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Preventing Location-Based Identity Inference in
Anonymous Spatial Queries

Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris Papadias

Abstract— The increasing trend of embedding positioning ca-
pabilities (e.g., GPS) in mobile devices facilitates the widespread
use of Location Based Services. For such applications to suc-
ceed, privacy and confidentiality are essential. Existing privacy-
enhancing techniques rely on encryption to safeguard commu-
nication channels, and on pseudonyms to protect user identities.
Nevertheless, the query contents may disclose the physical loca-
tion of the user.

In this paper, we present a framework for preventing location-
based identity inference of users who issue spatial queries to
Location Based Services. We propose transformations based
on the well-established K-anonymity concept to compute exact
answers for range and nearest neighbor search, without revealing
the query source. Our methods optimize the entire process of
anonymizing the requests and processing the transformed spatial
queries. Extensive experimental studies suggest that the proposed
techniques are applicable to real-life scenarios with numerous
mobile users.

Index Terms— Privacy, Anonymity, Location Based Services,
Spatial Databases, Mobile Systems.

I. INTRODUCTION

IN recent years, positioning devices (e.g., GPS) have

gained tremendous popularity. Navigation systems are already

widespread in the automobile industry and, together with wireless

communications, facilitate exciting new applications. General

Motor’s OnStar system, for example, supports on-line rerouting to

avoid traffic jams and automatically alerts the authorities in case

of an accident. More applications based on the users’ location

are expected to emerge with the arrival of the latest gadgets (e.g.,

iPAQ hw6515, Mio A701), which combine the functionality of a

mobile phone, PDA and GPS receiver. For such applications to

succeed, the privacy and confidentiality issues are of paramount

importance.

Consider that Bob uses his GPS-enabled mobile phone to find

the nearest betting office. This query can be answered by a

Location Based Service (LBS) in a publicly available web server

(e.g., Google Maps). Since Bob does not want to disclose to

Alice his gambling habits, instead of directly sending the query

to the LBS, he uses an anonymizer, which is a trusted server

(services for anonymous web surfing are commonly available

nowadays). He establishes a secure connection (e.g., SSL) with
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the anonymizer, which removes the user id from the query and

forwards it to the LBS. The answer from the LBS is also routed

to Bob through the anonymizer.

Nevertheless, the query itself unintentionally reveals sensitive

information. In our example, the LBS requires the coordinates

of the user in order to process the nearest neighbor (NN) query.

Since the LBS is not trusted, Alice can collaborate with the LBS

and acquire the location of Bob and his query result (i.e., betting

office). The next step is to relate the coordinates to a specific

user. Alice may choose from a variety of techniques such as

physical observation of Bob, triangulating his mobile phone’s

signal1, or consulting publicly available databases. If, for instance,

Bob uses his phone within his residence, Alice can easily convert

the coordinates to a street address (most on-line maps provide

this service) and relate the address to Bob by accessing an on-

line white pages service.

For a broad discussion on the risks of revealing sensitive

information in location-based services see [7]. In practice, users

would be reluctant to access a service that may disclose their po-

litical/religious affiliations or alternative lifestyles. Furthermore,

given that the LBS is not trusted, users might be hesitant to ask

innocuous queries such as “find the closest gas station” or “which

are the restaurants in my vicinity” since, once their identity is

revealed, they may face unsolicited advertisements, e-coupons,

etc. Motivated by this fact, we develop methods to protect the

privacy of users issuing spatial queries against location-based

attacks. Specifically, we prevent an attacker from inferring the

identity of the query source by adapting the well established K-

anonymity technique to the spatial domain.

K-anonymity [25], [27] has been used for publishing microdata,

such as census, medical and voting registration data. A dataset

is said to be K-anonymized, if each record is indistinguishable

from at least K-1 other records with respect to certain identifying

attributes. In the context of location based services, the K-

anonymity concept translates as follows: given a query, guarantee

that an attack based on the query location cannot identify the

query source with probability larger than 1/K, among other K-

1 users. Most of the existing work adopts the framework of

Figure 1a. In this framework, a user sends his location and query

to the anonymizer through a secure connection. The anonymizer

removes the id of the user and transforms his location through a

technique called cloaking. Cloaking hides the actual location by a

K-anonymizing spatial region (K-ASR or ASR), which is an area

that encloses the client that issued the query, as well as at least

K-1 other users. The anonymizer then sends the ASR to the LBS,

which returns to the anonymizer a set of candidate results that

satisfy the query condition for any possible point in the ASR. The

1Phone companies can estimate the location of the user within 50-300
meters, as required by the US authorities (E911).
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Fig. 1. Framework and example for spatial K-anonymity

LBS may be compromised, i.e., an adversary may have complete

knowledge of all queries received by the LBS.

Figure 1b illustrates this process in detail, by continuing the

running example. Bob forwards his request to the anonymizer,

together with his anonymity requirement K. Assuming that K=3,

the anonymizer generates a 3-ASR (shaded rectangle) that con-

tains Bob and two other users U1, U2 (the anonymizer knows the

exact locations of all users). Then, it sends this 3-ASR to the

LBS, which finds all betting offices that can be the NN of any

point in the 3-ASR (recall that the LBS does not know where

Bob is). This candidate set (i.e., p1, p2, p3, p4) is returned to the

anonymizer, which filters the false hits and forwards the actual

NN (in this case p2) to Bob. Even if Alice knows the location

of Bob and the other users, she can only ascertain that the query

originated from Bob with probability 1/3.

Existing methods for spatial K-anonymity (reviewed in Sec-

tion II) have at least one of the following shortcomings: (i) They

compromise the query issuer’s identity for certain user location

distributions. (ii) They sacrifice quality of service (QoS), i.e.,

some queries must be delayed or dropped. (iii) They are ineffi-

cient, i.e., they generate large ASRs. (iv) They focus exclusively

on cloaking mechanisms and lack algorithms for query processing

at the LBS. In this paper we aim at solving these problems through

a comprehensive set of techniques. Specifically, we propose two

cloaking algorithms: Nearest Neighbor Cloak that significantly

outperforms the existing techniques in terms of efficiency but has

similar anonymity problems for some distributions, and Hilbert
Cloak that never reveals the query source, independently of the

user location distribution. Moreover, we address the issue of

anonymized query processing at the LBS. Specifically, we adopt

an existing algorithm to compute the k nearest neighbors2 (kNN)

of rectangular regions, as opposed to points and develop a novel

algorithm to compute the kNN of circular regions, which reduces

the number of redundant results, hence the communication cost

between the anonymizer and the LBS.

The rest of the paper is organized as follows: Section II presents

the related work. Next, Section III deals with the construction of

the K-ASR at the anonymizer, followed by Section IV where we

describe the query processing algorithms at the LBS. The results

of our experiments are illustrated in Section V. Finally, Section VI

concludes the paper and presents directions for future work.

2Note that k, the number of nearest neighbors is different than K, the degree
of anonymity.

II. RELATED WORK

Section II-A discusses K-anonymity in relational databases and

Section II-B presents privacy-preserving methods for location-

based services. Section II-C overviews related spatial query

processing techniques.

A. K-anonymity in Relational Databases

Anonymity was first discussed in relational databases, where

published data (e.g., census, medical) should not be linked to

specific persons. Adam and Wortmann [1] survey methods for

computing aggregate functions (e.g., sum, count) under the condi-

tion that the results do not reveal any specific record. Agrawal and

Srikant [3] compute value distributions, suitable for data mining,

in confidential fields. Recent work has focused on K-anonymity

as defined in [25], [27]: a relation satisfies K-anonymity if every

tuple is indistinguishable from at least K-1 other tuples with

respect to a set of quasi-identifier attributes. Quasi-identifiers

are attributes (e.g., date of birth, gender, zip code) that can be

linked to publicly available data to identify individuals. Records

with identical quasi-identifiers form an anonymized group. Two

techniques are used to transform a relation to a K-anonymized

one: suppression, where some of the attributes or tuples are

removed and generalization, which involves replacing specific

values (e.g., phone number) with more general ones (e.g., only

area code). Both methods lead to information loss. Algorithms

for anonymizing an entire relation, while preserving as much

information as possible, are discussed in [4], [19]. Xiao and

Tao [31] consider the case where each individual requires a

different degree of anonymity, whereas Aggarwal [2] shows that

anonymizing a high-dimensional relation leads to unacceptable

loss of information due to the dimensionality curse. Machanava-

jjhala et al. [20] propose �-diversity, an anonymization method

that prevents sensitive attribute disclosure by providing diversity

among the sensitive attribute values of each anonymized group.

Finally, [14] employs multi-dimensional to 1-D transformations

to solve efficiently the K-anonymity and �-diversity problems.

B. K-anonymity in Location-Based Services

Most previous work on location-based services adopts the

concept of K-anonymity using the framework of Figure 1: a user

sends his position, query and K to the anonymizer, which removes

the id of the user and transforms his location through cloaking.

The generated K-ASR is forwarded to the LBS which processes it

and returns a set of candidates, containing the actual results and
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false hits. The first cloaking3 technique, called Interval Cloak
[15] is based on quadtrees. A quadtree [26] recursively partitions

the space into quadrants until the points in each quadrant fit

in a page/node. Figure 2 shows the space partitioning and a

simple quadtree assuming that a node contains a single point. The

anonymizer maintains a quadtree with the locations of all users.

Once it receives a query from a user U , it traverses the quadtree

(top-down) until it finds the quadrant that contains U and fewer

than K-1 users. Then, it selects the parent of that quadrant as the

K-ASR and forwards it to LBS.
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Fig. 2. Example of Interval Cloak and Casper

Assume that in Figure 2, U1 issues a query with K=2. Quad-

rant4 〈(0, 2), (1, 3)〉 contains only U1, so its parent 〈(0, 2), (2, 4)〉
becomes the 2-ASR. Note that the ASR may contain more users

than necessary; in this example it includes U1, U2, U3, although

2 users would suffice for the privacy requirements. A large ASR

burdens the query processing cost at the LBS and the network

overhead for transferring a large number of candidate results from

the LBS to the anonymizer. In order to overcome this problem,

Gruteser and Grunwald [15] combine temporal cloaking with

spatial cloaking, i.e., the query may wait until K (or more) objects

fall in the user’s quadrant. In our example, the query of U1 will

be executed when a second user enters 〈(0, 2), (1, 3)〉, in which

case 〈(0, 2), (1, 3)〉 is the 2-ASR sent to the LBS.

Similar to Interval Cloak, Casper [23] is based on quadtrees.

The anonymizer uses a hash table on the user id pointing to

the lowest-level quadrant where the user lies. Thus, each user

is located directly, without having to access the quadtree top-

down. Furthermore, the quadtree can be adaptive, i.e., contain

the minimum number of levels that satisfies the privacy require-

ments. In Figure 2, for instance, the second level for quadrant

〈(0, 2), (2, 4)〉 is never used for K≥ 2 and can be omitted. The

only difference in the cloaking algorithms of Casper and Interval
Cloak is that Casper (before using the parent node as the K-

ASR) also considers the neighboring quadrants at the same level

of the tree. Assume again that in Figure 2 U1 issues a query and

K=2. Casper checks the content of quadrants 〈(1, 2), (2, 3)〉 and

〈(0, 3), (1, 4)〉. Since the first one contains user U3, the 2-ASR is

set to 〈(0, 2), (2, 3)〉, which is half the size of the 2-ASR computed

by Interval Cloak (i.e., 〈(0, 2), (2, 4)〉).
In Clique Cloak [11], each query defines an axis-parallel

rectangle whose centroid lies at the user location and whose

extents are Δx, Δy. Figure 3 illustrates the rectangles of three

3Beresford and Stajano [6] introduce the concept of mix zone, which is
similar to the K-ASR, but do not provide concrete algorithms for spatial
cloaking.

4We use the coordinates of the lower-left and upper-right points to denote
a quadrant.
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Fig. 3. Example of Clique Cloak

queries located at U1, U2, U3, assuming that they all have the same

Δx and Δy. The anonymizer generates a graph where a vertex

represents a query: two queries are connected if the corresponding

users fall in the rectangles of each other. Then, the graph is

searched for cliques of K vertices and the minimum bounding

rectangle (MBR) of the corresponding rectangles forms the ASR

sent to the LBS. Continuing the example of Figure 3, if K=2, U1

and U2 form a 2-clique and the MBR of their respective rectangles

is forwarded so that both queries are processed together. On the

other hand, U3 cannot be processed immediately, but it has to wait

until a new query (generating a 2-clique with U3) arrives. Clique
Cloak allows users to specify a temporal interval Δt such that,

if a clique cannot be found within Δt, the query is rejected. The

selection of appropriate values for Δx, Δy, Δt is not discussed in

[11].

Probabilistic Cloaking [8] preserves the privacy of locations

without applying spatial K-anonymity. Instead, (i) the ASR is a

closed region around the query point, which is independent of

the number of users inside and (ii) the location of the query

is uniformly distributed in the ASR. Given an ASR, the LBS

returns the probability that each candidate result satisfies the

query, based on its location with respect to the ASR. Finally,

location anonymity has also been studied in the context of related

problems. Kamat et al. [18] propose a model for sensor networks

and examine the privacy characteristics of different sensor routing

protocols. Hoh and Gruteser [16] describe techniques for hiding

the trajectory of users in applications that continuously collect

location samples. Ghinita et al. [12], [13] and Chow et al. [10]

study spatial cloaking in peer-to-peer systems.

C. Related Spatial Query Processing Techniques

The LBS maintains the locations of points-of-interest and an-

swers cloaked queries. The most common spatial queries, and the

focus of the existing systems, are ranges and nearest neighbors.

While the cloaking mechanism at the anonymizer is independent

of the query type, query processing at the LBS depends on the

query. Range queries are usually straightforward; assume that a

user U wants to retrieve the data objects within distance d from

his current location. Instead of the position of U , the LBS receives

(from the anonymizer), an ASR that contains U (as well as several

other users) and d. In order to compute the candidate results, the

LBS extends the ASR by d on all dimensions and searches for all

objects in the extended ASR. The set of candidates is returned to

the anonymizer which filters out false hits and returns the actual

result to U .

The processing of NN queries is more complicated. If the ASR

is an axis-parallel rectangle (as in Interval Cloak, Casper and
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Fig. 4. Example of continuous NN search

Clique Cloak), then the candidate results can be retrieved using

range nearest neighbor search [17], which finds the NN of any

point inside a rectangular range. Assume the running example

of Figure 1b, where the ASR is the shaded rectangle. The LBS

must return the NN of every possible location in the ASR. Such

candidate data points lie inside (e.g., p1, p2), or outside the ASR

(e.g., p3, p4). For instance, p3 would be the NN for a user at the

lower-right corner of the ASR.

Figure 4 shows the application of range nearest neighbor search

in the above example. The initial set of candidates contains all

points (p1, p2) inside the input range (i.e., the ASR). Then, four

continuous NN (CNN) queries [29], one for each side of the

ASR, retrieve the remaining candidates. Consider, for instance,

the CNN query for the bottom side se. The initial candidates

split se into two intervals: ss1 and s1e, where s1 is the point

where the perpendicular bisector of p1p2 intersects se. Currently,

the NN of every point in ss1 is p1, whereas the NN of every point

in s1e is p2. The three vicinity circles in Figure 4a, are centered

at s, s1, e and their radii equal the distances between s and p1, s1

and p1 (or p2), and e and p2, respectively. The only data points

that can be closer to se (than p1 and p2) must fall inside some

vicinity circle.

Continuing the example, p3 falls inside the last two vicinity

circles and updates the result as shown in Figure 4b. Specifically,

s′1 is the point where the perpendicular bisector of p1p3 intersects

se: p1 becomes the NN of every point in ss′1, and p3 the NN

of every point in s′1e. Note that the vicinity circles shrink as

new data points are discovered. The process terminates when no

more points are found within the vicinity circles. It can be shown

[17] that four CNN queries for the four sides of the ASR find

all candidate objects. A similar technique (also for rectangular

ranges) is presented for Casper in [23]; in Section IV, we develop

a method capable of processing circular ranges. Next, we proceed

with cloaking techniques at the anonymizer.

III. THE ANONYMIZER

Section III-A presents the basic assumptions and goals of

our techniques. Sections III-B and III-C propose two novel

cloaking techniques, Nearest Neighbor Cloak and Hilbert Cloak,

respectively.

A. Assumptions and Goals of Spatial Anonymization

The anonymizer is a trusted server, which collects the current

location of users and anonymizes their queries. Each query has

a required degree of anonymity K, which ranges between 1

(no privacy requirements) and the user cardinality (maximum

privacy). We assume that an attacker has complete knowledge

of (i) all the ASRs ever received at the LBS, (ii) the cloaking

algorithm used by the anonymizer, and (iii) the locations of all

users. The first assumption states that either the LBS is not

trusted (e.g., a commercial service that collects unauthorized

information about its clients for unsolicited advertisements), or

the communication channel between the anonymizer and the LBS

is not secure. The second assumption is common in the security

literature since the data privacy algorithms are usually public.

The third assumption is motivated by the fact that users may

often (or always) issue queries from the same locations (home,

office), which may be easily identified through public databases,

telephone directories, etc. Furthermore, they may reveal their

locations by issuing queries without privacy requirements. In

scenarios with highly mobile users, the attacker may not be able

to learn exact user locations. However, one can argue that in these

cases spatial K-anonymity is not important, because (i) the user

ids are removed by the anonymizer anyway, and (ii) a query at

a random position does not necessarily reveal information about

the identity of the corresponding user. However, in practice, a

determined attacker may be able to acquire (through triangulation,

public databases, physical observation, etc.) the locations of at

least a few users in the vicinity of the targeted victim.

Similar to existing work on LBS query privacy [10], [15], [23]

we focus on snapshot queries, where the attacker uses current

data, but not historical information about movement and behavior

patterns of particular clients (e.g., a user often asking a particular

query at a certain location or time). This assumption is reasonable

in practice, because if a client obtains the items of interest (e.g.,

the closest restaurant), it is unlikely to ask the same query from

the same location again in the future. We also assume that the

attacker does not have a priori knowledge of the user query

frequencies (i.e., a query may originate from any user with equal

probability). Furthermore, the value of K is not subject to attacks

since it is transferred from the client to the anonymizer through

a secure channel.

Given a query, the anonymizer removes the user id, applies

cloaking to hide the user’s location through an ASR, and forwards

the ASR to the LBS. The cloaking algorithm is said to preserve

spatial K-anonymity, if the probability of the attacker pinpointing

the query source under the above assumptions does not exceed

1/K.

Note that simply generating an ASR that includes K users is

not sufficient for spatial K-anonymity. Consider for instance, a

naı̈ve algorithm, called Center Cloak (CC) in the sequel, which

given a query from U , finds his K-1 closest users, and sets the

ASR as the minimum bounding rectangle (MBR) or circle (MBC)

that encloses them. In fact, a similar technique is proposed in

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

 0

 0.05

 0.1

 0.15

 0.2

 0  10  20  30  40  50

P
[in

de
x U

=
i]

i

Center Cloak

Fig. 5. Distance from MBR center for Center Cloak (K=10)

[10] for anonymization in peer-to-peer systems, i.e., the K-ASR

contains the query issuing peer and its K-1 nearest nodes. CC is

likely to disclose the location of U under the center-of-ASR attack.

Specifically, let indexU be the position of U in the sequence of

users enclosed by the K-ASR, sorted in ascending order of their

distance from the center of the K-ASR; for example, if indexU =

1, then U is the closest user to the center. The center-of-ASR attack

is successful if P [indexU = 1] > 1/K, i.e., if the probability of

U being the closest user to the center exceeds 1/K.

Figure 5 shows the distribution of the positions of U inside an

MBR enclosing its 9 NNs (for details of the experimental setting,

see Section V). In most cases, U is close to the center of the

10-ASR (i.e., P [indexU = 1] > 1/10). Hence, an attacker with

knowledge of the cloaking algorithm (assumption ii) may easily

pinpoint U as the query source. Note that, since the MBR may

enclose more than 10 users it is possible to get P [indexU = i] > 0

for i > 10. The dashed line in the graph corresponds to the “flat”

index distribution obtained by an ideal anonymization technique,

which would always generate 10-ASRs with exactly 10 users.

In addition to the preservation of spatial K-anonymity, we

define the following objectives of cloaking:

1) The generated ASR should be as small as possible.

2) The cloaking algorithm should not compromise the quality

of service (QoS).

3) The ASR should not reveal the exact location of any user.

Goal 1 is induced by the fact that a large ASR incurs higher

processing overhead (at the LBS) and network cost (for trans-

ferring a large number of candidate results from the LBS to

the anonymizer). In real-world services, users may be charged

depending on the overhead that the anonymization requirements

impose on the system. Note that, as long as the anonymity

requirements of the user are satisfied, the size of the ASR is

irrelevant in terms of K-anonymity. Goal 2 states that systems that

delay or reject service requests, such as Clique Cloak [11], are

unacceptable. In general, since temporal cloaking compromises

QoS, we focus our attention on spatial cloaking. Goal 3 ensures

that the anonymizer does not help the attacker obtain the locations

of users through the cloaking algorithm (although, as discussed

before, he may obtain them through other means). The disclosure

of exact locations by a service is undesirable to most users

(independently of their queries), and in some cases forbidden

by law. As an example, consider that the anonymizer picks K-1

random users and sends K independent queries (including the real

one) to the LBS. This method achieves spatial K-anonymity, but

reveals the exact locations of K users. Furthermore, it has several

efficiency problems: (i) depending on the value of K, a potentially

large number of locations are transmitted to the LBS and (ii) the

LBS has to process K independent queries and send back all their

results.

Let U be the user issuing a query. The proposed cloaking

algorithms first generate an anonymizing set (AS) that contains

U and at least K-1 users in his vicinity. The ASR is an area

that encloses all users in AS. Although the ASR can have

arbitrary shape, we use minimum bounding rectangles (MBR) or

circles (MBC) because they incur small network overhead (when

transmitted to the LBS) and facilitate query processing. Note that,

in addition to AS, the ASR may enclose some additional users

that fall in the corresponding MBR or MBC.

B. Nearest Neighbor Cloak

The first algorithm, Nearest Neighbor Cloak (NNC), is a ran-

domized variant of Center Cloak, and is not vulnerable to center-
of-ASR attacks. Given a query from U , NNC first determines the

set S0 containing U and his K-1 nearest users. Then, it selects a

random user Ui from S0 (the probability of selecting the initial

user U is 1/K) and computes the set S1, which includes Ui and his

K-1 NNs. Finally, NNC obtains S2 = S1∪U , i.e., S2 corresponds

to the anonymizing set. This step is essential, since U is not

necessarily among the NNs of Ui. The K-ASR is the MBR or

MBC enclosing all users in S2.

Figure 6 shows an example of NNC, where U1 issues a query

with K=3. The 2 NNs of U1 are U2, U3, and S0 = {U1, U2, U3}.

NNC randomly chooses U3 and issues a 2-NN query, forming

S1 = {U3, U4, U5}. The 3-ASR is the MBR enclosing S2 =

{U1, U3, U4, U5}. NNC can be used with variable values of K. It

is not vulnerable to the center-of-ASR attack since the probability

of U being near the center of the K-ASR is at most 1/K (due to

the random choice). Furthermore, as we show in the experimental

evaluation, the ASR is much smaller than that of Interval Cloak
and Casper.

 

U2
U1

U
3

U4

U5

U6

U7

U8

U9

U10

3-ASR for U1

 

Fig. 6. Example of NNC

However, NNC, as well as Interval Cloak and Casper, may

compromise location anonymity in the presence of outliers.

Consider that in Figure 6, an adversary knows the locations of

the users and the value of K. Then, he can be sure that the

query originated from U1 because if it were issued by any other

user (U3, U4, U5) in the 3-ASR, the ASR would not contain U1.

For Interval Cloak and Casper we use the example of Figure 2

assuming that K= 2. If a query originates from U1, U2, or U3, the

2-ASR of Interval Cloak is quadrant 〈(0, 2), (2, 4)〉. Similarly, the

2-ASR of Casper is the concatenation of two sibling quadrants

at level 2 (e.g., 〈(0, 2), (1, 3)〉 and 〈(1, 2), (2, 3)〉). On the other
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Fig. 7. Location anonymity compromise in the presence of outliers

hand, if a query originates from U4, the 2-ASR is the entire data-

space 〈(0, 0), (4, 4)〉) for both Interval Cloak and Casper. Thus,

an attacker can identify U4 for all 2-ASRs that cover the entire

data-space.

For illustration purposes, in the above examples we assumed

that the attacker knows K, although as discussed in Section III-

A, K is not subject to attacks. Nevertheless, even for variable

and unknown K, the presence of outliers may compromise spatial

anonymity. We demonstrate the problem for Interval Cloak and

Casper using Figure 7. There is a single user U1 in quadrant

〈(0, 0), (1, 1)〉 and N − 1 users in 〈(1, 1), (2, 2)〉, where N is

the user cardinality. Quadrant 〈(1, 1), (2, 2)〉 may be subdivided

further, but this is not important for our discussion. Each user has

equal probability to issue a query, and the degree of anonymity

required by different queries distributes uniformly in the range

[1, N ]. The term event signifies the issuance of a query with

anonymity degree K at a random user U . Then, an ASR covering

the entire data space is generated by (i) a query originating from

U1 and 2 ≤ K ≤ N (i.e., N −1 events), or (ii) a query originating

from another user and K= N (i.e., N − 1 events). Thus, if the

attacker detects such an ASR and has knowledge of the user

distribution (assumption iii in Section III-A), then he concludes

that it originated from U1 with probability 1/2. Thus, the spatial

anonymity of U1 is breached for all values K> 2.

In general, following a similar analysis it can be shown that,

if the two quadrants contain a different number of users, the

location anonymity is compromised (for all values of K exceeding

a threshold) in the quadrant containing the smaller number.

Analogous examples can be constructed for NNC. Next, we

propose an algorithm that avoids this problem.

C. Hilbert Cloak

Hilbert Cloak (HC) satisfies reciprocity, an important property

that is sufficient for spatial K-anonymity.

Definition 1 (Reciprocity): Consider a user U issuing a query

with anonymity degree K, associated anonymizing set AS, and

anonymizing spatial region K-ASR. AS satisfies the reciprocity

property if (i) it contains U and at least K-1 additional users and

(ii) every user in AS also generates the same anonymizing set

AS for the given K. The second condition implies that each user

in AS lies in the K-ASRs of all other users in AS.

In general, Interval Cloak, Casper and NNC do not satisfy

reciprocity as they violate condition (ii). For instance, in the

example of Figure 7, although users U2 . . . UN lie in the K-ASR

of U1, U1 is not in the K-ASR of U2 . . . UN for 2 ≤K< N .

Similarly for NNC, although in Figure 6 U3 . . . U5 are in the 3-

ASR of U1, U1 is not in the 3-ASR of U3 . . . U5.

Theorem 1: A spatial cloaking algorithm guarantees spatial

K-anonymity, if every anonymizing set satisfies the reciprocity

property.

Proof: Since every anonymizing set satisfies reciprocity, a

K-ASR may have originated from every user in the corresponding

anonymizing set AS with equal probability 1/|AS|, where |AS|
is the cardinality of AS. Because |AS| ≥K, the probability of

identifying the query issuer does not exceed 1/K.

An optimal cloaking algorithm would partition the user popu-

lation into anonymizing sets that yield minimal ASRs and obey

the reciprocity property. However calculating such an optimal

partitioning is NP-Hard [21] and would require a fixed K by all

queries. HC overcomes these problems by utilizing the Hilbert

space-filling curve [22] to generate small (but not necessarily

optimal) ASRs for variable values of K. The Hilbert space filling

curve transforms the 2-D coordinates of each user into a 1-D

value H(U). Figure 8 illustrates the Hilbert curves for a 2-D space

using a 4× 4 and 8× 8 space partitioning. With high probability

[24], if two points are in close proximity in the 2-D space, they

will also be close in the 1-D transformation. A major benefit

of Hilbert (and similar) curves, is that they permit the indexing

of multidimensional objects through one-dimensional structures

(e.g., B-trees).

1

4

5

111076

1298

13143

16152

Fig. 8. Hilbert Curve (left: 4 × 4, right: 8 × 8)

Given a query from user U with anonymity requirement K,

HC sorts the Hilbert values and splits them into K-buckets. Each

K-bucket has exactly K users, except the last one which may

contain up to 2·K-1 users. Let H(U) be the Hilbert value of U

and rankU be the position of H(U) in the sorted sequence of

all locations. HC identifies the K-bucket containing rankU . The

users in that K-bucket constitute the corresponding AS. Figure 9

illustrates an example, where the user ids indicate their Hilbert

order. For K=3, the users are grouped into 3 buckets (the last one

contains 4 users). When any of U1, U2 or U3 issues a query, HC
returns the first bucket (shown shaded) as the AS; the MBR (or

MBC) of that bucket becomes the 3-ASR.

HC is reciprocal because all users in the same bucket share the

same K-ASR; therefore, it guarantees spatial anonymity according

to Theorem 1. Furthermore, it can deal with variable values of K
by not physically storing the K-buckets. Instead, it maintains a

balanced sorting tree, which indexes the Hilbert values. When a

user U initiates a query with anonymity degree K, HC performs a

search for H(U) in the index and computes rankU . From rankU ,

we calculate the start and end positions defining the K-bucket that

includes H(U), as follows:

start = rankU −(rankU mod K), end = start+K−1
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Fig. 9. Example of Hilbert Cloak

The complexity of the in-order tree traversal is O(N), where N

is the number of indexed users. To compute rankU efficiently, we

use an aggregate tree [28], where each node w stores the number

wcount of nodes in its left subtree (including itself). Using this

data structure, rankU is calculated in O(logN) as follows: we

initialize rankU to zero and perform a normal lookup for H(U).

For every node w we visit, we add wcount to rankU only if

we follow a right branch. The complexity of maintaining the ag-

gregate information is O(logN) because changes are propagated

from the leaves to the root. Since the complexity of constructing

the K-ASR is O(logN + K), whereas search, insert and delete

cost O(logN), the data structure is scalable. Therefore, HC is

applicable to a large number of mobile users who update their

location frequently and have varying requirements for the degree

of anonymity. Note that, while our description assumes a main

memory index, the technique can be easily extended to secondary

memory by using B+-trees.

IV. LOCATION-BASED SERVICE

The Location-Based Service (LBS) receives the query from

the anonymizer, processes it and sends the results back to the

anonymizer. In our implementation, the data in the LBS are in-

dexed by an R*-Tree [5]; our methods, however, are independent

of the index structure. We support two types of queries:

1) Range queries: The LBS receives the query range which is

either an axis-parallel rectangle R or a circle C. Processing

is straight-forward; the R-tree is traversed from the root to

the leaves and any object inside R (or C) is returned.

2) kNN queries: This case is more complex, since the LBS

must find the k nearest neighbors of the entire range. For

rectangular ranges, we adopt the Range Nearest Neighbor

(RkNN) algorithm [17] (see Section II-C for details). The

rest of this section describes our CkNN algorithm, which

computes the kNNs of circular ranges.

A. CkNN - Circular Range kNN

Similar to rectangular ranges [17], the set of kNNs of a circular

range C also consists of two subsets of objects: (i) all the objects

inside C and (ii) the kNNs of the circumference of C. The objects

in (i) are retrieved by a range query; in the rest of the section,

we present the novel CkNN-Circ algorithm which computes the

kNNs of the circumference of C. Intuitively CkNN-Circ is similar

to CNN (see Section II-C). However, some of the properties of 1-

D shapes which are used in CNN (e.g., continuity by the definition

of [29]) do not hold for 2-D shapes, rendering the problem more

complex.

Conceptually, CkNN-Circ partitions the circumference of C into

disjoint arcs, and associates to each arc the data objects nearest

to it. Consider the example of Figure 10, where p1, p2 and p3

are the data objects. Let s0, s1 be the intersection points of the

perpendicular bisector of p1p2 (denoted by ⊥p1p2) with C, i.e.,

|p1s0| = |s0p2| and |p1s1| = |s1p2|. Assuming that the center c

of C is the origin of the coordinate system, the polar coordinates

of s0 are (r, ŝ0), where r is the radius of C and ŝ0 is the (anti-

clockwise) angle between the x-axis and the vector �cs0. Similarly,

the polar coordinates of s1 are (r, ŝ1). The NN of every point in

the arc [ŝ0, ŝ1] is p1; we denote this as: [ŝ0, ŝ1] → p1. Likewise

[ŝ1, ŝ0] → p2, since any point in the arc [ŝ1, ŝ0] is closer to p2 than

to any other object. Therefore, the set of NNs of C is {p1, p2}.

Note that p3 is not in this set, even though it is closer to C than

p2, because p1 is closer than p3 to any point on C; we say that

p1 covers p3.

c r

p
3 p

1 1s

1s

0s

0s p
2

Fig. 10. The 1-NNs of C are p1 and p2

Let D = {p1, p2, . . . , pn} be the set of all data objects. CkNN-

Circ maintains a list SL of mappings [a, b] → pi, where a, b are

angles defining an arc on C, 0 ≤ a < b ≤ 2π, and pi ∈ D is

the object which is closest to every point of arc [a, b] than any

other object pj ∈ D. The CkNN-Circ pseudocode is shown in

Figure 13.

In the example of Figure 11a, let p1 ∈ D be the first object

encountered by the algorithm. Since SL is initially empty, p1

is closest to the entire C. Without loss of generality, we pick

two points s0, s′0 ∈ C, where ŝ0 = 0 and ŝ′0 = 2π (i.e., they

are the same point), and insert the mapping [ŝ0, ŝ′0] → p1 into

SL (line 2 of the pseudocode). For each subsequent point p ∈
D, the algorithm traverses SL (line 4) and examines all existing

mappings [a, b] → q. There are three possible cases:

c c

(a) (b)

r

1
p

s'0

0s
s'0

p
1
p
2

2
p

1
p

s'0
0s

Fig. 11. CkNN example: The perpendicular bisector does not intersect C

Case 1: ⊥pq∩C= ∅ or ⊥pq is tangent to C (lines 5-6). This

case is exemplified5 in Figure 11b. The only existing mapping is

[ŝ0, ŝ′0] → p1, and p2 is processed next. Any point on the right-

hand side of ⊥p1p2, is closer to p1. Therefore, the entire C is

closer to p1 than to p2. Since the mapping to p1 already exists,

there is no change in SL. Furthermore, even if there were more

5For simplicity, all objects are shown outside C. However, the algorithm
also works for objects inside C.
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mappings inside SL, it would not be necessary to compare with

p2, since p1 covers p2. On the other hand, if p2 was at the right-

hand side (and p1 on the left), then p2 would be closer to C than

p1. In this case, the algorithm would remove the [ŝ0, ŝ′0] → p1

mapping from SL and add a new one [ŝ0, ŝ′0] → p2 (line 6).

Case 2: ⊥pq∩C= {s0, s1} and either ŝ0 ∈ [a, b] or ŝ1 ∈ [a, b]

(lines 12-14). This case is illustrated in Figure 12a: both p1 and

p2 have already been processed, and there are two mappings in

SL: [ŝ1, ŝ′1] → p1 and [ŝ′1, ŝ1] → p2. Let p3 be the next object to

be processed. p3 is compared against the existing mappings. For

the first one (i.e., [ŝ1, ŝ′1] → p1), ⊥p1p3 intersects C at s2 and

s′2. Note that ŝ′2 �∈ [ŝ1, ŝ′1], so it is not considered further. On the

other hand, ŝ2 ∈ [ŝ1, ŝ′1] and p3 is closer to s1 than p1. Therefore

(line 13), the arc is split into two parts [ŝ1, ŝ2] and [ŝ2, ŝ′1], which

are assigned to p3 and p1, respectively. Similarly, for the second

mapping (i.e., [ŝ′1, ŝ1] → p2), ⊥p2p3 intersects C at s3, s′3. Only

ŝ3 ∈ [ŝ′1, ŝ1], so the arc is split into [ŝ′1, ŝ3] and [ŝ3, ŝ1], which

are assigned to p2 and p3, respectively. After updating, SL =

{[ŝ2, ŝ′1] → p1, [ŝ′1, ŝ3] → p2, [ŝ3, ŝ1] → p3, [ŝ1, ŝ2] → p3}. The

last two mappings can be combined (i.e., [ŝ3, ŝ2] → p3) since

they are consecutive and are mapped to the same object.

(a) (b)

p
3

p
1

s2

s'3

s1
3s

s'2

p
2s'1

p
1

p
3

p
2

s2

s1

3s

s'2
s'1
s'3

Fig. 12. The perpendicular bisector intersects C

Case 3: ⊥pq∩C= {s0, s1} and both ŝ0, ŝ1 ∈ [a, b] (lines 9-11).

This case is illustrated in Figure 12b: again, both p1 and p2 have

already been processed, and SL = {[ŝ′1, ŝ1] → p1, [ŝ1, ŝ′1] → p2}.

Next, p3 is compared to the first mapping of SL. Note that ⊥p1p3

intersects C at s′2, s2 and both ŝ′2, ŝ2 ∈ [ŝ′1, ŝ1]. Therefore (line

10), the arc is split into three parts and since p3 is closer to s′1
than p1 the corresponding mappings are: [ŝ′1, ŝ′2] → p3, [ŝ′2, ŝ2] →
p1, [ŝ2, ŝ1] → p3. Similarly, after considering ⊥p2p3, [ŝ1, ŝ′1] is

also split into three parts. Finally, after combining the consecutive

mappings, SL = {[ŝ′2, ŝ2] → p1, [ŝ2, ŝ3] → p3, [ŝ3, ŝ′3] →
p2, [ŝ′3, ŝ′2] → p3}.

For simplicity, the pseudocode of Figure 13 computes only the

1-NNs. To compute the kNNs, instead of a single object, the

arcs in our implementation are mapped to an ordered list of k

objects: [a, b] → (p1, . . . , pk), where p1 is the nearest neighbor

of arc [a, b], p2 is the second NN of arc [a, b], etc. The procedure

is called for each position i (1 ≤ i ≤ k) of the ordered list.

In the ith call, if an object p ∈ D already exists in position j

(1 ≤ j ≤ i− 1), then p is not considered for that mapping. Also,

if an arc is split, the objects in positions 1 . . . i− 1 (i.e. the i− 1

nearest neighbors found already) are not altered. The worst case

complexity of CkNN is O(|D|k), since any object may cause an

arc split. In practice, however, the algorithm is faster, because the

objects which are far away from C do not cause splits.

CkNN-Circ(D: the set of objects)

1. for every object p ∈ D do
2. if SL = ∅ then SL := {[0, 2π] → p}
3. else
4. for every interval ϕ ≡ [a, b] → q, ϕ ∈ SL do
5. if ⊥pq∩ C= ∅ or ⊥pq is tangent to C then
6. if |pC| < |qC| then SL := (SL − ϕ) ∪ {[a, b] → p}

else break
7. else
8. let s0, s1 be two points such that ⊥pq∩ C= {s0, s1}
9. if ŝ0 ∈ [a, b] and ŝ1 ∈ [a, b] then

// Assume ŝ0 < ŝ1 (the other case is symmetric)

10. if |pCa| < |qCa| then SL := (SL − ϕ)∪
∪{[a, ŝ0] → p, [ŝ0, ŝ1] → q, [ŝ1, b] → p}
// Ca, Cb are the endpoints of arc [a, b]

11. else SL := (SL − ϕ)∪
∪{[a, ŝ0] → q, [ŝ0, ŝ1] → p, [ŝ1, b] → q}

12. else if ŝ0 ∈ [a, b] or ŝ1 ∈ [a, b] then
// Let only ŝ0 ∈ [a, b] (ŝ1 ∈ [a, b] is symmetric)

13. if |pCa| < |qCa| then SL := (SL − ϕ)∪
∪{[a, ŝ0] → p, [ŝ0, b] → q}

14. else SL := (SL − ϕ) ∪ {[a, ŝ0] → q, [ŝ0, b] → p}
15. else if |pCa| < |qCa| then

SL := (SL − ϕ) ∪ {[a, b] → p}
16. return SL

CkNN(D: the set of objects)

1. call CkNN-Circ(D)

2. return {p : p ∈ D ∧ p is inside C}∪
∪{p : p belongs to a mapping of SL}

Fig. 13. Find the 1-NNs of a circular range C

B. R-trees and CkNN

In order to use the CkNN algorithm with an R-tree, we employ

a branch-and-bound heuristic. Starting from the root, the R-tree is

traversed either in Depth-First or in Best-First [29] manner. When

a leaf entry (i.e., object) p is encountered, the CkNN algorithm is

used to check whether p is closer to C than any of the objects in

the current mappings (i.e., p is a qualifying object) and updates

SL accordingly. For an intermediate entry E we avoid visiting

its subtree if it is impossible to contain any qualifying object.

Figure 14 presents an example where p1 and p2 are the current

1-NNs of C. Next, an entry E from an intermediate node of the

R-tree is encountered. We observe the following:

Lemma 1: Let MBRE be an axis-parallel MBR and let st be

the side which is closest to circle C. If st does not contain any of

the kNNs of C, then MBRE cannot contain any kNN.

d

e

c

f

E
r

s

t

p
1

2
p

Fig. 14. Check if E may contain qualifying objects
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The proof is straight-forward, since any point in the MBR

will be further away from C than the closest point on st. In our

example, the right side st of E is closer to C. Assume there is a

point d on st, such that the perpendicular bisector ⊥dp1 is tangent

to C, and let e ≡ ⊥dp1∩C. Then we get the following system of

equations6:

⎧⎪⎨
⎪⎩

|ce| = r

|p1e| = |de|
|p1e|2 − |p1f |2 = |cf |2 − r2

(1)

The first equation is derived from the fact that e ∈ C, while the

second one is because the distance from any point on ⊥dp1 to d

and p1 is equal. The third equation results from the application of

the Pythagorean theorem on the orthogonal triangles p1fe and fec

which have a common side ef . After substituting the points with

their Cartesian coordinates, we get the following system (note

that xf =
xd+xp1

2 , yf =
yd+yp1

2 , since f is the middle of dp1):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(xe − xc)
2 + (ye − yc)

2 = r2

(xd − xe)
2 + (yd − ye)

2 = (xp1 − xe)
2 + (yp1 − ye)

2

(xp1 − xe)
2 + (yp1 − ye)

2 − (xd−xp1)
2+(yd−yp1)

2

4 =

=
(

xd+xp1
2 − xc

)2
+

(
yd+yp1

2 − yc

)2
− r2

There are three equations and three unknowns: xe, ye, yd. If

there is a real solution to this system, under the condition

(xd, yd) ∈ st, then there may be a qualifying object inside the

subtree of E. Else all objects in E are further away from C than

the current objects in SL, so the subtree under E can be pruned.

Solving this system, however, is slow (in the order of 100’s

of msec in an average computer); given that an entry E must be

checked against many objects, the running time is prohibitively

long. Therefore, in our implementation, we use the RkNN al-

gorithm to traverse the R-tree and employ the CkNN algorithm

only for the objects at the leaf-level. Our strategy is based on the

following observation:

Lemma 2: Let C be a circle, MER the maximum enclosed

axis-parallel rectangle of C and S the set of kNNs of MER’s

perimeter. Let pi be an object, such that pi is inside MER and

pi �∈ S. Then pi cannot be a kNN for any point of C.

d

e

MBR of C

MER of C

C

p
2

p
1

Fig. 15. The MBR and the MER of C

Proof: Assume the lemma does not hold. Figure 15 shows

an example where p2 is inside MER and p2 �∈ S. Assume that

p2 is the NN of point e ∈ C. Let d be the point where the line

segment p2e intersects the perimeter of MER, and p1 be the

object which is the NN of d. It follows from our hypothesis that:

|p2e| < |p1e|. Using the triangular inequality, we get: |p2d| +

6If a different side of E is closer to C, the equations are modified
accordingly.

Fig. 16. North-America (NA) dataset

|de| < |p1d| + |de| ⇒ |p2d| < |p1d| which is a contradiction,

since p1 is the NN of d. Therefore, the lemma holds.

We construct the Minimum Bounding Rectangle7 MBR and

the Maximum Enclosed Rectangle MER of C (the side-length of

MER is
√

2r). Conceptually, our implementation works in three

steps:

1) Use the RkNN algorithm to find the set S1 of kNNs of

MBR (including all the objects inside MBR). Recall that

S1 is a superset of the kNNs of any point inside MBR;

therefore, it contains all the kNNs of C.

2) Use CNN (see Section II-C) to find the set S2 of kNNs of

only the perimeter of MER. Use Lemma 2 and S2 to prune

objects from S1.

3) Call the CkNN algorithm with the objects remaining in S1.

In practice, these steps can be combined. In a single traversal of

the R-tree, steps (1) and (2) can be used at the intermediate levels

to prune the tree and step (3) is applied on the leaf-level objects.

V. EXPERIMENTAL EVALUATION

This section evaluates the proposed anonymization and query

processing algorithms. We implemented prototypes for both the

anonymizer and the LBS using C++. All experiments were exe-

cuted on an Intel Xeon 2.8GHz machine with 2.5GB of RAM and

Linux OS. Our workload for user positions and landmarks/points

of interest consists of the NA dataset [30], which contains

569K locations on the North-American continent (Figure 16).

Performance is measured in terms of CPU time, I/O time and

communication cost. At the anonymizer we employed main-

memory structures, therefore we measured only the CPU time.

At the LBS, we used an R*-Tree and measured the total time

(i.e., I/O and CPU time); in all experiments we maintained a

cache with size equal to 10% of the corresponding R*-Tree.

The communication cost was measured in terms of number of

candidates sent from the LBS back to the anonymizer.

In the following, Section V-A focuses on cloaking algorithms at

the anonymizer, whereas Section V-B evaluates query processing

at the LBS.

A. Anonymizer Evaluation

We compare the proposed Nearest Neighbor Cloak (NNC) and

Hilbert Cloak (HC) against Casper and Interval Cloak (IC). The

first experiment measures the area of rectangular K-ASRs. Recall

that we wish to minimize the ASR area, since it affects the

processing time at the LBS and the communication cost between

7For a set of users U1...n, the MBR of C is not the same as their
corresponding anonymizing rectangle R.
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Fig. 17. Area of rectangular K-ASR
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Fig. 18. K-ASR generation time
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Fig. 19. Rectangular vs Smallest Area K-ASR, Nearest Neighbor Cloak

the LBS and the anonymizer. First, we fix the number of users

N = 50000 and vary the degree of anonymity K. The K-ASR area

is expressed as a percentage of the entire data space. We generated

1000 queries originating at random users. Figure 17a shows the

average area per query. Clearly IC is the worst algorithm, whereas

NNC is the best. HC and Casper exhibit similar behavior to each

other. All algorithms scale linearly with K in terms of ASR area.

Figure 17b, shows the K-ASR area for K = 80 and varying N .

Since the extent of the data space remains constant, an increase in

user population translates to higher user density, hence reduced

K-ASR size for all methods. The relative performance among

the algorithms remains the same. Observe that HC and Casper
outperform IC, and generate ASRs with roughly twice the area

of NNC.

Figure 18 shows the average ASR generation time (in millisec-

onds) for varying K and N . HC, IC and Casper behave similarly.

NNC, on the other hand, has a significantly larger generation time,

due to the more costly nearest-neighbor search. Nevertheless, we

will show in the following that NNC is best in terms of overhead

at the LBS.

So far, we focused on rectangular K-ASRs. However, depend-

ing on the user distribution, circular K-ASRs may have smaller

size. Here we adopt a simple optimization: first we identify

the set of users which belong to a K-ASR. Then we calculate

the minimum bounding rectangle R and the minimum enclosing

circle C of the K-ASR, and select the shape with the smallest area.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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We call this method SA. NNC is more suitable to be combined

with SA, since the nearest neighbor search tends to identify

circular clusters of users. Figures 19a and 19b compare the

rectangle-only approach against the SA optimization for varying

K and N , respectively. SA manages to reduce the K-ASR area

by up to 15%.

Finally, we measure the anonymity strength of the above-

mentioned algorithms against the center-of-ASR attack8. We con-

sider a workload of 1000 queries, originating at a set of random

users, with K = 50. Figure 20 shows the probability P [indexU =

i] (the experiment is similar to that of Section III-A). Recall

that indexU = 1 means that user U is the closest to the center

of the K-ASR. Furthermore, the dashed line corresponds to the

distribution of indexU for the ideal anonymization technique. All

studied algorithms preserve privacy in the case of the center-of-
ASR attack. NNC is close to the ideal distribution and there are

few cases where the K-ASR encloses more than K users, which

explains the relatively small ASR size observed in the previous

experiments. HC and Casper exhibit similar behavior to each

other, but include a larger number of redundant users inside the

K-ASR, compared to NNC; this is why P [indexU = i] > 0 for

i > K. However, they are both better than IC.
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Fig. 20. center-of-ASR attack, K= 50

B. Location-Based Service Evaluation

For this experiment, we generate 1000 queries originating at

random users. The corresponding K-ASRs are sent to the LBS and

the queries are executed against the entire NA dataset, which is

indexed by an R*-tree. For all K-ASR generation techniques, we

compare the average processing time (i.e, CPU plus I/O time)

per query, and the size of the candidate set. The latter is a

superset of the actual result, and it reflects the communication cost

between the LBS and the anonymizer. First, we focus on kNN

queries. Figure 21 shows the performance for varying number of

nearest neighbors k. NNC generates a significantly lower number

of candidates compared to the other techniques. This is expected,

since the sizes of the corresponding K-ASRs are also smaller.

HC and Casper generate up to 50% more candidates than NNC.

However, they both outperform IC by a large margin. In terms

of processing time, NNC is the fastest, with HC and Casper
considerably better than IC.

In Figure 22 we fix the number of neighbors k = 2 and vary

the degree of anonymity K. Again, NNC performs best, followed

8Although we formally proved that Hilbert Cloak guarantees location
anonymity, we include this experiment for illustration purposes.

by HC and Casper. The difference is more significant for larger

K values, as the average size of the K-ASR increases. Figure 23

shows the number of candidates and processing time for varying

N . Note that more users lead to higher density, thus smaller K-

ASRs. Consequently, the number of candidates and the average

processing time decrease with N .

We also evaluated the performance of the four techniques for

range queries. The results are presented in Figure 24 for varying

K and N = 50000. Again, we observe a significant advantage of

NNC over the other techniques, while HC and Casper outperform

IC in terms of both processing cost and candidate set size. The

trends for varying N are similar.

The previous results were obtained for rectangular K-ASRs.

We also investigated the effect of the SA (i.e., smallest area)

optimization on query processing. For a given K-ASR, if SA

generates a circular range C, we employ CkNN to execute

the corresponding kNN query. For our workload, SA generated

circular ranges for around 45% of the K-ASRs when K was small,

and up to 90% for large values of K. Figure 25 compares SA

against the rectangles-only approach for k = 2 neighbors and

varying K. SA reduces the number of candidates by up to 18%,

compared to the rectangular K-ASR. The tradeoff is the increased

processing time. The same relative performance is observed in

Figure 26, where we vary N .

C. Discussion

The experimental evaluation verifies the superiority of Hilbert
Cloak and Nearest Neighbor Cloak, compared to the existing

approaches. Our HC algorithm provides privacy guarantees under

all user and query distributions, and its overhead in terms of ASR

generation time, query processing time and communication cost

is similar to Casper, the most recent and most efficient technique.

On the other hand, NNC clearly outperforms Casper in terms of

overhead at the LBS, while offering similar anonymity strength.

The LBS is likely to maintain huge volumes of data and

disk-based data structures, while the anonymizer typically uses

memory-based data structures. For this reason, the query overhead

at the LBS is considerably larger than at the anonymizer (observe

that time is measured in milliseconds in Figure 18 instead of sec-

onds in Figure 21b). Under these circumstances, the reduced LBS

processing cost offers NNC an important performance advantage,

despite its increased K-ASR generation time.

The choice between Hilbert Cloak and Nearest Neighbor Cloak
involves a clear trade-off between privacy guarantees on one hand,

and processing overhead on the other. If provable anonymity guar-

antees are required, Hilbert Cloak is the only option. Nevertheless,

Nearest Neighbor Cloak also achieves strong anonymity for most

of the cases, and may be acceptable for applications where outliers

do not constitute an anonymity threat (e.g., very frequent user

movement) and efficiency is crucial.

Finally, there is a tradeoff between rectangular-only K-ASRs

and the SA optimization. The cost of CkNN at the LBS is higher

than RkNN. However, CkNN reduces the number of candidates.

Therefore, CkNN is preferable if the communication cost is more

important than the processing cost at the LBS. In practice, this

happens if a single anonymizer sends queries to several LBSs.

In this case the bandwidth of the single anonymizer is shared

among all connections. Thus, it is important to minimize the

communication cost, whereas the processing cost is distributed

among the LBSs.
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Fig. 21. kNN queries, varying number of neighbors, N = 50000, K = 80
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Fig. 22. kNN queries, varying K, k = 2 neighbors, N = 50000
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Fig. 23. kNN queries, varying N , k = 2 neighbors, K = 80
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Fig. 24. Range queries, N = 50000, varying K
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Fig. 25. NNC, rectangular vs SA K-ASR, k = 2 neighbors, N = 50000, varying K
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Fig. 26. NNC, rectangular vs SA K-ASR, k = 2 neighbors, varying N , K = 80

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied the preservation of query anonymity

in Location Based Services. The main idea is to conceal the user

coordinates, by replacing them with a spatial region (either a

circle or a rectangle). This region covers the query initiator and

at least K−1 other users. We proposed methods that construct

appropriate anonymizing regions and investigated their tradeoffs.

We also designed algorithms that run at untrustworthy LBSs, and

compute exact answers to anonymized range and nearest neighbor

queries. Our work is the first to provide a formal guarantee for the

anonymization strength. Moreover, the experimental evaluation

showed that our methods outperform the existing state-of-the-art.

Our initial findings reveal interesting directions for future

research. A challenging problem is to ensure anonymity for users

issuing continuous spatial queries. Intuitively, preserving anony-

mity is more difficult in this case: asking the same query from

successive locations may disclose the identity of the querying

user, who will be included in all ASRs. Our framework can be

extended for processing continuous queries as follows: a snapshot

technique (e.g., NNC, HC) is first employed to determine the set

AS of users included in the ASR for the initial snapshot of the

query; this anonymizing set is “frozen” for the rest of the query

lifetime. The MBR of AS is then used as ASR at subsequent

snapshots. However, as users move in different directions, such

an approach may yield large ASRs. Another possibility would

be to employ an entirely different framework based on Private

Information Retrieval (PIR) [9]. Existing PIR methods, however,

are impractical due to huge network cost. Continuous queries

involve several complex issues, and constitute a promising topic

for further work.

Another interesting aspect is preventing “background knowl-

edge” attacks, when the attacker has additional information about

the preferences of certain users. For instance, if Bob, a rugby fan,

asks for the location of the closest rugby club, and the associated

ASR contains only female users in addition to Bob, the attacker

may infer Bob as query source with higher probability. A solution

to this problem would be to group users into partitions according

to their areas of interest (e.g., users who query frequently about

restaurants, or night clubs, etc). Then, when a query is issued, the

corresponding ASR is generated with users from the same interest

group as the query source, such that each user in the ASR has an

equally likely probability of having asked the query.

Finally, it would be interesting to investigate methods that do

not require an anonymizer. Assuming that the users trust each

other, the query initiators could collaborate with peers in their

vicinity to compute their anonymizing region.
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