
1

Joint Search by Social and Spatial Proximity
Kyriakos Mouratidis, Jing Li, Yu Tang, and Nikos Mamoulis

Abstract—The diffusion of social networks introduces new challenges and opportunities for advanced services, especially so
with their ongoing addition of location-based features. We show how applications like company and friend recommendation could
significantly benefit from incorporating social and spatial proximity, and study a query type that captures these two-fold semantics.
We develop highly scalable algorithms for its processing, and enhance them with elaborate optimizations. Finally, we use real
social network data to empirically verify the efficiency and efficacy of our solutions.

F

1 INTRODUCTION
The emergence of social networks (SNs) brings a
new era in the organization and browsing of online
information. Manufacturers and service providers are
becoming increasingly interested in exploiting pop-
ular SNs to promote their products and services.
Recently, Microsoft’s search engine (Bing) has inte-
grated social information from Facebook to return
web pages that are popular among the friends of users
[1]. Studies like [2] have investigated the influence
between users of SNs and quantified the probability of
a user performing an action (e.g., purchase a product)
after his/her friend(s) did. Current text search systems
have also incorporated social influence into query
processing by taking into account friend relationships
for the ranking of documents/objects [3], [4].

On the other hand, location-based services are an
indispensable feature in SNs. This fact becomes in-
creasingly prominent as the number of users who
access SN applications on mobile devices is growing
steadily. The most popular SN, Facebook, includes a
set of location-based features, while others (such as
Foursquare) are explicitly based on the management
of user locations. Motivated by this trend, we investi-
gate the integration of social and spatial information
in a single query.

Consider a service like badoo.com, where a user u1
who is looking for company to have lunch or watch
a movie, may browse the profiles of nearby users and
invite them to join him/her. Existing systems apply
a traditional k-nearest neighbor query [5], potentially
with some binary conditions (regarding age, sex, etc),
to provide u1 with the profiles of users in the vicinity.
While recommended users are indeed near u1 geo-
graphically, his/her true preferences of companions
would be better captured if SN information was also

• K. Mouratidis is with the School of Information Systems, Singapore
Management University.
E-mail: kyriakos@smu.edu.sg

• J. Li, Y. Tang, and N. Mamoulis are with the Department of Computer
Science, University of Hong Kong.
E-mail: jli@cs.hku.hk, ytang@cs.hku.hk, nikos@cs.hku.hk

u1

u2

u3

u4

u5

u1

u2

u

u4

u

(a) Spatial domain

u2

u1

u3

u4

u5

u1

u2

u

u4

u

(b) Social network

Fig. 1. Motivation example

taken into account. Assume, for example, that the
users’ Euclidean coordinates and social connections
are as shown in Figures 1(a) and 1(b) respectively.
The closest user to u1 in the spatial domain is u5.
However, u4 might be a better match because he
locates only slightly farther (compared to u5) but is
“closer” in the social network. Conversely, the closest
user socially (u2) may be too far spatially. Therefore,
to provide meaningful recommendations, both social
proximity and spatial proximity should be incorporated
into the search.

In this paper we propose and study the social and
spatial ranking query (SSRQ). SSRQ reports the top-k
users in the SN based on a ranking function that in-
corporates social and spatial distance from the query
user. Our key contributions are:

• We conduct the first study on a joint search by
social and spatial user proximity.

• We propose a suite of processing methodologies,
including a highly scalable and robust approach
that relies on indexing and social summaries.

• We equip the latter with sophisticated optimiza-
tions, based on computation sharing, interme-
diate result caching and an accuracy-enhancing
strategy that complements social summaries in
proximity estimation.

• We use real SN data to experimentally evaluate
our algorithms.

2

2 RELATED WORK

2.1 Social Influence and Proximity Measures
The influence between two users captures the proba-
bility that one user follows the other’s actions. The
influence information stemming from SNs can im-
prove marketing strategies, for instance, by recom-
mending products to users based on the purchases
of their contacts [6]. Existing work focuses primarily
on finding the top-k most influential users from a
graph of influence scores [2] or learning the influence
scores based on users’ past propagation of actions
[7], [8]. Recently, [9] proposed an approach to directly
obtain the top-k most influential users from historical
data, without the intermediate step of constructing an
influence graph.

Many measures are proposed for computing the
influence between two users (vertices) in a social
graph. Simple measures rely either on the shortest
path distance or on vertex neighborhoods – i.e., the
social proximity of two users may be defined as the
inverse of their shortest path distance in the SN [3], [4]
or as the number of their common friends [10]. Sophis-
ticated proximity measures involve a combination of
infinite sums over the ensemble of all paths between
two vertices and their common neighbors (e.g., Katz
measure, rooted PageRank, escape probability); [11] is
an extensive survey on this subject.

2.2 Multiple-domain Search
Objects associated with multiple domain attributes
have attracted considerable research interest. Web
pages with geographic information and Flickr photos
with geo-tags require query processing on both the
spatial and textual domains. Spatial keyword search [12]
retrieves objects that are not only close to users in
physical space but which also match a set of key-
words. [13] proposed the IR-tree data structure, which
extends the R-tree with inverted files. This index can
be used to efficiently support novel types of spatio-
textual queries (e.g., [14]). A similar data structure
appears in [15] to support a reverse form of spatial
keyword search.

Location-based SNs, such as Foursquare, Whrrl and
Gowalla, record users’ location history (e.g., check-
ins). In [16], Scellato et al. observe that in a location-
based social network, 30% of new friends made are
place friends, i.e., individuals who have visited the
same places. Hence, they build a supervised learning
framework which predicts new friend links based on
the number of common contacts and common check-
ins. In [17], Ye et al. observe that if a place is visited
by friends of a user, this place is probably of higher
interest to the user. Also, if a user has many nearby
check-ins with another, one’s preferred places may
also be appealing to the other. These two factors,
combined with potential geographic influence among
the places themselves, are used to make location

recommendations to SN users. The result in [17] is
a set of places of interest, while in our problem the
result comprises k other SN users.

Both aforementioned studies measure social prox-
imity between users as the number of their common
friends. In our case, social influence is extended to
more than two hops in the SN and defined according
to shortest path distance in the social graph. Also, in
the spatial domain, both [17] and [16] consider histor-
ical check-ins, whereas we only consider the current
locations of users, targeting present-time applications.

Armenatzoglou et al. [18] propose a general frame-
work for queries over geo-social network data. They
decouple the storage of the social network data from
the geographic data; queries are evaluated as in a
distributed database. The system supports searching
for crisp structural patterns that appear in the social
graph, which are spatially ranked. For example, the
“nearest friends” query finds the k friends of a user
u who are closest to a given location q. Our problem
and solutions are different, since we integrate ranking
at both social and spatial dimensions.

In [19], Cho et al. analyze the location data of SN
users and notice that an individual’s periodic move-
ments which may seem random, are actually likely to
correlate with the movements of his/her social con-
tacts. This leads to a model of human mobility based
on social links. Another related application is proxim-
ity detection in SNs. The goal is to continuously report
to each user who, among his/her friends, are within a
certain distance from the user’s current location. The
problem was introduced in [20] in the context of a
P2P network. Subsequent approaches include dead
reckoning [21] and adaptive safe region techniques
[22], as well as constraint detection formulations [23].
Proximity detection considers only immediate friends
of users and a fixed radius around their locations. In
contrast, in SSRQ the result may include users at an
unpredictable number of social hops and at variable
spatial distances from the query user.

Bao et al. [24] propose a location-aware news-
feed system. This enables users to browse spatially
related messages from their friends or registered news
sources. Unlike SSRQ (which selects users), that sys-
tem filters news-feeds/messages. Also, it considers
only immediate (1-hop) friends and news sources.

2.3 Shortest Path and Distance Computation

A traditional type of graph search is shortest path
computation from a source to a target vertex. Dijk-
stra’s algorithm starts from the source and iteratively
expands the network using a priority heap, until the
target is reached. To prune the search space and direct
the graph expansion, A∗ algorithm prioritizes the
visiting order of nodes by estimating their distance
to the target. [25] introduces the landmark approach
which selects a set of vertices as landmarks in the

3

graph and pre-computes distances from every vertex
to each landmark. Given two vertices and their dis-
tances to a specific landmark, the triangular inequality
produces a lower bound on the distance between the
two vertices. Using multiple landmarks, we derive
an equal number of lower bounds, among which the
tightest can be used to enhance A∗ search. [26] extends
this approach using a hierarchy of landmarks.

An approach to compute approximate distances
between vertices in a graph is to construct oracles
which provide constant query time while having lin-
ear space requirements. Theoretical results on distance
oracles appear in [27], [28]. Sarma et al. [29] propose
landmark based oracles which guarantee the theo-
retical result of [28] and experimentally outperform
[27] and [28]. Distance oracles are not effective in our
problem, which involves distance computations in a
social graph, because we require exact distances, not
approximate. Moreover, the theoretical error bounds
of distance oracles are too loose and they are known
to be poorly suited for social networks [29]. In [30],
Cheng et al. propose a 2-hop cover data structure
which supports efficient distance queries for a general
graph with O(|V ||E|1/2) space. It is inapplicable to our
setting because, for the density and scale of real SNs,
its space requirements are prohibitive.

2.4 Top-k Processing

Our problem is related to top-k processing. A top-
k query specifies a preference function f over the
m attributes of a dataset and retrieves the k tuples
that minimize (or maximize) this function. A thorough
survey of top-k processing techniques is given in [31].
Here we survey the threshold algorithm (TA) and its
variants [32] due to their higher relevance to SSRQ.

Assume that there are m repositories (sorted lists),
one for each of the data attributes. The repository for
the i-th attribute keeps all tuple identifiers sorted in
ascending order of the i-th attribute. Two types of ac-
cess are possible on each repository, sorted and random.
Sorted access allows serial retrieval of elements (i.e.,
pairs of tuple identifier and its i-th attribute value) by
iterative “get-next” operations, starting from the first
element in the list, then moving to the second, etc. On
the other hand, random access allows retrieving the
attribute of any tuple in a repository directly.

TA requires that the preference function f is in-
creasingly monotone on all m attributes. It probes (via
sorted access) the repositories in a round-robin fash-
ion. For each element pulled from a list, it computes
the f value of the corresponding tuple by fetching its
remaining m−1 attributes from the other repositories
via random accesses. It maintains an interim result of
the top-k tuples seen so far. It also keeps a threshold
τ computed as the value of f over the last attribute
values pulled from each of the m repositories. Es-
sentially, τ is a lower bound on the f value of any

non-encountered tuple further down the lists. TA
terminates when τ is no smaller than any of the f
values in the interim result (which is then reported as
the final result).

TA assumes that random access is possible. NRA is
the no random access version of the algorithm, where
only sorted access is available on the repositories.
The repositories are probed in round-robin order. For
every encountered tuple, NRA maintains a lower and
an upper bound of its f value. The lower bound (the
upper bound) is computed by replacing the unseen
attributes of the tuple with the last value pulled from
the corresponding repository (the maximum possible
value in the corresponding repository). NRA termi-
nates when the k smallest upper bounds among seen
tuples are no greater than the lower bound of any
other encountered tuple.

Another variant of TA is the combined algorithm
(CA). TA assumes that random and sorted access have
the same cost. CA, instead, considers that random
access is costlier than sorted. It proceeds similarly to
NRA, but it periodically performs one random access.
Specifically, for every κ sorted accesses, one random
is made; κ is set to the ratio of random access cost to
sorted access cost.

Bruno et al. [33] consider top-k queries in web-
accessible databases. The data consists of a sorted
list and a set of random access lists. Since random
access is expensive, the authors propose that when an
object is encountered in the sorted list, only a selected
subset of the random access lists is probed to refine
the object’s f value bounds.

3 PROBLEM SETTING
The problem setting includes a set of users U and
an undirected social graph G = (V,E). Each user
ui ∈ U has spatial coordinates in Euclidean space. The
users may move dynamically; our system/query only
considers their current (i.e., last reported) location.
The social graph G includes a vertex vi ∈ V for every
user ui ∈ U . We establish the convention that vertex
vi corresponds to user ui, i.e., the mapping is implied
by the subscripts. We do not unify the two notations
to help distinguish between spatial and social context.
Every edge (vi, vj) in E represents a friend relation-
ship between users ui, uj and is associated with a
numerical weight that indicates the strength of the
relationship – the smaller the weight, the stronger the
friendship. In previous work, given the topology of
a social network, the weights are mined from past
propagation of user actions [7], [8]. We make no
assumption about the weights other than them being
positive numbers. We consider that G is undirected,
but our work extends to directed graphs easily.

3.1 Ranking Function
We define spatial proximity between users ui and uj as
their Euclidean distance d(ui, uj). On the other hand,

4

TABLE 1
Frequently Used Notation

Notation Explanation
G(V,E) graph G with vertex set V and edge set E
d(ui, uj) Euclidean distance between ui and uj

p(vi, vj) graph distance between vi and vj
α preference param. for social/spatial proximity
k number of users to be reported by the query
R the result set of the query
fk the k-th (i.e., maximum) f value in R
M number of landmarks used
mij graph distance between vi and j-th landmark
s partitioning granularity in grid index of AIS

we measure social proximity between vertices vi and
vj based on their shortest path distance in G, and
denote it as p(vi, vj). We use this formulation because
(i) it is simple and (ii) it is demonstrated to effectively
capture social proximity/influence [3], [4].

Following common practice in combining measure-
ments from different domains, we apply a linear func-
tion over the (normalized) social and spatial proximity
to rank users [13], [34], [14]. Specifically, given a query
user uq , the ranking of ui ∈ U is determined by
function f as:

f(uq, ui) = α · p(vq, vi) + (1− α) · d(uq, ui) (1)

where α is a (user- or application-specified) real num-
ber between 0 and 1 that determines the relative
significance of proximity in the two domains. The
smaller the value of f for a user, the more suit-
able he/she is for uq . Note that our definition (and
implementation) uses normalized social and spatial
proximities, by dividing d(uq, ui) and p(vq, vi) with
the maximum pairwise distance in Euclidean space
and in the social graph respectively. For simplicity,
we omit the denominators from the presentation.

3.2 Query Formulation

In this work, we propose the social and spatial ranking
query (SSRQ) where a user uq (or an application)
provides parameter α and asks for the top-k users
who minimize function f , with respect to his/her
current location and social links. Formally:

Definition 1 (SSRQ): Given a set of users U , the
underlying social graph G, a query user uq ∈ U , and
a preference parameter α, SSRQ returns the k users u
in U − {uq} with the smallest f(uq, u) values.

That is, for every u′ /∈ R and u′ 6= uq it holds that

f(uq, u
′) ≥ fk

where fk is the maximum (i.e., least preferable) rank-
ing value f across all users in the result R of the query.
In Table 1 we summarize the frequently used notation.

4 PRELIMINARY SOLUTIONS

We first present two simple solutions, namely Social
First Approach and Spatial First Approach; then we hy-
bridize them into an elaborate solution called Twofold
Search Approach.

4.1 One Domain Approach

Social First Approach. A preliminary approach for
SSRQ processing is the Social First Algorithm (SFA).
The main idea in SFA is to consider users in increas-
ing social distance from the query user. To achieve
this, SFA expands the social graph around vq using
Dijkstra’s algorithm. For every encountered user (i.e.,
for every vertex popped from Dijkstra’s search heap),
it also computes the Euclidean distance from uq and,
in turn, the f value. The first k users are placed in
the interim result R. For any subsequent user u, if
his/her f value is smaller than the current fk (the
k-th largest f score in R), he/she enters the interim
result (and evicts from it the user with the maximum
f value). The termination condition of SFA is based on
the fact that the social distance of every un-processed
user is lower-bounded by that of the last vertex en-
countered by Dijkstra’s algorithm. Therefore, if v is the
last vertex popped from Dijkstra’s heap, expression
θ = α · p(vq, v) lower-bounds the f value of every
non-encountered user. Hence, set R is guaranteed to
include the correct result when θ ≥ fk, i.e., it is safe
for SFA to terminate.

Spatial First Approach. Spatial First Approach (SPA)
is another preliminary solution. It processes users in
increasing spatial distance from the query user. For
this purpose, SPA uses an incremental nearest neighbor
(NN) search in the Euclidean space. To efficiently
perform this search, a regular grid index is built on
the user locations and a branch-and-bound algorithm
is used to retrieve the NNs; this combination is the
most suitable for dynamic spatial data kept in main
memory [35]. For every encountered user, SPA directly
calculates their social distance to the query user and
inserts them into the interim result R if necessary,
similar to SFA. If u is the last NN retrieved, expression
θ = (1−α)·d(uq, u) lower-bounds the f value of every
non-encountered user. Hence, set R is guaranteed to
be correct when θ ≥ fk.

Although SFA and SPA are intuitive and simple,
they suffer from a major drawback. They are unaware
of either the spatial distance or the social distance of
the un-processed users, i.e., the value of θ relies solely
on either social or spatial information and, therefore,
may be too loose. This shortcoming motivates the
algorithm described next.

4.2 Twofold Search Approach

In this section we describe an SSRQ processing ap-
proach which performs concurrently a social and a

5

spatial search, thus termed twofold search algorithm
(TSA). This twofold search equips TSA with two lower
bounds for un-processed users (one on their social
and the other on their spatial distance from uq), thus
deriving a tighter overall bound on f and alleviating
the main drawback of SFA and SPA. The social search
around uq is performed by Dijkstra’s algorithm, sim-
ilar to SFA. The second search is an incremental NN
retrieval in the Euclidean space, similar to SPA. TSA
executes in two phases.

In the first phase, the two searches proceed simulta-
neously, by iteratively reporting the next closest user
in their respective domain, and alternating with each
other in a round-robin manner. Whenever the social
search is invoked, the encountered user is evaluated,
i.e., its f value is computed and checked against
the current fk for potential inclusion into the interim
result R. Note that evaluation is fast in this case, be-
cause Euclidean distance from uq is trivial to compute.
In contrast, when the spatial search is invoked, the
encountered user is either (i) ignored if he/she has
already been encountered by the social search or (ii)
placed in a candidate set Q. Set Q keeps users that
are only partially evaluated, because computing their
social distance from q requires expensive processing.
The spatial and social search, due to their incremental
nature, can be seen as sorted lists (repositories). In
this aspect, the first phase of TSA follows a hybrid
paradigm between TA and NRA (covered in Section
2.4) in that both sorted and random access is possible
in the spatial domain, while only sorted accesses are
made in the social dimension.

Regarding the termination condition of the first
phase, let tp be the social distance of the last user
encountered by the social search, and td be the Eu-
clidean distance of the last reported spatial NN. The
f value of every user that is not encountered by
any of the two searches is lower-bounded by value
θ = α · tp + (1 − α) · td. The first phase of TSA stops
when θ ≥ fk. From the definition of bound θ it follows
that:

Lemma 1: The final query result may only include
users that are either already in the interim result R or
in the candidate set Q derived from the first phase of
TSA.

Based on Lemma 1, the second phase of TSA ig-
nores any non-encountered users and aims at evalu-
ating (or disqualifying) candidates in Q. The f value
of every candidate is lower-bounded by expression
θ′ = α · tp + (1 − α) · t′d where t′d is the Euclidean
distance of the closest candidate to uq (in the spatial
domain), while tp is as previously defined. If θ′ ≥ fk,
TSA can terminate. It is obvious that continuing the
NN search in the spatial domain cannot affect θ′ and
would therefore be a waste of computations. Hence,
in the second phase of the algorithm only the social search
continues.

In the second phase, whenever a vertex is output

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

uq

uq

u1

u2

u3

u1

u2

u3

u4

u4

Reuse this

path for u4

uq

u1

u2

u3

u4

uq

u1

u2

u3

u4

uq

u3

u2

u1

u4

oq

o2
o1

o3
o4

o5
o6

o7

o8

o9
11

1

2

1

2
2 3

5

7

landmark
4

oq

o1

o2

o3o4

o5

4
1

61
1

5

C1

C2C3

C4

5

4

1
v1

v2
v3

v4v5

1 1

3

1

vq

v6

v7

4

13

1 v8

d p
u1 0.1 0.1
u7 0.1 0.6
u8 0.6 0.2
u6 0.7 0.5
u5 0.7 0.2
u4 0.8 0.1
u3 0.9 0.3
u2 0.9 0.4

Fig. 2. TSA example

by the Dijkstra search, we perform the following
investigation. If the vertex does not belong to Q, it is
ignored (by Lemma 1 it cannot be part of the result).
If the vertex is in Q, it is removed from Q, it is
evaluated and (should its f value be smaller than fk)
it is included into R. In either case, θ′ is updated to
reflect the new tp. TSA terminates when θ′ ≥ fk.

Algorithm 1 outlines TSA. Lines 7-8 include an
important detail. In the first phase, it is possible that
a candidate is encountered by Euclidean NN search
and subsequently discovered by social search too. In
this case, it must be removed from Q, since it is
fully evaluated. Leaving such candidates in Q would
unnecessarily burden the second phase.

Algorithm 1 TSA(G, α, k, uq)
//Input: G: the social graph
// α: the preference parameter
// k: the requested number of users
// uq : the query user

1: Initialize Dijkstra and incremental NN search at uq

2: Initialize result set R = {}; candidate set Q = {}
3: while Dijkstra’s heap is non-empty do
4: Pop next vertex v; en-heap un-visited adj. vertices
5: if f(uq, u) < fk then
6: Update result R, value fk, and value tp
7: if u ∈ Q then
8: Remove v from Q

9: Fetch the next nearest neighbor unn of uq

10: if unn was not encountered by Dijkstra search then
11: Insert unn into the candidate set Q
12: Update value td to d(uq, unn)
13: Set θ = α · tp + (1− α) · td
14: if θ ≥ fk then Break . End of First Phase
15: Set value t′d = minu∈Q d(uq, u)
16: Set θ′ = α · tp + (1− α) · t′d
17: while Q is not empty and θ′ < fk do
18: Fetch the next vertex v from social search
19: if u ∈ Q then . u is the user corresponding to v
20: if f(uq, u) < fk then
21: Update result R and value fk
22: Remove u from Q and update value t′d
23: Update value tp
24: Update θ′ = α · tp + (1− α) · t′d
25: Return R

TSA Example: Figure 2 illustrates eight users
u1, u2, ..., u8 and uq . It also includes a table with the
Euclidean and social distances of these eight users
from uq , sorted on the former. The order of users in

6

ascending social distance is v1, v4, v8, v5, v3, v2, v6, v7.
The figure shows only the subgraph of G that is
related to our example of processing an SSRQ query
with k = 2 and α = 0.5.

TSA first accesses u1 in the social domain with f
value 0.1, and places it into the interim result, i.e.,
R = {u1}. Euclidean NN search fetches u1, which
is ignored because it was previously fully evaluated.
TSA then discovers u4 (in the social domain) with f
value 0.45 and sets R = {u1, u4}. Next, it encounters
u7 in the Euclidean domain and inserts it into Q.
The social search then fetches u8 with score 0.4 and
replaces u4 in R. The Euclidean search also retrieves
u8, which is ignored. At this stage, tp = 0.2 and
td = 0.6, yielding θ = 0.4. On the other hand, fk = 0.4
which is no larger than θ, and therefore the first phase
culminates.

The second phase starts with Q = {u7}. Currently,
the lower bound θ′ (determined by the Euclidean
distance of u7 and tp) is 0.15, i.e., smaller than fk.
TSA continues the social search and iteratively visits
new vertices until either u7 is found (and evaluated)
or tp increases enough so that θ′ ≥ fk. In our example,
the algorithm terminates when u7 is encountered by
social search, replacing u8 in the result. TSA reports
R = {u1, u7}.

TSA with Quick Combine: Quick Combine [31] is a
popular alternative to round-robin probing for ranked
search. This heuristic decides which search (social or
spatial) to probe next based on (i) an estimate of how
rapidly the distances increase in each domain, and (ii)
how large the preference coefficient (α and (1−α)) on
each domain is. The version of TSA that utilizes Quick
Combine in its first phase is denoted as TSA-QC.

TSA with Landmarks: An enhancement to TSA is
possible if used in conjunction with the landmark
approach. Specifically, in a pre-processing stage, a
number of vertices in G are chosen as landmarks
using the selection technique in [25] and their dis-
tances from every other vertex are computed and
recorded. Before the second phase of TSA starts, we
use the landmark information to derive a lower bound
of p(uq, u) for every candidate u ∈ Q. In turn, this
produces a lower bound of the candidate’s f value
(the Euclidean distance of u is already known). If that
lower bound is no smaller than fk, the candidate is
eliminated from Q.

5 AGGREGATE INDEX SEARCH

Although TSA and its landmark-aided version utilize
tighter bounds than SFA/SPA, they may still visit
numerous users who are close in the social graph
but far away in the spatial domain, and vice versa.
The reason is that the two searches are oblivious of
each other, and may be accessing completely different
users. This motivates a new approach, called aggregate

index search (AIS), which summarizes both social and
spatial information into the same index, and runs a
unified search on it.

The index is a spatial access method that addi-
tionally incorporates (aggregate) social information.
Given an index node, we devise a mechanism that
provides a lower bound for the f values of all un-
derlying users. This bound is used in a branch-and-
bound process to quickly identify users that are close
in both domains. The approach incorporates a novel
aggregation of landmark information to provide social
summaries at index nodes, as well as optimized graph
access techniques and adaptations of landmarks, tai-
lored to the characteristics of SSRQ. We first describe
the core of the approach, followed by optimizations
in its submodules.

5.1 Aggregate Index and Query Processing
The AIS index is a spatial data structure with em-
bedded social information. It could use any spatial
access method as a basis (e.g., an R-tree, a k-d-tree,
etc). However, we choose a multi-level regular grid
because (i) it supports fast location updates [36],
[37] and (ii) it facilitates our branch-and-bound SSRQ
search (the latter being the reason we prefer it over a
single-level grid). Each index node is parent to s × s
nodes in the immediately lower level, where s is
an integer parameter that determines the partitioning
granularity into child nodes. The lowest level contains
leaf cells. Each leaf cell C holds the users that lie inside
its spatial extent. Figure 3 illustrates an internal index
node which is parent to s× s leaf cells, in an example
where s = 2. Note that the multi-level grid does not
have to be a tree, i.e., it does not necessarily have a
root. We may instead keep only a certain number of
its lowest levels1.

The social summaries kept in the index rely on
landmark information. AIS requires that a set of
landmarks is used and that each vertex vi ∈ V
is associated with a vector including its distances
from every landmark. Assuming that there are M
landmarks, we denote the distance between vertex vi
and the j-th landmark as mij . The social summary
kept with each cell consists of two vectors, m̂ and
m̌, both of length M . Consider first vector m̂. Its j-th
element is symbolized as m̂[j] and is the maximum
path distance between any user in cell C and the j-
th landmark. Formally, m̂[j] = maxvi∈C mij . Similarly,
the j-th element of vector m̌ indicates the minimum
path distance between any user in C and the j-th
landmark, i.e., m̌[j] = minvi∈C mij . This information
is propagated upwards, setting the social summaries
of internal index nodes according to the full set of
users they cover.

1. This is the case in our experiments, where keeping the lowest
two levels from a three-level hierarchy generally yields favorable
performance.

7

internal node

leaf cell

contains a set of

users

s = 2

Fig. 3. Internal and leaf cells in AIS index

To enable a branch-and-bound search in the index
we need to derive a lower bound on the f values
of users in a (internal or leaf) cell C. We first de-
fine a lower bound on the spatial domain. Given a
query user uq , we denote as ď(uq, C) the minimum
Euclidean distance between uq and any point in C.
If uq is inside C, then ď(uq, C) = 0. In all other
cases, ď(uq, C) equals the distance between uq and the
closest point on the boundary of C. For example, in
Figure 4(a) the minimum distance between u1 and
the illustrated cell is determined by the horizontal
projection line shown dashed. On the other hand,
ď(u2, C) equals the length of the diagonal dashed line.

Regarding the social domain, we show how the
aggregate landmark information (vectors m̂ and m̌)
can be used to provide a lower bound on p(vq, vi) for
every vi ∈ C. Essentially, our technique extends the
landmark approach (which was originally proposed
for individual vertices) to groups of vertices, i.e., to all
vertices under a cell C – to the best of our knowledge,
it the first time this is attempted in the literature.

Lemma 2: Given a cell C with social vectors m̂ and
m̌, the following formula provides a lower bound
for the shortest path distance between any user in C
and the query user uq :

p̌(uq, C) = max
1≤j≤M

 m̌[j]−mqj if mqj < m̌[j]
mqj − m̂[j] if mqj > m̂[j]
0 otherwise

(2)
Proof: Consider the j-th landmark and assume

that mqj < m̌[j]. For every ui ∈ C the triangular
inequality suggests that p(vq, vi) ≥ |mij −mqj |. Since
mqj < m̌[j] ⇒ mqj < mij , the inequality becomes
p(vq, vi) ≥ (mij −mqj). By definition, m̌[j] ≤ mij and
thus p(vq, vi) ≥ (m̌[j]−mqj). As the second part of the
inequality is constant for every ui ∈ C, we deduce
that minui∈C p(vq, vi) ≥ (m̌[j] − mqj). The case for
mqj > m̂[j] is symmetric. On the other hand, when
m̌[j] ≤ mqj ≤ m̂[j], we can derive no lower bound
based on the j-th landmark. Finally, we may use the
maximum (i.e., tightest) lower bound derived from
any landmark as a lower bound for minui∈C p(vq, vi).

Figure 4 illustrates a cell C containing three users
and the underlying social graph. Vertex v6 is chosen as
the single landmark (M = 1), and the graph distances

l0 = (2, 7)
l1 = (1, 6)
l2 = (2, 7)
l3 = (1, 6)
l4 = (0, 5)
l5 = (1, 4)

l6 = (2, 3)
l7 = (3, 3)
l8 = (3, 2)
l9 = (4, 2)
l10= (4, 1)
l11= (5, 0)

u4 u11 u4 u11u1

u3
u4

u8 u9

u10

u0

u2

u5

u11

u6

u7

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u1

u3
u4

u8 u9

u10
u1

u3
u4

u8 u9

u10

+

(0,1)l

(4,6)l

(0,5)l

(1,6)l

(3,1)l

(4,2)l

u3

u4

u5

u1(uq)

uq

u3

u2

u9

ps = 4

u5

u1
u6

(0,1)l
d = 1

vq

v4

v3

v5

v9

2

v10

v6

1 3
5

2
3

1

landmark

v1

v2

v11

1

2

4

v7

v8

5

5

1 X 2 3 4

1

2

3

4

Y

u2

(a) Lower bound of f

oq

o2
o1

o3
o4

o5

o7

o8

o9
11

1

2

1

2
2 3

5

7

landmark
4

oq

o1

o4 o5

o7

o8

o9

11

1

2

1

2

2

3
1

landmark

v7

v1
v2 v3

v4v5

v6

12

(b) Social graph

Fig. 4. AIS bound example

of v3, v4, v5 are 4, 3, and 1 respectively. Hence, the
aggregate information (social summary) kept for this
cell is m̂ = 4 and m̌ = 1. By Formula 2, we can directly
derive a lower bound of the social distance between
any user in C and vq ≡ v1 (without accessing the
specific social or landmark information of the users
in C), i.e., p̌(v1, C) = 1, which in this example is as
tight as it would be if the exact landmark information
of individual users was accessed.

Combing the lower bound ď(uq, C) for Euclidean
distance and p̌(vq, C) for graph distance, we derive a
lower bound of the f value for any user in an (internal
or leaf) cell C.

Theorem 1: Given a cell C with social vectors m̂ and
m̌, the following formula provides a lower bound for
the f value of any user in C:

MINF(uq, C) = α · p̌(vq, C) + (1− α) · ď(uq, C) (3)

Proof: From Lemma 2 and the definition of
ď(uq, C) it follows that f(uq, ui) ≥ MINF(uq, C) for
each ui ∈ C.

Theorem 1 and metric MINF pave the way for
the AIS processing algorithm. The search starts from
the top level of the index. All cells in that level are
pushed into a min-heap H with keys equal to their
MINF values. The head of the heap is iteratively
popped. Depending on the type of the popped item
we distinguish three cases:
• If the item is an internal index node, we push into
H all its child nodes with their individual MINF
values as keys.

• If the item is a leaf cell C, we push into H all
the users ui ∈ C with key equal to α · p̌(vq, vi) +
(1 − α) · d(uq, ui), where p̌(vq, vi) is the lower
bound of social distance p(vq, vi) derived from the
landmark information of vi.

• If the item is a user ui, we compute its exact social
distance from vq (using a submodule described in
Section 5.2) and update the interim result R if its
f -value is lower than fk.

The algorithm terminates when the head of the heap
has a key larger than or equal to the current fk.
Algorithm 2 summarizes the process.

AIS benefits from combining spatial and social in-
formation in the same index and promptly identifies
users that lie nearby uq in both domains. In particular,

8

Algorithm 2 AIS(G, α, k, uq)
//Input: G: the social graph
// α: the preference parameter
// k: the requested number of users
// uq : the query user

1: Initialize an empty min-heap H
2: Push into H all top-level index nodes with MINF as key
3: while H is not empty and head’s key is less than fk do
4: Pop the head item of H
5: if popped item is an internal index node then
6: for each child C of the node do
7: Push C into H with key MINF(uq, C)

8: else if popped item is a leaf cell C then
9: for each user u ∈ C do

10: Push u into H (key α·p̌(vq, v)+(1−α)·d(uq, u))
11: else if popped item is a user u then
12: Call a submodule to compute p(vq, v)
13: if f(uq, u) < fk then
14: Update result R and value fk
15: Return R

it effectively eliminates nodes, cells and users that
are only close in the Euclidean space using the social
summaries. On the other hand, for users that are only
close in the social graph, it avoids eagerly evaluating
them.

The aggregate index supports efficient location up-
dates. When a user ui moves, the update is dealt with
as a deletion in the old cell and an insertion in the
new one2. We first remove ui from the user list of
the old cell and update the cell’s social summaries
– if a component in m̂ or m̌ is due to a landmark
distance of vi, the component is recomputed over the
remaining users in the cell. Regarding insertion into
the new cell, ui is added to the cell’s user list and the
landmark distances of vi are compared against vectors
m̂ and m̌. If, say, the j-th landmark distance of vi is
larger than the corresponding component of m̂, the
latter is set to mij . Symmetrically, if mij < m̌[j] we
update m̌[j] to mij . Should there be an update in the
social summary of either the old or the new cell of
ui, it may recursively propagate to upper level nodes
in a similar manner. Our index design is primarily
concerned with location updates, as the positions of
SN users change much more frequently/dynamically
than the topology of the network. To deal with the
latter (i.e., updates in G) batching could be used in
conjunction with dynamic shortest path algorithms,
so that landmark information can be incrementally
maintained [38], [39].

An important remark regards a key principle in
designing the index for AIS. The index, as described
above, partitions the user set according to Euclidean
coordinates. Since social summaries are vectors, it
is possible to partition the user set (and thus form
an index) in the combined social-spatial space. We

2. Note that if the user moves within his/her current cell, we
simply update his/her coordinates; no index maintenance is nec-
essary.

attempted this approach with little success. We ob-
served that when a space partitioning method is ap-
plied to index the combined space, dead space (empty
partitions) tends to cripple performance. On the other
hand, data partitioning indices cannot effectively bal-
ance the relative significance of the two domains (in
their bulk-loading and splitting mechanism) without
prior knowledge of α and also lead to oblong boxes
that compromise performance. Finally, this combined-
space approach (be it with a space or data partitioning
index) suffers from the dimensionality curse, needing
to cope with M+2 dimensions. This imposes a serious
limitation on the number of landmarks used.

5.2 Graph Search with Computation Sharing

In this section we describe how AIS computes social
distances for users u popped from its search heap H ,
i.e., we elaborate on Line 12 of Algorithm 2. First,
we decide on the processing paradigm to derive the
graph distance. Next, we propose two approaches that
enable sharing computations (i.e., reusing informa-
tion) among the different calls of the submodule for
the various evaluated users.

Let u be the user to be evaluated in Line 12, and v
be the corresponding vertex in the social graph. AIS
assumes that landmark information is available for
all v ∈ V in order to build its index. We utilize this
landmark information to accelerate the computation
of p(vq, v) too. That is, as described in Section 2.3, an
A∗ search is applicable – the algorithm proceeds like
Dijkstra, but en-heaps encountered vertices with a key
incremented by a (landmark-derived) underestimate
of their distance to the target vertex. This tends to
narrow down the search area of the algorithm. To
further enhance performance, instead of a straight-
forward A∗ execution from vq to the target vertex v,
we follow the bidirectional search paradigm [25]. The
idea in this paradigm is to concurrently execute two
A∗ searches: one from vq to v (called forward search)
and another from v to vq (reverse search). When the
two searches meet, a complete path is derived, which
provides a preliminary value for p(vq, v). This value
does not necessarily correspond to the shortest path
but facilitates tightening the search; i.e., if the forward
or reverse search de-heaps a vertex with key larger
than or equal to this distance, the latter can be safely
output as the actual graph distance.

The issue is that the above technique is aimed
for vertex-to-vertex computations. In AIS instead, we
need to perform multiple graph distance calculations
from the same source vq to different target vertices.
Directly applying the bidirectional approach would
perform overlapping searches, i.e., it would unneces-
sarily repeat part of the work multiple times. Consider
for instance Figure 5. Assume that in two consec-
utive executions of Line 12 in Algorithm 2 we are
to obtain the graph distances from vq to vertices v11

9

vq

1

2

1
v1

forward search

1

1

2

1

1

1
2

5

3

v2

v3

v4 v5
v6

v7

v8

v9 v10 v11

Fig. 5. Path caching

and v6 respectively. After the first bidirectional search
(between vq and v11), the forward search accesses
all vertices inside the dashed boundary. If another
bidirectional search is applied between vq and v6,
forward search starts from scratch and all vertices
inside the boundary (i.e., v2, v3, v4) are visited again.

This observation motivates the idea to share compu-
tations among different graph distance computations,
and therefore save processing time. Before presenting
specific techniques to achieve this goal, we must
stress that (unlike [25]) our bidirectional approach
does not use A∗ in both directions. Specifically, while
the reverse search is a landmark-based A∗ process,
for the forward search we employ a plain Dijkstra
search, without any aid from landmarks. The reason
will become clear shortly.

We describe two complementary computation shar-
ing approaches. The first is conceptually simple.

Distance caching: If the target vertex v was visited
by forward search previously, its exact distance has
already been computed and can be reported directly.
Continuing the example in Figure 5, if v4 happens to
be the next target vertex, its distance from vq is already
known because the forward search between vq and v11
has previously visited it (the distance of any vertex
popped from the Dijkstra heap is immediately de-
rived). Similarly, if v belongs to a previously reported
shortest path, its distance from vq is also readily
available (when a vertex belongs to the shortest path
between a source and a target, its distance from either
is directly deduced).

Forward heap caching: The second technique reuses
the search heap of the forward search. Instead of
terminating forward search and re-invoking it from
scratch for every target vertex, we maintain its heap
contents and re-use them between runs. That is, essen-
tially the forward search only pauses when the graph
distance to a target vertex v is found and its state
(i.e., its search heap) is maintained. When the distance
of the next target v′ is to be computed, the forward
search resumes from the point it stopped, using the
already populated heap.

Note that for this optimization to be possible,
forward search must be implemented as a Dijkstra
process. The rationale is that in Dijkstra’s algorithm

the keys used in the search heap are irrelevant to
the target vertex, and this exactly is the fact that
enables reusing the heap for different target vertices.
In an A∗ implementation of forward search, the heap
keys would be incremented by (landmark-derived)
distance bounds that depend on the specific target
vertex each time, making the heap useless for different
target vertices.

The distance computation submodule of AIS with
all optimizations is outlined by procedure GraphDist
(Algorithm 3). Hf is the search heap of forward
search. T is a table including previously computed
shortest paths. Hf and T are global variables, i.e., they
are retained between the calls of GraphDist and dis-
carded only when AIS (the calling process) terminates.

Algorithm 3 GraphDist(G, vq , v, Hf , T)
//Input: G: the social graph
// vq : the (vertex corresponding to the) query user
// v: target vertex to compute the graph distance to
// Hf : the min-heap of forward search
// T : set of all previously computed shortest paths

1: if v was previously visited by forward search then
2: Return the stored distance of v
3: else if v appears in any path in T then
4: Return the stored distance of v
5: Initialize MinDist = +∞ and ShortestPath = {}
6: Initialize an A∗ process at v for the reverse search
7: while MinDist > head’s key in heap of rev. search do
8: Fetch next vertex vf from forward search (from Hf)
9: if vf was previously visited by reverse search then

10: if p(vq, vf) + p(vf , v) < MinDist then
11: Set MinDist = p(vq, vf) + p(vf , v)
12: Update ShortestPath accordingly
13: Fetch next vertex vr from reverse search
14: if vr was previously visited by forward search then
15: if p(vq, vr) + p(vr, v) < MinDist then
16: Set MinDist = p(vq, vr) + p(vr, v)
17: Update ShortestPath accordingly
18: Do not push nodes adj. to vr into rev. heap
19: Store ShortestPath in T
20: Return MinDist

5.3 Improving on Landmark Lower Bounds

Referring to the general AIS algorithm, as described in
Section 5.1, vertices are evaluated in an order dictated
by a lower bound of their f values (see Line 10 in
Algorithm 2). This lower bound is derived in part by
landmark estimates of the social distance between vq
and the vertices. It is a known fact that landmarks
often produce very loose lower bounds, which may
lead AIS to evaluate target vertices that in reality lie
too far from vq in the social graph.

Consider for instance Figure 6, and assume that v5
is used as the landmark. Vertices vq and v7 are almost
equi-distant from the landmark, yielding a lowed
bound p̌(vq, v7) = 1. This is a large underestimate
of the actual distance and may lead in evaluating v7
(via expensive search in G), although it is actually

10

vq

v2

v3

v4

v5

2

v6

v7

1 3

2

2
3

1

forward search

v1
v8

v9

v10
v11

v12

2
5

1

111

landmark

Fig. 6. Delayed evaluation example

too far from vq in the social space. Using a large
number of landmarks could reduce the occurrence
of wide underestimates, but it is not a panacea; as
we show in the experiments, using many landmarks
could seriously harm overall performance.

Fortunately, the nature of our algorithm allows for
information sharing that may alleviate this problem.
Specifically, as AIS evaluates more users, the forward
search in its bidirectional submodule also proceeds.
Let β be the key (graph distance) of the last vertex
popped in forward search. If the target vertex v in
Line 11 of Algorithm 2 has not been visited by the
forward search before, we are sure that its social
distance from vq is at least β, i.e., β may serve as
a lower bound of p(vq, v) which, actually, might be
tighter (larger) than the landmark-based p̌(vq, v). If
that is the case, we derive a new (larger) lower bound
for f(vq, v) (that is α · β + (1− α) · d(uq, u)) and push
v back into the AIS heap with the new bound as the
key. This may postpone the premature evaluation of
vertices due to wide landmark underestimates. We
refer to this technique as delayed evaluation strategy.

Consider again the example in Figure 6, and assume
that when v7 is popped from the heap of AIS the β
value is 2. This means that the forward search (due to
the evaluation of previous target vertices) has reached
up to the boundary shown dashed. Instead of directly
computing the actual graph distance of v7 (in Line 12
of Algorithm 2), we detect that its landmark distance
is looser than β and re-insert it into the AIS heap with
an updated key based on β.

Note that a vertex might be re-inserted into the
AIS heap multiple times before it is actually eval-
uated. This is the case when a re-inserted vertex is
popped anew, but the β value has meanwhile further
increased, leading to an even tighter lower bound for
its f value. In this situation, the vertex is pushed into
H again with a new key. To incorporate the delayed
evaluation strategy we need to add the following
instructions right after Line 11 in Algorithm 2:

1: if key of u in H is less than α ·β+(1−α) ·d(uq, u) then
2: if v not visited by forw. search nor exists in T then
3: Push u back into H with key α·β+(1−α)·d(uq, u)
4: Go to Line 3 (of Algorithm 2)

The second condition is to avoid re-inserting a ver-
tex whose graph distance is readily available (because
it has been visited by forward search, or because it
belongs to an already computed shortest path).

5.4 Graph Distance Pre-computation
Given that social search dominates the processing cost
(in all approaches), pre-computing social distances be-
tween vertices could possibly improve performance.
Materializing all-pair social distances requires a pro-
hibitive amount of storage; for the Foursquare graph
in our experiments, which contains around 2 million
users, we need roughly 16 TB to store all-pair dis-
tances. To alleviate this problem, we could instead
materialize for each user the distances of the t so-
cially closest vertices. To utilize the pre-computation,
we replace SFA’s Dijkstra component with the pre-
computed distance list. In case the algorithm exhausts
the list of t social neighbors (without terminating),
it falls back to our best method, AIS. Note that pre-
computation is applicable to SPA and TSA as well,
but with limited success, because these algorithms
may encounter a socially distant candidate (outside
the pre-computed list) very early in their execution.

6 EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the SSRQ
techniques proposed in the paper. All methods were
implemented in C++ and the experiments conducted
on an Intel Core2Duo 2.66GHz CPU machine with 8
GB memory, running on Ubuntu 10.04.

We use two real datasets, Gowalla and Foursquare.
Table 2 provides some of their characteristics; the last
column indicates their average vertex degree. Gowalla,
obtained from snap.stanford.edu, contains 196K users.
Foursquare, used in [40], [41], contains 1.88M users.
Due to privacy constraints, the location records for
some users are unavailable. Thus, we only have access
to the historical positions of 54.4% of users in Gowalla
and those of 60.3% of users in Foursquare.3 From the
locations available for a user, we assign him/her the
one with the highest frequency of visits.

TABLE 2
Data Statistics

Name |V | |E| # locations Deg.
Gowalla 196,590 1,900,654 107,092 9.7

Foursquare 1,880,405 17,838,254 1,133,936 9.5

Neither of the social networks has explicit infor-
mation about the edge weights. Based on a common
methodology [2], [42], we derive this information
from the degrees of vertices incident to the edges. In-
tuitively, the more the friends of a user, the looser the
connection to them, i.e., the larger the edge weight.

3. Users with no available location are considered infinitely far
away from any other user.

11

10 20 30 40 50
k

1

2

3

4

5

6

7

8

9

10

h
o
p
s

G. Avg. hop

G. Max. hop

F. Avg. hop

F. Max. hop

(a) Hop statistics

0.1 0.3 0.5 0.7 0.9
α

10-2

10-1

Ja
cc

a
rd

 r
a
ti

o

vs. social vs. spatial

(b) SSRQ vs. social/spatial NNs

Fig. 7. Insights into the nature of SSRQ query

Thus, edge weights are set proportionally to the prod-
uct of degrees of the vertices (users) they connect, i.e.,
the weight of edge (vi, vj) is set to deg(vi)·deg(vj)

max degree2 , where
deg(vi) and deg(vj) are the degrees of vertices vi
and vj respectively, and max degree is the maximum
vertex degree in the social graph.

Table 3 includes the tested value ranges for the
query and system parameters in our setup. In each
experiment, unless otherwise stated, the parameters
are set to the default values shown in the table. Data
and indices for all methods are kept in memory.
The main performance factor in our evaluation is
run-time, i.e., query processing cost. We also report
the pop ratio, computed as |Vpop|

|V | , where |Vpop| is the
number of vertices popped from the search heaps of
the methods. Importantly, the pop ratio measurements
are also indicative of performance (specifically, I/O
cost) in an alternative setting where the social graph
is stored on the disk. Every reported measurement is
the average across 1,000 SSRQ random queries.

TABLE 3
Query and System Parameters

Parameter Default Range
size of result k 30 10, 20, 30, 40, 50

preference parameter α 0.3 0.1, 0.3, 0.5, 0.7, 0.9
grid granularity s 10 5, 10, 15, 20, 25

We first study our data and the nature of SSRQ.
In Figure 7(a) we record the number of hops (away
from vq) where the furthest SSRQ result is found. We
plot the AVG and MAX of these numbers (across the
1,000 queries run for each k value tested). Prefix “F.”
corresponds to Foursquare and “G.” to Gowalla. We see
that results may lie several hops away from vq , in
some cases reaching up to 8 hops.

In Figure 7(b) we investigate the similarity (i) be-
tween the SSRQ result and the k Euclidean NNs of
uq and (ii) between the SSRQ result and the k socially
closest users to vq . In either case, we compute the
Jaccard ratio, a standard measure of set similarity [43].
Given two sets, it is defined as the cardinality of their
intersection divided by the cardinality of their union;
its domain is 0 (unrelated sets) to 1 (identical sets). We
plot results for different α values in Foursquare, i.e.,
we vary the relative importance of spatial and social
proximity. The Jaccard ratio is below 0.1 in all cases,
indicating that the nature of SSRQ is very different

10 20 30 40 50
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ru
n
n
in

g
 t

im
e
(s

e
c)

SFA

SPA

TSA

TSA-QC

AIS

SFA-CH

SPA-CH

TSA-CH

(a) Run-time in Gowalla

10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ru
n
n
in

g
 t

im
e
(s

e
c)

SFA

SPA

TSA

TSA-QC

AIS

SFA-CH

SPA-CH

TSA-CH

(b) Run-time in Foursquare

10 20 30 40 50
k

10-2

10-1

100

101

P
o
p
 r

a
ti

o

SFA

SPA

TSA TSA-QC AIS

(c) Pop ratio in Gowalla

10 20 30 40 50
k

10-2

10-1

100

101

P
o
p
 r

a
ti

o

SFA

SPA

TSA TSA-QC AIS

(d) Pop ratio in Foursquare

Fig. 8. Effect of k

from either social or spatial NN search. Results in
Gowalla are similar and omitted for brevity.

Next we compare the different SSRQ approaches.
SFA and SPA are described in Section 4. TSA is the
landmark-aided version of the algorithm in Section 4.2
(we disregard its non-landmark counterpart because
it consistently performs worse). TSA-QC is the Quick
Combine version of TSA. AIS is the best-performing
version of aggregate index search from Section 5 (its
different flavors are evaluated later). We finetuned the
landmark-based methods with respect to M (number
of landmarks) and set it to 8.

Figure 8 investigates performance for different val-
ues of k. Figures 8(a) and 8(b) show that processing
in Gowalla is faster than Foursquare – the reason is
that SSRQ search in Gowalla, regardless of the al-
gorithm chosen, generally reaches fewer users than
in Foursquare, as shown in Figure 7(a). The run-time
increases with k, because the search area in both the
social and the spatial domain expands for larger k.

Just for this experiment, in the run-time charts we
include variants SFA-CH, SPA-CH and TSA-CH (of
SFA, SPA, TSA) where we replaced the Dijkstra-based
social distance computation module with the state-of-
the-art pre-computation-based technique for shortest
path computation, CH, from [44]. These variants are
slower than vanilla SFA/SPA/TSA, because (i) CH
is better suited to low-degree graphs (such as planar
graphs) and (ii) in vanilla methods, shortest paths are
produced incrementally (they all have vq as source),
thus essentially sharing/reusing computations.

Turning to the relative performance of our algo-
rithms, Figures 8(c) and 8(d) verify that SFA and SPA
process more vertices than TSA, due to their looser
termination conditions. However, the difference in
run-time is not as wide as in pop ratio, the reason
being TSA’s overhead in maintaining two bounds
(one spatial and one social). TSA-QC performs better

12

0.1 0.3 0.5 0.7 0.9
α

0.00

0.05

0.10

0.15

0.20

ru
n
n
in

g
 t

im
e
(s

e
c)

SFA

SPA

TSA

TSA-QC

AIS

(a) Run-time in Gowalla

0.1 0.3 0.5 0.7 0.9
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ru
n
n
in

g
 t

im
e
(s

e
c)

SFA

SPA

TSA

TSA-QC

AIS

(b) Run-time in Foursquare

Fig. 9. Effect of α

than TSA in Gowalla when k is small but is slower
than TSA in Foursquare in all settings. We suspect that
this is due to the different social/spatial distributions
in the two datasets. AIS visits fewer than 6% and
3% of the vertices in Gowalla and Foursquare respec-
tively, while the other approaches visit more than 90%
in most cases. This demonstrates that the aggregate
index search paradigm vastly reduces the number of
expanded vertices (especially in large SNs), which
implies significantly shorter processing time.

In Figure 9 we test different values of α, i.e., dif-
ferent weighing of social versus spatial proximity.
SFA examines vertices in increasing social distance
order, which implies that for large α the first few
processed vertices are highly likely to already produce
the result. TSA and TSA-QC are also more socially-
led (than spatially), since their second phase relies
entirely on graph search, thus benefiting from a large
α. SPA, on the other hand, is spatially-led and hence
its performance worsens with α, albeit only slightly.
Importantly, our most advanced method, AIS, is ro-
bust to α and retains its clear lead over alternatives.

Aggregate index search provides a flexible frame-
work, which can be equipped with different tech-
niques and optimizations. Here we evaluate its three
most representative versions: (i) AIS-BID is a direct
implementation of Algorithm 2 using the bidirectional
search in [25] for graph distance computations and
no other optimization; (ii) AIS− uses all optimizations
except the delayed evaluation strategy; and (iii) AIS uses
all optimizations.

In Figure 10 we compare these algorithms for var-
ious values of k. The behavior of AIS-BID demon-
strates that, although the search technique proposed
in [25] is more efficient than other flavors of bidirec-
tional search, it is unable to yield favorable perfor-
mance without our further enhancements. This fact is
also supported by the pop ratio charts. The compar-
ison between AIS and AIS− reveals that the delayed
evaluation mechanism improves performance, albeit
to a moderate degree.

In Figure 11 we evaluate the pre-computation tech-
nique (from Section 5.4) against AIS. We present run-
time versus t, i.e., versus the number of cached so-
cial neighbors per user. Pre-computation yields minor
improvements in the larger graph (Foursquare) but
significant in the smaller one (Gowalla). The reason

10 20 30 40 50
k

0.00

0.05

0.10

0.15

0.20

ru
n
n
in

g
 t

im
e
(s

e
c)

AIS-BID AIS− AIS

(a) Run-time in Gowalla

10 20 30 40 50
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ru
n
n
in

g
 t

im
e
(s

e
c)

AIS-BID AIS− AIS

(b) Run-time in Foursquare

10 20 30 40 50
k

10-2

10-1

100

P
o
p
 r

a
ti

o

AIS-BID AIS− AIS

(c) Pop ratio in Gowalla

10 20 30 40 50
k

10-2

10-1

100

P
o
p
 r

a
ti

o

AIS-BID AIS− AIS

(d) Pop ratio in Foursquare

Fig. 10. Effect of k on AIS versions

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
ru

n
n
in

g
 t

im
e
(s

e
c)

AIS AIS-Cache

(a) Run-time in Gowalla

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
t

0.30

0.31

0.32

0.33

0.34

0.35

ru
n
n
in

g
 t

im
e
(s

e
c)

AIS AIS-Cache

(b) Run-time in Foursquare

Fig. 11. Effect of pre-computation

is that, as shown in Figure 7(a), in Foursquare search
expands more hops away from vq , thus being more
likely to reach a vertex outside the cache.

In Figure 12, we measure the effect of s, i.e., the
granularity of the grid index, on SPA, AIS-BID, AIS−

and AIS. Recall that a larger s implies more cells with
smaller size each. This parameter affects performance
in two conflicting ways: (i) as s grows, more cells lie
in the vicinity of the query user and therefore more
computations are needed to calculate distance bounds
for them; (ii) on the other hand, smaller grid cells
provide more accurate summaries (be them Euclidean
or social) about the underlying users, and increase
the effectiveness of pruning. Value s = 10 strikes a
favorable balance between these factors, although the
methods are not very sensitive to it.

5 10 15 20 25
s

0.00

0.05

0.10

0.15

0.20

ru
n
n
in

g
 t

im
e
(s

e
c)

SPA AIS-BID AIS− AIS

(a) Run-time in Gowalla

5 10 15 20 25
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ru
n
n
in

g
 t

im
e
(s

e
c)

SPA AIS-BID AIS− AIS

(b) Run-time in Foursquare

Fig. 12. Effect of grid granularity

13

10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ru
nn

in
g

tim
e(

m
s)

SFA

SPA

TSA

TSA-QC

AIS

(a) Effect of k

0.1 0.3 0.5 0.7 0.9
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ru
nn

in
g

tim
e(

m
s)

SFA

SPA

TSA

TSA-QC

AIS

(b) Effect of α

Fig. 13. Experiments with Twitter

For generality, in Figure 13 we use a real dataset,
Twitter, with higher average degree than our default
datasets (its average degree is 57.7). It contains 124K
Twitter users in Singapore who made geo-tagged
tweets in 2013; a user’s location is derived from
his/her latest tweet. The charts (versus k and α) show
similar trends to our default datasets. A difference is
that the run-time increases less sharply with k, be-
cause the larger degree implies that more candidates
(users) are reachable with fewer hops from uq .

Finally, we generate synthetic data to examine pa-
rameters we cannot control in the real SNs. In Fig-
ure 14(a), we generate data with different correlations
between the social and spatial distances. We use the
social distances derived from Foursquare, but assign
to users artificial locations as follows. For each vq , we
generate the spatial distance of user u from uq by for-
mula d̄ = ρ·p(vq, v)+ε, where ε is a random number in
range [−0.15, 0.15] and ρ is 1 (for positive-correlation
dataset) or -1 (for negative-correlation dataset). Based
on the generated d̄ (normalized in the [0,1] range), we
place the user at a random point on the circle with
radius d̄ from uq . We also generate a third dataset,
where the spatial locations of users are randomly
permuted, so as to create a dataset with independent
correlation between social and spatial proximity.

All algorithms require the shortest time when data
are positively correlated and the longest when they
are negatively correlated. In the positive correlation
case, users that are socially near vq tend to also lie
close by in the Euclidean space. Hence, search encoun-
ters the top-k users early on and terminates quicker.
The situation is reversed for negatively correlated
data, because socially near users are spatially far, and
vice versa, implying that the top-k users tend to lie
far from the query in either of the two domains, if
not in both. AIS is the method of choice in all cases,
furthermore demonstrating robustness to the type of
correlation between spatial and social distance.

In Figure 14(b), we show performance for differ-
ent SN sizes. Starting with Foursquare as a basis,
we extracted from it SNs of different sizes using
the structure-preserving Forest Fire Sampling technique
[45]. As the number of SN vertices is tripled from
0.6M to 1.8M, the running time of all algorithms
increases almost linearly, with AIS scaling much more
gracefully than competitors.

positive independent negative
correlation

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ru
n
n
in

g
 t

im
e
(s

e
c)

SFA

SPA

TSA TSA-QC AIS

(a) Correlation

0.6M 1.2M 1.8M
data size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ru
n
n
in

g
 t

im
e
(s

e
c)

SFA

SPA

TSA TSA-QC AIS

(b) Data size

Fig. 14. Experiments with synthetic data

7 CONCLUSION

We study a query type that captures proximity in the
combined social-spatial domain. Our most efficient
algorithm relies on an aggregate index that supports
estimates of combined proximity. Experiments on ac-
tual social networks demonstrate that it is highly
scalable and robust. A direction for future work is
joint social and spatial processing on networks stored
in a distributed manner.

ACKNOWLEDGMENTS

This work was funded by research grant 14-C220-
SMU-004 from the Singapore Management University
Office of Research under the Singapore Ministry of
Education Academic Research Funding Tier 1 Grant,
and by grant HKU 715413E from Hong Kong RGC.
The authors would also like to thank Dr. Mohamed
Sarwat for providing datasets and suggestions.

REFERENCES

[1] M. Helft, “Bing taps facebook data for fight with google,”
http://bits.blogs.nytimes.com/2011/05/16/, May 2011.

[2] D. Kempe, J. M. Kleinberg, and É. Tardos, “Maximizing the
spread of influence through a social network,” in KDD, 2003,
pp. 137–146.

[3] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. C.
Reis, and B. A. Ribeiro-Neto, “Efficient search ranking in social
networks,” in CIKM, 2007, pp. 563–572.

[4] P. Yin, W.-C. Lee, and K. C. K. Lee, “On top-k social web
search,” in CIKM, 2010, pp. 1313–1316.

[5] D. Papadias, M. L. Yiu, N. Mamoulis, and Y. Tao, “Nearest
neighbor queries in network databases,” in Encyclopedia of GIS,
2008, pp. 772–776.

[6] M. Richardson and P. Domingos, “Mining knowledge-sharing
sites for viral marketing,” in KDD, 2002, pp. 61–70.

[7] K. Saito, R. Nakano, and M. Kimura, “Prediction of informa-
tion diffusion probabilities for independent cascade model,”
in KES (3), 2008, pp. 67–75.

[8] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Learning
influence probabilities in social networks,” in WSDM, 2010,
pp. 241–250.

[9] A. Goyal, F. Bonchi, and L. Lakshmanan, “A data-based
approach to social influence maximization,” PVLDB, vol. 5,
no. 1, pp. 73–84, 2011.

[10] M. E. J. Newman, “Clustering and preferential attachment in
growing networks,” in Physical Review Letters E, 2001.

[11] D. Liben-Nowell and J. M. Kleinberg, “The link-prediction
problem for social networks,” JASIST, vol. 58, no. 7, pp. 1019–
1031, 2007.

[12] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on
spatial databases,” in ICDE, 2008, pp. 1483–1484.

[13] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the
top-k most relevant spatial web objects,” PVLDB, vol. 2, no. 1,
pp. 337–348, 2009.

14

[14] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial
keyword querying,” in SIGMOD Conference, 2011, pp. 373–384.

[15] J. Lu, Y. Lu, and G. Cong, “Reverse spatial and textual k
nearest neighbor search,” in SIGMOD Conference, 2011, pp.
349–360.

[16] S. Scellato, A. Noulas, and C. Mascolo, “Exploiting place
features in link prediction on location-based social networks,”
in KDD, 2011, pp. 1046–1054.

[17] M. Ye, P. Yin, W.-C. Lee, and D. L. Lee, “Exploiting geograph-
ical influence for collaborative point-of-interest recommenda-
tion,” in SIGIR, 2011, pp. 325–334.

[18] N. Armenatzoglou, S. Papadopoulos, and D. Papadias, “A
general framework for geo-social query processing,” PVLDB,
vol. 6, no. 10, pp. 913–924, 2013.

[19] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mo-
bility: user movement in location-based social networks,” in
KDD, 2011, pp. 1082–1090.

[20] A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and
K. Wampler, “Buddy tracking - efficient proximity detection
among mobile friends,” Pervasive and Mobile Computing, vol. 3,
no. 5, pp. 489–511, 2007.

[21] G. Treu, T. Wilder, and A. Kupper, “Efcient proximity detection
among mobile targets with dead reckoning,” in MOBIWAC,
2006, pp. 75–83.

[22] M. L. Yiu, L. H. U, S. Saltenis, and K. Tzoumas, “Efficient prox-
imity detection among mobile users via self-tuning policies,”
PVLDB, vol. 3, no. 1, pp. 985–996, 2010.

[23] Z. Xu and H.-A. Jacobsen, “Adaptive location constraint pro-
cessing,” in SIGMOD Conference, 2007, pp. 581–592.

[24] J. Bao, M. F. Mokbel, and C.-Y. Chow, “Geofeed: A location
aware news feed system,” in ICDE, 2012, pp. 54–65.

[25] A. V. Goldberg and C. Harrelson, “Computing the shortest
path: A* search meets graph theory,” in SODA, 2005, pp. 156–
165.

[26] H.-P. Kriegel, P. Kröger, M. Renz, and T. Schmidt, “Hierarchical
graph embedding for efficient query processing in very large
traffic networks,” in SSDBM, 2008, pp. 150–167.

[27] J. Matousek, “On the distortion required for embedding finite
metric spaces into normed spaces,” Israel Journal of Mathemat-
ics, vol. 93, no. 1, pp. 333–344, 1996.

[28] M. Thorup and U. Zwick, “Approximate distance oracles,” J.
ACM, vol. 52, no. 1, pp. 1–24, 2005.

[29] A. D. Sarma, S. Gollapudi, M. Najork, and R. Panigrahy, “A
sketch-based distance oracle for web-scale graphs,” in WSDM,
2010, pp. 401–410.

[30] J. Cheng and J. X. Yu, “On-line exact shortest distance query
processing,” in EDBT, 2009, pp. 481–492.

[31] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k
query processing techniques in relational database systems,”
ACM Comput. Surv., vol. 40, no. 4, 2008.

[32] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algo-
rithms for middleware,” J. Comput. Syst. Sci., vol. 66, no. 4, pp.
614–656, 2003.

[33] N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k
queries over web-accessible databases,” in ICDE, 2002, pp.
369–380.

[34] X. Cao, G. Cong, and C. S. Jensen, “Retrieving top-k prestige-
based relevant spatial web objects,” PVLDB, vol. 3, no. 1, pp.
373–384, 2010.

[35] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Concep-
tual partitioning: An efficient method for continuous nearest
neighbor monitoring,” in SIGMOD Conference, 2005, pp. 634–
645.

[36] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch, “Main
memory evaluation of monitoring queries over moving ob-
jects,” Distributed and Parallel Databases, vol. 15, no. 2, pp. 117–
135, 2004.

[37] M. F. Mokbel, X. Xiong, and W. G. Aref, “Sina: Scalable incre-
mental processing of continuous queries in spatio-temporal
databases,” in SIGMOD Conference, 2004, pp. 623–634.

[38] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng, “New dynamic algo-
rithms for shortest path tree computation,” IEEE/ACM Trans.
Netw., vol. 8, no. 6, pp. 734–746, 2000.

[39] E. P. F. Chan and Y. Yang, “Shortest path tree computation in
dynamic graphs,” IEEE Trans. Computers, vol. 58, no. 4, pp.
541–557, 2009.

[40] M. Sarwat, J. Bao, A. Eldawy, J. J. Levandoski, A. Magdy, and
M. F. Mokbel, “Sindbad: a location-based social networking
system,” in SIGMOD Conference, 2012, pp. 649–652.

[41] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel,
“Lars: A location-aware recommender system,” in ICDE, 2012,
pp. 450–461.

[42] W. Chen, C. Wang, and Y. Wang, “Scalable influence max-
imization for prevalent viral marketing in large-scale social
networks,” in KDD, 2010, pp. 1029–1038.

[43] M. Levandowsky and D. Winter, “Distance between sets,”
Nature, vol. 234, pp. 34–35, 1971.

[44] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou,
“Shortest path and distance queries on road networks: An
experimental evaluation,” PVLDB, vol. 5, no. 5, pp. 406–417,
2012.

[45] J. Leskovec and C. Faloutsos, “Sampling from large graphs,”
in KDD, 2006, pp. 631–636.

Kyriakos Mouratidis is an Associate Pro-
fessor at Singapore Management University.
He received his BSc from the Aristotle Uni-
versity of Thessaloniki, Greece, and his PhD
from the Hong Kong University of Science
and Technology. His main research area is
spatial databases, with a focus on continuous
queries, road networks and spatial optimiza-
tion problems. He has also worked on pref-
erence queries, wireless broadcasting sys-
tems, and certain database privacy topics.

Jing Li received the BSc degree in computer
science and engineering from Nanjing Uni-
versity, and the PhD degree from the De-
partment of Computer Science, University of
Hong Kong. His research interests include
data privacy, query processing in spatio-
temporal databases, graph databases, and
data mining in textual data streams.

Yu Tang is a MPhil student at the Depart-
ment of Computer Science, The University
of Hong Kong. His research interests are
mainly in theoretical and system aspects of
databases and data management.

Nikos Mamoulis received a diploma in
Computer Engineering and Informatics from
the University of Patras, Greece, and a
PhD in Computer Science from the Hong
Kong University of Science and Technol-
ogy. He is currently an Associate Profes-
sor at the Department of Computer Science,
University of Hong Kong. He has been in-
volved in the organization of several work-
shops/conferences, and serves as associate
editor for IEEE TKDE and VLDB Journal.

