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ABSTRACT
Top-k processing is a well-studied problem with numerous
applications that is becoming increasingly relevant with the
growing availability of recommendation systems and deci-
sion making software. The objective of this tutorial is
twofold. First, we will delve into the geometric aspects of
top-k processing. Second, we will cover complementary fea-
tures to top-k queries, with strong practical relevance and
important applications, that have a computational geomet-
ric nature. The tutorial will close with insights in the effect
of dimensionality on the meaningfulness of top-k queries,
and interesting similarities to nearest neighbor search.

1. INTRODUCTION
Consider a dataset that contains a large number of op-

tions (e.g., restaurants, hotels, etc). Each option r has d
attributes. In an example where the dataset contains hotels,
the attributes could correspond to the ratings of the hotels
on d aspects, such as service, sleep quality, convenience of
location, etc. The top-k query is a common means to short-
list the k best options according to the user’s preferences
on the d data attributes. Specifically, in the most prevalent
top-k model, the user specifies a query vector q which com-
prises a numeric weight for each attribute [10]. The score
of an option is defined as the weighted sum of its attributes
(equivalently, the dot product r ·q), which in turn imposes a
ranking among the available options. The k highest ranking
options form the top-k result and are reported to the user.

Despite its algebraic definition, top-k processing has a ge-
ometric nature and a connection to fundamental computa-
tional geometry problems. For example, if the options are
treated as points in a d-dimensional space, top-k computa-
tion can be seen as a sweeping of the data space from its top
corner to the origin with a hyper-plane (normal to the query
vector q) until k options are swept [16]. In addition to ideas
for query processing, this parallel reveals important proper-
ties of the problem, such as the fact that the top option for
any query vector lies on the convex hull of the dataset [3].
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Things become more interesting when variants or auxil-
iary features to top-k processing are considered in the query
space, i.e., the space where the query vector may lie. Ge-
ometric properties in that space, and particularly the con-
cept of k-levels from computational geometry, can be used
for the efficient processing of ad-hoc top-k queries over data
streams [6] or the processing of continuous top-k queries [19].

Furthermore, insights in the properties of the query space
have given rise to very useful, complementary features (and
measures) relevant to top-k processing. An example is the
association of the top-k result with a region around the
query vector q (in query space) where the result remains
the same [14, 20]. The volume of that region can be used
as a measure for result sensitivity, while the region itself
as a means for computation sharing among different top-k
queries (result caching), for exploratory analysis, etc. An-
other example is the computation of the maximum possible
rank that an option could achieve, given the competition
(i.e., the alternative options in the data set) [12]. This also
entails the calculation of the exact regions of the query space
where the maximum rank is achieved, which can be used for
market impact analysis and customer profiling. The prob-
lem is related to hyper-plane arrangements, a very powerful
concept in computational geometry [1, 2].

The first objective of this tutorial is to shed light to the
connection between top-k processing and fundamental com-
putational geometry problems. In particular, we will re-
view the key geometric concepts of (i) convex hull, (ii) half-
space range reporting, (iii) hyperplane arrangement, and
(iv) k-level, and we will explain how they can help us sup-
port top-k queries, variants and auxiliary features.

The tutorial will continue with systems that exploit the
aforementioned geometric fundamentals to efficiently pro-
cess top-k and related queries. More than 10 papers will
be discussed, with a focus on methods that (i) are not lim-
ited to 2 dimensions only, and (ii) produce exact solutions.
Regarding item (i), as we will explain, 2-dimensional solu-
tions address degenerate versions of preference-based rank-
ing, which may simplify processing, but also sacrifice the
generality of the key ideas. Regarding item (ii), approx-
imate methods may be plausible for some problems, but
they largely dismiss the geometric aspects of the problems
in order to simplify them.

We will conclude with insights into the effect of dimen-
sionality on the behaviour and the usefulness of top-k rank-
ing/processing. Connections to the standard nearest neigh-
bor query (NN) will be drawn, and surprising similarities to
its behaviour with dimensionality will be demonstrated.



Due to its close connection to computational geometry,
the tutorial will be very “visual”, with a multitude of draw-
ings used for illustration; this will hopefully make it eye-
catching and fun (in addition to useful).

2. RELEVANCE AND TARGET AUDIENCE
Due to the great and world-wide diffusion of the inter-

net, the number of options available to cover a user’s needs
far exceeds her capacity to exhaustively browse through all
of them. For that reason, preference-based querying and
recommendations systems have become ubiquitous in the
software and mobile application industry. Enhancing these
systems with functionality that extends further than basic
top-k reporting is underway, since features auxiliary to it of-
fer stronger decision support and deeper decision analytics,
as we will demonstrate with pragmatic application scenarios
in the tutorial.

On the research front, the majority of the papers covered
are very recent, which attests to the timeliness of the topic.
Computational geometry is a branch of theoretical computer
science. However, its application to large scale datasets in
the context of practical, multi-criteria decision making is
a challenging and intriguing topic for database researchers,
especially in the sub-communities of spatial databases, rec-
ommendation systems, and data analytics.

Specific sub-communities aside, the tutorial is meant for
the broader VLDB audience. In terms of geometry, only
basic knowledge will be required, since the essential compu-
tational geometric concepts will be abstracted and presented
from scratch, chiefly with the use of visual examples. Basic
algorithmic and indexing background will be necessary, e.g.,
branch-and-bound search, Quad-tree and R-tree indices, etc.

3. LENGTH, SCOPE AND STRUCTURE
The tutorial is designed for 90 minutes, and comprises 3

parts. The first covers standard computational geometry
concepts and their relevance to top-k processing, namely,
convex hull, half-space range reporting, hyperplane arrange-
ment, and k-level. The second (which is the main part)
covers existing database work that exploits the connection
of these problems to top-k processing. The third part con-
cludes with insights about the effect of dimensionality on the
usefulness of top-k and related queries, and draws a paral-
lel to the traditional NN query. Below we summarize the
systems to be reviewed in the main part of the tutorial.

The first work covered is [6], where Das et al. consider the
evaluation of ad-hoc top-k queries over a data stream in the
sliding window model. The main idea is that only a small
subset of the options in the sliding window could appear
in the top-k result w.r.t. any query vector. To identify
(and maintain) this small subset they rely on a geometric
representation of the top-k query and a notion of duality,
where options and queries are mapped into lines and rays,
respectively. Although tailored to 2 dimensions explicitly,
this work involves fundamental principles that are key to the
tutorial, especially those regarding geometric arrangements.

Yu et al. [19] extend the principles of [6] to higher dimen-
sions, targeting this time continuous top-k queries. At the
core of their approach lies the effective maintenance of the
query response surface, which encodes the score and iden-
tity of the k-th result option for any query vector, and is
therefore very relevant to k-levels.

Vlachou et al. [17, 18] study reverse top-k queries. Even
though their main focus is on the bichromatic version of the
query (whose definition and treatment deviates from the ge-
ometric focus of this tutorial), they introduce the monochro-
matic version too, and propose a geometric solution for 2 di-
mensions. Specified a focal option p in a set of alternatives,
they compute the parts of the query space where the query
vector should lie so that p belongs to the top-k result. While
applicable to 2 dimensions only, the proposed solution is an
interesting use of k-levels for a top-k-related problem. Very
recently, Tang et al. [15] solved the problem (i.e., monochro-
matic reverse top-k processing) for higher dimensions too.
They exploit a mapping of competing options into hyper-
planes in the (transformed) query space, and work on the
produced arrangement using a blend of computational geo-
metric operations and linear programming.

Soliman et al. [14] consider uncertain scoring functions
and identify the most “representative” top-k result, under
different definitions. First, they compute the most likely
top-k result if the query vector is randomly chosen. Next,
they compute the top-k result that is least dissimilar to all
possible alternative results. Finally, they introduce sensi-
tivity measures for a given top-k result. Their approach
relies on geometric insights and on operations involving hy-
perplane representations in query space.

Zhang et al. [20] introduce the concept of the global im-
mutable region (GIR). The GIR is the maximal locus around
a query vector q where the top-k result remains the same. It
is shown to be a convex polytope (in query space), produced
by half-space intersection. To offer scalability, the authors
rely on properties of the convex hull, while their most ef-
ficient algorithm borrows ideas from Clarkson’s algorithm,
one of the most common methods for convex hull computa-
tion. The related view cover problem in [8, 9] will also be
reviewed, where given a query vector q, the region in query
space is computed, wherein any query vector is guaranteed
to have its top-k options among the top-m of q (where k
and m are input parameters, and k < m).

Mouratidis et al. [12] propose the maximum rank query
(MaxRank). Given a focal option in a set of alterna-
tives, MaxRank computes the highest rank this option may
achieve under any possible user preference. It additionally
reports all the regions in the query space where that rank is
achieved. Its applications include market impact analysis,
customer profiling, targeted advertising, etc. The proposed
solution relies on hyperplane arrangements and a coverage
counting problem therein.

He and Lo [7] consider why-not top-k queries. Given a
query vector q and an option p that does not belong to the
top-k result, the why-not query computes the smallest per-
turbation required in the query vector and/or in value k so
that p is included in the result. Event though the proposed
solution relies on sampling (and is therefore approximate),
it involves interesting geometric insights and relies on hy-
perplane arrangements in query space.

In addition to the above papers, we will make mention to
studies of practical relevance, which however deviate from
our focus, i.e., offer approximate answers, are bound to 2
dimensions, or have no geometric solutions. Examples in-
clude bichromatic reverse top-k [18], reverse k-ranks [21]
(which can be seen as the bichromatic version of MaxRank),
external k-level computation in 2 dimensions [4], k-regret
minimizing sets [5], k-hit [13], etc.
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