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ABSTRACT
Recent research has focused on continuous monitoring of
nearest neighbors (NN) in highly dynamic scenarios, where
the queries and the data objects move frequently and arbi-
trarily. All existing methods, however, assume the Euclid-
ean distance metric. In this paper we study k-NN monitor-
ing in road networks, where the distance between a query
and a data object is determined by the length of the shortest
path connecting them. We propose two methods that can
handle arbitrary object and query moving patterns, as well
as fluctuations of edge weights. The first one maintains the
query results by processing only updates that may invalidate
the current NN sets. The second method follows the shared
execution paradigm to reduce the processing time. In par-
ticular, it groups together the queries that fall in the path
between two consecutive intersections in the network, and
produces their results by monitoring the NN sets of these
intersections. We experimentally verify the applicability of
the proposed techniques to continuous monitoring of large
data and query sets.

1. INTRODUCTION
Nearest neighbor search is one of the fundamental prob-

lems in the field of spatial databases. A k-NN query com-
putes the k data objects that lie closest to a given query
point. Early methods are restricted to snapshot queries
over static data. Due to the wide availability of position-
ing devices and the rise of location-based services, recently
the research focus has shifted to continuous k-NN (CkNN)
queries over mobile data. These queries run for long time
periods and demand constant update of the results. Exist-
ing techniques for CkNN monitoring (e.g., [16, 25, 26]) aim
at Euclidean spaces. In most real-world scenarios, however,
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the users (i.e., queries) and the data objects are restricted
to move in a transportation network. Typically, the edges
of the network are road segments and their weights corre-
spond to their lengths, or to the time required to travel
them. In this context, the distance between two objects is
defined as the length (i.e., sum of weights) of the shortest
path connecting them. Although several papers (e.g., [4,
13, 18]) study different versions of snapshot k-NN queries
in road networks, there is no previous work on continuous
monitoring.

This paper constitutes the first attempt on this impor-
tant problem. We assume a central server that monitors
the positions of CkNN queries and objects, as well as the
current edge weights, which may fluctuate over time (e.g.,
due to varying traffic conditions). The task of the server
is to continuously compute and update the result of each
query. We propose fast algorithms to perform this task and
provide answers in real-time. The server does not have any
knowledge about the object/query velocity vectors and tra-
jectories. Furthermore, since weights may fluctuate, some
results may change even though the objects and the queries
have remained static. This situation does not occur in the
Euclidean version of the problem.

Efficient CkNN monitoring in networks is crucial for many
applications including location-based services and mobile
computing. As an example of a real-world scenario, con-
sider that the queries correspond to vacant cabs, and the
data objects are pedestrians that ask for a taxi. As cabs
and pedestrians move, each free taxi driver wishes to know
his/her k closest clients in terms of traveling time. As the
reverse case, clients looking for available taxis may consti-
tute the queries, and taxis the data objects. Clearly, in
both cases the Euclidean k-NNs are useless, since the path
between a cab and a pedestrian is restricted by the underly-
ing road network. Furthermore, both the data objects and
the queries are highly dynamic and unpredictable (e.g., taxis
may move fast, new clients may appear or existing customers
disappear), invalidating existing snapshot k-NN techniques
for road networks.

Similar to most on-line monitoring systems, we assume
main-memory evaluation. Our first contribution is the in-
cremental monitoring algorithm (IMA). IMA retrieves the
initial result of a query q by expanding the network around



it until k NNs are found. To facilitate processing of sub-
sequent updates, it stores the shortest paths (from q) to
the network nodes encountered during the NN search in the
form of an expansion tree. The main idea is that only up-
dates from objects and edges falling in the expansion tree
can alter the NN set of q; irrelevant updates are simply ig-
nored. On the other hand, when the updates affect the result
of q or when q moves to a new location, IMA determines the
part of the expansion tree that remains valid, and re-uses it
to accelerate the computation of the new NNs of q.

Our second contribution is the group monitoring algorithm
(GMA). GMA is based on the following observation. Con-
sider a path between two consecutive intersection nodes in
the network. The k-NNs of any query in the path belong
to the union of the data objects falling in the path and the
k-NN sets of its two endpoints. Thus, GMA monitors the
k-NNs of the intersections (using IMA) and utilizes them to
efficiently compute the results of all the queries in the path.
In summary, GMA benefits from (i) the shared execution
among queries in the same path, and (ii) the reduction of
the problem from monitoring moving queries to (monitor-
ing) static network nodes.

The rest of the paper is organized as follows. Section 2
reviews related work in snapshot NN algorithms and spa-
tial query monitoring. Section 3 states our assumptions
and describes the basic data structures. Sections 4 and 5
present IMA and GMA, respectively. Section 6 experimen-
tally compares the proposed methods through simulations in
real road networks. Finally, Section 7 concludes the paper
with a summary and directions for future work.

2. RELATED WORK
Section 2.1 surveys snapshot NN methods, and Section

2.2 focuses on continuous monitoring of spatial queries in
the Euclidean space.

2.1 Snapshot NN Methods
The first k-NN algorithms in the database literature pro-

cess snapshot (i.e., one-time) queries over static objects, as-
suming that the distance function is some Minkowski met-
ric (such as the Euclidean). They index the data with a
spatial access method (e.g., an R-tree [7]) and utilize dis-
tance bounds between the index nodes and the query point
to restrict the search space [8, 20]. Subsequent research
considered k-NN queries in client-server architectures. The
general idea is to provide the client with extra information
(along with the k-NN set) in order to reduce the number of
subsequent queries for updating the result. Assuming sta-
tic data objects, the method of [28] returns to the client
the validity time of the current k-NN result, considering
his/her maximum possible velocity. Zhang et al. [27] im-
prove upon this method by computing the region around
the client that the NN set remains the same. Song and
Roussopoulos [23] report more than k NNs so that if the
client moves within a maximum distance, the new k NNs
can be computed among the returned objects. Tao and
Papadias [24] propose time-parameterized k-NN queries for
clients and objects that move linearly with constant velocity.
Such queries return the current result along with its validity
period and its next change. [1, 24] describe algorithms for
computing linear NNs. A linear query returns all the k-NN
sets of the client up to a future timestamp, provided that
the velocity vectors in the system do not change.

The above methods target spaces where the distance be-
tween objects and queries is defined as a function of their
coordinates. Hence, they are inapplicable to road networks,
where the distance also depends on the connectivity and
weights of the underlying road segments (edges). Jensen et
al. [11] formalize the problem of k-NN search in road net-
works and present a system prototype for such queries. Pa-
padias et al. [18] describe a framework that integrates net-
work and Euclidean information, and answers k-NN, range,
closest pairs, and e-distance join queries. They index the
data objects with an R-tree and utilize connectivity and
location information to guide the search. Kolahdouzan and
Shahabi [13] retrieve the k-NNs based on pre-computed net-
work Voronoi cells. The first NN of any query falling in such
a polygon is the corresponding data object. If additional
NNs are required, the search considers the adjacent Voronoi
polygons iteratively. Shahabi et al. [21] propose an em-
bedding technique that approximates the network distance
with computationally simple functions in order to retrieve
fast, but approximate, k-NN results.

Several papers study alternative forms of NN search in
road networks. Given a static dataset (e.g., gas stations)
and a query path, Shekhar and Yoo [22] retrieve the object
(station) that causes the shortest detour if included in the
path. Given a user-specified trajectory, a path k-NN query
retrieves the k-NNs (in terms of network distance) at any
point in the trajectory. Assume that we know the k + 1
NNs at some point o in the query trajectory, and that their
network distance from o is disti, for i = 1, . . . , k + 1. Let
δ be the smallest difference between the distances of two
consecutive NNs, i.e., δ = min1≤i≤k{disti+1 − disti}. Ko-
lahdouzan and Shahabi [12] propose a path NN algorithm
based on the observation that any point in the query tra-
jectory within distance δ/2 from o has exactly the same NN
set as o. Cho and Chung [4] solve the same problem, by
retrieving the k-NN sets of all network nodes in the query
path, and uniting them with the data objects falling in the
path. It can be easily proven that the resulting set contains
the k-NNs of any point in the query trajectory. Both path
NN methods are inapplicable to continuous NN monitoring
because they (i) only work for static data objects, and (ii)
assume that the query trajectory is known in advance. In
summary all existing techniques for NN processing in road
networks require that objects and queries are either static
or move with known velocities or trajectories. Furthermore,
they can be characterized as “snapshot” methods since they
return a single result and terminate.

2.2 Continuous Monitoring in the Euclidean
Space

The existing research on continuous monitoring of spatial
queries has focused exclusively on Euclidean spaces. Q-index
[19] monitors static range queries over moving objects. It in-
dexes the ranges using an R-tree and probes moving objects
against the index in order to update the affected results.
Mobieyes [6] and MQM [3] utilize the computational capa-
bilities of the data objects to reduce the load at the central
server. SINA [15] performs continuous evaluation of range
queries using a three-step spatial join between moving ob-
jects and ranges.

Regarding k-NN monitoring, Koudas et al. [14] present a
system for approximate k-NN queries over streams of multi-
dimensional points. Currently, there exist three algorithms



for exact k-NN monitoring in the Euclidean space: YPK-
CNN [26], SEA-CNN [25] and CPM [16]. All three methods
index the data with a regular grid. To retrieve the initial
result of a new query q, they search in the cells around
it. To keep the result up-to-date in subsequent timestamps,
YPK-CNN (SEA-CNN) computes the current distance d of
the farthest previous NN and processes the objects falling
in the square with side-length 2·d (circle with radius d) cen-
tered at q. Result maintenance is different in CPM. Let C
be the circle with center at q that encloses the previous NN
locations. If the NNs that move outside C are more than
the outer objects that move into C, then the query is re-
computed from scratch. Otherwise, the k objects in C that
lie closest to q form the new result.

The grid index used by YPK-CNN, SEA-CNN and CPM
cannot capture the constraints imposed by a road network.
Furthermore, these methods process objects and updates
falling in circles and rectangles, while there is no trivial
mapping or interpretation of these shapes into the network
distance space. Finally, they cannot handle updates due
to changes of the edge weights (even if the objects and the
queries have remained static). Thus, they are inapplicable
to road networks. Summarizing, despite the amount of re-
lated work in Euclidean spaces and the real need for efficient
NN monitoring in road networks, currently there exists no
method addressing the problem.

3. ASSUMPTIONS AND DATA STRUCTU-
RES

We assume a workspace (e.g., a city road network) con-
taining a set of data objects and a set of CkNN queries. The
data objects are the entities of interest. The queries corre-
spond to users that request continuous monitoring of their
k closest objects. Both objects and queries move arbitrarily
in the network. Whenever they change location, they issue
an update to the monitoring server containing their id, their
old coordinates and their new coordinates. The network is
a graph consisting of nodes and edges. The edges have non-
negative weights modeling, for example, the time required
to travel from one endpoint to the other. For simplicity we
consider that the edges are bidirectional, but our methods
can be easily applied to networks with unidirectional edges
(e.g., one-way roads or roads where the weight is different
for the two directions). The weights fluctuate, depending on
the traffic conditions. Whenever an edge weight changes, the
server receives an update (e.g., issued by sensors monitor-
ing the congestion level on the corresponding road segment).
The network distance between a query and an object is de-
fined as the total cost (i.e., the sum of edge weights) along
the shortest path connecting them.

In our system, information about the network, the ob-
jects, and the queries is stored in three memory-resident
data structures. The first one is a spatial index SI on the
network edges. Given the coordinates of an object p, we use
SI to identify the edge where p lies. For this purpose we
use a PMR quadtree [9]. Each leaf quad contains the ids
of the edges intersecting it. The tree is built by iteratively
inserting the network edges. If the number of edge ids in a
leaf quad exceeds a threshold, it is split into four new ones
and becomes their predecessor in SI. In order to retrieve
the edge containing an object p, we descend SI top-down
until we reach the leaf quad covering p. Among the edges

intersecting this quad, we identify the one that contains p.
The second structure is the edge table ET, which main-

tains network and data object information. It is a hash-table
on edge id, that stores for each edge e: (i) its endpoints (net-
work nodes) e.start and e.end, (ii) the sets of edges adjacent
to each of its endpoints, (iii) its weight e.w, (iv) the list of
objects currently in e, and (v) the influence list e.IL contain-
ing the queries affected by e, along with the corresponding
influencing intervals. To exemplify the information stored in
e.IL, consider Figure 1, where q is a 3-NN query with NNs
p1, p2, and p3 (at distances 3, 5, and 7, respectively). The
network distance d(p3, q) = 7 of the furthest NN is denoted
by q.kNN dist. An edge e affects q, if it contains an inter-
val where the network distance is less than q.kNN dist. We
call this interval the influencing interval of e. In our exam-
ple, edge n2n5 affects q and the influencing interval is the
entire edge. Edge n5n4 also affects q; its influencing inter-
val starts at n5 and ends at the vertical mark with distance
q.kNN dist (all the points to the right of the mark have dis-
tance larger than q.kNN dist). We store q in the influence
list of each affecting edge e, together with the corresponding
influencing interval. We use the influence list information to
process only object and edge updates that affect the result
of q and ignore the rest.
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Figure 1: Affecting edges and expansion tree (3-NN
query)

The third data structure is the query table QT, which
maintains information about the queries in the system. QT
stores for each query q (i) its coordinates, (ii) the number
q.k of required NNs, (iii) its current k-NN set q.result, and
(iv) its expansion tree q.tree. The expansion tree of q is a
tree rooted at q that contains the shortest path between q
and every node in the network with distance less than or
equal to q.kNN dist. The tree reaches up to the marks
defined by q.kNN dist. Recall that q.kNN dist is the dis-
tance between q and its kth NN. The bold arrows in Fig-
ure 1 show q.tree in our running example. The numbers in
parentheses are the distances of the nodes in q.tree. The
expansion tree information is used to facilitate handling of
query movements and edge weight changes. Computing and
maintaining q.tree is discussed in the next section. To con-
clude Section 3, we present in Table 1 the primary symbols
used in the paper, along with their interpretation. The as-
terisk next to a definition indicates that the corresponding
symbol or structure will be introduced in Section 5.



Symbol Description
SI spatial index
ET edge table
QT query table
NT active node table∗

ST sequence table∗

d(p, q) network distance between object p and query q
e.IL influence list of edge e
q.k number of NNs required by query q

q.result k-NN set of q
q.kNN dist distance between q and its kth NN

q.tree expansion tree of q
n.k number of NNs required by active node n∗

n.S set of sequences with n as an endpoint∗

n.Q set of queries falling in the sequences in n.S∗

Table 1: Primary symbols

4. INCREMENTAL MONITORING ALGO-
RITHM

In this section we describe the incremental monitoring al-
gorithm (IMA). Section 4.1 discusses the initial result com-
putation of a query arriving at the system. Regarding result
maintenance, for the sake of presentation we isolate each
type of updates. Sections 4.2 and 4.3 focus on object and
query updates, respectively. Section 4.4 deals with edge
weight updates. Finally, Section 4.5 describes the complete
IMA, which considers all three types of updates and deter-
mines their processing order.

4.1 Initial Result Computation
When a new query q arrives at the system, IMA retrieves

its initial k-NN set with a technique based on Dijkstra’s al-
gorithm [5]. Specifically, it expands the network around q
up to distance q.kNN dist, building at the same time the
expansion tree of q and updating the influence lists of the af-
fecting edges. Figure 2 shows the pseudo-code for the initial
result computation, assuming that e is the edge containing
q. First, IMA initializes an empty min-heap H that orga-
nizes the encountered nodes and inserts into q.result the
objects in e. Next, it en-heaps in H the endpoints of e with
keys equal to the corresponding fraction of e.w. It sets q
as the root of the expansion tree q.tree, with children the
endpoints of e. Then, it iteratively de-heaps nodes from
H; we say that each de-heaped node n is verified, implying
that we know its distance d(n, q). For each de-heaped node
n, IMA considers the objects in the adjacent edges, and up-
dates the current k-NN set if necessary. Next, it checks each
un-verified node nadj that is directly reachable via n. If nadj

is encountered for the first time, it is inserted into H with
key dist = d(n, q)+nnadj .w and included in q.tree as a child
of n. Otherwise, nadj is already in H; if its current key is
larger than dist, its value is decreased to dist and nadj is
made a child of n in q.tree.

The search terminates when the next node in H has key
larger than q.kNN dist. The expansion tree built during
the retrieval of the initial result contains the shortest path
to each verified node. An interesting observation regards
the marks of affecting edges that are not included in any
shortest path (e.g., n2n3 in Figure 1). To compute these
marks, we maintain these edges in set partial edges. Lines
12-13 insert each encountered edge into partial edges. Line
11 removes from partial edges the edges that are part of
some shortest path; when verifying a node, we know that
the shortest path to it passes through the edge connecting

Initial Result (q)
1. Initialize empty heap H; Set q.kNN dist=∞, partial edges=∅
2. Set q as the root of the expansion tree q.tree
3. Let e be the edge containing q
4. Insert the k best objects in e into q.result; Update q.kNN dist
5. En-heap e.start and e.end with key/distance according to e.w
6. Insert sub-edges qe.start and qe.end into partial edges
7. While the next node n in H has key d(n, q) < q.kNN dist
8. De-heap n //n is verified
9. Let e be the edge between n and its predecessor
10. Insert q into e.IL (with influencing interval the entire edge)
11. Delete e from partial edges
12. For each adjacent node nadj of n except for its predecessor
13. Insert nnadj into partial edges
14. Update q.result and q.kNN dist with objects on edge nnadj

15. If nadj has not been de-heaped before //nadj is not verified
16. dist=d(n,q)+nnadj .w //distance of nadj if reached via n
17. If nadj is not in H
18. Set n as the predecessor of nadj (in the expansion tree)
19. Insert nadj into H with key dist
20. Else //i.e., nadj is already in H
21. If dist is less than the current key of nadj in H
22. Set n as the predecessor of nadj (in the expansion tree)
23. Update the key of nadj in H to dist
24. Delete from q.tree the un-verified nodes
25. For each edge e in partial edges
26. Compute the mark(s) on e at distance q.kNN dist from q
27. Insert the mark(s) as leafs in q.tree
28. Insert q into e.IL along with the influencing interval(s)

Figure 2: The initial result algorithm of IMA

it with its predecessor in q.tree. In lines 25-27, we compute
for all edges in partial edges the influencing interval(s) and
include the corresponding mark(s) in the expansion tree.
Note that an edge in partial edges might have two marks
(equivalently, two influencing intervals) if both its endpoints
are verified. For example, in Figure 3(a), edge n3n4 is not
part of q.tree and it has two influencing intervals. The in-
fluence list information is stored into ET in lines 10 (when
the entire e affects q) and 28 (when part(s) of e affect q).
Finally, note that an object (falling in edge e) is considered
twice for inclusion in q.result, if both endpoints of e are ver-
ified in line 8, but e is not part of q.tree. In the example
of Figure 3(b), object p is encountered when de-heaping n3

and when de-heaping n4. To avoid reporting objects like p
twice, when inserting an object into q.result, we check if it
already exists therein, and keep only the instance with the
smallest distance.
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Figure 3: Edge n3n4 has two marks/influencing in-
tervals

4.2 Processing of Object Updates
For simplicity, assume that there is only one query q in

the system. An object update contains the object id p.id,



and its old and new coordinates, pold and pnew respectively.
Our first task is to delete p from the object list of its old edge
eold and insert it into the object list of its new edge enew (we
identify eold and enew using SI ). Concerning result mainte-
nance, the crucial observation is that an object movement
can alter the result of q only if d(pold, q) ≤ q.kNN dist or
d(pnew, q) ≤ q.kNN dist. In other words, we can ignore
all objects further away than q.kNN dist. To identify the
updates that affect q, we utilize the influence list informa-
tion. In particular, we only process the ones where eold.IL or
enew.IL contain q and the corresponding influencing inter-
vals include pold and pnew, respectively. Figure 4 continues
the example of Figure 1 where, after the initial result re-
trieval, four object updates arrive at the system. Among
them, we only consider the movements of p1, p3, p4 and ig-
nore that of p5; even though the new location p′5 of p5 falls
in an affecting edge, the corresponding influencing interval
does not include p′5.

q
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p3'

p1'

p2

p5
p5'

n2
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Figure 4: Four object updates (3-NN query)

We distinguish three types of object updates that affect
q. The first type is current NNs that move within distance
q.kNN dist from q (e.g., object p3 in Figure 4). The second
type is incoming objects. Incoming objects used to lie fur-
ther than q.kNN dist but their new location is closer to q
than q.kNN dist (e.g., object p4). The third type is outgo-
ing objects. These are current NNs that move further away
than q.kNN dist from q (e.g., object p1). In general, there
are multiple updates of all three types at every timestamp.
There are two result maintenance scenarios, depending on
the relative number of incoming and outgoing objects.

In case that the outgoing objects are no more than the
incoming ones, there are at least k objects within distance
q.kNN dist. Furthermore, (i) the current NNs that did not
move have the same distance as stored in q.result, and (ii)
the distances of NNs that move within q.kNN dist and of
incoming objects can be retrieved by utilizing the informa-
tion maintained in q.tree. For example, we compute the
distances of p′3 and p′4 according to d(n1, q) and d(n2, q),
respectively, and the weights of their containing edges. To
determine the new result of q, we first remove from q.result
the outgoing NNs. Then, we form the union of the remaining
NNs and the incoming objects, and report as q.result the k
best objects among them. Note that the new q.kNN dist
is smaller than or equal to the old one. Therefore, we
shrink the expansion tree and accordingly update the in-
fluence lists of the affecting edges. In our running exam-
ple, the new result of q contains objects p3, p4, p2 (with
q.kNN dist = d(p2, q)). Figure 5 shows the updated ex-
pansion tree of q.

q

p�p�

p�

Figure 5: Shrunk expansion tree after object up-
dates

If the outgoing objects are more than the incoming ones,
there are fewer than k objects within distance q.kNN dist
from q. Therefore, we have to expand our search further
than q.kNN dist to retrieve the new result of q. Consider
the example of Figure 4, but assume that p4 is static. In
this case there is an outgoing NN (p1) but no incoming ob-
ject. To avoid re-computation from scratch, we utilize the
knowledge about the objects that remain within distance
q.kNN dist (i.e., p2, p3) and directly insert them into the
new q.result. To determine the remaining NNs (the third
NN in our example), we start expansion from the marks of
q.tree. The search proceeds in a way similar to the algo-
rithm in Figure 2; it initializes H to contain the marks of
q.tree, and considers as verified all the nodes in the cur-
rent q.tree. In our example, it retrieves p4 as the third NN.
Note that q.tree grows according to the new q.kNN dist
and that we have to update the influence lists of the affect-
ing edges. Figure 6 shows the expansion tree reflecting the
new q.kNN dist = d(p4, q).
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Figure 6: Grown expansion tree after object updates

In the general case, there are multiple queries in the sys-
tem. At every timestamp, we maintain for each query the
number of outgoing NNs and the set of incoming objects.
We process object updates one by one. For an update
<p.id, pold, pnew>, let Sold be the set of queries affected by
pold (i.e., p is one of the previous NNs of each query in Sold)
and Snew be the set of queries affected by pnew (i.e., p has
moved closer than q.kNN dist for every query q in Snew).
For each q in Snew−Sold, we insert p into the set of incoming
objects. For each q in Sold−Snew, we count p as an outgoing
NN. For each q in Sold ∩ Snew, we update the distance of p
in q.result. Finally, we compute the queries affected by the
updates as described above. Objects that appear in (disap-
pear from) the system are handled as incoming (outgoing)
ones.



4.3 Processing of Query Updates
In addition to objects, queries may also move in the net-

work. Consider a query q which moves to a new position
q′, and assume that there is no object or edge update in
the system at that timestamp. A straightforward way to
retrieve the new result of q is re-computation from scratch.
However, in some cases it is possible to save computations
by utilizing the current expansion tree. In particular, if q′

falls in some edge of q.tree, then the sub-tree of q.tree that
is rooted at q′ remains valid, as well as the NNs in it (subject
to some trivial distance updates).

Continuing the example of Figure 1, assume that q moves
to position q′, as shown in Figure 7. The new location of
the query is contained in the current expansion tree; this
can be easily detected, since the influence list of edge n1n7

contains q, and q′ falls in the corresponding influencing in-
terval. We say that the sub-tree of q.tree that is rooted at
q′ is valid, implying that we know the shortest paths (from
q′) to the nodes it contains, and we can easily compute their
new distance from the query. Similarly, we can directly up-
date the distances of the current NNs that fall in the valid
sub-tree (e.g., p3). On the other hand, we cannot infer the
distances of NNs and nodes that fall in the remaining part
of q.tree because we do not know the new shortest path
to reach them. Consider, for example, node n5. Due to
the query movement, the shortest path to n5 passes outside
q.tree, and so does the path to the current second NN p2.
Therefore, we discard the invalid part of q.tree along with
the corresponding NNs, and delete q from the influence lists
of the edges it spans.
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Valid expansion tree n5 is reachable via a
shorter path

n
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n14
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n11
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Figure 7: Valid expansion sub-tree when q moves

To retrieve the new result of q, we first insert into q.result
the current NNs that fall in the valid expansion sub-tree
(with updated distances). Then, we compute the remaining
NNs with the algorithm of Section 4.1, by initializing heap
H to contain the marks of the valid expansion sub-tree and
the location of q′ (which is treated as a pseudo-node splitting
edge n1n7). Finally, we update the query table QT with the
new information about q. When q moves outside q.tree, we
have to perform NN computation from scratch (using the
algorithm of Figure 2).

4.4 Processing of Edge Updates
Clearly, only updates of the affecting edges can alter the

result of a query q. For these edges, we distinguish two

cases, depending on whether their weight increases or de-
creases. Figure 8 illustrates the first scenario, continuing the
example of Figure 1, and assuming that the weight of n1n7

changes to a higher value. Consider the nodes/objects in the
sub-tree of q.tree that is rooted at n1. The distance to reach
them through n1n7 is now larger. This implies that there
might exist shorter alternative paths to these nodes/objects.
For example, the shortest path to node n9 could now pass
through n12 (instead of n7). Therefore, we remove the in-
valid sub-tree from q.tree, delete q from the correspond-
ing influence lists, and evict the NNs therein from q.result.
Then, we compute the new NN set with the algorithm of
Figure 2, by initializing heap H to contain the marks in the
valid part of q.tree and node n1 (which is treated as a mark
on edge n1n7).
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Figure 8: Invalid sub-tree when an edge weight in-
creases

In case that the weight of an affecting edge decreases, up-
date handling prunes q.tree in a different way. Assume that
in our running example, edge n1n7 receives an update de-
creasing its weight from 3 to 1, as shown in Figure 9 (the
numbers in parentheses indicate the new distances of the
nodes in q.tree). The sub-tree rooted at n1 remains valid,
since the current path to all nodes/objects therein becomes
shorter by 2 units, and clearly remains the optimal path from
q. On the other hand, the shortest paths to nodes/objects
outside this sub-tree might now pass through the updated
edge; e.g., similar to Figure 7, node n5 might now be reach-
able through n1n7 with a smaller distance than 6. However,
the update cannot affect the paths to nodes/objects that lie
closer than d(n7, q) = 3, because any path passing through
n1n7 has length at least d(n7, q). Therefore, the part of
q.tree that remains valid is (i) the sub-tree rooted at the
updated edge and (ii) the remaining part of q.tree that has
distance less than the furthest endpoint of the edge. In our
example, the valid expansion tree contains nodes n7, n9 (in
(i)) and n1, n2 (in (ii)). As shown in Figure 9, part (ii)
reaches up to the three new marks, at distance d(n7, q) = 3
from q.

To compute the new result, we update in q.result the
distances of the NNs falling in sub-tree (i) above (i.e., p3).
Then, we discard the invalid part of q.tree, along with the
NNs falling therein (i.e., p2), and update the corresponding
influence lists. Finally, we perform a NN search starting
from the marks in sub-tree (i) and the three new marks in
part (ii).

A special case occurs when the edge e containing q (e.g.,
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Figure 9: Valid tree when the weight of n1n7 de-
creases

n1n2 in Figure 1) receives a weight update. Without loss of
generality, assume that e.start (i.e., n1) is the closest end-
point of e to q. If the update decreases the weight of e,
then the distances of the nodes/objects reachable through
e.end (i.e., n2) decrease more with respect to those reachable
through e.start. This implies that the sub-tree rooted at
e.start (i.e., n1) is invalid and has to be pruned. The remain-
ing part of q.tree remains valid. On the other hand, if the
weight of e increases, then the distances of the nodes/objects
that are reachable through e.end (i.e., n2) increase more
compared to those reachable through e.start (i.e., n1). There-
fore, we prune the part of q.tree rooted at q towards the side
of e.end.

4.5 The Complete IMA Algorithm
So far we have considered each type of updates individu-

ally. In this subsection we deal with concurrency issues that
may arise in the general case, where updates of all three
types arrive simultaneously at the system. For ease of pre-
sentation, we discuss monitoring of a single query before con-
sidering multiple ones. Assume that there is a CkNN query q
running at the server, and that we receive, in the same time-
stamp, updates for the query location, for weight changes of
edges affecting q, and for object movements within distance
q.kNN dist from q. Our aim is to process the updates in an
order that guarantees correctness and saves as many compu-
tations as possible. In particular, we target at maximizing
the size of the remaining (valid) part of the expansion tree
of q.

IMA first checks whether q moves out of q.tree. If this is
the case, re-computation from scratch is necessary, and the
monitoring algorithm ignores all other updates (to save ex-
tra processing time on an already invalid expansion tree). If
q moves inside q.tree, IMA ignores the query movement at
this point, and proceeds with the weight changes of affecting
edges. Note that pruning q.tree according to the query up-
date before considering edge updates may lead to an invalid
tree. Consider the example of Figure 7 and assume that be-
sides the query movement, the weights of edges n1n11 and
n11n12 decrease at the same timestamp. If we processed the
query update first, then we would prune q.tree as shown in
the figure, and we would ignore the changes of edge weights.
The resulting tree, however, is not necessarily valid. For in-
stance, node n9 could now be reachable faster through edges
n1n11 and n11n12 (than via node n7). Therefore, we have to
trim q.tree based on the edge updates before handling the
query movement.

IMA prunes q.tree according to the edge changes, in the
way discussed in Section 4.4. Among the updates in af-
fecting edges, it is important to process decreasing weights
before increasing ones in order to ensure correctness. Con-
sider the example of Figure 8, and assume that the weight
of edge n1n7 increases by 0.5 units, while the weight of n7n6

decreases by 2. If we processed the former update first, then
we would simply discard the sub-tree rooted at n1n7 and we
would keep the remaining q.tree. However, this part is not
necessarily valid! The reason is that some nodes in it (e.g.,
n5) might be reachable through a shorter path that passes
from the updated edge n7n6 (in total, the distance of n6

is now smaller). We avoid this problem by processing the
decreasing weight (for n7n6) before the increasing one (for
n1n7).

When finished with edge updates, IMA considers the query
movement and further prunes q.tree with the technique of
Section 4.3. Next, it considers object updates that affect
the remaining (valid) part of q.tree. Incoming objects are
inserted into q.result, outgoing NNs are deleted, and the
distances of NNs moving within the tree are updated in
q.result. Note that after this step, if there are many incom-
ers, the cardinality of q.result may exceed k. In this case,
IMA keeps only the k best objects, and sets q.kNN dist to
the distance of the kth (furthest) one. If there are fewer than
k objects in q.result, then q.kNN dist is equal to infinity.

After processing all updates, if every mark in the valid
expansion tree has distance higher than q.kNN dist, then
q.result is the actual result. Otherwise, there may be ob-
jects outside q.tree that lie closer to q. To retrieve these
objects, IMA uses the algorithm of Figure 2 with search
heap H initialized to contain the marks. Note that after the
NN search, some parts of q.tree might have distance larger
than q.kNN dist. IMA deletes these parts and accordingly
updates the influence lists of the corresponding edges. For
example, consider Figure 9, and assume that (besides the
edge update) there are three objects moving in edge n1n2,
leading to q.kNN dist = 2.5. Clearly, the expansion tree
has to shrink to reflect the new q.kNN dist.

Figure 10 illustrates the complete IMA algorithm that
processes multiple queries simultaneously. The sets Uobj ,
Uqry and Uedg contain the updates received in the current
timestamp for data objects, queries and edges, respectively.
Lines 1-3 exclude from update handling the queries in Uqry

that move outside their current expansion tree. Lines 4-
10 and 11-13 process decreasing and increasing weights in
Uedg, respectively, and prune the expansion trees of affected
queries. Lines 14-15 handle queries q in Uqry that move
within q.tree, invalidating the appropriate part of the tree.
Lines 16-19 consider object movements, and treat them as
incoming, outgoing, or moving NNs for the influenced queries.
Finally, lines 20-26 re-compute the result of each query q af-
fected by Uobj , Uqry and Uedg, utilizing the remaining part
of q.tree (if any). For the sake of readability, in Figure 10
we ignore the case where some user terminates an existing
query, or installs a new one. In the former case we simply
remove q from QT and delete it from the influence lists of
the affecting edges. We perform these tasks before process-
ing any update, in order to avoid redundant computations
for terminated queries. On the other hand, we insert the
newly installed queries into QT and compute their initial
results after all updates take place in the system (i.e., after
line 19 in Figure 10).



Incremental Monitoring Algorithm (Uobj ,Uqry ,Uedg)
1. For each query q in Uqry that moves outside q.tree
2. Delete q from the influence lists of affecting edges
3. Discard q.tree and q.result //re-computation is necessary
4. For each edge e in Uedg with decreasing weight
5. For each query q in e.IL
6. Delete the invalid part of q.tree
7. Remove q from the influence lists in the invalid part
8. Remove from q.result the NNs in the invalid part
9. Update distances of nodes in the valid part of q.tree
10. Update in q.result the distances of NNs in the valid q.tree
11. For each edge e in Uedg with increasing weight
12. For each query q in e.IL
13. (same as lines 6-8)
14. For each query q in Uqry that moves inside q.tree
15. (same as lines 6-10)
16. For each object p in Uobj

17. Delete p from its old edge; Insert p into its new edge
18. For each query affected by p
19. Treat p as outgoing, incoming, or moving NN
20. For each query q affected in lines 1, 5, 12, 14, 18
21. q.result = k best objects among remaining NNs and incomers
22. Insert into min-heap H the marks of the valid q.tree
23. If head of H has key < distance of the kth object in q.result
24. Consider all nodes in the valid q.tree as verified
25. Perform NN search initializing the heap to H
26. If necessary, shrink q.tree; Update influence lists accordingly

Figure 10: The IMA algorithm

The above mechanism handles concurrency issues and gen-
erates the correct results provided that the objects, the
queries, and the edges issue at most one update per time-
stamp. If this assumption does not hold, we have to perform
a preprocessing step before running the IMA algorithm. In
particular, if an object p issues multiple location updates,
then we replace them in Uobj with a single one <p.id, pold,
pnew>, where pold is the old location in the first update
received and pnew is the final location in the last update.
Preprocessing is similar for moving queries. Finally, when
multiple weight updates arrive for an edge e, they are aggre-
gated into a single one indicating the overall weight change
with respect to the previous timestamp.

5. GROUP MONITORING ALGORITHM
The group monitoring algorithm (GMA) integrates IMA

with the shared execution paradigm. The concept of se-
quence is central to this method, and it is extensively used
in the following discussion. A sequence is a path between
two nodes ni and nj , such that (i) the degrees of ni and
nj are not equal to 2 and (ii) all intermediates nodes in
the path have degree 2. This means that ni and nj are
either intersection nodes (with degree above 2) or termi-
nal nodes (with degree 1). Note that each edge in a net-
work belongs to exactly one sequence, i.e., every graph is
partitioned in a set of sequences that cover all nodes and
whose edges do not overlap. The network of Figure 11 con-
tains seven sequences {n1n8}, {n1n9}, {n1n7, n7n6, n6n5},
{n1n2}, {n2n3}, {n2n5} and {n5n4}. GMA is based on the
following lemma.

Lemma 1. The k-NN set of any query q falling in a se-
quence s is contained in the union of (i) the objects in s, (ii)
the k-NN sets of the intersection nodes (endpoints) of s.

Assume that q1 and q2 in Figure 11 are 2-NN queries.
Lemma 1 implies that the two NNs of any query in the
sequence between n1 and n5 (i.e., q1 and q2) belong to the

union of the objects in the sequence (i.e., {p4, p5}) and the 2-
NNs of its endpoints n1 (i.e., {p1, p5}) and n5 (i.e., {p3, p2}).
GMA monitors the two NNs of n1 and n5 in order to effi-
ciently report the answers of q1 and q2, while they remain
within the sequence.
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Figure 11: Example of sequences and GMA func-
tionality

In general, GMA groups together the queries falling in the
same sequence and monitors static nodes (at the endpoints
of the sequence), instead of each query individually. Con-
sider an intersection node n in the network. Let n.S be the
set of sequences containing n as one of their endpoints, and
n.Q be the set of all queries falling in some sequence of n.S.
We say that n is an active node if n.Q is non-empty. Re-
turning to the example of Figure 11, intersection nodes n1

and n5 are active (n1.Q = {q1, q2} and n5.Q = {q1, q2, q3}),
while n2 is inactive because n2.Q = ∅. For each active node
n in the system we monitor the n.k nearest objects, where
n.k = maxq∈n.Q q.k (i.e., the maximum number of NNs re-
quired by any query in n.Q). For n1 we monitor two NNs.
Assuming that q3 is a 3-NN query, for n5 we monitor three
NNs. Note that only intersection nodes can be active. In
sequence {n5n4}, for instance, terminal node n4 is inactive;
the NNs of q3 belong to the union of the objects in n5n4 and
the 3-NN set of n5.

Monitoring the NNs of active nodes is performed with
IMA, as shown in Figure 10, except that lines 1-3 and 14-15
are never executed since the active nodes are static. We use
an active node table NT to store information about the NNs
and expansion trees of these nodes. The structure of NT is
similar to that of QT in IMA. The influence lists of the edges
in GMA contain the ids of the active nodes that they affect,
along with the corresponding influencing intervals. In GMA
we use one additional data structure, the sequence table ST,
which stores, for each sequence, the set of its edges. Also, the
edge table ET keeps, for each edge, the id of the sequence
it belongs to. ST and ET implicitly maintain n.S and n.Q
for every active node n.

Concerning the actual queries of the users, GMA uses dif-
ferent NN search and maintenance algorithms than IMA.
To illustrate the initial result computation in GMA, con-
sider the 2-NN query q1 in Figure 11. Assume that q1 is the
first query installed in the system. Since q1 falls in the se-
quence from n1 to n5, we set nodes n1 and n5 as active and
compute their two NNs. To evaluate q1, a straightforward
application of Lemma 1 would be to merge the retrieved 2-
NN sets of n1 and n5 with all the objects in edges n1n7,
n7n6, and n6n5. This method, however, can be very ex-
pensive, because a sequence may contain numerous edges
and objects. Instead, we perform NN search by expand-



ing around q1, utilizing if necessary the NNs of n1 and n5.
First, we consider edge n1n7, and insert p5 into q1.result.
Among the two reached nodes (n1 and n7), n1 is the closest
one. Node n1 is active, and hence we update q1.result with
its NNs, p1 and p5. Since p1 is already in q.result, we do
not re-insert it. Subsequent search continues only towards
n5. The next node is n7, whose distance d(n7, q1) is smaller
than q1.kNN dist = d(p1, q1). Therefore, we consider edge
n7n6 and process the objects in it (i.e., p4). The algorithm
terminates at this point with q1.result = {p5, p1}, since the
next node n6 has d(n6, q1) > q1.kNN dist. As opposed to
IMA, GMA does not compute (or store) expansion trees for
queries during NN retrieval.

Regarding result maintenance in GMA, let q be a query
that lies in sequence s. There are four events that may
alter q.result: (i) movement of q, (ii) changes in the NN
sets of active nodes in s, (iii) object updates in s, and (iv)
edge updates in s. A straightforward maintenance algorithm
would re-compute q in any of these events. However, even
though (i) requires NN search from scratch, the other three
events do not always affect q. To illustrate this, consider
q1 in the previous example. A NN change for active node
n5 cannot alter q1.result, because it lies further away than
q1.kNN dist. Similarly, an edge or object update further
than q1.kNN dist does not affect q1.

In order to detect the events among (ii), (iii), and (iv)
that actually invalidate the result of q, we maintain influ-
ence list information in the edges of s that affect the query.
This information is stored during the initial result computa-
tion. In our example, the NN search for q1 considers edges
n1n7 and n7n6. These edges receive q1 in their influence
lists. The influencing interval of n1n7 is the entire edge,
while that of n7n6 extends from n7 up to the mark with
distance q1.kNN dist from q1. Note that a query q can be
included only in influence lists of edges within the sequence
s containing it, since the NN search for q does not consider
edges outside s. Returning to our example, assume that
the NN set of n1 changes (event (ii)). GMA infers that q1

may be affected, since n1 falls in the influencing interval of
n1n7. On the other hand, an object movement (event (iii))
can invalidate q.result if its old or new location falls in edge
n1n7 or in the influencing interval of n7n6. Similarly, weight
changes in edges that contain q1 in their influence list (i.e.,
n1n7 and n7n6) may alter its NN set. If q1 is affected by
any of the above events, GMA re-computes it from scratch.

Before presenting the complete monitoring algorithm, we
clarify that in GMA the influence list of an edge e contains
(i) the active nodes affected by e, and (ii) the queries in its
sequence influenced by e. The information in (i) is used by
the IMA module that monitors the results of active nodes,
while (ii) facilitates update handling for the queries within
each sequence. Figure 12 illustrates GMA for the general
case of multiple, concurrent queries.

Lines 1-5 monitor the NNs of the active nodes. A query
movement is treated as a deletion (of the old query) and an
insertion (at its new location). GMA scans Uqry to form
the sets of inserted and deleted queries, Qins and Qdel re-
spectively. For each query in Qins and Qdel it (i) updates
n.k for the active nodes, (ii) inserts new nodes into NT,
and (iii) sets nodes with n.Q = ∅ as inactive. Then, it
invokes IMA to update the results of active nodes. Lines
6-15 determine the actual user queries that are affected by
the updates, and place them into set affected queries. First

(lines 7-8), for each active node n whose NNs changed in
line 5, GMA utilizes the influence lists of the edges adjacent
to n to determine the affected queries. For each such edge e,
it scans the queries in e.IL and includes in affected queries
the ones whose corresponding influencing interval includes
n. Lines 9-12 consider object updates. Assume an object
movement from pold to pnew. GMA uses the influence list of
the edge containing pold to determine which queries are af-
fected by the update, and inserts them into affected queries.
Processing is similar for pnew. Next, it processes Uedg. For
each edge e in Uedg, GMA includes in affected queries all the
queries q in e.IL (lines 13-15). Finally, it computes the NNs
of each query in affected queries ∪ Qins in the way described
earlier.

Group Monitoring Algorithm (Uobj ,Uqry ,Uedg)
1. Scan Uqry and form sets Qins and Qdel

2. For each query q in Qins (Qdel)
3. Insert (delete) q in the corresponding edge
4. Update n.k for endpoints (active nodes) of containing sequence
5. Invoke IMA for active nodes, taking into account changes in n.k
6. Set affected queries = ∅
7. For each active node n whose result changed in line 5
8. Insert into affected queries each query in n.Q affected by n
9. For each update <p.id, pold, pnew> in Uobj

10. Let sold (snew) be the sequence containing pold (pnew)
11. For each query q in sold (snew) that is affected by pold (pnew)
12. Insert q into affected queries
13. For each edge e in Uedg

14. Let s be the sequence containing e
15. Insert in affected queries each query in s that is affected by e
16. For each query q in affected queries or Qins

17. Compute q.result from scratch (utilizing active node NN sets)

Figure 12: The GMA algorithm

Concurrency control is achieved by scheduling the updates
in a way similar to IMA. In terms of running time, GMA is
expected to outperform IMA when (i) the number of queries
is large with respect to the number of network nodes, and
(ii) when the queries are concentrated in a small part of
the network. In terms of memory requirements, GMA uses
an extra structure (the sequence table), but IMA stores the
expansion trees of all the queries in the system.

6. EXPERIMENTAL EVALUATION
This section evaluates IMA and GMA using sub-networks

of the San Francisco road map [2]. In the default setting,
we use a sub-network with 10K edges containing N objects
and Q queries, where N and Q are system parameters. The
initial positions of objects and queries follow either uniform
or Gaussian distribution (with mean at the center of the
workspace and standard deviation 10% of the maximum
network distance from the center). The initial weights of
the edges correspond to their lengths (i.e., the Euclidean
distance between their endpoints). At every timestamp, a
percentage fedg of the edges receive a weight update, where
fedg is called the edge agility. An update increases or de-
creases the weight by 10% over its previous value. Similarly,
fobj is the object agility, i.e., the percentage of objects that
move per timestamp, and fqry is the query agility. A mov-
ing object (query) performs a random walk in the network
and covers a fixed distance vobj (vqry), where vobj (vqry) is
the object (query) speed. Updates of all three types occur
at each timestamp.

Queries require continuous monitoring of their k NNs for
100 timestamps. As a benchmark against IMA and GMA,



we use an overhaul method (OVH) that computes each query
from scratch at every timestamp, using the algorithm of
Figure 2. Table 2 includes the parameters under investiga-
tion. In each experiment we vary a single parameter (in the
range shown), and set the remaining ones to their default
values. Unless otherwise specified, the diagrams illustrate
the processing time per timestamp (in seconds). For all
simulations, we use a Pentium 2.3 GHz CPU with 1 GByte
memory.

Parameter Default Range
Number of objects (N) 100K 10, 50, 100, 150, 200 (K)
Number of queries (Q) 5K 1, 3, 5, 7, 10 (K)
Object distribution Uniform Gaussian, Uniform
Query distribution Gaussian Gaussian, Uniform
Number of NNs (k) 50 1, 25, 50, 100, 200
Edge agility (fedg) 4% 1, 2, 4, 8, 16 (%)
Object speed (vobj) 1 edge/ts 0.25, 0.5, 1, 2, 4
Object agility (fobj) 10% 0, 5, 10, 15, 20 (%)
Query speed (vqry) 1 edge/ts 0.25, 0.5, 1, 2, 4
Query agility (fqry) 10% 0, 5, 10, 15, 20 (%)

Table 2: System parameters

Figure 13(a) measures the effect of the object cardinality
N (ranging from 10K to 200K) on the running time. GMA
outperforms both IMA and OVH, with IMA being the run-
ner up in all cases. GMA monitors only 844 active nodes on
the average, which explains its wide difference from IMA,
and indicates that there are long sequences including many
edges and queries. For N = 10K the network is sparse (one
object per edge) and, thus, the NN search considers many
edges for all algorithms. On the other hand, when the data
are dense (e.g., for N = 200K), NN computation processes
fewer edges which, however, contain many objects. This is
the reason that the cost initially decreases and then slightly
increases for N > 50K. The important observation is that
all algorithms scale very well with the object cardinality.
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Figure 13: CPU time versus object and query car-
dinality

Figure 13(b), shows the running time versus the number
of queries Q. For Q = 1K, GMA is slightly faster than IMA,
and twice as fast as OVH. The difference grows for larger
Q; for Q = 10K, GMA is more than two times faster than
IMA, and 4.5 times faster than OVH. GMA scales better
than IMA with the number of queries, because it benefits
from shared execution. For Q = 10K there are only 79%
more active nodes than for Q = 1K (on the average, there
are 533 and 956 active nodes, respectively).

Figure 14(a) plots the CPU time (in logarithmic scale)
versus the number k of NNs required, using the default
settings for the other parameters. GMA is again the best

algorithm, except for k = 1 where IMA is more efficient.
This happens because, for k = 1, the NN of most queries is
very close to them, and usually closer than any active node.
Thus, monitoring active nodes incurs unnecessary overhead.
However, as k increases, the expansion trees in IMA grow
larger, along with the maintenance cost. GMA on the other
hand, benefits from large k, because the results of active
nodes are utilized to a higher degree (i.e., by more queries).
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Figure 14: CPU time versus k and edge agility

Figure 14(b) illustrates the effect of the edge agility fedg.
The costs of both IMA and GMA increase for higher fedg,
since frequent weight updates invalidate more expansion trees
and affect more queries. However, GMA is not very sensi-
tive to edge agility; its running time for fedg = 16% is only
37% higher than for fedg = 1%. In Figure 15(a) we vary
the object agility fobj from 0% (static data) to 20%. The
cost of both IMA and GMA increases with object agility
because frequent object updates imply many result invali-
dations. GMA is more robust to fobj than IMA.
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Figure 15: CPU time versus object agility and speed

Figure 15(b) studies the effect of object speed vobj (i.e.,
the distance covered by the moving objects), which ranges
from 0.25 up to 4 times the average edge length. The per-
formance of our algorithms is practically unaffected by vobj

because an object update is treated as a deletion (at its old
location) and an insertion (at its new location). The ex-
pected number of affected queries is independent of how far
(i.e., fast) the object moves.

Figure 16(a) plots the CPU time as a function of the query
agility fqry. The performance of IMA degrades with fqry be-
cause a query movement invalidates (part of) its expansion
tree. On the other hand, GMA is very robust to fqry since a
moving query is always monitored using the active nodes of
the sequence that contains it (even if this sequence changes
over time). Figure 16(b) varies the query speed vqry between
0.25 and 4 times the average edge length per timestamp. As



expected, GMA has almost constant cost for all values of
vqry. The running time of IMA slightly increases with vqry

because as the query moves faster, the part of its expansion
tree that remains valid decreases.
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Figure 16: CPU time versus query agility and speed

In all previous experiments, the initial positions of the ob-
jects distribute uniformly in the network, while the queries
follow a Gaussian distribution. In Figure 17(a), we measure
the running time for different combinations of object and
query distributions, using the default values for the remain-
ing parameters. The Gaussian objects have standard devi-
ation 50%. GMA is the best method for Gaussian queries
because they are clustered in a small part of the network
and permit effective information sharing using relatively few
active nodes. On the other hand, IMA is the winner for uni-
form queries because they are sparsely distributed and each
sequence in the network contains only few of them. Both
GMA and IMA outperform OVH in all cases.
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Figure 17: CPU time versus distribution and net-
work size

In order to measure the effect of the network size, in Fig-
ure 17(b), we use sub-networks of the San Francisco road
map containing from 1K up to 100K edges. The number of
objects and queries is proportional to the number of edges so
that each edge contains, on the average, 10 objects and 0.5
queries. For 10K edges (N = 100K, Q = 5K) the cost of our
methods is 0.3-0.6 seconds per timestamp (for GMA and
IMA, respectively), implying that they can be used when
the interval between updates is no shorter than these val-
ues. Similarly, for 100K edges (N = 1M, Q = 50K), they
can handle update intervals of less than 10 seconds.

In Figure 18 we illustrate the memory overhead of GMA
and IMA for the experiments of Figures 13(b) and 14(a).
IMA consumes more space than GMA, mainly because it
stores the expansion trees of all the queries in the system.
The difference increases with the query cardinality and k,

since in the first case there are more expansion trees to store,
and in the second one the trees are larger. On the other
hand, GMA scales gracefully, since it maintains expansion
trees only for the active nodes. In Figure 18(a), the number
of active nodes is small even for large query cardinality, as
discussed in the context of Figure 13(b). In Figure 18(b),
the number of active nodes is constant, but their expansion
trees are larger for higher k.
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Figure 18: Memory requirements versus Q and k

All the experiments presented so far used a simple gener-
ator. Even though there are more sophisticated ones, such
as that of [2], they do not provide control over most of the
parameters under investigation. For generality, however, we
include two experiments for objects and queries generated
with the simulator of [2] using its default parameters. We
also use a different road network, the road map of Old-
enburg, containing 6105 nodes and 7035 edges. In Figure
19(a), we generate N = 64K objects and vary the num-
ber of queries Q between 1K and 64K. Similar to Figure
13(b), the difference of GMA from IMA and OVH is larger
for higher Q, due to the benefits from query grouping and
shared execution. In Figure 19(b), we generate N = 64K
objects and Q = 8K queries, and measure the effect of k on
the performance of the algorithms. GMA outperforms both
IMA and OVH, except for k = 1 where IMA is better. The
reason for this behavior is the same as in Figure 14(a).
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Figure 19: Experiments with the generator of [2]

7. CONCLUSIONS
This paper constitutes the first work addressing contin-

uous k-NN monitoring in road networks. We propose two
methods, the incremental monitoring algorithm (IMA) and
the group monitoring algorithm (GMA). IMA monitors each
query individually, processing only updates that might af-
fect its result, and ignoring the rest. GMA groups together



the queries falling in the path between two consecutive in-
tersections in the network. It monitors the k-NNs of the
intersections, and utilizes them in order to facilitate eval-
uation of the queries in the path. IMA and GMA do not
require any knowledge about the moving patterns of objects
and queries, and they can handle weight changes in the edges
of the network. We demonstrate their efficiency through re-
alistic experiments. GMA is, in general, better than IMA in
terms of space requirements and CPU cost.

Our algorithms aim at minimizing the CPU cost at the
central processing server. Other techniques (e.g., [10, 17])
focus on reducing the communication overhead caused by
frequent location updates; they assume that objects have
some computational capabilities and knowledge of the queries
so that they can issue location updates only when they influ-
ence some query result. An interesting direction for future
work is to combine these approaches with ours and design
a comprehensive system that minimizes both the CPU and
the communication cost.

Another challenging research direction is monitoring of
different queries in road networks, such as continuous reverse
nearest neighbor ones (CRNN). Consider a set of queries and
a set of data objects moving in a network. Our task is to
constantly report for each query q the set of objects that are
closer to q than to any other query. As an example, consider
a taxi driver who wishes to know the clients (pedestrians
asking for taxi) that are closer to his/her position than to
any other vacant cab. In this case, the taxis correspond to
the queries, and the clients to the data objects.
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