Figure 6.1). If the MPD estimations are accurate,
then the medoid set that minimizes f has size |R|
between 1 and |E| (the number of entries at the
partitioning level). The traversal of the R-tree down
to the appropriate level is performed by the
InitEntries function of Figure 4.1 by modifying the
while-condition in line 3 to: "the cost of the current
level is less than the cost of the previous one". In
Figure 2.1, InitEntries compares the costs of the root
entry (1 medoid) and level 2 (two medoids – one for
each root entry). Since the cost of level 2 is less than
that of the root, it proceeds with level 1, whose cost
is larger than that of level 2. Thus, level 1 is selected
for partitioning and InitEntries returns the set of
extended entries from N3 to N9.

Given the set of entries E at the partitioning level,
the next step of TPAQ-MO is to compute the optimal
value for |R|, which lies between 1 and |E|. To
perform this task, TPAQ-MO uses a gradient descent
method which considers O(log3/2|E|) different values
for |R|. Consider the example of Figure 6.2, where we
want to find the value xopt∈[low, high] that minimizes
a given function h(x). We split the search interval
into three equal sub-intervals, defined by
mid1=(2·low+high)/3 and mid2=(low+2·high)/3. Next,
we compute h(mid1) and h(mid2). Assuming that
h(mid1) < h(mid2), we distinguish two cases; either
xopt∈[low, mid1] (as shown in Figure 6.2a), or
xopt∈[mid1, mid2] (Figure 6.2b). In other words, the
search interval is restricted to [low, mid2].

 10

Symmetrically, if h(mid1) > h(mid2), then the search
interval becomes [mid1, high]. Otherwise, if h(mid1)
= h(mid2), the search is restricted to interval [mid1,
mid2]. The xopt can be found by recursively applying
the same procedure to the new search interval. If xopt
is an integer, then the search terminates in
O(log3/2(high-low)) steps.

x

h(x)

low highmid 1 mid 2

minimum

x

h(x)

low highmid 1 mid 2

minimum

(a) xopt∈[low, mid1] (b) xopt∈[mid1, mid2]
Figure 6.2: Computing the minimum of a function h

We use the above technique to determine the optimal
value of |R|, starting with low=1 and high=|E|. For
each considered |R|, we compute the set of slots S in
the way presented in Section 4, and estimate the
corresponding C(R) as the quantity C̄(S) discussed in
Section 5. The gradient descent method returns the
value of |R| that minimizes f(C̄(S), |R|). Finally, the
result of TPAQ-MO is the set of points retrieved by a
NN search at the center of each slot s∈S of the
corresponding partitioning. Figure 6.3 shows the
overall TPAQ-MO algorithm. The algorithm works
for both avg and max MO queries, by using the
corresponding MPD and C̄(S) functions, and the
appropriate slotting algorithms. In our running
example, for the avg case, level 1 is the partitioning
level, and |R|=3 is selected as the best medoid set
size. The slots and the returned medoids (i.e., h, o
and t) are the same as in Figure 4.3.

Algorithm TPAQ-MO (P, f)
1. Initialize an empty list
2. Set E = set of the entries at the topmost level with cost

greater than that of the previous level
3. low=1; high=|E|
4. while low+2<high do
5. mid1=(2·low+high)/3; mid2=(low+2·high)/3
6. Group the entries in E into mid1 slots
7. S1 = the set of created slots
8. Group the entries in E into mid2 slots
9. S2 = the set of created slots
10. If f(C̄(S1), mid1) < f(C̄(S2), mid2)
11. Set high=mid2 and S=S1
12. Else, if f(C̄(S1), mid1) > f(C̄(S2), mid2)
13. Set low=mid1 and S=S2
14. Else, if f(C̄(S1), mid1) = f(C̄(S2), mid2)
15. Set low=mid1, high=mid2 and S=S1
16. For each s∈S do
17. Perform a NN search at s.c on the points under s.E
18. Append the retrieved point to list
19. Return list

Figure 6.3: The TPAQ-MO algorithm

7. Discussion

All the above medoid queries have a bichromatic
version, in which the candidate medoids belong to a
dataset M which is different from that of the data
points P. Set M may be a subset of P, or a set
completely disjoint with P. For instance, the
locations for potential franchise branches may be
restricted to industrial buildings. The definitions of k-
medoid, MA and MO queries (for both the avg and
max versions) remain the same, but the reported
medoid set R is a subset of M. TPAQ can easily
capture bichromatic queries by performing its final
step (i.e., NN queries) on M instead of P. Since the
other steps remain the same, the performance is
similar to the conventional (monochromatic) case.
 In weighted queries, each data point is assigned a
non-negative number indicating its importance (e.g.,
the weight of a residential block could be the number
of its residents). Processing in the max case is
identical to its un-weighted counterpart. However,
the application of TPAQ to avg weighted queries
requires an aggregate R*-tree [TP04], or any other
aggregate data partition method. The aggregate R*-
tree has the same structure and update algorithms as
the regular R*-tree, except that each entry also stores
the sum of weights of the data points in its sub-tree.
The only necessary modification to TPAQ is using
the sum of weights instead of the estimated entry
cardinality e.w. For k-medoid queries, this affects the
InsertEntry function (i.e., the calculation of the new
slot center and weight upon the insertion of an entry),
while for MA and MO it also affects the computation
of the MPD and C̄(S) estimates.
 Even for un-weighted avg queries, the use of
aggregate R-trees can improve the accuracy of
TPAQ. If each R-tree entry additionally contains the
number and geometric centroid (i.e., the average x
and y coordinate) of the points in its sub-tree, we can
replace the estimations of e.w and e.c with these (i.e.,
the exact) values, respectively, leading to higher
accuracy. The algorithmic modifications to TPAQ
are similar to the weighted case.
 In several practical scenarios, a medoid query
may include additional capacity/service constraints.
For instance, an application may require that a
facility (i.e., medoid) can only serve up to a
maximum number of clients (data points). Another
application may require that each facility is assigned
roughly the same number of clients (i.e., about
|P|/|R|, where |R| is the number of medoids). We refer
to this class of problems as maximum capacity
medoids. To deal with maximum capacity queries,
TPAQ returns in addition to the medoids, an
assignment of the data points to them. In particular,

 11

as a first step, TPAQ retrieves the medoids in the
way described in the previous sections (depending on
the problem type; i.e., k-medoid, MA or MO). In a
second step, TPAQ computes the assignment of the
data points similar to the method of [AHA92].
 The algorithm of [AHA92] computes a weight ai
for each medoid so that if each point p is assigned
according to distance function4 pow(p, r(p)) = ||p-
r(p)||2 - ai (where ai is the weight of r(p)), then the
capacity constraints are satisfied. Initially, all weights
are equal. Depending on the number of points
assigned to each medoid, their weights respectively
decrease or increase. This hill climbing process is
repeated until all constraints are satisfied. Note that
the technique cannot be used as is, since it requires
reading the entire dataset at every iteration. To avoid
this problem, we can use the expected cardinalities
and centroids of the entries at the partitioning level;
we estimate the number of points assigned to each
medoid assuming that the e.w points of every entry e
are assigned to medoid r(e.c) (according to the pow
function). To conclude the discussion about
maximum capacity queries, the output of TPAQ is
the set of medoids R and their corresponding weights
ai (i = 1,...,|R|). Given this information, the
assignment of the data points is implicit.
 TPAQ is targeted to static datasets. However, it
can easily capture dynamic instances of the problem;
when a batch of updates (insertions and deletions)
takes place in dataset P, we can re-use the previous
result to compute the new medoid set. In particular, if
the updates do not affect the partitioning level (i.e.,
the number and MBRs of its entries remain the
same), then we have to perform anew only the final
step of TPAQ (i.e., NN queries at slot centers s.c).
Actually, the NN search can be avoided for slots s
where (i) the currently reported medoid is not deleted
or (ii) an inserted point lies closer to s.c. In case (i)
the medoid for s remains the same, while in case (ii)
the new medoid is the closest inserted point to s.c. A
NN search in s is required only if the current medoid
is deleted and no new point lies closer to s.c. Note
that if the updates affect the partitioning level, then
we have to re-compute the medoids from scratch.
 The above method works well when updates are
infrequent, but it is slow for very dynamic datasets.
To cope with high update rates, it is a common
practice to store the data in main memory (e.g.,
[MXA04, YPK05, MHP05]). In this setting, a
straightforward adaptation of TPAQ would be to use
an in-memory R-tree, and evaluate the query as

4 Formally, this is called the power function and results in a
space partitioning known as the power diagram (a variation
of the Voronoi diagram).

discussed above. This, however, would be expensive
due to the slow R-tree updates. To overcome this
problem, we could index the data points with a B-
tree, sorted on their Hilbert values. In the case of k-
medoid queries, we continuously report every mth
point as a medoid, where m = |P|/k. For MA (MO)
queries, when they are first installed at the system,
we can determine |R| using a binary search (hill
climbing) method similar to Section 5 (6). Since
computing C(R) for each considered |R| is expensive,
we can use an estimate. Particularly, we may apply a
regular grid, and maintain on-the-fly for each cell the
number of data points falling therein. We estimate
C(R) assuming that all points inside a cell are
assigned to the medoid closest to its centroid. To
maintain the medoids in subsequent update cycles, if
the estimate of C(R) deviates from parameter T (if the
estimated value of cost function f deviates from its
previous value) by a percentage larger than some
threshold, then we re-compute |R| as described above.
Otherwise, we simply report the new |R| medoids.

8. Experimental Evaluation

In this section we evaluate the performance of the
proposed methods for k-medoid, medoid-aggregate
and optimization queries. For each of these three
problems, we first present our experimental results
for avg, and then for max, using both synthetic and
real datasets. The synthetic ones (SKW) follow a
Zipf distribution with parameter α=0.8, and have
cardinality 256K, 512K, 1M, 2M and 4M points. The
real datasets are (i) NA, with 569,120 points
(available at www.maproom.psu.edu/dcw), and (ii)
LA, with 1,314,620 points (available at
www.rtreeportal.org). All datasets are normalized to
cover the same space with extent 104×104 and
indexed by an R*-tree [BKSS90] whose block size
ranges between 1 and 4Kbytes. For the experiments
we use a 3GHz Pentium CPU.

8.1. k-Medoid Queries

First, we focus on k-medoid queries and compare
TPAQ against FOR, which, as discussed in Section
2.2, is the only other method that utilizes R-trees for
computing k-medoids. For TPAQ, we use the depth-
first algorithm of [RKV95] to retrieve the nearest
neighbor of each computed centroid. In the case of
FOR we have to set the parameters numlocal
(number of restarts) and maxneighbors (sample size
of the possible neighbor sets) of the CLARANS
component. Ester et al. [EKSX95a] suggest setting
numlocal = 2 and maxneighbors = k⋅(M-k)/800,
where M is the number of leaf nodes in the R-tree of

 12

P. With these parameters, FOR terminates in several
hours for most experiments. Therefore, we set
maxneighbors = k⋅(M-k)/(8000⋅logM) and keep
numlocal = 2. These values speed up FOR
considerably, while the deterioration of the resulting
solutions, with respect to the suggested values of
numlocal and maxneighbors, is small. Regarding the
max case, there is currently no other algorithm for
disk-resident data. For the sake of comparison
however, we adapted FOR to max k-medoid queries
by defining C(R) to be the maximum distance
between objects and medoids; i.e., the CLARANS
component of FOR exchanges the current medoid set
Ri with a neighbor one Ri', only if the maximum
distance achieved by Ri' is smaller than that of Ri. All
FOR results presented in this section are average
values over 10 runs of the algorithm. This is
necessary because the performance of FOR depends
on the random choices of CLARANS. The
algorithms are compared for different data cardinality
|P|, number of medoids k and block size. Table 8.1
summarizes the parameters along with their ranges
and default values. In each experiment we vary a
single parameter, while setting the remaining ones to
their default (median) values.

Parameter Range Default
Data cardinality |P| 256K – 4M 1M

Number of medoids k 1 – 512 32
Block size 1KB – 4KB 2KB

Table 8.1: Parameter values

We first measure the effect of |P| in the avg case.
Figure 8.1a shows the running time of TPAQ and
FOR for SKW, when k=32 and |P| ranges between
256K and 4M. TPAQ is 2 to 4 orders of magnitude
faster than FOR. Even for |P| = 4M objects, our
method terminates in less than 0.04 seconds (while
FOR needs more than 3 minutes). Figure 8.1b shows
the I/O cost (number of node accesses) for the same
experiment. FOR is around 2 to 3 orders of
magnitude more expensive than TPAQ since it reads
the entire dataset once. Both the CPU and the I/O
costs of TPAQ are relatively stable and small,
because partitioning takes place at a high tree level.
 The cost improvements of TPAQ come with no
compromise in answer quality. Figure 8.1c shows the
average distance C(R) achieved by the two
algorithms. TPAQ outperforms FOR in all cases. An
interesting observation is that the average distance
for FOR drops when the cardinality of the dataset |P|
increases. This happens because higher |P| implies
more possible “paths” to a local minimum. To
summarize, the results of Figure 8.1 verify that
TPAQ scales gracefully with the dataset cardinality
and incurs much lower cost than FOR, without

sacrificing the medoid quality.
TPAQ FOR

CPU Time (sec)

|P|

103

102

10 -1

10-2

1

10

256K 512K 1024K 2048K 4096K 1

10

256K 512K 1024K 2048K 4096K

105

104

103

102

Node Accesses

|P|

(a) CPU time (b) Node Accesses

0

100

200

300

400

500

600

700

800

256K 512K 1024K 2048K 4096K

|P|

C(R)

(c) Average Distance

Figure 8.1: Performance versus |P| (SKW, avg)

The next set of experiments studies the performance
of TPAQ and FOR in the avg case, when k varies
between 1 and 512, using a SKW dataset of
cardinality |P| = 1M. Figure 8.2a compares the
running time of the methods. In both cases, TPAQ is
3 orders of magnitude faster than FOR. It is worth
mentioning that for k=512 our method terminates in
2.5 seconds, while FOR requires around 1 hour and
20 minutes. For k=512, both the partitioning into
slots of TPAQ and the CLARANS component of
FOR are applied on an input of size 14,184; the input
of the TPAQ partitioning algorithm consists of the
extended entries at the leaf level, while the input of
CLARANS is the set of actual representatives
retrieved in each leaf node. The large difference in
CPU time verifies the efficiency of our partitioning
algorithm.

TPAQ FOR
CPU Time (sec)

k

1

10

102

104

103

10-1

10-2

10-3

5121 2 8 32 128

Node Accesses

k

105

104

103

1

10

5121 2 8 32 128

102

(a) CPU time (b) Node Accesses

k

C(R)

512

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 8 32 128
(c) Average Distance

Figure 8.2: Performance versus k (SKW, avg)

Figure 8.2b shows the effect of k on the I/O cost. The
node accesses of FOR are constant and equal to the

 13

total number of nodes in the R-tree of P (i.e.,
14,391). On the other hand, TPAQ accesses more
nodes as k increases. This happens because (i) it
needs to descend more R-tree levels in order to find
one with a sufficient number (i.e., k) of entries, and
(ii) it performs more NN queries (i.e., k) at the final
step. However, TPAQ is always more efficient than
FOR; in the worst case TPAQ reads all R-tree nodes
up to level 1 (this is the situation for k=512), while
FOR reads the entire dataset P for any value of k.
Figure 8.2c compares the accuracy of the methods.
TPAQ achieves lower C(R), for all values of k.

In order to confirm the generality of our
observations, Figures 8.3 and 8.4 repeat the above
experiment for real datasets NA and LA. TPAQ
outperforms FOR by orders of magnitude in terms of
both CPU time (Figures 8.3a and 8.4a for NA and
LA, respectively) and number of node accesses
(Figures 8.3b and 8.4b). Regarding the average
distance C(R), the methods achieve similar results,
with TPAQ being the winner. Note that the CPU and
I/O costs of the methods are higher for LA, since it is
larger and its R-tree has more entries per level. The
achieved C(R) values are lower for NA, because it is
more skewed than LA (i.e., the objects are
concentrated in a smaller area of the workspace).

TPAQ FOR
CPU Time (sec)

k

1

10

102

104

103

10-1

10-2

10-3

5121 2 8 32 128

104

103

102

Node Accesses

k

10

512

1

1 2 8 32 128

(a) CPU time (b) Node Accesses

k

C(R)

512

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 8 32 128
(c) Average Distance

Figure 8.3: Performance versus k (NA, avg)

TPAQ FOR
CPU Time (sec)

k

1

10

102

104

103

10-1

10-2

10-3

5121 2 8 32 128

105

104

103

102

Node Accesses

k

512

1

10

1 2 8 32 128

105

(a) CPU time (b) Node Accesses

k

C(R)

0

500

1000

1500

2000

2500

3000

3500

1 2 8 32 128 512
(c) Average Distance

Figure 8.4: Performance versus k (LA, avg)

Figures 8.5a and 8.6a show the running time of
TPAQ and FOR on 32-medoid avg queries as a
function of the block size for datasets NA and LA.
When the block size increases, the number of leaf
nodes drops. Thus the CPU cost of FOR decreases
because its expensive CLARANS step processes
fewer representatives. TPAQ does not necessarily
follow the same trend. For NA, the running time
drops, since the number of entries at the partitioning
level is 618, 143 and 33 for block size 1KB, 2KB and
4KB, respectively. For LA the populations of the
partitioning levels are 43, 313 and 77, respectively,
yielding higher running time in the 2KB case.
Concerning the I/O cost, larger block size implies
smaller R-tree height, and fewer nodes per level.
Therefore, both methods are less costly (as illustrated
in Figures 8.5b and 8.6b). Independently of the block
size, TPAQ incurs much fewer node accesses than
FOR. Finally, Figures 8.5c and 8.6c illustrate the
effect of the block size on the quality of the retrieved
medoid set. In all cases, the average distance
achieved by TPAQ is lower than that of FOR.

TPAQ FOR
CPU Time (sec)102

10-1

10-2

Block Size (Bytes)

1

10

10-3

1024 2048 4096

105

103

Node Accesses

1

10

1024 2048 4096

104

Block Size (Bytes)

102

(a) CPU time (b) Node Accesses
C(R)

0

50

100

150

200

250

300

350

1024 2048 4096

Block Size (Bytes)

(c) Average Distance

Figure 8.5: Performance versus block size (NA, avg)
TPAQ FOR

CPU Time (sec)
102

10-1

10-2

Block Size (Bytes)

1

10

10-3

1024 2048 4096

105

104

103

102

Node Accesses

Block Size (Bytes)
1

10

1024 2048 4096

(a) CPU time (b) Node Accesses

 14

C(R)

Block Size (Bytes)
0

50
100
150
200
250
300
350
400
450
500

1024 2048 4096
(c) Average Distance

Figure 8.6: Performance versus block size (LA, avg)

Next, we focus on max k-medoid queries. We
perform the same experiments as in the avg case,
with identical ranges and default values for the
examined parameters (shown in Table 8.1). For
brevity, we omit the results for NA. Figure 8.7
compares TPAQ and FOR on 32-medoid queries
over SKW datasets of varying cardinality. As in
Figure 8.1, our method outperforms FOR by orders
of magnitude in both CPU and I/O cost. This is due
to the fact that FOR reads from the disk the entire
input dataset, and that its CLARANS component is
much more expensive than our max slotting
algorithm. Concerning the quality of the retrieved
medoid sets (Figure 8.7c), TPAQ is better with a
large margin. This is expected, since FOR was
originally designed for the avg k-medoid problem.
FOR converges to bad local minima when
CLARANS considers swapping a current medoid
with another representative because it selects the
latter randomly among the set of representatives.
Since the representatives follow the data distribution,
the choices of CLARANS are biased towards dense
areas of the workspace. Even though this behavior is
desirable in avg k-medoid queries, it is clearly
unsuitable for the max case, because even a single
object at a sparse area can lead to a large C(R).

TPAQ FOR
CPU Time (sec)

|P|

103

102

10
-1

10-2

1

10

256K 512K 1024K 2048K 4096K

105

104

103

102

Node Accesses

|P|
1

10

256K 512K 1024K 2048K 4096K

(a) CPU time (b) Node Accesses

|P|

C(R)

0

500

1000

1500

2000

2500

3000

3500

4000

256K 512K 1024K 2048K 4096K
(c) Average Distance

Figure 8.7: Performance versus |P| (SKW, max)

Figures 8.8 and 8.9 examine the effect of k on TPAQ
and FOR over the SKW and LA datasets. The CPU
cost of both methods increases with k. Larger values

of k incur higher I/O cost for TPAQ for the reasons
explained in the context of Figure 8.2b. FOR
performs a constant number of node accesses since it
always reads the entire dataset. Regarding the quality
of the returned medoid sets, our algorithm achieves
much lower maximum distance C(R). The diagrams
for NA are similar and omitted.

TPAQ FOR
CPU Time (sec)

k

1 2 8 32 128 512

102

103

10-1

10-2

1

10

Node Accesses

k

104

103

102

1

10

105

1 2 8 32 128 512

(a) CPU time (b) Node Accesses

k

C(R)

0

1000

2000

3000

4000

5000
6000

7000

8000

9000

10000

1 2 8 32 128 512
(c) Average Distance

Figure 8.8: Performance versus k (SKW, max)

TPAQ FOR
CPU Time (sec)

k

102

103

10-1

10-2

1

10

1 2 8 32 128 512

Node Accesses

k

512

104

103

102

1

10

105

1 2 8 32 128

(a) CPU time (b) Node Accesses

k

C(R)

0

1000

2000

3000

4000

5000

6000

7000

1 2 8 32 128 512
(c) Average Distance

Figure 8.9: Performance versus k (LA, max)

The final experiment for k-medoid queries measures
the effect of the block size on the performance of the
algorithms in the max case. Figure 8.10 presents the
results for 32-medoid queries over the LA dataset,
where the block size varies between 1, 2 and 4 KB.
The CPU cost of FOR drops for higher block size,
since there are fewer leaf nodes and CLARANS runs
over fewer representatives. On the other hand, similar
to Figure 8.6, the running time of TPAQ is higher for

 15

block size 2K, because the partitioning level contains
more entries than in the 1K and 4K cases. The
number of node accesses for both algorithms drops
for larger blocks, because the R-tree contains fewer
nodes. Figure 8.10c illustrates the obtained maximum
distance; TPAQ achieves better C(R) in all cases.

TPAQ FOR
CPU Time (sec)102

10-1

10-2

Block Size (Bytes)

1

10

1024 2048 4096

Node Accesses

Block Size (Bytes)

105

104

103

102

1

10

1024 2048 4096
(a) CPU time (b) Node Accesses

C(R)

Block Size (Bytes)
0

500

1000

1500

2000

2500

3000

3500

4000

1024 2048 4096
(c) Average Distance

Figure 8.10: Performance vs. block size (LA, max)

8.2. Medoid-Aggregate Queries

In this section we study the performance of TPAQ-
MA, starting with the avg case. We use datasets
SKW (with 1M objects) and LA, and vary T from
100 to 1500 (recall that our datasets cover a space
with extent 104×104). Since there is no existing
algorithm for processing such queries on large
indexed datasets, we compare TPAQ-MA against an
exhaustive algorithm (EXH) that works as follows.
Let E be the set of entries at the partitioning level of
TPAQ-MA. EXH computes and evaluates all the
medoid sets for |R|=1 up to |R|=|E|, by performing
partitioning of E into slots with the technique
presented in Section 4. EXH returns the medoid set
that yields the closest average distance to T. Note that
EXH is prohibitively expensive in practice because,
for each examined value of |R|, it scans the entire
dataset P in order to exactly evaluate C(R).
Therefore, we exclude EXH from the CPU and I/O
cost charts.

Figure 8.11a shows the C(R) for TPAQ-MA
versus T on SKW. Clearly, the average distance
returned by TPAQ-MA approximates the desired
distance (dotted line) very well. Figure 8.11b plots
the deviation percentage between the average
distances achieved by TPAQ-MA and EXH. The
deviation is below 9% in all cases, except for T=300
where it equals 13.4%. Interestingly, for T=1500,
TPAQ-MA returns exactly the same result as EXH
with |R|=5. Figures 8.11c and 8.11d illustrate the
running time and the node accesses of our method,
respectively. For T=100, both costs are relatively

high (100.8 seconds and 1839 node accesses)
compared to larger values of T. The reason is that
when T=100, partitioning takes place at level 1 (leaf
level, which contains 14,184 entries) and returns
|R|=1272 medoids, incurring many computations and
I/O operations. In all the other cases, partitioning
takes place at level 2 (containing 203 entries), and
TPAQ-MA runs in less than 0.11 seconds and reads
fewer than 251 pages.

0

200

400

600

800

1000

1200

1400

1600

100 300 500 700 900 1100 1300 1500

C(R)

T

desired average distance C(R)

required average distance T

Dev. from EXH (%)

T
0

2

4

6

8

10

12

14

100 300 500 700 900 1100 1300 1500

(a) Average Distance (b) Dev. from EXH
CPU Time (sec)

T

1

10

100 300 500 700 900 1100 1300 1500

10
2

10
3

10
-1

10
-2

Node Accesses

T

10
2

10
3

1

10

100 300 500 700 900 1100 1300 1500

10
4

(c) CPU Time (b) Node Accesses
Figure 8.11: Performance versus T (SKW, avg)

Figure 8.12 repeats the above experiment for the LA
dataset. Figures 8.12a and 8.12b compare the average
distance achieved by TPAQ-MA with the input value
T and the result of EXH, respectively. The deviation
from EXH is always smaller than 8.6%, while for
T=1500 the answer of TPAQ-MA is the same as
EXH. Concerning the efficiency of TPAQ-MA, we
observe that the algorithm has, in general, very low
CPU and I/O cost. The highest cost is again in the
case of T=100 for the reasons explained in the
context of Figure 8.11; TPAQ-MA partitions 19,186
entries into slots and extracts |R|=296 medoids,
taking in total 105.6 seconds and performing 781
node accesses.

C(R)

T
0

200

400

600

800

1000

1200

1400

1600

100 300 500 700 900 1100 1300 1500

returned average distance C(R)

desired average distance T

Dev. from EXH (%)

T
0

2

4

6

8

10

100 300 500 700 900 1100 1300 1500

(a) Average Distance (b) Dev. from EXH
CPU Time (sec)

T

1

10

10
2

10
3

10
-1

10
-2

100 300 500 700 900 1100 1300 1500

Node Accesses

T

10
2

10
3

1

10

100 300 500 700 900 1100 1300 1500

(c) CPU Time (b) Node Accesses
Figure 8.12: Performance versus T (LA, avg)

In Figures 8.13 and 8.14 we examine the
performance of TPAQ-MA in the max case, using
datasets SKW and LA. We compare again with the

 16

EXH algorithm. It is implemented as explained in the
beginning of the subsection, the difference being that
now it uses the max k-medoid TPAQ algorithm. For
max, the range of T is from 500 to 1500. We do not
use the same range as in the previous two
experiments (i.e., 100 to 1500), because for T<500
the number of required medoids becomes very high
and EXH requires numerous hours to complete. As
shown in Figures 8.13a and 8.14a, the maximum
distance of TPAC-MA is close to the desired value T.
In general, the deviation from EXH (illustrated in
Figures 8.13b and 8.14b) is low, and in the worst
case it reaches 6.1% for SKW and 11.6% for LA.
The algorithm terminates in less than 21 seconds in
all cases, and incurs a small number of node
accesses.

C(R)

T

returned distance C(R)

desired distance T

0

200

400

600

800

1000

1200

1400

1600

500 700 900 1100 1300 1500

Dev. from EXH (%)

T
0

1

2

3

4

5

6

7

500 700 900 1100 1300 1500

(a) Average Distance (b) Dev. from EXH
CPU Time (sec)

T
0

5

10

15

20

25

500 700 900 1100 1300 1500

Node Accesses

T
0

100

200

300

400

500

600

500 700 900 1100 1300 1500

(c) CPU Time (b) Node Accesses
Figure 8.13: Performance versus T (SKW, max)

C(R)

T

returned distance C(R)

desired distance T

0

200

400

600

800

1000

1200

1400

1600

500 700 900 1100 1300 1500

Dev. from EXH (%)

T
0

2

4

6

8

10

12

500 700 900 1100 1300 1500

(a) Average Distance (b) Dev. from EXH
CPU Time (sec)

T
0

2

4

6

8

10

12

14

16

500 700 900 1100 1300 1500

Node Accesses

T
0

100

200

300

400

500

600

500 700 900 1100 1300 1500

(c) CPU Time (b) Node Accesses
Figure 8.14: Performance versus T (LA, max)

8.3. Medoid-Optimization Queries

Finally, we experiment on the performance of
TPAQ-MO, using datasets SKW (with 1M objects)
and LA. We process optimization queries with
f(C(R), |R|) = C(R) + Costpm⋅|R|, where Costpm is the
cost per medoid and ranges between 1 and 256.
TPAQ-MO is again compared with an exhaustive
algorithm (EXH), which in the MO case, (i)

computes all the medoid sets with |R| from 1 to |E|,
by performing partitioning into slots in the same level
as TPAQ-MO, (ii) calculates the (average or
maximum) distance C(R) achieved for each
considered set, and (iii) returns the one that
minimizes function f.

First, we experiment on avg MO queries. Figure
8.15a plots the deviation percentage (between the
values of f achieved by TPAQ-MO and EXH) as a
function of the cost Costpm per medoid. The deviation
does not exceed 1.8% in any case. Interestingly,
TPAQ-MO returns exactly the same medoid sets as
EXH for many values of Costpm, verifying the
effectiveness of the gradient descent technique and
the accuracy of the estimators described in Section 6.
Figures 8.15b and 8.15c show the CPU and I/O costs
of the algorithm. In both charts, the cost of TPAQ-
MO is much higher when Costpm≤8. In these cases
the running time is between 147 and 157 seconds and
the number of node accesses ranges between 251 and
430. The returned medoid sets have size |R| between
33 and 174. On the other hand, when Costpm>8 the
CPU time is less than 0.1 seconds and the incurred
node accesses are fewer than 60. The answer
contains from 3 to 24 medoids. This large difference
is explained by the fact that when Costpm≤8
partitioning takes place in level 1 (with 14,184
entries), while for Costpm>8 the partitioning level is
level 2 (with 203 entries).

Dev. from EXH (%)

Cost per medoid
0

0.4

0.8

1.2

1.6

2

1 2 4 8 16 32 64 128 256

CPU Time (sec)

1 2 4 8 16 32 64 128 256

1

10

10
2

10
3

10
-1

10
-2 Cost per medoid

(a) Dev. from EXH (b CPU Time

Node Access

10
2

10
3

1

10

1 2 4 8 16 32 64 128 256

Cost per medoid

(c) Node Accesses

Figure 8.15: Performance versus Costpm (SKW, avg)

In Figure 8.16 we repeat the above experiment for
the LA dataset. The performance of TPAQ-MO is
very similar to the SKW case. The deviation of
TPAQ-MO from EXH is 0.07% and 1.82% for
Costpm equal to 4 and 8, respectively. For all the other
values of Costpm our algorithm retrieves the same
medoid set as EXH. The cost of TPAQ-MO is plotted
in Figures 8.16b and 8.16c. There is a large
difference in both the CPU time and the node

 17

accesses for Costpm≤4 and Costpm>4. The reason for
this behavior is the same as in Figure 8.15.

Dev. from EXH (%)

0

0.4

0.8

1.2

1.6

2

1 2 4 8 16 32 64 128 256

Cost per medoid

CPU Time (sec)

Cost per medoid

10
2

10
3

10
-1

1

10

1 2 4 8 16 32 64 128 256

(a) Dev. from EXH (b CPU Time

Node Access

10
2

10
3

1

10

1 2 4 8 16 32 64 128 256

Cost per medoid

(c) Node Accesses

Figure 8.16: Performance versus Costpm (LA, avg)

In the last two experiments we focus on max MO
queries. Figures 8.17 and 8.18 illustrate the
performance of TPAQ-MO when Costpm varies
between 1 and 256. The deviation from EXH is
usually small. For SKW the maximum deviation is
7.5%. For LA the deviation is in general higher; on
the average it is around 10% with maximum value
22.3% (for Costpm=8). TPAQ-MO performs worse
for LA, because it contains large empty areas. On the
other hand, SKW (even though it is very skewed)
covers the whole workspace. Concerning the running
time of TPAQ-MO, it does not exceed 43 seconds in
any case. As in Figures 8.15 and 8.16, both the I/O
and the CPU costs drop when partitioning takes place
to a higher level. For SKW (for LA), the partitioning
level is level 1 for Costpm ≤16 (for Costpm ≤4), while
for higher Costpm it is level 2.

Dev. from EXH (%)

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128 256

Cost per medoid

CPU Time (sec)10
2

10
-1

10
-2 Cost per medoid

1

10

1 2 4 8 16 32 64 128 256

(a) Dev. from EXH (b CPU Time

Node Access

10
2

10
3

Cost per medoid
1

10

1 2 4 8 16 32 64 128 256
(c) Node Accesses

Figure 8.17: Performance versus Costpm (SKW, max)

Dev. from EXH (%)

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256

Cost per medoid

CPU Time (sec)

Cost per medoid

10
2

10
-1

1

10

1 2 4 8 16 32 64 128256

(a) Dev. from EXH (b CPU Time

Node Access

10
2

10
3

Cost per medoid
1

10

1 2 4 8 16 32 64 128 256
(c) Node Accesses

Figure 8.18: Performance versus Costpm (LA, max)

9. Conclusion

This paper studies k-medoids and related problems in
large databases. In particular, we consider k-medoid,
medoid-aggregate (MA) and medoid-optimization
(MO) queries. We propose TPAQ (Tree-based
PArtition Querying), a framework for their efficient
processing that works for both their avg and max
versions. TPAQ provides high-quality answers
almost instantaneously, thus facilitating data analysis,
especially in time-critical resource allocation
applications. Our techniques exploit the data
partitioning properties of an existing spatial access
method on the dataset. TPAQ processes a query in
three steps. Initially, it descends the index, and stops
at the topmost level that provides sufficient
information about the underlying data distribution.
Next, it partitions the entries of the selected level into
a number of slots. In the case of k-medoid queries,
the number of slots is equal to k. For MA and MO,
this number is decided using binary search and a
gradient descend method, respectively, in
conjunction with some (average or maximum)
distance estimators. Finally, TPAQ issues a NN
query to retrieve one medoid for each slot. An
extensive experimental evaluation shows that TPAQ
outperforms the state-of-the-art method for k-medoid
queries by orders of magnitude, and achieves results
of better or comparable quality. Our empirical study
also illustrates the effectiveness of TPAQ for
processing MA and MO queries, in both avg and max
cases. In the future, we plan to extend the proposed
methodology to high-dimensional spaces, using
appropriate data partition indexes [BKK96].

 18

Acknowledgments

This work was supported by grant HKUST 6184/06E
from Hong Kong RGC.

References

[ABKS99] Ankerst, M., Breunig, M., Kriegel, H.P.,
Sander, J. OPTICS: Ordering Points To
Identify the Clustering Structure. SIG-
MOD, 1999.

[AHA92] Aurenhammer, F., Hoffmann, F.,
Aronov, B. Minkowski-type theorems
and least-squares partitioning. ACM
Symposium on Computational Geome-
try, 1992.

[ARR98] Arora, S., Raghavan, P., Rao, S. Poly-
nomial Time Approximation Schemes
for Euclidean k-Medians and Related
Problems. STOC, 1998.

[BKK96] Berchtold, S., Keim, D., Kriegel, H. The
X-tree: An Index Structure for High-
Dimensional Data. VLDB, 1996.

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider,
R., Seeger, B. The R*-tree: An Efficient
and Robust Access Method for Points
and Rectangles. SIGMOD, 1990.

[EKX95a] Ester, M., Kriegel, H. P., Xu, X. A Da-
tabase Interface for Clustering in Large
Spatial Databases. KDD, 1995.

[EKX95b] Ester, M., Kriegel, H. P., Xu, X. Knowl-
edge Discovery in Large Spatial Data-
bases: Focusing Techniques for Efficient
Class Identification. SSD, 1995.

[EKSX96] Ester, M., Kriegel, H. P.,Sander, J., Xu,
X. A Density Based Algorithm for Dis-
covering Clusters. KDD, 1996.

[FPSU96] Fayyad, U., Piatetsky-Shapiro, G.,
Smyth, P., Uthurusamy, R. Advances in
Knowledge Discovery and Data Mining.
AAAI/MIT Press, 1996.

[G85] Gonzalez, T. Clustering to minimize the
maximum intercluster distance. Theo-
retical Computer Science, 38: 293-306,
1985.

[GJ79] Garey, M., Johnson, D. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

[GRS98] Guha, S., Rastogi, R., Shim, K. CURE:
An Efficient Clustering Algorithm for
Large Databases. SIGMOD, 1998.

[H75] Hartigan, J.A. Clustering Algorithms.
Wiley, 1975.

[HE03] Hamerly, G., Elkan, C. Learning the k in
k-means. NIPS, 2003.

[HS99] Hjaltason, G., Samet, H. Distance
Browsing in Spatial Databases. ACM
TODS, 24(2): 265-318, 1999.

[HTF01] Hastie, T., Tibshirani, R., Friedman, J.
The Elements of Statistical Learning.
Springer-Verlag, 2001.

[KF93] Kamel, I., Faloutsos, C. On Packing R-
trees. CIKM, 1993.

[KR90] Kaufman, L., Rousseeuw, P. Finding
Groups in Data. Wiley-Interscience,
1990.

[LR95] Lo, M.L., Ravishankar, C.V. Generating
Seeded Trees from Data Sets. SSD,
1995.

[LR98] Lo, M.L., Ravishankar, C.V. The Design
and Implementation of Seeded Trees: An
Efficient Method for Spatial Joins.
TKDE, 10(1): 136-151, 1998.

[MHP05] Mouratidis, K., Hadjieleftheriou, M.,
Papadias, D. Conceptual Partitioning:
An Efficient Method for Continuous
Nearest Neighbor Monitoring. SIGMOD,
2005.

[MJFS01] Moon, B., Jagadish, H.V., Faloutsos, C.,
Saltz, J.H. Analysis of the Clustering
Properties of the Hilbert Space-Filling
Curve. TKDE, 13(1):124-141, 2001.

[MP03] Mamoulis, N., Papadias, D. Slot Index
Spatial Join. TKDE, 15(1): 211-231,
2003.

[MXA04] Mokbel, M., Xiong, X., Aref, W. SINA:
Scalable Incremental Processing of Con-
tinuous Queries in Spatio-temporal Da-
tabases. SIGMOD, 2004.

[NH94] Ng, R., Han, J. Efficient and Effective
Clustering Methods for Spatial Data
Mining. VLDB, 1994.

[PM99] Pelleg, D., Moore, A.W. Accelerating
Exact k-means Algorithms with Geomet-
ric Reasoning. KDD, 1999.

[PM00] Pelleg, D., Moore, A.W. X-means: Ex-
tending k-means with Efficient Estima-
tion of the Number of Clusters. ICML,
2000.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F.
Nearest Neighbor Queries. SIGMOD,
1995.

[TP04] Tao, Y., Papadias, D. Range Aggregate
Processing in Spatial Databases. TKDE,
16(12), 1555-1570, 2004.

[TSS00] Theodoridis, Y., Stefanakis, E., Sellis, T.
Efficient Cost Models for Spatial Que-
ries Using R-trees. TKDE, 12(1): 19-32,
2000.

 19

[W91] Welzl, E. Smallest Enclosing Disks
(Balls and Ellipsoids). New Results and
New Trends in Computer Science, 555:
359-370, 1991.

[XWZ+05] Xing, G., Wang, X., Zhang, Y., Lu, C.,
Pless, R., Gill, C.: Integrated coverage
and connectivity configuration for en-
ergy conservation in sensor networks.
ACM TOSN, 1(1): 36-72, 2005.

[YPK05] Yu, X., Pu, K., Koudas, N. Monitoring
k-Nearest Neighbor Queries Over Mov-
ing Objects. ICDE, 2005.

[ZDXT06] Zhang, D., Du, Y., Xia, T., Tao, Y. Pro-
gressive Computation of the Min-Dist
Optimal-Location Query. VLDB, 2006.

[ZRL96] Zhang, T., Ramakrishnan, R., Livny, M.
BIRCH: An Efficient Data Clustering
Method for Very Large Databases. SIG-
MOD, 1996.

