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Enhancing Access Privacy of Range Retrievals
over B+-Trees

HweeHwa Pang, Jilian Zhang and Kyriakos Mouratidis

Abstract—Users of databases that are hosted on shared
servers cannot take for granted that their queries will not
be disclosed to unauthorized parties. Even if the database is
encrypted, an adversary who is monitoring the I/O activity
on the server may still be able to infer some information
about a user query. For the particular case of a B+-tree that
has its nodes encrypted, we identify properties that enable the
ordering among the leaf nodes to be deduced. These properties
allow us to construct adversarial algorithms to recover the
B+-tree structure from the I/O traces generated by range
queries. Combining this structure with knowledge of the key
distribution (or the plaintext database itself), the adversary
can infer the selection range of user queries.

To counter the threat, we propose a privacy-enhancing
PB+-tree index which ensures that there is high uncer-
tainty about what data the user has worked on, even to a
knowledgeable adversary who has observed numerous query
executions. The core idea in PB+-tree is to conceal the order
of the leaf nodes in an encrypted B+-tree. In particular,
it groups the nodes of the tree into buckets, and employs
homomorphic encryption techniques to prevent the adversary
from pinpointing the exact nodes retrieved by range queries.
PB+-tree can be tuned to balance its privacy strength with
the computational and I/O overheads incurred. Moreover, it
can be adapted to protect access privacy in cases where the
attacker additionally knows a priori the access frequencies of
key values. Experiments demonstrate that PB+-tree effectively
impairs the adversary’s ability to recover the B+-tree struc-
ture and deduce the query ranges in all considered scenarios.

Index Terms—Access privacy, range retrieval, B+-tree.

I. INTRODUCTION

The outsourcing model [1] offers enhanced data avail-
ability and disaster protection, but raises severe concerns
about the privacy of data and users. Although the data can
be encrypted to disallow unauthorized access, encryption
does not prevent the service provider from monitoring the
I/O activities of user queries, thus inferring (and potentially
misusing) sensitive information of corporate or personal im-
portance. Similar concerns arise in a wide range of shared
computing environments, including common enterprise data
servers administered by curious DBAs [2].

To mitigate the concerns, we aim to support efficient
database querying in such an environment, while offering
a high degree of protection for the privacy of user queries
from the database server (and hence from the untrusted
service provider or any curious individual with access to
it). Ideally, this means that after observing any number
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Fig. 1. Inferring Key Values in an Encrypted B+-tree

of queries, the adversary should gain no information on
what data were retrieved. Cryptographic techniques that
achieve such privacy safeguards include Private Information
Retrieval (PIR) [3] and Oblivious RAM (ORAM) [4], [5].
However, both PIR and ORAM are known to impose very
heavy computation and communication overheads.

In this work, we aim for a weaker, yet practical, security
objective: We ensure that there is high uncertainty about
what data the user has worked on, even to a knowledgeable
adversary who has observed numerous query executions at
the server. Drawing from [6], we consider two classes of
such adversaries – the first possesses the encrypted database
DBE and knowledge of the data value distribution Dist;
the other has copies of both the encrypted database DBE

and the plaintext database DB itself. Assuming that the
adversary is unable to decipher DBE directly, the protection
offered to the user hinges on the difficulty in deducing the
mapping between DBE and Dist/DB.

We focus on privacy protection for range retrievals over
large datasets indexed by B+-trees [7]. In [6], Damiani et
al. proposed to build a B+-tree on the search key, and
encrypt its nodes (including their child pointers). As the
tree structure is not visible to the server, tree traversal has
to involve the user; specifically, the user has to decrypt the
node(s) in the current level to determine the child node(s)
to visit next, starting from the root. In this paper, we show
that Damiani’s encrypted B+-tree can be defeated if the
adversary monitors the data I/Os on the server; by tracking
the sequence of nodes retrieved during range selection
operations, the adversary can, over time, infer the position
of each node within the B+-tree. The exposed tree structure,
combined with knowledge of the data distribution or the
plaintext data, allows the adversary to deduce easily the
key range in any user query.

To illustrate, consider the encrypted B+-tree in Figure 1.
The disk blocks storing the internal and leaf nodes of
the B+-tree are encrypted. Furthermore, the records in the
underlying heap file are encrypted individually, as signified
by the asterisk following each record’s key value. As the
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bold red arrows indicate, the traversal path of a range
selection starts from the root node, goes down to the leaf
containing the left bound of the key range, then follows
the right sibling pointers, and culminates in the leaf node
containing the right bound of the range. The sequence of
node accesses is visible to the adversary.

Knowing how many records are in the underlying relation
(from the metadata or the size of the heap file), the
adversary can deduce the B+-tree height, and discount the
internal nodes at the front of the access sequence. The
remaining sequence gives away the ordering among the
accessed leaf nodes. After a sufficient number of range
queries, the adversary will eventually be able to sequence
all the leaf nodes. Moreover, the number of records re-
trieved from the heap file following a leaf node reveals the
number of key values within the node. With knowledge of
the key distribution and the total number of records, the
adversary can now deduce with high confidence the key
values covered by each leaf and, hence, the selection range
of the queries. For example, with uniform key distribution
between 1 and 11, the first leaf with 3 of the 11 entries is
likely to cover key values 1 to 3.
Contributions: To study the above threat systematically,
we propose a formalization for it, along with a quantitative
privacy measure. We also identify several inferences that
may be drawn from the node access patterns, and combine
them into a pair of node sequencing algorithms that an
adversary may use against different range retrieval methods.
With these algorithms, we show that the leaf nodes of an
encrypted B+-tree can be fully sequenced with a small
number of query traces and negligible computation effort.

In order to deter adversaries from deducing the key
values retrieved by users, we propose a privacy-enhancing
B+-tree structure, called PB+-tree. The crux of our method
is to prevent the adversary from sequencing the leaves
in the encrypted B+-tree; we call this sequence privacy.
PB+-tree groups the encrypted nodes of the B+-tree into
buckets. Using homomorphic encryption techniques [8],
PB+-tree is able to extract any selected node from a bucket
without the server knowing the exact node being read. This
obstructs the sequencing of the encrypted nodes. As a side
contribution, we extend the PB+-tree approach to cases
where the adversary additionally knows the expected access
frequencies of the search key values. Experiments show
that PB+-tree effectively protects sequence privacy, at the
expense of a roughly 15% processing overhead compared
to an unprotected B+-tree. Finally, PB+-tree is tunable – a
larger bucket size enhances security, at the cost of higher
I/O and computation overheads on the server.

II. RELATED WORK

Securing data in storage: The objective here is to
prevent the adversary, commonly the untrusted server, from
inferring the mapping from the protected database to its
plaintext. This category includes using encryption functions
(privacy homomorphisms) to allow for arithmetic opera-
tions on protected data [9], [10], excluding however the
comparison operation which is central to range selections.

Song et al. [11] describe symmetric key methods for key-
word search over encrypted document collections, followed
by [12] which provides stronger security definitions and an
efficient construction. The techniques are applicable only
to exact match (keyword) search.

Boneh et al. considered the problem of public key en-
cryption with keyword search in [13]. A semantically secure
solution is given in [14]. [15] proposes two deterministic
encryption schemes with provable privacy. The privacy
safeguard is at the level of individual encrypted records.
When organized into a B+-tree, the ordering among the
encrypted records still reveals information on the query
ranges, along the threat outlined in Section I.

Bouganim et al. [16] pushes data encryption, query eval-
uation and access management to a smartcard acting as me-
diator between the user and database server. This technique
addresses data confidentiality (instead of query privacy),
is unsuitable for range queries, and imposes considerable
delay due to hardware limitations of the smartcard.

In OPES scheme [17], a plaintext is converted to ci-
phertext through order-preserving mapping functions. This
scheme is secure against ciphertext-only attacks, where the
adversary possesses no information beyond the protected
database. As explicitly mentioned in [17], OPES (like any
order-preserving scheme) fails when the data distribution or
the plaintext data are known, as it is then straightforward to
associate an encrypted record with its plaintext counterpart.

In [18], Hacigumus et al. proposed to provide the DBMS
with hash values of the search keys to facilitate query
processing. Two types of hash functions were considered.
The first type (order-preserving functions) suffers from
the same limitations as OPES. The second (randomized
hashing) requires the user to enumerate for the server the
hash partitions that overlap with the query range, and post-
process them to retrieve the result; in other words, the
burden of range selection is pushed to the user.

To efficiently support range queries over large datasets,
it is necessary to combine encryption with a tree-index.
[6] proposes to store the nodes of a B+-tree as encrypted
blocks. In processing a range selection, the user repeatedly
retrieves a node, starting with the root, and decrypts it
to identify the child node to traverse to. Upon reaching
the target leaf node, he then follows the sibling pointers
in the leaf level. Another scheme in [19] ensures that an
encrypted tree could have resulted from many different
plaintext trees. These schemes are not designed against
adversaries who may observe the retrieval operations on
the protected data. As we show in Section IV-A, the leaf
nodes may be sequenced by tracing the block numbers in
the I/O requests emanating from range selection operations.
If the adversary additionally knows the value distribution
of the sort key or has a copy of the plaintext data, he can
deduce the query selection conditions.
Securing data in use: Private Information Retrieval (PIR)
(e.g., [3] and [20]) is a well-studied access privacy mech-
anism that ensures the server cannot identify the retrieved
data. Existing PIR schemes impose very high computation
and/or communication overheads – either linear or poly-
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Symbol Interpretation
n # leaf nodes in the B+-tree or PB+-tree
Ni i-th leaf node in the B+-tree or PB+-tree
|N | Node size of the B+-tree or PB+-tree
b # nodes in each bucket for the PB+-tree

Nij Leaf node stored in j-th slot of bucket i
SN (SB) An access pattern of node (bucket) identifiers

E Probabilistic, homomorphic encryption function

TABLE I
NOTATION

logarithmic in the database size [21]. Thus, even though
PIR techniques may be extended to indexed datasets [22],
they are not appropriate for our purpose of supporting
efficient query processing. The same holds for oblivious
RAM (ORAM) approaches [4], [20], [5] for similar reasons.

To protect tree indices against analysis of traversal pat-
terns, [23] proposes to retrieve each tree node within a
redundancy set that also contains m− 1 randomly selected
nodes, one of which is empty. After reading the target node,
the user migrates it to the empty node, re-encrypts all the
nodes in the redundancy set, and writes them back to disk.
Thus, multiple accesses of a node cannot be discovered by
intersecting the redundancy sets. Detailed node migration
procedures are given in [24]. In retrieving a node, the
mechanism incurs 2m random I/Os in reading and writing
the redundancy set, and 2m times higher communication
cost than necessary in sending it back and forth to the user.
That is very expensive, especially for m=8 as suggested in
[23]. Also, only point queries were investigated.

III. PROBLEM FORMULATION

This section begins by formulating our system and threat
models. The models allow for an adversary who may
attempt to deduce the entire leaf node sequence of a
protected B+-tree, in order to decipher the selection range
of every query that utilizes the index. The notion of leaf
sequence privacy associated with a B+-tree is introduced
in Section III-B. Alternatively, the adversary may attempt
to deduce the selection ranges of a specific group of user
queries. The privacy notion for this query perspective is
addressed in Section III-C. As we will show, where the
index is composed of many leaf nodes and there is a large
number of user queries, the query privacy notion converges
with the sequence privacy notion. For this reason, we focus
on the latter in this paper. Table I presents the notation used
in this and the following sections.

A. System and Threat Models

Our system comprises two parties – the user and the
database server. The user creates the encrypted database and
runs queries against it. He also holds the public-private keys
for encrypting and decrypting the data. The server provides
the resources for running DBMS functions such as data
storage and query processing. The server may be shared
by other users or controlled by system administrators.

We assume that the adversary has full access to the
server including its disk content (but not the data decryption
key), and is able to observe the I/O requests generated by
user queries. This may be done in several ways, such as

intercepting I/O requests with a file system filter driver [25],
or the storage may be hosted on an untrusted third-party
server. The adversary is able to isolate the I/O requests that
emanate from the same query, for example by monitoring
the server under light load conditions when there is only
one active query. To simplify the discussion, henceforth we
equate the server with the adversary. The risks posed by the
adversary depend on his knowledge level. A weak adversary
may have access only to the encrypted database. In this
work, however, we consider two types of knowledgeable
adversaries, as identified by Damiani et al. in [6].

The first type of adversary possesses the distribution of
the search key (Dist), not its actual values. The adversary
also has a copy of the encrypted database DBE , but not the
mapping between Dist and DBE . Dist may be obtained, for
example, from published statistics and anonymized tables
(in microdata publishing). The second type of adversary has
copies of both the plaintext database DB and the encrypted
database DBE (but not the mapping between them). This
could occur when the database is shared, and the user
creates an encrypted copy for private querying.

B. Leaf Sequence Privacy

By observing the traces of range selections on the en-
crypted database and its index, a knowledgeable adversary
may sequence the leaves of the latter and, in turn, deduce
with high confidence the selection conditions of all queries
(that utilize the index) as explained in the Introduction.
Privacy Objective: We aim to support efficient processing
of range selections over a B+-tree on the encrypted data-
base, while preventing adversaries from ordering its leaf
nodes with respect to the search key. Appendix A explains
the inability of naı̈ve approaches (such as purposely inject-
ing empty index entries) to achieve our objective.

The granularity of our privacy protection for the index
is at the node level (instead of data entries within nodes),
because both the encrypted B+-tree [6] and our PB+-tree
approach encrypt entire B+-tree nodes. Furthermore, we
center our study around the leaf nodes of the tree, because
the leaf level provides the finest observable data resolution.
Observation 1 elaborates this.

Observation 1: Let NI denote the set of (logically)
consecutive nodes in an internal level of the B+-tree, that
together cover the key range of a query. Let NL denote
the set of tree leaves that cover the same query range.
The ordering among the nodes in NI reveals no more
information on the query range than the ordering of the
nodes in NL.
Rationale: By construction of the B+-tree, the combined
key scope of NI is a superset of the combined key scope
of NL. This is because the first and last nodes in NI may
have descendant leaves that are beyond NL. Therefore, the
information revealed by ordering NL is at least as detailed
as that disclosed by NI . �

Based on Observation 1, we focus on the leaf level of
the B+-tree to define sequence protection.

Definition 1 (Sequence Privacy): Let Pleaves be the set
of possible permutations of the leaf nodes in the B+-tree,
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and let Nleaves be a random variable denoting the correct
sequence of these nodes. A B+-tree provides sequence
privacy if for all p ∈ Pleaves, and for any set of observed
access patterns A, it holds that

Pr[Nleaves = p | A] = Pr[Nleaves = p] (1)

In other words, the access patterns do not alter the belief
in Nleaves = p, thus the adversary gains no advantage
in ordering the leaf nodes. This semantic-based privacy
definition is analogous to the indistinguishability notion in
PIR [3] and Oblivious RAM [4].

Following Definition 1, the access patterns of a B+-
tree cause a privacy leak determined by the extent that
Equality 1 is violated. This gives rise to our (sequence)
privacy metric.

Definition 2 (Privacy Leak): Using the notation in Def-
inition 1, the privacy leak induced by A is quantified as

PL = max
p∈Pleaves

|Pr[Nleaves = p | A]− Pr[Nleaves = p]|
(2)

Against the attack of sequencing the leaf nodes of the
encrypted B+-tree, intuitively we derive privacy protection
from having many possible node sequences that are con-
sistent with the observed access patterns. Suppose that the
B+-tree contains n leaf nodes and |Pleaves| = n!. Initially,
every encrypted leaf node is equally likely to correspond
to any of the n positions, so Pr[Nleaves = p] = 1/n! for
all p ∈ Pleaves. As the adversary observes the retrieval
sequences A, he can narrow down the possible positions
of the encrypted nodes, thus reducing the belief in certain
p ∈ Pleaves to zero. For example, a node that appears fifth
in a retrieval sequence may be any of leaf nodes five to n,
so the number of possible positions for the node is n− 4.
If the adversary further observes that node to precede 9
other nodes, then the number of possible positions narrows
to n− 13. Suppose that eventually only χ possible p’s are
consistent with A, and that they are equally probable, i.e.,
the adversary has no additional information to consider
one more likely than the others. In this case, we have
Pr[Nleaves = p|A] = 1/χ for those p’s, and

PL = max(1/χ− 1/n!, 1/n!) (3)

C. Query Privacy

Instead of sequencing all the leaf nodes in the protected
B+-tree, the adversary may attempt to deduce the index key
values in the B+-tree nodes accessed by selected queries.

Suppose that the leaf nodes are numbered in sequence
from 1 to n. In the simplest scenario, the adversary is
interested in a solitary query which utilized one leaf node.
The problem of guessing the key values covered by that
leaf node is equivalent to guessing its node number. The
adversary may pick randomly one of the n node numbers,
or he may deduce it from the position of the node in one
of the χ permutations (where χ is the number of leaf node
permutations that are consistent with the access patterns).
Hence the probability of success is max(1/n, 1/χ).

Generalizing, the adversary may be interested in x (not
necessarily adjacent) leaf nodes that are accessed in one

or more user queries, for some 1 ≤ x ≤ n. Now,
the adversary’s chance of randomly guessing the x node
numbers is (n−x+1)!/n!, or he may observe the positions
of the nodes in one of the χ permutations. Overall, his
probability of success is max((n− x+ 1)!/n!, 1/χ).

For small x values, the adversary’s success probability
is determined by the first factor (n − x + 1)!/n! and can
be calculated easily. For large n and x values, the success
probability converges to 1/χ. From Equation 3, the PL
associated with sequencing the leaf nodes converges to 1/χ
too. This is intuitive – the difficulty of deducing correctly a
large number of leaf nodes is expected to approach that of
correctly numbering all the leaf nodes (i.e., sequencing the
leaf nodes). Therefore, we focus on the sequence privacy
measure PL, with the understanding that it also measures
the query privacy protection at large n and x values.

IV. RANGE RETRIEVAL WITH ENCRYPTED B+-TREE

The B+-tree is the standard index for range retrieval.
In this section, we design concrete algorithms for the
adversary to exploit the vulnerabilities of an encrypted B+-
tree [6] arising from the standard traversal strategy, as well
as from an alternative query processing method that makes
privacy breach tougher (but still achievable).

A. Inference from Sibling Pointer Traversal

With an encrypted B+-tree, the server cannot decipher
the nodes that are read by a query, but it can track the leaf
nodes retrieved through their sibling pointers, as explained
in the Introduction. From overlapping leaf node sequences
[Nα, Nα+1, . . . , Nβ ] and [Nβ−γ , . . . , Nβ , . . . , Nδ], the ad-
versary can stitch together a longer sequence [Nα, . . . ,
Nβ−γ , . . . , Nβ , . . . , Nδ], where 1 ≤ α < β − γ ≤ β < δ.
When enough range selections have been issued to connect
all the leaf nodes, they can be sequenced completely. By
further corroborating with the data distribution (Dist) or
plaintext database (DB), the adversary may estimate the key
ranges of posed queries. However, even partial sequences
derived in the interim provide the adversary with ordering
information, albeit incomplete.

Suppose that the access sequences allow us to stitch
together ρ partial sequences covering t of the n leaf nodes;
in other words, there are n−t leaf nodes that do not belong
to any partial sequence. There are (n− t +ρ)! permutations
of the partial sequences and unsequenced nodes, thus

PL = max

(
1

(n− t + ρ)!
− 1

n!
,

1

n!

)
(4)

The increase in PL for this method is proportional to
the query selection range and to the number of observed
queries, topping off at 1−1/n! quickly (signifying complete
disclosure) as shown in Section VII.

B. Inference from Subtree Retrieval

Instead of traversing sibling pointers, an alternative is
to fetch the leaf nodes within the query range through
their covering subtree, as illustrated in Figure 2. Starting
from the root node, the modified procedure retrieves all
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Plaintext:   x1 x2 x3 … xi … xd-1 xd

…N1 N3N2 NnNn-1

Fig. 2. Range Query with Subtree Retrieval in B+-tree

the child nodes that cover the query range; this is repeated
for each level on the way down to the leaf nodes. In the
process, all the required nodes in each level are sorted
by their physical addresses, and requested together. This
modified B+-tree traversal mechanism is intended to mask
the logical ordering among the nodes within each level.
However, an adversary can still order the leaf nodes based
on the observation that adjoining leaf nodes should co-
occur more frequently in the range retrieval operations,
relative to non-adjoining ones. For example, the retrieval
operations that contain both N1 and N2 cannot be fewer
than those containing N1 and N3. Section IV-B1 shows
how to sequence the leaf nodes from their co-occurrence
patterns in range retrievals.

1) Sequencing Algorithm: We first highlight a number
of defining properties in a logical sequence of leaf nodes;
justification/examples for these properties are given in our
technical report [26]. Based on these properties, we develop
an algorithm to deduce the node ordering from I/O requests
observed at the server for selections that involve at least
two successive leaf nodes. As in Section IV-A, we assume
that the adversary can prune away the leading requests for
internal B+-tree nodes. Thus, each range retrieval produces
an access pattern of leaf node addresses.

Our algorithm uses heavily the following notation:

• V denotes the set of leaf nodes in the B+-tree.
• N1, . . ., Nn is the logical sequence of B+-tree leaf nodes.
• A = {aij} denotes the association matrix of the leaf

nodes, such that aij is the number of range retrievals in
which Ni and Nj co-occur. A is symmetric, i.e., aij =
aji ∀1 ≤ i, j ≤ n.

• C = {ci} denotes the vector of access counts for the
leaf nodes, i.e., ci is the number of range retrievals that
contain Ni.

• S denotes a (partial) sequence of leaf nodes. S.left and
S.right refer to the leftmost and rightmost nodes in S,
respectively.

The following observations lay the foundation for a
complete algorithm (presented afterwards) for sequencing
when subtree retrieval is employed.

Observation 2: In a logical sequence of leaf nodes, ∀1 ≤
i < j < k ≤ n, aij ≥ aik and ajk ≥ aik.

Observation 3: In a logical sequence of leaf nodes, ∀1 ≤
i ≤ n such that ai,i+1 = ai,i+2, we have ci+1 ≤ ci+2.

Definition 3: Two nodes Ni and Nj are indistinguish-
able if there is no range retrieval involving one of them but
not the other; otherwise, Ni and Nj are distinguishable.

Observation 4: Two nodes Ni and Nj are indistinguish-

able if and only if ci = cj = aij .
Pre-processing: We first aggregate the indistinguishable
nodes into hypernodes. We sort by ci the nodes in C and
in A. Following that, we identify pairs of indistinguishable
nodes Ni and Nj according to Observation 4, and replace
them1 with a hypernode NH

i in C and A. This leaves us
with only distinguishable nodes/hyper-nodes, which exhibit
the following key properties that facilitate sequencing.

Definition 4: Nk is a differentiator for a pair of distin-
guishable nodes Ni and Nj if aik 6= ajk.

Observation 5: Suppose that the leaf nodes are se-
quenced correctly. Consider Ni, Ni+1 and Ni+2. If Ni+2

is not a differentiator for Ni and Ni+1, then @ any differ-
entiator Nj for Ni and Ni+1 such that i+ 2 < j ≤ n.

Observation 6: Suppose that the leaf nodes are se-
quenced correctly. Two nodes Ni and Ni+1 are distinguish-
able only if at least one of their immediate left and right
neighbors is a differentiator for them, i.e., ai−1,i > ai−1,i+1

or ai,i+2 < ai+1,i+2.
Observation 7: Consider pairwise distinguishable leaf

nodes Ni, Ni+1, Ni+2 that are sequenced correctly, where
Ni is not a differentiator for Ni+1 and Ni+2. The access
counts must satisfy the condition ci+1 < ci+2.

Definition 5: The direction of a node Nk with respect
to a partial sequence S = 〈Ni, Ni+1, . . . , Ni+j〉 is deter-
minable if there is evidence to place Nk definitely to the
left or right of S.

Observation 8: The direction of a node Nk with respect
to a partial sequence S = 〈Ni, Ni+1, . . . , Ni+j〉 is deter-
minable if

(a) al,k < ai+j,k for some i ≤ l < i + j, in which case
Nk falls to the right of S; or

(b) al,k < ai,k for some i < l ≤ i+ j, in which case Nk
falls to the left of S; or

(c) ai,k = . . . = ai+j,k, and ∃Nl that is determinable with
respect to S and max(ai,l, ai+j,l) < ai,k; in this case
if max(ai,l, ai+j,l) ≤ ak,l then Nk falls on the same
side of S as Nl, otherwise Nk falls on the opposite
side of S from Nl.

Observation 9: Given a set V of distinguishable nodes
and hypernodes, and a partial sequence S, a necessary
condition for sequencing V is that there exists at least one
node Nk ∈ V such that the direction of Nk relative to S
is determinable.

Observation 10: Two partial sequences S1 and S2 are
ordered correctly as S1S2 if and only if at least one of the
following conditions is satisfied:

(a) aS1.right,S2.left > aS1.right,S2.right; or
aS1.right,S2.left = aS1.right,S2.right and there
exists some node Nk not part of S1 and S2 such that
aS2.right,k > aS2.left,k ≥ aS1.right,k ≥ aS1.left,k.

(b) aS1.left,S2.left < aS1.right,S2.left; or
aS1.left,S2.left =
aS1.right,S2.left and there exists some node

1Indistinguishable nodes cause uncertainty in the deduced node se-
quence, and are accounted for in the PL measure in Section IV-B2.
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Algorithm 1 Sequence the leaf nodes of an encrypted B+-
tree from their co-occurrences in range selections

1: Group the indistinguishable nodes into hypernodes.
2: Set V to contain the distinguishable leaf nodes and hypern-

odes.
3: S = SequenceNodes(V ).
4: if S covers all nodes in V then output complete sequence S.
5: else output partial sequence S.

Function: SequenceNodes(V )
6: Set S = 〈Ni, Nj〉 where the pair Ni, Nj has the largest aij

in A. Resolve ties arbitrarily.
7: GrowSequence(S, V ).
8: Return S.

Function: GrowSequence(S, V )
9: Initialize U = ∅ (for ambiguous nodes).

10: Let R = {Nk|max(aS.left,k, aS.right,k) > 0 and (∀Nl ∈
V − S − {Nk},max(aS.left,k, aS.right,k) ≥
max(aS.left,l, aS.right,l))}.

11: while R is not empty do
12: V = V −R.
13: U = U ∪ {Nk|Nk ∈ R, aS.left,k = aS.right,k}.
14: Rright = {Nk|Nk ∈ R, aS.left,k < aS.right,k}.
15: Rleft = {Nk|Nk ∈ R, aS.left,k > aS.right,k}.
16: if Rleft and Rright are both empty then return Fail.
17: if Rright is not empty then
18: Rright = Rright ∪ {Nk|Nk ∈ U, aS.right,l ≤

aS.right,k and akl ≥ aS.right,l for any Nl ∈ Rright}.
19: Rleft = Rleft ∪ {Nk|Nk ∈ U, aS.right,l ≤

aS.right,k and akl < aS.right,l for any Nl ∈ Rright}.
20: U = U − (Rleft ∪Rright).
21: Repeat lines 17–20 for Rleft.
22: if Rright is not empty then ExpandRight(Rright, S, V ).
23: if Rleft is not empty then ExpandLeft(Rleft, S, V ).
24: Let R = {Nk|max(aS.left,k, aS.right,k) >

0 and (∀Nl ∈ V − S − {Nk},max(aS.left,k, aS.right,k) ≥
max(aS.left,l, aS.right,l))}.

25: Return Success.

Function: ExpandRight(Rright, S, V )
26: while Rright is not empty do
27: T = {Ni|Ni ∈ Rright, ∀Nj ∈ Rright, aS.right,i ≥

aS.right,j}.
28: Rright = Rright − T .
29: if |T | = 1 then
30: Remove Ni from T , append it to the right of S.
31: else if |T | = 2 then
32: Suppose T = {Ni, Nj} and ci < cj .
33: Remove Ni from T , append it to the right of S.
34: Remove Nj from T , append it to the right of S.
35: else (|T | > 2)
36: Sright = SequenceNodes(T ).
37: if Sright contains all the nodes in T then
38: Append Sright to the right of S.
39: //else, return to GrowSequence(.)

Nk not part of S1 and S2 such that
aS1.left,k > aS1.right,k ≥ aS2.left,k ≥ aS2.right,k.

Sequencing: Algorithm 1 exploits the above observations
to sequence the leaf nodes of the B+-tree, using the access
count vector C and the association matrix A formed from
range retrieval patterns. It begins by forming a partial
sequence S from the pair of nodes that have the largest
co-occurrence count (line 6), which guarantees that they
are immediate neighbors of each other; ties are broken
arbitrarily except for a special case discussed below. The

partial sequence is then extended by iteratively adding the
immediate neighbor of either edge.

We extend the sequence as follows. We place into set R
the (one or more) unconnected nodes that have the largest
co-occurrence count with either edge of S (line 10). If there
is no such node, the algorithm exits. Otherwise, the nodes
in R are divided into three subsets: (i) U contains those
for which there is still insufficient information to be placed
to the left or right of S, (ii) Rright contains nodes that
lie to the right of S based on Observation 8(a), and (iii)
Rleft contains nodes that lie to the left of S according
to Observation 8(b). The nodes in Rright may enable us
to move some nodes from U to Rleft and Rright, using
Observation 8(c) (lines 17–20); Rleft is also used for this
purpose (line 21). With that, we add the nodes in Rleft and
Rright to the left side and right side of S.

The procedure for extending S with Rright is also given
in Algorithm 1; the process for Rleft is symmetric and thus
omitted. We move into set T the nodes from Rright that
have the highest co-occurrence count with the right edge of
S (lines 27–28). If there is just one such node, we simply
add it to the right edge of S (lines 29–30). If there are
two nodes in T with the same co-occurrence count with
the right edge of S, the relative order between them is
determined by their access counts, based on Observation 7
(lines 31–34). If T contains more than two nodes, lines
35–38 recursively invoke function SequenceNodes(.) to
sequence T into Sright, and stitch Sright to the right of S
(abiding by the conditions in Observation 10, which may
require flipping Sright around).

Where the observed range retrievals are insufficient to
achieve total ordering among the leaf nodes, Algorithm 1
can find multiple maximal partial sequences. The idea is to
repeatedly execute the algorithm with the seed S formed by
the pair of nodes in the unsequenced pool with the highest
co-occurrence count.

The above co-occurrence inference applies to any pri-
vacy mechanism that horizontally partitions the records
according to key values and subsequently encrypts them
(e.g., [18]). Access patterns stemming from range retrievals
would again contain logically adjoining partitions, hence
revealing their relative ordering.
Discussion on Algorithm 1: The sequencing begins in
line 6 with the pair of nodes Ni, Nj with the largest co-
occurrence count aij . If there exist two (or more) such pairs
involving distinct nodes Ni, Nj , Nk, Nl such that aij =
akl, we may pick any pair. The case, however, where there
is a logical node sequence Ni, Ni+1, Ni+2 with ai,i+1 =
ai+1,i+2 warrants closer examination to resolve the tie:

• Prior to this point, all the indistinguishable nodes have
been replaced by hypernodes in line 1 of the algorithm.
Hence Ni, Ni+1, Ni+2 must be distinguishable nodes or
hypernodes. By Observation 4, the node access counts
must satisfy ci 6= ci+1 and ci+1 6= ci+2.
• Since we are dealing with range selection operations on

successive logical nodes, it is not possible for a range
query to cover Ni and Ni+2 while skipping Ni+1; there-
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fore the node access count ci+1 = ai,i+1 = ai+1,i+2,
implying that (a) ai,i+2 = ai,i+1 = ai+1,i+2, and (b)
ci ≥ ci+1 and ci+2 ≥ ci+1.

Combining the two points above, we conclude that ci >
ci+1 and ci+2 > ci+1. Hence, amongst the three nodes
being considered, the one with the lowest node access count
is Ni+1, the node that is logically in between the other
two. We may therefore begin with any one of the two pairs
involving Ni+1, leading to pairing Ni and Ni+1, or pairing
Ni+1 and Ni+2.

2) Privacy Analysis: We begin by aggregating the in-
distinguishable leaf nodes into hypernodes NH

1 , NH
2 , . . .,

NH
h , with |NH

i | indistinguishable nodes constituting hy-
pernode NH

i . The number of distinguishable nodes and
hypernodes that are input to the sequencing algorithm is
n−

∑h
i=1 |NH

i |+ h. Suppose that the algorithm outputs ρ
partial sequences (each with two or more nodes) that to-
gether cover t nodes. There are (n−

∑h
i=1 |NH

i |+h−t+ρ)!
permutations of the partial sequences and unsequenced
nodes/hypernodes. For a given permutation, either side of
each partial sequence may precede the other in the overall
node ordering; moreover, there are |NH

i |! permutations of
the nodes within each hypernode NH

i . Therefore there are
2ρ ·

∏h
i=1 |NH

i |! · (n−
∑h
i=1 |NH

i |+ h− t + ρ)! possible
sequences of the leaf nodes, leading to

PL = max

(
1

n!
,

1

2ρ
∏h
i=1 |NH

i |!(n−
∑h
i=1 |NH

i |+ h− t + ρ)!
− 1

n!

)
(5)

The maximum PL here is 1/2− 1/n!, because even with
the nodes completely sequenced, the co-occurrence patterns
provide insufficient information to pin the edges of the node
sequence to the lower/upper end of the key range.

As we show in the experiments, query processing with
subtree retrieval in the encrypted B+-tree is indeed more
secure than with plain sibling pointer traversal. However,
the PL of the former still rises rapidly. This motivates our
PB+-tree method presented next.

V. PB+-TREE: COUNTERING NODE SEQUENCING

In this section, we describe our privacy-enhancing B+-
tree (PB+-tree). Following an overview of the method
in Section V-A, Section V-B elaborates on the storage
organization and retrieval techniques. Section V-C then an-
alyzes how an adversary may attack the PB+-tree. Finally,
Section V-D discusses updates on the PB+-tree, and how
its security strength could be enhanced through periodic
re-organization.

A general comment about the attack method against
PB+-tree, as well as the adversarial algorithms in Section
IV, is that they are only some of the possible procedures
a knowledgeable adversary could follow to sequence the
index nodes. While we cannot eliminate the possibility that
more effective attack algorithms exist, we need to equip the
adversary with specific techniques (the most sophisticated
we could devise) in order to evaluate the strength of each
privacy protection scheme.

Buckets:

…N1 N3N2 NnNn-1

…

Fig. 3. Storage of B+-tree Nodes in Encrypted Buckets

A. Overview of PB+-tree

The PB+-tree has the same structure as the standard
B+-tree. The records of the base relation are stored in
a separate unsorted heap file; i.e., the PB+-tree is an
unclustered index. Note that the index cannot be clustered;
otherwise, the key value of a record can be deduced trivially
from its offset within the base relation file, since the
adversary knows the key distribution (from Dist or DB).
This restriction applies to the encrypted B+-tree too.

As in [6], we encrypt the content (including the key
values and child pointers) of every PB+-tree node and each
data record, so that the adversary cannot see the key values
looked up by the user. To enhance access privacy, however,
we need to incorporate additional security mechanisms.

To deter the adversary from tracking the traversed nodes
in range retrievals (as in Section IV-B), we do not store
them individually. Instead, the nodes in each index level are
grouped randomly into buckets, where each bucket occupies
a disk block2. In extracting a required node from its host
bucket, we employ homomorphic encryption techniques so
that, to an adversary, all the nodes within the bucket appear
equally likely to be the extraction target. Consequently, the
encrypted nodes that make up a range retrieval cannot be
tracked with certainty.

Just like the PB+-tree nodes, the encrypted records in the
underlying heap file are grouped into buckets. The retrieval
of a record from its host bucket also involves homomorphic
encryption techniques. Since the same security mechanisms
apply to the PB+-tree nodes and records, we shall not
discuss record protection separately.

Figure 3 illustrates the assignment of the PB+-tree leaf
nodes to buckets. Suppose that the first bucket holds N1

and N9, the second bucket holds N3 and Nn−1, and the last
bucket holds N2 and N81. When a range retrieval operation
requests for N1 and N2, the adversary is only aware that
one node is accessed from the first bucket, and another from
the last bucket. Without more information, to an adversary
the pair of accessed nodes is equally likely to be {N1, N2},
{N1, N81}, {N9, N2} or {N9, N81}.

We follow the subtree retrieval strategy in Section IV-B.
Starting with the root node, all the child nodes covering the
query range are sorted by bucket address and requested to-
gether. This process is repeated all the way down the PB+-
tree to retrieve the matching records. Since the requests
for all the required nodes in each level of the PB+-tree
arrive at the server at once, multiple nodes that reside in

2Unlike the encrypted B+-tree where each node takes up a disk page,
here multiple nodes (with smaller capacity) are placed in each bucket/disk
block. The rationale behind this design choice is explained in Section V-B.
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the same bucket can be fetched from disk with a single I/O
operation. Likewise, one I/O suffices to fetch the encrypted
records hosted in the same bucket. This is an important
optimization to reduce the I/O cost of the PB+-tree, which
we confirm through experiments in Section VII.

B. Node Placement and Retrieval in PB+-tree

Suppose that b (> 1) nodes from the same PB+-tree level
are assigned to each bucket, and that each node has a size of
|N | “fragments”. Conceptually, a bucket contains b × |N |
encrypted fragments E(dik), where dik denotes the k-th
fragment of the i-th node in the bucket. Moreover, E is a
probabilistic, homomorphic encryption function like BGN
[8] that allows a ciphertext to undergo a multiplication,
followed by an arbitrary number of additions3. Each node
address is an 〈addr, i〉-pair where addr is the disk address
of the host bucket and i is the node’s offset within the
bucket. To retrieve the i-th node in a bucket, the user
sends to the server the bucket’s address and a vector q =
〈q1, . . . , qb〉 in which qi = E(1) and qj = E(0) ∀j 6= i;
the various qj’s are distinct because E is a probabilistic
encryption. After fetching the bucket, the server composes
the encrypted content of the target node by computing∑b
j=1 qj × E(djk) = E(dik), for 1 ≤ k ≤ |N |.
We set the bucket size equal to the physical block size

of the disk, thus reducing the fanout of the PB+-tree by a
factor of b. In the worst case, this increases the height of the
tree by one (because meaningful values of b, expected to
be no more than 10 or 20, are much smaller than the fanout
which is typically in the order of hundreds), and may incur
an I/O overhead compared to the encrypted B+-tree. We
prefer this alternative over allocating b physical blocks per
bucket, as there is no guarantee that those blocks will be
placed contiguously on the disk, and fetching a node could
lead to multiple random I/Os.

In view that the child pointers in the PB+-tree are
encrypted, each level of the PB+-tree entails one round of
user-server interactions, since the user needs to decrypt the
node(s) in the current level to determine the child node(s)
to traverse to. The latency caused by the interactions is
tolerable if the network connection between the user and
server is fast, as assumed in Damiani et al.’s model in
[6]; this is our default setting as well. In case of slower
networks, one option is to embed into the server a secure
co-processor [27] that is controlled by the user. In traversing
down the PB+-tree, the server interactions with the secure
co-processor (which acts as a trusted agent for the user) go
over the system bus, which is much faster than the network.
However, co-processors typically have limited computing
resources, and their programming is cumbersome.

C. Vulnerability Analysis of the PB+-tree

Suppose that the adversary has the history of I/O requests
issued by range retrieval operations that together cover
all the leaf nodes of the PB+-tree. Since the retrieval

3In applying BGN, we use 1024 bits for the key, and configure the
setting to allow for messages of 512 bits. Thus our PB+-tree nodes and
records are encrypted and extracted in fragments of 512 bits.

technique of the PB+-tree masks the exact node addresses,
each access pattern obtained by the adversary is a set of
addresses of the buckets that hold the required leaf nodes.
Before an access pattern can be useful for sequencing
the leaf nodes, the adversary first has to deduce the node
address that underlies each bucket access, in order to derive
the corresponding access pattern of leaf node addresses.
To facilitate the deduction, the adversary may exploit the
correlation between bucket access patterns that involve
common leaf nodes, as explained below.

When a bucket appears in two bucket access patterns,
it could be because they retrieve the same node, or they
retrieve different nodes that just happen to reside in the
same bucket. Intuitively, if the patterns have two buckets
in common, the overlap is more likely to be indeed due to
identical nodes accessed, and so on. Interestingly, when the
number of common buckets exceeds a limit, the probability
that part of the bucket overlap is coincidental increases.
Below, we study the probability that a bucket overlap is
indeed due to identical nodes retrieved. We utilize this
analysis to process first those overlaps that are highly likely
to stem from identical nodes, and use them to reinforce the
confidence about other overlaps that we are less certain
about. The following formulation quantifies the confidence
in bucket overlaps of different lengths.

Suppose the adversary observes two range retrieval op-
erations that produce (leaf-level) bucket access patterns
SBα and SBβ , with x common buckets between them. The
adversary may conjecture that the common buckets stem
from sub-patterns SNα and SNβ within the respective range
operations that span the same x successive leaf nodes. By
Bayes’ rule, the likelihood of this conjecture is

Prob(|SNα ∩ SNβ | = x
∣∣ |SBα ∩ SBβ | = x) =(

Prob(|SBα ∩ SBβ | = x
∣∣ |SNα ∩ SNβ | = x)×

Prob(|SNα ∩ SNβ | = x)
)
/

(

x∑
i=0

Prob(|SBα ∩ SBβ | = x
∣∣ |SNα ∩ SNβ | = i)×

Prob(|SNα ∩ SNβ | = i)
)

Since each of SNα and SNβ comprises x successive nodes
among the n leaf nodes,

Prob(|SNα ∩ SNβ | = i) =


1

n−x+1 if i = x
2(n−2x+i+1)
(n−x+1)2 if 1 ≤ i < x

(n−2x+1)(n−2x+2)
(n−x+1)2 if i = 0

Assuming that most of the queries retrieve a small number
of leaf nodes relative to n, the buckets in SBα are expected
to be distinct, and likewise for SBβ . Thus, Prob(|SBα ∩SBβ | =
x
∣∣ |SNα ∩ SNβ | = i) = (x − i)!( bn )x−i. After substituting

the component probabilities and simplifying, we get

Prob(|SNα ∩ SNβ | = x
∣∣ |SBα ∩ SBβ | = x) =

n− x+ 1

[(n− x+ 1) +
∑x−1
i=1 2(x− i)!( bn )i(n− 2x+ i+ 1)

(6)

+ x!(
b

n
)x(n− 2x+ 1)(n− 2x+ 2)]
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Fig. 4. Prob(|SNα ∩ SNβ | = x
∣∣ |SBα ∩ SBβ | = x)

Figure 4 illustrates Prob(|SNα ∩SNβ | = x
∣∣ |SBα∩SBβ | = x)

for various n, b and x values. The results show that,
for practical combinations of n and b, a pair of SBα and
SBβ bucket access patterns that share just one common
bucket address (i.e., x = 1) lends very little credence to
an inference that the overlap is attributable to the same
node. However, when SBα and SBβ overlap by two to five
buckets in the case of n=1,000, and by two to eight buckets
in the case of n=1 million, there is strong evidence that
the overlapping buckets resulted from identical leaf node
requests. Beyond five or eight buckets, there is an increasing
probability that only some but not all of the overlapping
buckets are due to requests for the same nodes, i.e., there
are false positives. Hence, an inference that all of the
underlying node requests are the same should be made
only if it is supported by additional pairs of bucket access
patterns; how this is done is explained shortly.

The above observations lead to Algorithm 2, which
transforms the bucket co-occurrence patterns observed by
the adversary into node access patterns for sequencing the
leaf nodes. The input consists of leaf level bucket accesses
that cover at least two buckets. Let Nij denote the PB+-
tree leaf node that resides in the j-th slot of bucket i.
In the first segment (lines 1–8), after sorting the bucket
patterns by length (we will see the rationale shortly), each
bucket identifier bucIdi in a bucket pattern is mapped to an
ambiguous node identifier Ni∗ (i.e., unknown slot within
bucket i). Line 8 creates a vector cnt, in which the j-th
cell holds the next available slot identifier to use upon the
disambiguation of a node Ni∗ in bucket i.

In the next segment (lines 9–18), for every pair of
bucket patterns that overlap by two or more buckets, we
instantiate the slot number in the identifier of the nodes in
the overlap. As the bucket patterns are sorted in increasing
length, in the initial iterations we are processing bucket
patterns that (are short and thus tend to) overlap on a
small number of buckets (|SBα ∩ SBβ |). As explained pre-
viously, such an overlap provides high confidence that the
underlying nodes are identical in the two access patterns.
Later iterations encounter pairs of bucket patterns with
increasingly longer overlaps. For such long-overlap pairs,
some of the common nodes will have already been resolved
by earlier, shorter bucket patterns. This helps to reduce
instances of erroneously equating distinct nodes across
long-overlap patterns. In line 17, Nij is a node that has
been disambiguated and assigned slot identifier j in bucket
i in a previous iteration. If SNα contains Nij , then Ni∗ in

Algorithm 2 Deduce node patterns SN from bucket pat-
terns SB

// Initialization.
1: Sort access patterns SB in increasing length order.
2: Set s = |SB | (i.e., number of bucket access patterns).
3: for α = 1 to s do
4: Create node pattern SNα .
5: for all bucket identifiers bucIdi ∈ SBα do
6: Map bucIdi to Ni∗.
7: Insert Ni∗ into SNα .
8: Create dn

b
e-vector cnt = [ 1 1 . . . 1 ].

// Disambiguate the node identifiers.
9: for α = 1 to s do

10: for β = α+ 1 to s do
11: if |SBα ∩ SBβ | ≥ 2 then
12: for all bucIdi ∈ SBα ∩ SBβ do
13: if both SNα and SNβ contain Ni∗ then
14: Change Ni∗ to Ni,cnt[i] in SNα .
15: Change Ni∗ to Ni,cnt[i] in SNβ .
16: Increment cnt[i].
17: else if S

N
α or SNβ contains Nij then

18: Change Ni∗ to Nij in SNβ or SNα .
// Remove unresolved access patterns.

19: for α = 1 to s do
20: if SNα contains any unresolved node Ni∗ then delete SNα .

SNβ is instantiated with slot identifier j, and vice versa.
In the last segment of the procedure (lines 19–20), the

access patterns that contain any node with an ambiguous
identifier (i.e., the slot number in the identifier is uninstan-
tiated) are deleted. The adversary cannot utilize such an
access pattern by simply removing the ambiguous nodes
from it, because this would disrupt the contiguity of the
pattern, and there is no way of inferring how to group the
remaining nodes into contiguous sub-patterns.

When Algorithm 2 completes, every Nij in the remaining
access patterns represents a unique leaf node. The node
patterns are then used to derive the association matrix A
and the access count vector C, which in turn are input to
Algorithm 1 to sequence the leaf nodes. PL computation
from the sequencing outcome follows Formula 5.

While Algorithm 2 attempts to avoid equating different
nodes across access patterns (in lines 9–18), such errors
cannot be totally eliminated. This is an additional reason
PB+-tree is much harder to attack than the encrypted B+-
tree. In evaluating its privacy strength in Section VII, we
exclude from the sequencing phase those access patterns
that contain nodes with wrongly instantiated slot numbers.
This effectively benefits the adversary by preventing the
generation of incorrectly ordered sequences; i.e., the PL
reported in the experiments for PB+-tree is only a upper
bound of the privacy leak that it actually permits4.
D. Update and Node Migration

While our primary focus is on query processing, PB+-
tree also supports updates. The user first fetches the bucket

4The alternative is to include the wrongly instantiated node patterns
in the sequencing process. Any wrongly ordered nodes in the partial
sequences generated can be discounted in the PL computation later. We
found the resulting PL to be much lower, which is disadvantageous to
the adversary. To be conservative in judging the strength of PB+-tree, we
decided against this alternative.
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that hosts the affected leaf node. Besides changing the
leaf node, the user also re-encrypts the other nodes in the
bucket, before writing it back to disk. Since the encryption
function is probabilistic, all the nodes will appear to have
changed, so the adversary cannot pinpoint the modified
node. Updates that propagate up to the internal nodes are
handled similarly.

The ability to support updates means that PB+-tree can
be directly employed in tandem with the node migration
techniques from [23], [24] to prevent the adversary from
tracking the accesses to a node over time, just like data
shuffling in oblivious RAM [4], [20]. As we will see in
Section VII, PB+-tree requires the adversary to accumulate
a much longer I/O history, relative to the encrypted B+-
tree, before the leaf nodes can be sequenced correctly. This
allows node migrations to be triggered only sporadically
so as to minimize the resulting communication and I/O
overheads, without compromising security.

VI. PB+-TREE: COUNTERING ACCESS TRACKING

Having presented the PB+-tree, we now explain how
it remains effective even if the search key values are not
accessed uniformly, and the adversary manages to acquire
knowledge of the access frequency distribution. Access
frequencies are not to be confused with Dist; they refer
to how frequently the various key values are accessed by
queries, whereas Dist refers to how the values of the search
key attribute are distributed in its domain.

To exploit knowledge of the access frequencies, the
adversary tracks the access counts of the PB+-tree buckets
over time. The observed access frequencies can then be
matched with the expected access frequencies of various
search key values. For example, suppose that the heap file in
Figure 1 stores the records of a university’s alumni, with the
“years since graduation” attribute as search key. If fresh
graduates are expected to be inactive, their records (with
key value 1) will be retrieved very rarely. This knowledge
allows the adversary to deduce that key value 1 is likely to
map to the bucket with lowest observed access frequency.

To effectively counter this attack, we need to ensure that
the buckets in each index level as well as in the heap file
have roughly the same access frequency. This implies that
our node-to-bucket assignment cannot be random, and must
instead even out the summed access frequencies across
buckets. Consider the n encrypted leaves of the PB+-tree,
and let f(N) denote the expected access frequency of leaf
N . Formally, our node assignment problem is to pack the
n encrypted nodes into dn/be buckets, each with a capacity
of b nodes. With Nij denoting the node assigned to the j-
th slot of bucket Bi, the aggregate access frequency of Bi
is f(Bi) =

∑b
j=1 f(Nij). The node assignment B should

minimize the objective function (i.e., the spread)

Ψ(B) = f(B)− f(B) (7)

where f(B) = maxi{f(Bi)} is the highest bucket fre-
quency, and f(B) = mini{f(Bi)} the lowest.

Our node assignment problem is closely related to the
balanced number partitioning problem in complexity the-
ory: Given n numbers, the objective is to group them into
m partitions so as to minimize the largest partition sum,
subject to the constraint that each partition should hold
either dn/me or bn/mc numbers. The problem is NP hard,
and only approximate solutions are possible for arbitrary
number of partitions m [28]. The most effective heuristic
algorithm is the Balanced Largest Differencing Method
(BLDM), first proposed in [29] for m = 2 and subsequently
generalized to m ≥ 2 in [30]. PB+-tree employs the BLDM
method of [30], as described below.

We first add fictitious nodes with zero access frequencies
in the pool of actual PB+-tree leaves, so that their total
number becomes n = mb for some positive integer m.
Then, we sort them in ascending frequency order. Denoting
the sorted frequencies by f1, f2, . . . , fn, the sequence is
divided5 into b m-tuples, each of the form Fi = [f(i−1)m+1,
f(i−1)m+2, . . . , fim], for 1 ≤ i ≤ b. The differential δ(Fi)
of an m-tuple Fi is the difference between its largest and
smallest frequency.

Next, the m-tuples are folded iteratively to produce the
final buckets: Two m-tuples Fα and Fβ are folded by
combining/summing the first frequency in Fα with the last
in Fβ , the second frequency in Fα with the penultimate in
Fβ , and so on. In each iteration, we fold the two m-tuples
with the largest differentials until only one tuple remains. In
the final tuple Fγ = [fγ,1, fγ,2, . . . , fγ,m], each fγ,i is the
sum of b of the initial node access frequencies; moreover,
the various fγ,i’s (1 ≤ i ≤ m) are expected to be similar.
We thus assign to one bucket the b nodes whose access
frequencies contribute to each fγ,i, leading to m equally
sized buckets with similar aggregate access frequencies.
Discussion: There is a subtle difference in objective func-
tion between our node assignment problem and balanced
number partitioning. To illustrate, consider two candidate
assignments into m = 3 buckets, the first yielding ag-
gregate frequencies 12, 9, 9, and the second 12, 10, 8.
The first assignment is preferable for our problem formu-
lation (according to objective function Ψ(B)); however,
both assignments are equally favorable in balanced number
partitioning. Despite this difference, our experiments in
Section VII show that the node assignments generated by
BLDM are fully adequate for our PB+-tree configuration.

Another concern is that the access frequencies may be
so skewed that there is no node assignment that can even
out the bucket frequencies. For example, one of the PB+-
tree nodes may receive a disproportionately high number
of accesses. To lessen the problem, we may replicate this
node and, essentially, spread its accesses across the replicas.
With enough replicas, we will be able to suppress the access
frequency of each of them and enable a more balanced
assignment (over the replicas and the remaining nodes). As
this problem is not the main focus of our work, we leave
a detailed solution to future work.

5For ease of presentation, in the context of partitioning we refer to
frequencies and nodes interchangeably.
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Parameter Description Default
d Number of records in the index 2 million
qlen Query length (# records) [250,16000]
#queries Number of queries 20000
b Bucket capacity (nodes/bucket) 4

TABLE II
DEFAULT PARAMETERS FOR SYNTHETIC WORKLOAD

Finally, the node access frequencies may drift over time.
If the adversary is aware of these changes, and they
lead to significantly higher or lower access frequencies in
certain buckets, the user will want to re-balance the bucket
frequencies. This need not entail a costly reorganization
of the entire PB+-tree. Instead, the user could simply re-
assign nodes among the affected buckets only. Moreover, to
prevent the adversary from inferring exactly which buckets
participated in the re-assignment, the user may additionally
re-encrypt some randomly chosen “victim” buckets (so that
they appear to be updated too).

VII. EMPIRICAL EVALUATION

In this section, we empirically evaluate the encrypted
B+-tree [6] and our PB+-tree in light of the adversarial
tools provided in the paper.

A. Experiment Set-Up

We first describe the experiment set-up. Varied parame-
ters and their default values are summarized in Table II.
Indexing schemes: For brevity, we denote the PB+-tree by
PB. For the encrypted B+-tree, we include both the sibling
traversal (Section IV-A) and subtree retrieval (Section IV-B)
strategies, denoted by ST and SR respectively. For ST and
SR, the block addresses of the index nodes accessed by the
queries are visible to the adversary. For PB, the adversary
can observe which buckets are retrieved but not the exact
nodes. The inference attack by the adversary proceeds
according to the stitching procedure in Section IV-A for
ST, Algorithm 1 for SR, and Algorithm 2 followed by
Algorithm 1 for PB.
Synthetic workload: By default, our experiments are
conducted with a synthetic workload, which allows us to
control the parameters of the data and query sets. We create
a heap file R containing d records, each 256 bytes in size
including an 8-byte integer key, and build an unclustered
B+-tree index over R. For ST and SR, the node size is the
same as the block size of the file system (4 Kbytes), while
each node and record is encrypted with AES [31]. For PB,
a bucket occupies one block so each node is allotted 1/b
of a block. We make the decision to use the same block
size for PB and its competitors for fairness. The PB nodes
are encrypted with the BGN scheme [8]; the records within
each data block of R are also encrypted with BGN.

The workload consists of #queries range selections.
By default, the query length, i.e., the number of records
retrieved by the query, varies uniformly between 250 and
16,000. This query length ensures that each range spans
at least two leaf nodes (of the encrypted B+-tree), so that
the access patterns can be used to sequence the leaf nodes.
The uniformly distributed query length has a large variance
(relative to, for example, Normal distribution and fixed

length), hence it is the most discriminative against PB and
favors its competitors6.
TPC-H workload: To confirm our findings, we also ex-
periment with TPC-H (http://www.tpc.org/tpch), a standard
decision support benchmark. Using the Lineitem table
which consists of 6 million records, we construct encrypted
B+-tree and PB+-tree indexes. We then collect 80,000
instances of the range query Q14 (i.e., the Promotion Effect
Query) to run against the three methods; the query lengths
vary from 100 to 82,050 records.
System configuration: The server runs Windows Server
2003 and is equipped with an Intel Core 2 Duo 3.0 GHz
CPU with a 6 Mbyte cache, and an ST3320813AS hard
disk. The user machine is a notebook computer with an Intel
1.33GHz CPU that connects by a gigabit network switch
to the server.
Performance factors: Our evaluation centers on the fol-
lowing metrics: (i) the privacy leak PL, defined in Sec-
tion III; (ii) the attack time, which quantifies the processing
effort required by the adversary to infer the leaf node
ordering; and (iii) the query response time, including the
I/O and CPU costs to answer range selections.

B. Index Construction Cost

We begin by examining the index construction cost. With
the default settings in Table II, building the encrypted B+-
tree along with the underlying encrypted heap file incurs
1337.74 seconds of I/O and 31.58 seconds of computation,
summing to a total construction time of 1369.32 seconds.
For PB the construction time is 1655.59 seconds, including
1339.29 and 316.30 seconds of I/O and CPU cost. In terms
of I/O, PB is slightly slower than the encrypted B+-tree
because the smaller fanout of the former leads to a larger
number of index nodes. On the other hand, the difference in
CPU time between the two indices is more significant. This
is because the PB nodes require BGN encryption, which is
costlier than the AES scheme for the encrypted B+-tree.

C. Sensitivity to the Number of Queries

To examine the privacy strength and performance of the
encrypted B+-tree (ST and SR) and PB+-tree, we vary
#queries while keeping the remaining parameters at their
default values in Table II. Figures 5(a) and 5(b) present the
log10PL values, and the attack time in logarithmic scale.
Each reported value is the average across 1000 executions.

The results show that ST quickly approaches a PL of 1
(in Figure 5(a)), indicating a total exposure of the leaf node
ordering. Moreover, the security breach is achieved at a very
low cost to the adversary, with attack time ranging from 16
msec to 224 msec (Figure 5(b)). Avoiding sibling traversal
in favor of subtree retrieval provides only marginally better
privacy: SR approaches a PL of 0.5 (i.e., where all of
the leaf nodes are completely sequenced as explained in
Section IV-B2) after only around 10 thousand queries, and

6As explained in Section V-C, the adversarial tool in Algorithm 2 takes
advantage of length variations among access patterns, by resolving the
shorter, more certain overlaps before tackling longer ones. A high variance
in query length thus benefits the adversary. Detailed results for different
distributions are reported in [26], but omitted here due to space constraint.
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Fig. 5. Sensitivity to the Number of Queries

the attack time ranges from 1.58 to 2.13 seconds. These
results confirm the vulnerability of the encrypted B+-tree.

Compared to the encrypted B+-tree, PB offers much
stronger privacy protection. At 60 thousand queries, the cost
incurred by the adversary to analyze the observed access
patterns (i.e., the attack time) is almost three orders of
magnitude higher than for SR. Even then, the privacy leak
remains below PL = 10−2427, indicating a considerable
degree of uncertainty in the leaf node ordering.

Of course, the superior security of PB is achieved at the
expense of higher processing overheads. The average query
response time, which is independent of #queries, is 82.20
seconds for ST, 82.21 seconds for SR, and 92.02 seconds
for PB. The slightly longer response time of SR over ST is
due to the former retrieving the entire subtree that covers
the query range in the encrypted B+-tree, which however
is typically small. PB is slower primarily due to the BGN
cryptographic computations (by the server and the user),
with total computation cost accounting for 13% of PB’s
response time and the remaining 87% attributed to I/O cost.
The I/O penalty is low because many necessary internal
and leaf nodes share common buckets. As explained in
Section V-A, PB also follows the subtree retrieval paradigm,
thus all the nodes in each level are requested together and
processed in order of physical address 〈bucket#, slot#〉;
this allows the nodes that reside in the same bucket to
be fetched with a single I/O operation. Overall, PB is
only 15% slower than a plain (unprotected) B+-tree, which
takes 80.42 seconds. This confirms that PB’s privacy comes
without significant performance sacrifice.

To confirm the generality of our findings, we repeat
the experiment with the TPC-H workload. Figure 6 shows
the corresponding PL metric and percentage of sequenced
nodes. ST and SR continue to be vulnerable. In contrast, PB
achieves even stronger protection in this workload owing to
two factors: (i) With a larger number of records, the TPC-H
data generate a PB+-tree with more nodes that is harder to
sequence correctly from the bucket access patterns. (ii) The
query lengths here are longer than optimal for sequencing
(Section V-C); the next section scrutinizes this effect.

D. Sensitivity to the Query Length

To study the sensitivity of the three methods (ST, SR
and PB) to the query length, we vary the upper bound
of qlen from 600 to 160,000 records while keeping the
lower bound at 250 records. In other words, the range of
qlen widens from [250,600] to [250,160000]. We continue
to keep qlen uniformly distributed within each range. The
other parameters remain at their default settings.
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Fig. 7. Sensitivity to the Query Length

According to the results in Figure 7, ST and SR again
approach quickly their maximum PL (of 1 and 0.5 respec-
tively). Longer queries produce access patterns that cover
more leaf nodes, allowing for more effective sequencing.

On the other hand, Figure 7(a) shows that the PL of
PB initially increases with the query length, peaks at about
qlen = 1000, and then drops. This evidence corroborates
the analysis in Section V-C, which indicates that the in-
ferences of the adversary are most accurate when they
are based on access patterns that overlap by two to five
leaf nodes. The number of such access patterns increases
with qlen initially, which explains PB’s deterioration in
PL. However, even when PB is at its weakest (around
qlen = 1000), it achieves PL = 10−1497 compared to
ST’s 10−2.8 and SR’s 10−544. As qlen increases further, the
overlap between access patterns also gradually rises beyond
the optimal range for sequencing and impedes the inference
algorithm of the adversary. The attack time (not shown) of
PB is consistently at least two orders of magnitude longer
than those of ST and SR. The response times of PB are
consistent with the observations in Section VII-C, i.e., PB
is about 15% slower than SR. Note that the CPU portion of
the bars in Figure 7(c) reflects the total computation times
at the server and the user.

E. Sensitivity to the Database Size

Next, we examine how the schemes scale with the data-
base size d. A larger d increases the number of leaf nodes
in the index, so the adversary accordingly requires more
access patterns in order to sequence the nodes. Therefore,
we scale #queries to maintain a ratio of 1:100 with d.
We also increase the upper bound of the query length to
maintain the same selectivity factor; for example, at 20
million records, the query length is between [250, 160000].
The remaining parameters are set to their default values.

The results, presented in Figure 8, show that the privacy
level of ST and SR is insensitive to d, as long as #queries
increases proportionally to d. This is not the case for PB,
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Fig. 9. Sensitivity to the Bucket Capacity

which enjoys a descent in PL. The reason is that a larger
#queries does not lead to an equivalent increase in the
combined coverage of the overlap between pairs of access
patterns, which determines the effectiveness of Algorithm 2.
The query response time, dominated by I/O time, can be
speeded up by buffering the frequently accessed nodes or
employing a disk array to retrieve data in parallel.

F. Sensitivity to the Bucket Capacity

To study PB’s sensitivity to the bucket capacity, in
Figure 9 we vary b while using default settings for the other
parameters. Although b is irrelevant to ST and SR, they are
included in the charts for comparison. Since PB achieves
privacy by masking the node accesses within buckets, we
expect a larger bucket capacity b to significantly improve
PB’s security. This is confirmed in Figures 9(a). At the
same time, Figure 9(b) shows that a larger b increases
moderately the query processing overhead; as each bucket
is constrained by the block size of the file system, a larger b
reduces the node size, leading to a larger index structure and
thus some extra I/Os for query processing. The response
time of PB is 10.6% to 18.8% longer than that of SR, as b
varies from 2 to 12. Essentially, b determines the tradeoff
between performance and privacy in PB.

Combined with the previous experiment, these results
indicate that for a small database, we may pick a
higher bucket capacity to ensure strong privacy. For larger
databases, PB is likely to be sufficiently secure even with
low node-to-bucket ratios, so we may set b=2 to boost query
processing performance.

G. Balanced Bucketization for Known Access Frequencies

Here we study the effectiveness of the PB+-tree adap-
tation for cases where the adversary possesses a priori
knowledge of the search key access frequencies; i.e., we
evaluate how successfully it evens out the bucket access
frequencies. As explained in Section VI, we employ the
BLDM method of [30] to group the PB+-tree nodes into
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Fig. 10. Node-to-Bucket Assignment with BLDM

buckets. We focus on the leaf level of the tree, as it provides
the finest granularity within the index (see Observation 1).

First, we set the bucket capacity b = 4, and vary the
number of leaf nodes n from 4000 to 40000 (i.e., the
number of resulting buckets m varies from 1000 to 10000).
We experiment with three different distributions for the
node access frequencies – uniform distribution7 between 0
and 2

n , normal distribution with a mean of 1
n and a standard

deviation of 1
4n , and Zipf distribution with a 0.4 exponent.

We quantify the effectiveness of a node assignment B by
the normalized spread, defined as Ψ(B) (the difference
between the highest and lowest bucket frequencies) divided
by the mean bucket frequency. For each n, we carry out
100 trials and report the average normalized spread. The
results, summarized in Figure 10(a), show that even with a
very skewed distribution like Zipf, the normalized spread
can be consistently kept below 5%.

Next, we fix m = 5000 and vary b from 2 to 12.
Figure 10(b) plots the results. Here, the normalized spread
can be very high at b = 2; in fact, for the Zipf distribution
we obtain a measurement of 49%. However, it drops sharply
with increasing b. For b ≥ 6, we achieve less than 1%
normalized spreads for all three distributions.

This experiment shows that if the adversary knows the
expected search key access frequencies, we should config-
ure the PB+-tree with b ≥ 4. With that bucket size, the
normalized spread between buckets can be suppressed suf-
ficiently to deter the adversary from differentiating between
buckets through their access counts.

H. Summary of Experiment Results

Our evaluation confirms that, applying the adversarial
tools provided in this paper, the privacy leak PL of ST
and SR rises to its maximum of 1 and 0.5 respectively,
almost as soon as the queries cover all the leaf nodes.
In contrast, PB keeps PL at very low levels even for
large numbers of query execution traces (60 thousand or
more in our experiments), while incurring a manageable
15% query processing overhead. This implies that PB+-
tree offers a secure and practical long-term solution that
does not require frequent node migration (discussed in
Section V-D). Additionally, unlike its competitors, PB’s
security gets stronger for larger databases. One of its key
properties is that the tradeoff between privacy and query
performance can be effectively controlled by the user (via

7Here “uniform” implies that the access frequency of each node is
equally likely to receive any value in a specified interval (not that all
node frequencies are equal).
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the bucket capacity), thus providing flexibility and ensuring
wide applicability. Finally, PB is able to balance its bucket
access frequencies to prevent the adversary from exploiting
a priori knowledge of the search key access frequencies.

VIII. CONCLUSION

This paper studies the problem of protecting the key
scope of range queries that are executed on untrusted
database servers. We show that merely encrypting the
nodes of a standard B+-tree index is not secure, as an
adversary can sequence its leaf nodes and deduce the key
range of each accessed node. As remedy, we introduce
the privacy-enhancing B+-tree (PB+-tree) that conceals the
exact node addresses from the adversary, by grouping them
into buckets and by employing homomorphic encryption
techniques to retrieve them from their host buckets. Exten-
sive experiments confirm the effectiveness and practicality
of the PB+-tree.

An interesting extension is to multi-dimensional struc-
tures, like the R-tree. Here, an adversary could utilize the
observed access patterns to deduce the relative positions
of the encrypted R-tree nodes in the data space; this is
analogous to sequencing the B+-tree leaf nodes in one-
dimensional space.
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