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ABSTRACT
Historical traffic information is valuable for transportation analy-
sis and planning, as well as for route search services. In view of
these applications, we propose the k traffic-tolerant paths problem
(TTP) on road networks, which takes a source-destination pair and
historical traffic information as input, and returns k paths that mini-
mize the aggregate (historical) travel time. Unlike the shortest path
problem, the TTP problem has a combinatorial search space that
renders the optimal solution expensive to compute. We propose
an exact algorithm and a heuristic algorithm for this problem. Ex-
periments on real traffic data demonstrate the effectiveness of TTP
paths and the efficiency of our proposed algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS

General Terms
Algorithms, Performance
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road networks, road traffic

1. INTRODUCTION
In this paper, we propose a novel problem called k traffic-tolerant

paths (TTP), which finds application in transportation analysis,
planning, and route search services. The idea is to extract a set
of k paths P k

s,t from a road network such that it best approximates
the shortest travel times for a given source-destination (SD) pair
(vs, vt) at any time. Specifically, this problem requires a road net-
work with historical travel time G(V,E,Wm), where Wm maps
an edge to its travel times at m time instants. Given an integer k
and a SD pair (vs, vt), the TTP problem finds a set of k paths from
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vs to vt, denoted by P k
s,t, that minimizes the following error:

ξ(P k
s,t) =

1

m
·

(
m∑

j=1

min
p∈Pk

s,t

{τj(p)− τj(spj)}

)
(1)

where τj(p) is the travel time of path p at time instant j and spj
denotes the shortest path from vs to vt at time instant j. Observe
that the minimization of ξ(P k

s,t) is equivalent to the minimization
of the following measure:

Ψ(P k
s,t) =

m∑
j=1

min
p∈Pk

s,t

τj(p) (2)

because spj is independent of P k
s,t and the summation function is

distributive.
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Figure 1: Running Example

We illustrate TTP by the sample road network shown in Fig-
ure 1(a). Each edge is labeled with m = 5 weights that represent
the travel times of edges at 5 time instants (e.g., 8:00am on July
1–5). Suppose that the SD pair (vs, vt) is (v1, v7). There are 6
possible paths from vs and vt, and their travel times at different
time instants are shown in Figure 1(b). For clarity, we indicate
the intermediate nodes in a path in the subscript, e.g., the path
p5.4.3 passes through v5, v4, v3. Given that k = 2, the optimal
path set is P k

opt = {p4, p5.6} because it has the minimum value
Ψ(P k

opt) = 56. We elaborate the applications of TTP below.
Application 1: transportation planning analysis. Transporta-

tion planners evaluate the reliability of transportation systems by
analyzing the reliability of routes for representative SD pairs, which
are chosen by their expertise. For example, representative SD pairs
could be: city center to airport, ports to the industrial area, etc.
Their current practice [4] is to select one route per SD pair and cal-
culate the travel time reliability of each route. Our proposed TTP
can provide k paths instead of a single path per SD pair to trans-
port planners for reliability analysis. Hence, they can obtain a more
comprehensive insight of the reliability of transportation systems.



Application 2: reducing query cost in online route services.
Online route services [8] have access to real-time traffic informa-
tion1, which are more accurate than modeling the travel times of
road segments by using only historical traffic data [5,7]. Thus, they
provide query users with fastest path(s) according to up-to-date
traffic. Although these services may use shortest path indices [10]
to answer queries efficiently, they incur substantial maintenance
time and may not catch up with frequent traffic updates (e.g., every
30 seconds [1]).

In fact, the majority of queries are recurrent queries issued by
daily users, e.g., finding the fastest route from home to office at
8:00am every day. Such regular patterns appear in human trajec-
tories, as revealed in current scientific studies [6, 9]. A promising
method is to precompute k candidate paths per recurrent query (in
an offline phase) and then update their travel times by live traffic in-
formation (during online operations). This approach eliminates the
index maintenance cost and bounds the online computation cost by
the number of candidate paths. It scales better than existing meth-
ods based on shortest path indices. Although Malviya et al. [8] have
proposed some heuristics for finding k candidate paths, those paths
do not necessarily minimize the historical travel time error (in our
Equation 1). In contrast, in our TTP problem, we aim to compute
k candidate paths that minimize the historical travel time error.

The rest of this paper is organized as follows. We first present
an exact algorithm for TTP in Section 2, and then develop a fast
heuristics method in Section 3. Then, in Section 4, we evaluate the
effectiveness of TTP paths and the efficiency of our algorithms on
real traffic data. Finally, we conclude our work in Section 5.

2. EXACT METHOD
Our exact method for TTP consists of two phases: (Phase I)

generating a set C of candidate paths and (Phase II) finding the
optimal combination of k paths from the set C.

A simple implementation (for Phase I) is to enumerate all possi-
ble size-k combinations of paths. As an example, we assume k = 3
and consider the SD pair (v1, v7) in the road network in Figure 1.
Since there are |C| = 6 possible paths (from v1 to v7) in the road
network, we would enumerate

(|C|
k

)
=
(
6
3

)
= 20 size-3 combina-

tions in total. However, this implementation does not scale well
with a large road network.

We optimize the algorithms for both phases to reduce the search
space

(|C|
k

)
. For Phase I, we develop pruning rules to eliminate un-

promising paths that cannot contribute to the optimal solution (i.e.,
reducing the value |C|). For Phase II, we adopt the branch-and-
bound paradigm and design pruning rules to discard partial combi-
nations that cannot lead to the optimal solution.

2.1 Phase I: Generating Candidates
We face two challenges in generating candidate paths. First, the

number of all possible paths from source to destination is incredibly
large on a sizable road network. Exploring all of them is imprac-
tical. Second, many paths lead to long travel times, so those paths
should not be included in the optimal solution.

To overcome both challenges, we prune unpromising paths by
leveraging the dominance property. Since every edge in the road
network has a cost vector w(e) with size m, all possible paths p
connecting a SD pair has a m-dimensional cost vector −→p also. As
p represents a vector, we can define and exploit dominance of paths.

DEFINITION 1 (VECTOR AND PATH DOMINANCE).
Let−→v and−→u be twom-dimensional vectors. −→v is said to dominate
1Collected by road-side sensors, crowdsourcing, or purchased from
traffic information providers.

−→u if and only if ∀1 ≤ j ≤ m,−→v .j ≤ −→u .j. We denote this as
−→v � −→u .

Let p and p′ be two paths from vs to vt. p′ is said to dominate p
if and only if

−→
p′ � −→p .

Recall that TTP is to minimize the aggregate value derived by
the paths in a k-combination. Thus, we aim to retain those paths
with short travel times over m time slots. By the concept of path
dominance, if a path p′ dominates another path p, this implies p′

has smaller travel times than p at all time instants, so p should be
pruned in Phase I. This dominance concept leads to the following
pruning rule.

PRUNING RULE 1 (PATH DOMINANCE PRUNING).
Given a path p, if there is a path p′ such that

−→
p′ � −→p , then p can

be pruned.

This pruning rule is applicable only when all possible paths be-
tween vs and vt are known. However, enumerating all possible
paths is expensive even on a medium-sized road network. We need
to avoid exploring the entire search space during enumeration.

Observe that many paths share a common prefix among the pos-
sible paths from vs to vt. During path enumeration, we can safely
disqualify a prefix (before it reaches vt) by computing the mini-
mum possible travel time of the paths originating from a common
prefix at each time instant j, denoted by LBj(p̂). It is a sum of
two terms: (i) the exact travel time of a prefix at time instant j, i.e.,
τj(p̂) and, (ii) the minimum travel time from the end node of the
prefix to vt. Therefore, we define a prefix path p̂ and LBj(p̂) as
follows.

DEFINITION 2 (PREFIX PATH).
Given a path p = 〈va1 , va2 , ..., van〉, p̂ = 〈vâ1 , vâ2 , ..., vâm〉 is a
prefix path of p if and only ifm ≤ n and for 1 ≤ i ≤ m, vai = vâi .

Given a prefix path p̂, for 1 ≤ j ≤ m, its minimum possible
travel time at time instant j, denoted by LBj(p̂), is calculated as
LBj(p̂) = τj(p̂) + τj(sp

last
j ), where splastj denotes the shortest

path from the last node of p̂ to vt at time instant j.
We define the lower-bound cost vector of p̂ as

−→
p̂ =

〈LB1(p̂), LB2(p̂), ..., LBm(p̂)〉.
For example, let us consider p̂ = 〈v1, v5〉 and LB2(p̂) in our

sample network. We have τ2(p̂) = 8 and τ2(splast2 ) = 8, where
splast2 = 〈v5, v6, v7〉. Hence, LB2(p̂) = 8 + 8 = 16. By com-
puting LBj(p̂) for each time instant j ∈ [1..m], we obtain a cost
vector

−→
p̂ that lower bounds the cost vector of any path sharing the

common prefix p̂. Similarly, we can apply the dominance concept
and the pruning rule for

−→
p̂ .

PRUNING RULE 2 (PREFIX PATH PRUNING).
Given a set of pathsD and a prefix path p̂, if there is a path p′ ∈ D
such that

−→
p′ �

−→
p̂ , then every path p with the prefix p̂ can be

pruned.

We propose to implement Phase I as follows. First, we apply a
heuristic to find a set of pruning paths D, which will be used to
support our pruning rules. We will discuss how to select the set
D shortly. Next, we initialize an empty prefix path and an empty
candidate set C. Then, we apply a DFS-like procedure to find all
qualified candidates. The procedure recursively constructs different
prefixes stemming from vs and compares them against D. If a pre-
fix is dominated by a path in D, the algorithm discards and stops
expanding the prefix. Otherwise, the recursion keeps expanding
the prefix by visiting the neighbors of its end node until reaching
vt. Each expanded path (from vs to vt) becomes a candidate for
the next phase.



2.1.1 How to Select the Pruning Path Set D?
The selection of D is critical for pruning efficiency. We have

empirically found thatD yields the best performance in most cases
if it includes the k + 1 paths described below.

Initially, we compute the shortest path spavg (from vs to vt)
in the road network, by setting the weight of each edge e to
wavg(e) =

∑m
j=1 wj(e)/m. We then insert spavg into D. The

intuition is that such a path is not bad at all time instants.
Next, in the road network, we set the weight of each edge e to

ws(e) = minm
j=1 wj(e). We then execute the following steps for

k iterations. In each iteration, we perform a shortest path search
from vs to vt, obtain a shortest path spi, and insert it intoD. Then,
we update ws(e) = maxm

j=1 wj(e) for each edge e on spi. We
hope that this would force the shortest path search in subsequent
iterations to find other paths that are significantly different from
spi.

2.2 Phase II: Finding Optimal Combination
In this section, we present the implementation for Phase II, i.e.,

enumerating k-combinations of paths from the candidate set C in
order to find the optimal k-combination. Since we have obtained
the cost vectors of candidate paths in Phase I, the road network is
no longer required in this phase.

The number of k-combinations of paths is
(|C|

k

)
, so it is ex-

pensive to generate them, especially when |C| is large. Thus,
we develop pruning rules to prevent exploring unnecessary k-
combinations. The key idea of the pruning rules is to early stop
extending any partial combination P̂ (which contain fewer than k
candidates) by computing its lower bound aggregate value Ψlb(P̂ ).

Table 1 shows the set of candidates C and their historical travel
times after Phase I in our sample network. Suppose that k = 3
and Pbest = {p1, p2, p3} is the best combination found so far
and Ψ(P ) is 58. Among the remaining k-combinations yet to
be examined, some of them share common paths. For exam-
ple, {p1, p2, p4}, {p1, p2, p5} and {p1, p2, p6} have {p1, p2} as
common paths. We proceed to derive the lower bound aggregate
value of the partial combination P̂ = {p1, p2, p∗}, denoted by
Ψlb(P̂ ), where p∗ is either p4, p5 or p6. Ψlb(P̂ ) is calculated
as
∑m

j=1 min{minp∈{p1,p2} τj(p),minp∗∈{p4,p5,p6} τj(p∗)} =

15 + 16 + 12 + 14 + 8 = 65. Since Ψlb(P̂ ) > Ψ(Pbest), we
can safely discard the above three combinations.

Table 1: All Possible Paths from v1 to v7, with historical travel
times

Path τ1 τ2 τ3 τ4 τ5

p1〈v1, v2, v3, v7〉 19 20 14 15 16
p2〈v1, v4, v3, v7〉 18 20 17 14 12
p3〈v1, v4, v7〉 16 10 6 16 14

p4〈v1, v5, v6, v7〉 19 16 20 21 8
p5〈v1, v5, v4, v3, v7〉 17 30 23 21 9
p6〈v1, v5, v4, v7〉 15 20 12 23 11

With the above lower bound aggregate value, we can prune an
unpromising partial combination as follows:

PRUNING RULE 3 (PARTIAL COMBINATION PRUNING). Let
Pbest be a known k-combination. Given a partial combination P̂ ,
if Ψlb(P̂ ) > Ψ(Pbest), then P̂ can be pruned.

The effectiveness of partial combination pruning depends on
how early we can obtain a complete k-combination with a high
pruning power, i.e., close to the optimal solution. In order to
discover a good combination early, we adopt a branch-and-bound
paradigm to expand a partial combination. We insert a candidate
p ∈ C to a partial combination in ascending order of τmin(p) =

minm
j=1 τj(p). We also maintain a data structure to reduce the over-

head of computing Ψlb(P̂ ).
To sum up, we enumerate the optimal combination by the follow-

ing procedure. We initialize an empty partial combination P̂ and
recursively insert a candidate p ∈ C into P̂ in order of τmin(p). If
P̂ contains fewer than k paths, then we compare its lower bound
cost with that of the best complete combination Pbest found so far.
If P̂ has a smaller cost, then we further expand it. When P̂ contains
k paths, we can compute its exact cost and update Pbest to P̂ if P̂
is better.

3. HEURISTIC METHOD
In this section, we present a heuristic method called Top-Picker

Algorithm (TP) to find a low-cost solution efficiently. Observe that,
in our exact algorithm, the candidate set C is large even if we apply
pruning rules in Phase I. Thus, this would lead to a huge number of
path combinations in Phase II. In order to reduce the total compu-
tation cost, TP generates a bounded number of candidates (Phase
I) by a heuristic and reuses the combination enumeration (Phase II)
of the exact method.

The idea of TP is to limit the size of the candidate set C, say, to
at mostm. It computes the shortest path spj (from vs to vt) at each
time instant, and then inserts these paths into the candidate set C.

Let us use Table 1 as an example with k = 3. First, we find the
shortest paths at each time instants, which are p6, p3, p3, p2, p4,
respectively. Then, we insert these paths into the candidate set
C = {p2, p3, p4, p6}. In Phase II, we enumerate all 3-combinations
of C, such as {p2, p3, p4}, {p2, p3, p6}, {p2, p4, p6}, {p3, p4, p6}.
Finally, we compute their costs and return Popt = {p2, p3, p4}.

Note that if the number of distinct shortest paths (i.e., the size
of C in TP) is less than or equal to k, then its solution is optimal.
Otherwise, its solution may not be optimal.

4. EXPERIMENTAL EVALUATION

4.1 Experimental setup
Road Network and Traffic Data: We used the road network of

the United Kingdom (UK), as provided by [2]. The network has
2,321 nodes and 4,996 edges. We downloaded real and historical
traffic data from [3] from January to March of 2013. The traffic
data were recorded every 15 minutes and hence there are 96 traffic
records per day for each road segment.

Training and testing sets of traffic data: In the introduction,
we suggest two applications of our TTP problem. Transportation
planning requires fast computation time, whereas online route ser-
vices focuses on the travel time error of the pre-computed paths
against real-time traffic. Thus, we measure the computation time
and travel time error in our experiments. In order to evaluate the
travel time error of the methods (travel time error measure will be
discussed shortly), we divide the traffic data into training and test-
ing sets. We take the training set for computing a path combination
P and use the testing set for measuring the travel time error of P .
By default, we use the historical traffic data collected during 1 - 15
March, 2013 as training set and the data collected during 16 - 31
March, 2013 as testing test. The default length of a time period is
an hour (e.g., 08:00-09:00) unless specified. Therefore, the default
value of m, i.e., the number of time instants, for computing P is
60.

Travel time error measures: For each method, we use the train-
ing data to compute its resulting path combination P . Then, we
measure the travel time error of P by using the testing data. Specif-
ically, we apply Equation 1, substitute P into P k

s,t, and calculate



τj(p) and τj(spj) based on time instants j in the testing data.
Query: For generation of SD pairs, we pick 100 pairs uniformly

at random from the road network. We report the average travel
time error and the average computation time of these pairs in the
subsequent sections. We choose k = 5 by default, which is the
same as [8].

Methods: Our proposed methods are: the exact method (which
is shown as TTP in figures) and Top-Picker algorithm (TP). Our
competitors are two representative heuristic methods proposed in
[8]: K-variance (K-VAR) and Y-moderate (Y-MOD). The addi-
tional parameters used by them are configured according to [8].

We implement all methods in C++. All the experiments were run
on a PC with 3.4 GHz Intel® Core™ i7 CPU and 8 GB RAM in
Linux environment.

4.2 Results
In this section, we present the travel time error and the efficiency

of TTP from various perspectives including (i) different hours of
a day, (ii) different days of a month and (iii) increasing the number
of paths (k).

Different hours of a day. First, we evaluate how the average
time error varies with different time periods of a day since this re-
veals some traffic patterns of UK. Figure 2(a) shows the average
time errors of TTP and two competitors at different hours of a day.
TTP achieves a smaller time error throughout the day and outper-
forms the others especially at the rush hours (i.e., 08:00 and 17:00)
by at least 3 times. Although there is a spike at 13:00-14:00 for
TTP its time error is still smaller than that of others. The fig-
ure also reveals that the traffic of UK fluctuates in three periods,
namely 08:00-09:00, 13:00-14:00 and 17:00-18:00. The default
time period in the subsequent experiments is 08:00-09:00.
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Figure 2: k = 5, March 2013, UK

Different days of a month: Figure 2(b) shows the average time
errors of three algorithms on different testing days of March, at
08:00-09:00. It can be seen that TTP consistently has smaller er-
rors than the others. Although all of them suffer from a sudden
rise in time error on 18 March, 2013, TTP can still obtain a much
lower average time error of about 2 minutes while K-VAR and Y-
MOD have average time errors of about 3 minutes and 4 minutes
respectively.

Varying k: As shown in Figure 3(a), the average time errors
of all algorithms diminish with increasing k and start to converge
when k > 5 . This is because including more paths implies it is
more probable to have a path, out of k paths, with a smaller travel
time error at a particular time instant. Obviously, the average time
errors of TTP and TP decrease more rapidly than the others, indi-
cating the higher marginal gain in accuracy. We also measure the
computation costs of TTP and TP and present them in Figure 3(b).
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Figure 3: Varying k, 08:00-08:15 in March 2013, UK

The running time of TTP increases with k because the number of
k-combinations enumerated also increases. In contrast, due to the
small size of UK network, the number of candidates generated by
TP in Phase I is limited and hence its running time remains steady.

5. CONCLUSIONS
This paper proposes and studies a novel problem called the k

traffic-tolerant paths problem (TTP) in road networks, which takes
a source-destination pair and historical traffic information as input,
and returns k paths that minimize the aggregate historical travel
time. Its applications include transportation analysis and efficient
route-search services. We develop an exact algorithm and devise
a heuristic for TTP. Finally, the experiments show that the exact
algorithm and the heuristic achieve much higher accuracy than ex-
isting approaches.
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