
Shortlisting Top-K Assignments

Yimin Lin
School of Information Systems

Singapore Management University
yimin.lin.2007@smu.edu.sg

Kyriakos Mouratidis
School of Information Systems

Singapore Management University
kyriakos@smu.edu.sg

ABSTRACT
In this paper we identify a novel query type, the top-K assignment
query (αTop-K). Consider a set of objects and a set of suppli-
ers, where each object must be assigned to one supplier. Assume
that there is a cost associated with every object-supplier pair. If
we allocate each object to the server with the smallest cost (for
the specific object), the derived overall assignment will have the
minimum total cost. In many scenarios, however, runner-up assign-
ments may be required too, like for example when a decision maker
needs to make additional considerations, not captured by individual
object-supplier costs. In this case, it is necessary to examine sev-
eral shortlisted assignments before choosing one. This motivates
the αTop-K query, which computes the K best assignments, i.e.,
those achieving theK smallest total costs. Algorithms for the tradi-
tional assignment ranking problem could be adapted to process the
query, but their time requirements are prohibitive for large datasets
(cubic to the input size). In this work we exploit the specific prop-
erties of the αTop-K problem and develop scalable methods for
its processing. We also consider its incremental version, where K
is not specified in advance; instead, the best assignments are itera-
tively computed on demand. An empirical evaluation with real data
verifies the practicality and efficiency of our framework.

1. INTRODUCTION
Consider the scenario of building a Boeing 747-400 aircraft. This
plane includes 6 million parts and Boeing uses around 6 thousand
different suppliers to source them [3]. Typically, every part can be
provided by multiple alternative suppliers, albeit at different price.
The smallest-cost supply plan A would order each part pi from the
supplier sj that offers it at the lowest price cij . In many cases,
however, runner-up (suboptimal) assignments may be useful [5].
For instance, the smallest-cost supply plan A might not be ideal
for Boeing, because cost values cij are unable to capture all fac-
tors that affect the final decision; e.g., instead of A, it might make
sense to adopt another plan A′ with a slightly higher overall cost,
which however assigns enough parts to a specific supplier in order
to qualify for a service upgrade (e.g., enhanced after-sales support,
delivery priority, etc). Such decision factors cannot be incorpo-
rated into individual cij values (not accurately at least). Decision

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SSDBM ’13, July 29 - 31 2013, Baltimore, MD, USA
Copyright 2013 ACM 978-1-4503-1921-8/13/07 $15.00

making in this scenario necessitates shortlisting a number of plans
based on total cost, with the purpose of investigating them closer.
That motivates the αTop-K query. Given a set of objects P (e.g.,
aircraft parts), a set of suppliers S, the object-supplier costs cij ,
and a weighted function f that defines the overall cost of an assign-
ment, αTop-K computes theK assignments with the smallest total
costs according to f . K is a natural number, specified by the de-
cision maker, that determines the number of alternative matchings1

to be reported.

A variant of the problem with practical relevance is incremental
αTop-K, whereK is not known in advance, and the decision maker
(or a semi-automated decision support process) iteratively requests
for the next best assignment until a satisfactory one is found. This is
particularly useful when certain constraints cannot be incorporated
into traditional problem definitions, requiring iterative examination
of alternatives in increasing cost order [23].

Our problem is related to top-K computation. A top-K query re-
ceives as input a dataset P and a scoring function f [17]. The query
returns the K objects with the highest (or the smallest) scores ac-
cording to f . To cope with large datasets, indexes have been used
to accelerate search [26, 31]. An idea to solve αTop-K would be
to somehow index the possible assignments, and retrieve the best
K using an existing top-K algorithm. However, the number of
candidate matchings explodes with the problem size, i.e., the as-
signments cannot be enumerated within reasonable time even for
small datasets. To exemplify, assume that |S| = 10 suppliers and
|P | = 100 objects. The number of possible assignments is 10100.

Assignment ranking [8, 5] is probably closer related to αTop-K.
The input includes an object set and a supplier set, where each ob-
ject must be assigned to a supplier and every supplier can be as-
signed no more than a number of objects. The goal is to find the
K matchings with the smallest sum of costs across their object-
supplier pairs. Assignment ranking algorithms could be adapted
to αTop-K. However, even the most efficient among them (termed
CH [8]) has a time complexity ofO(K·|P |3) and needsO(|P |·|S|)
space. These requirements are excessive even for medium-size
problems, calling for novel methods specific to αTop-K.

In this paper we develop algorithms for αTop-K queries in large
datasets. Their crux is a visualization/examination of the search
space via an assignment tree. The first algorithm, termed Modified
CH (MCH), follows the CH paradigm but overcomes its inefficien-
cies using the assignment tree idea. The second dismisses the CH

1Terms assignment and matching are used interchangeably.

approach and further exploits the problem characteristics, leading
to a new (and twice as fast) algorithm, named Best Neighbor (BN).

Our third algorithm, Cross Probe (CP), extends the applicability
of our work in a number of directions. First, in centralized en-
vironments, it provides a tunable tradeoff between time and space
requirements, thus catering for constrained memory scenarios. Sec-
ond, CP also lays the foundation for parallel and distributed pro-
cessing, a feature desirable due to the increasing availability of
multi-core processors.

The rest of the paper is structured as follows. Section 2 reviews
related work. Section 3 formalizes the problem. Section 4 presents
the assignment tree idea and a preliminary solution. Sections 5, 6
and 7 describe MCH, BN and CP, respectively. Section 8 applies
our framework to incremental αTop-K. Section 9 discusses special
cases and extensions. Section 10 evaluates our techniques on real
and synthetic data. Finally, Section 11 concludes the paper.

2. RELATED WORK
In this section we survey related work on top-K processing, the
traditional optimal assignment and assignment ranking problems,
as well as matching algorithms for large databases.

2.1 Top-K Query Processing
The standard top-K query retrieves the K top-scoring objects in a
dataset P according to a scoring function f over the data attributes.
Top-K queries have been studied in various domains, including
relational databases [17], multimedia [7], web-accessible and dis-
tributed databases [11, 19], etc. There exist several approaches
to reduce processing time, such as pre-computation [6, 15], his-
tograms [4] and indexing [26, 31]. As explained in Introduction,
top-K methods are unable to process αTop-Kqueries.

The rank join problem is a case of top-K processing inside a join
operator. The input includes m relations Li (for 1 ≤ i ≤ m),
each sorted on one of its attributes in descending order. Given a
join condition and a scoring function f defined over the sorting at-
tributes, the rank join operator reports the K join results with the
highest scores. There are several algorithms for this problem [22,
27, 16, 25]. Their objective is to reduce the accessed portion of
each input relation, and thus the I/O cost. Theoretically, the αTop-
K problem can be formulated as a special rank join case where the
join condition is always true, each sorted relation corresponds to an
object pi (containing suppliers in ascending cij order), and f is a
weighted sum function (which here we aim to minimize). However,
rank join algorithms are impractical in our setting because they (i)
assume joining a small number of relations (whereas we consider
object populations in the order of thousands or millions), (ii) are
designed for actual joins (not-always true condition) and (iii) can-
not cope with the combinatorial explosion of candidate matchings
when (i) and (ii) do not hold. Also, their goal is to reduce access
cost (i.e., limit the read portion of each input relation – not an issue
in our problem, as will become clear later) instead of minimizing
the number of considered matchings (which is the main determi-
nant of performance in αTop-K processing).

In Section 10.1 we include small-scale experiments with represen-
tative rank join algorithms HRJN* [16] and J* [22]. HRJN* is
chosen because of its instance optimality for the rank join problem
(instance optimality refers to the search depth within the input rela-
tions). The idea in HRJN* is to iteratively choose an input relation

to draw the next non-accessed tuple from, and join it with all ac-
cessed tuples from the other relations. The algorithm terminates
when a threshold is reached. The J* algorithm is chosen because
it follows a different paradigm from most rank join techniques. It
treats the problem as a search in the Cartesian product of the input
relations, and adopts an A* approach to guide the search [24]. Our
experiments verify the ineffectiveness of rank join algorithms when
adapted to our problem.

2.2 Optimal Assignment and Ranking
Our work is related to the traditional optimal assignment problem
[1]. The input includes a set of objects P and a set of suppliers S.
Each object needs to be assigned to one supplier, while a supplier
sj ∈ S may be assigned up to nj objects (called the capacity of
sj). Every object-supplier pair incurs a cost cij if chosen in the
final matching. The goal is to compute the assignment that has the
smallest total cost (i.e., the smallest sum of costs across assigned
object-supplier pairs). There are several optimal assignment algo-
rithms (e.g., [13, 20]) among which the most efficient and com-
monly used is the Successive Shortest Path Algorithm (SSPA) [9]
with O(|P |3) time and O(|P | · |S|) space requirements.

Optimal matching lies in the heart of assignment ranking. Here the
input additionally includes an integer K, and the output consists
of the matchings with the K smallest total costs. The state-of-the-
art methods for assignment ranking are Murty’s algorithm [21] and
Chegireddy and Hamacher’s technique (CH) [8]. They are based
on a similar principle, and although an improved implementation of
Murthy’s algorithm [23] achieves the same asymptotic complexity
as CH, the latter is more efficient in practice [5].

CH builds a branch-decision tree, where every node is either a leaf
or the parent of two other nodes. Each node computes and stores
the two best assignments subject to specific constraints. The con-
straints are imposed by sets of object-supplier pairs I andO associ-
ated with the node. Set I indicates pairs that must belong to the two
assignments, and O includes pairs that cannot participate in them.
The root contains the optimal and the second best matchings, A1

and A2, computed by two executions of SSPA2. Let e be a pair that
is chosen in (i.e., belongs to) A1 but not in A2. The left child of
the root has I = {e} and O = ∅, while the right has I = ∅ and
O = {e}. The top-2 assignments are computed by SSPA for each
of the children of the root, subject to their own constraints. In the
general case, given a node with constraints I and O whose top-2
matchings are A and A′, and where e is a pair that belongs only to
A but not toA′, the left child has Il = I∪{e} andOl = O, and the
right Ir = I and Or = O ∪ {e}. CH terminates after K iterations,
in each of which it splits the leaf node that has the A′ assignment
with the smallest cost; the specific A′ is reported as the next best
matching. An exception is the root, where both assignments A and
A′ are directly reported as the overall top-2 matchings A1 and A2.

αTop-K can be treated as an assignment ranking problem without
capacity constraints (i.e., nj = |P | for each sj ∈ S). Hence, the-
oretically, CH could be employed for its processing. However, the
time complexity of CH is O(K · |P |3) due to its repetitive SSPA
calls, which explodes for moderate or large-size object sets. Also,
CH requires an excessive O(|P | · |S|) space. In Section 5 we de-
velop MCH that replaces the SSPA building block of CH with a
fast assignment discovery mechanism specific to αTop-K.

2SSPA can be modified to discover the second best assignment
(with or without constraints) as described in [8].

We note that [18] applied the branching technique in Murty’s algo-
rithm (which is in principle similar to CH) to find top-K shortest
paths by essentially replacing its SSPA component with a “next
shortest path” mechanism. In this sense it is related to MCH, al-
though not applicable to αTop-K. We also stress that MCH, albeit
more practical than CH, is still more than two times slower than
our best algorithm, BN.

2.3 Assignment Problems in Large Databases
Similar to our work, several recent studies consider assignment
problems in large scale, where the standard operations research ap-
proaches fail. For instance, [30] considers the spatial version of the
traditional stable marriage problem [12]. The object and supplier
sets (P and S) have spatial coordinates, and the preference of an
object to a supplier is inversely proportional to the Euclidean dis-
tance between them. A stable marriage can be achieved if the clos-
est object-supplier pair is iteratively output as part of the matching,
and the corresponding object and supplier are removed from P and
S, respectively. The algorithm terminates when P or S is empty.
Performance in [30] is improved via geometric optimizations.

[28] considers a preference-based stable marriage problem. Each
object indicates a scoring function that determines its preference
with respect to the suppliers. Processing follows the best match
principle. Similarly to closest pairs in the spatial problem of [30],
the result is produced by iteratively matching the object-supplier
pair with the largest preference score in the system.

The spatial version of optimal matching is considered in [29]. Here
the cost of each object-supplier assignment is equal to their Eu-
clidean distance. The geometric characteristics of the problem are
used to accelerate SSPA, while indexes are employed to support
efficient retrieval according to spatial conditions (e.g., range and
nearest neighbor queries).

All aforementioned methods (except [28]) are targeted at spatial
data and rely on properties of the Euclidean space. [28] produces a
stable matching (based on local criteria), which is by definition dif-
ferent than minimizing a global cost function. Most importantly, all
algorithms in this subsection report a single assignment, as opposed
to the very objective in αTop-K to produce multiple alternatives.

Although not a work on assignment computation, [2] addresses a
problem of some relevance to ours, in the sense that it also needs to
search through numerous combinations. Consider the purchase of
a mobile device, for which a number of accessories (e.g., speakers,
batteries, etc) are available, each at a different price. The objec-
tive is to identify all possible combinations of accessories whose
purchase does not exceed the user’s budget. A side-problem is to
select the K most representative among these combinations (simi-
lar to a set-cover problem). A second side-problem is to place the
K representative combinations into a linear order so that the result
is visually optimal, i.e., consecutive combinations have as differ-
ent composition from each other as possible. Although this is also
a problem of a combinatorial nature, it is fundamentally different
from ours, and so are the techniques proposed.

3. PROBLEM FORMULATION
In this section we formally define the αTop-K problem. Table 1
includes frequently used notation and its description. The input
to the query consists of: (i) object set P , (ii) supplier set S, (iii)
parameter K (a natural number), (iv) |P | cost lists, and (v) a cost
function f . There is a cost list Li for every object pi ∈ P . Li

Table 1: Notation
Symbol Description
P object set
S supplier set

|P |, |S| cardinalities of sets P and S, respectively
K number of assignments to be reported
Li cost list of object pi ∈ P
f(A) the (aggregate) cost of assignment A
wi the weight of object pi ∈ P
R αTop-K result; set of K best assignments
Ai assignment with the i-th smallest cost
H min-heap for assignment search
A′ second best matching in a node (for MCH)
Rint interim result (for CP)

includes tuples 〈sj , cij〉, where cij is the cost of assigning pi to sj ,
and is sorted in ascending cij order. For simplicity, we assume that
each cost list includes a tuple for every supplier (i.e., each object
can be assigned to any supplier); however, our algorithms apply
trivially when only a subset of suppliers may offer an object (see
Section 9). Cost lists may reside in main memory or on the disk.

A valid matching A consists of |P | object-supplier pairs 〈pi, sj〉,
each implying that pi is assigned to sj . An object pi appears in
exactly one pair in A, i.e., it is assigned to one supplier. A supplier
sj , on the other hand, may appear in multiple pairs – in our moti-
vating application, for instance, the same supplier could be used to
offer different aircraft parts pi, pj , pk, etc.

Table 2 is an example of αTop-K input. P holds four objects
(p1, ..., p4), and S includes three suppliers (s1, s2, s3). Each cell
(pi, sj) in the table indicates the corresponding cij cost. Figure 1
shows the four cost lists, sorted in ascending cij order from bottom
to top. We associate with each tuple 〈pi, sj , cij〉 a character for
quick reference (shown next to the respective list element).

Table 2: Object-Supplier Costs
s1 s2 s3

p1 1 3 4
p2 11 5 1
p3 2 5.5 10
p4 4 2.5 12

a (s1 , 1)

b (s2 , 3)

c (s3 , 4)

L1

g (s1 , 2)

h (s2 , 5.5)

i (s3 , 10)

L3

k (s1 , 4)

j (s2 , 2.5)

l (s3 , 12)

L4

f (s1 , 11)

e (s2 , 5)

d (s3 , 1)

L2

Figure 1: Cost lists in running example

The total cost of valid matchingA, denoted by f(A), is the weighted
sum of individual cij values across its object-supplier pairs, i.e.,

f(A) =
∑

〈pi,sj〉∈A

wi · cij (1)

where wi is a positive weight reflecting the significance of each
pi ∈ P . For ease of presentation we assume equal, unit weights,
but also experiment with alternative settings in Section 10.

The output of the αTop-K query is a set R that contains the K
valid assignments with the smallest total costs; i.e., |R| = K,
and for each valid assignment A /∈ R and for every Ai ∈ R it
holds that f(A) ≥ f(Ai). We keep the assignments in R sorted
in ascending cost order, and denote the i-th of them as Ai. In our
running example, if K = 4, the αTop-K result is:

• A1 = {〈p1, s1〉, 〈p2, s3〉, 〈p3, s1〉, 〈p4, s2〉}; cost 6.5,
• A2 = {〈p1, s1〉, 〈p2, s3〉, 〈p3, s1〉, 〈p4, s1〉}; cost 8,
• A3 = {〈p1, s2〉, 〈p2, s3〉, 〈p3, s1〉, 〈p4, s2〉}; cost 8.5,
• A4 = {〈p1, s3〉, 〈p2, s3〉, 〈p3, s1〉, 〈p4, s2〉}; cost 9.5.

To simplify presentation, we refer to an assignment by its pair char-
acters and its cost. For example, A1 is represented as {a,d,g,j|6.5},
where 6.5 indicates f(A1).

4. A PRELIMINARY SOLUTION
In this section we present crucial observations that allow dealing
with the combinatorial nature of the problem and lay the founda-
tion for efficient computation of “the best” and “next best” match-
ings. These observations lead to a preliminary solution, termed
Expansion-Based algorithm (EB). EB demonstrates the crux of our
methodology, but is still impractical for large datasets, motivating
the advanced algorithms in Sections 5, 6 and 7.

4.1 Crucial Observations
Our first observation is that the best (optimal) matching A1 can be
formed by assigning each object pi ∈ P to the supplier sj with the
smallest cij in cost list Li. In other words, A1 is derived by the
first entry of every object’s cost list (e.g., {a,d,g,j|6.5} in Figure 1).
This follows by the definition of the total cost in Equation 1.

Assume now that we want to find the second best matching A2.
A2 can be derived by replacing exactly one of the pairs in A1, say
〈pi, sj〉, with another assignment for pi. This must be true, since
replacing any two (or more) pairs of A1 would increase the total
cost more than making either of these replacements individually.
Furthermore, the pair used to replace 〈pi, sj〉 should assign object
pi to its second best supplier, i.e., to the supplier that corresponds
to the second element of cost list Li. Indeed, replacing sj with any
other supplier in Li would rise the assignment cost more.

Consider Figure 1. Our observations suggest that the second best
assignment A2 is one of {b,d,g,j|8.5}, {a,e,g,j|10.5}, {a,d,h,j|10},
or {a,d,g,k|8}. By evaluating these four candidates, i.e., by cal-
culating their total costs, we can report the smallest-cost one (i.e.,
{a,d,g,k|8}) as A2. Although K = 1 and K = 2 are easy to han-
dle, processing is not straightforward whenK > 2. Before dealing
with K > 2 we introduce the concept of descendant assignments.

{a,d,g,j|6.5}

{b,d,g,j|8.5} {a,e,g,j|10.5} {a,d,h,j|10} {a,d,g,k|8}

b←
a

e←
d g→

h

j→
k

{b,d,g,k|10} {a,e,g,k|12} {a,d,h,k|11.5} {a,d,g,l|16}

k
→
l

A1

A2

A3

b←a
e←
d

h←
g

Figure 2: Assignment tree example

DEFINITION 1. Descendant assignment: An assignmentAdesc

is a descendant of another A iff it can be derived by replacing ex-
actly one of the pairs in A with the pair that corresponds to the
immediately next element in the respective object’s cost list.

In Figure 1 assignment {c,d,g,j} is a descendant of {b,d,g,j}. Con-
versely, {a,d,g,j}, {b,e,h,j}, and {b,d,i,j} are not. In general, each
matching A has |P | descendants, and (with the exception of the
root) is itself a descendant of at least one other assignment. By
definition, the descendants of A have costs no smaller than f(A).

Our previous observations suggest that A2 is among the descen-
dants of A1. To visualize the descendant relationships in our run-
ning example, we use the assignment tree in Figure 2. Each node
corresponds to an assignment, with A1 forming the root. The chil-
dren of a node represent its descendant matchings3. The shaded
nodes in the figure are the top-2 assignments, and the remaining
nodes (leaves of the tree) are their descendants. Lemma 1 implies
that the third best matching A3 is among these leaves. In general,
the following holds:

LEMMA 1. Assuming that we have discovered the top-n assign-
ments (where n ∈ N∗), the next best matchingAn+1 is among their
descendants.

PROOF. We saw in the beginning of the section that the lemma
holds for n = 1. The rationale for larger n is similar. For simplic-
ity, we make the assumption that there is no pair of assignments
with identical costs. Recall that all assignments (except the root)
are descendants of at least one other matching, and so is An+1.
LetR be the set of the top-n discovered matchings. We know that
An+1 has a cost larger than any assignment in R, and at the same
time smaller than any other. In other words, all matchings with a
smaller cost are already in R. By Definition 1, An+1 may only
be descendant of nodes with smaller costs, which (as proven previ-
ously) are all insideR.

4.2 Expansion-based Algorithm
Lemma 1 may be directly applied via EB, a preliminary αTop-K
algorithm. EB is reminiscent of a Dijkstra search [10] in the assign-
ment tree, building the latter incrementally and on-the-fly. Initially,
the tree contains only the root (A1). Its descendants are evaluated
and pushed into a min-heapH , with their total costs as sorting keys.
We iteratively pop the top assignment of the heap Atop and include
3A matching may be a descendant of multiple others, but the way
our algorithms construct the assignment tree, only one parent node
is recorded, as we describe later. Thus, the structure remains a tree
and not a DAG.

it in the result as the next best assignment. Whenever a match-
ing is popped, we evaluate its descendants and push them into the
heap (provided that they have not been en-heaped previously, so
as to avoid duplicates). The algorithm terminates when K − 1 as-
signments have been popped. A1 and these K − 1 matchings are
output as the αTop-K result. The correctness of EB is guaranteed
by Lemma 1 and the sorting property of the min-heap. Algorithm
1 summarizes the process.

Algorithm 1 Expansion-based Algorithm
1: Initialize empty setR and empty min-heap H
2: Form A1 from first entries of cost lists;R := {A1}
3: Push the (K best) descendants of A1 into H
4: whileR contains fewer than K assignments do
5: Atop := pop(H)
6: R := R∪ {Atop}
7: Push the (K best) descendants of Atop into H
8: ReturnR

Table 3 shows the result set and heap contents of EB in the example
of Figure 1 for K = 4. Iteration 1 reports A1 and en-heaps its
descendants. Iteration 2 pops A2 and pushes its descendants into
H . Note that at this stage the heap contents correspond to the leaves
of the assignment tree in Figure 2. A3 is the next popped matching
(shown striped in Figure 2). The algorithm terminates when H is
popped for the third time, reporting A4.

Table 3: Example of EB (K = 4)
Result setR Heap contents

1 {a,d,g,j|6.5} {a,d,g,k|8},{b,d,g,j|8.5}
{a,d,h,j|10},{a,e,g,j|10.5}

2 {a,d,g,j|6.5}
{a,d,g,k|8}

{b,d,g,j|8.5},{b,d,g,k|10}
{a,d,h,j|10},{a,e,g,j|10.5}
{a,d,h,k|11.5},{a,e,g,k|12}
{a,d,g,l|16}

3 {a,d,g,j|6.5}
{a,d,g,k|8}
{b,d,g,j|8.5}

{c,d,g,j|9.5},{b,d,g,k|10}
{a,d,h,j|10},{a,e,g,j|10.5}
{a,d,h,k|11.5},{a,e,g,k|12}
{b,d,h,j|12},{b,e,g,j|12.5}
{a,d,g,l|16}

4 {a,d,g,j|6.5}
{a,d,g,k|8}
{b,d,g,j|8.5}
{c,d,g,j|9.5}

{b,d,g,k|10},{a,d,h,j|10}
{a,e,g,j|10.5},{c,d,g,k|11}
{a,d,h,k|11.5},{b,d,h,j|12}
{a,e,g,k|12},{b,e,g,j|12.5}
{c,d,h,j|13},{c,e,g,j|13.5}
{a,d,g,l|16}

Although EB is a first step towards efficient αTop-K processing, it
is impractical for large scale problems. For every popped matching,
there are |P | descendants. Hence, to process an αTop-K query,
O(K · |P |) assignments are pushed into H .

The situation can be improved based on the fact that no more than
K assignments will be output in total, and therefore only theK best
(i.e., smallest-cost) descendants of each reported assignment need
to be pushed into H . Even with this optimization, EB en-heaps
O(K2) assignments and exhibits a long running time, as we show
in the experiments. EB, however, constitutes a significant improve-
ment over assignment ranking algorithms and lays the foundation
for our advanced algorithms. It is also used as a building block in
Section 7 in a special case where only two cost lists exist; in this
case it en-heaps around 2 · K matchings only, yielding favorable
performance.

5. MODIFIED CH ALGORITHM
In this section we develop the Modified CH algorithm (MCH). MCH
embeds the crux of EB into the traditional CH paradigm. Tra-
ditional CH has a time complexity of O(K · |P |3) and requires
O(|P | · |S|) space, both due to its reliance on SSPA. SSPA is
needed to compute the top-2 matchings (A and A′) for each node
of the branch-decision tree subject to specific constraints. The main
idea in MCH is to drop SSPA, and instead utilize the EB discovery
mechanism of Section 4 to derive assignments A and A′.

We present the algorithm using our running example in Figure 1.
We illustrate its branch-decision tree in Figure 3, denoting its nodes
asNi. Originally, the tree includes only the rootN1, which requires
computing A1 and A2 without any constraint (I = ∅ and O = ∅).
Instead of SSPA, we use the observations in Section 4.1; A1 is
created by the first elements of the cost lists, and A2 is its smallest-
cost descendant. To find A3, the root must be split. To perform the
split, the CH paradigm requires identifying the pair that belongs to
A1 ={a,d,g,j|6.5} but not to A2 ={a,d,g,k|8}. This pair is j. Thus,
the left child has I = {j} and the right O = {j}.

I: {}

O: {j}

N1

N2 N3

N4 N5

A1

A1 A2

A2A3

A3A1 A4

A5 (*)

A6 (*)

I: {}

O: {}

I: {j}

O: {}

I: {j, a}

O: {}

I: {j}

O: {a}

{a,d,g,j|6.5}A1

{c,d,g,j|9.5}A4

{a,d,g,k|8}A2

{b,d,g,k|10}A5

{b,d,g,j|8.5}A3

{a,d,h,j|10}A6

Figure 3: Example of MCH (K = 4)

Consider first the left child N2 (where I = {j} and O = ∅). Since
j is mandatory, we perform a top-2 search in the remaining three
cost lists. The top assignment A of the node is derived by the first
elements of L1, L2, and L3 (i.e., {a,d,g|4}), plus j itself. The
second best assignment A′ is formed by j plus the smallest-cost
descendant of {a,d,g|4}, i.e., the best among {b,d,g|6}, {a,e,g|8}
and {a,d,h|7.5}, deriving A′ ={b,d,g,j|8.5}. Note that in Figure 3
we represent each node as a table, where the first row includes its
top assignment A followed by the second best, A′; the mapping of
assignment identifiers to their contents is shown below the tree.

The right child of the root, N3, has constraints I = ∅ and O =
{j}. Search for its top-2 assignments is identical to Section 4.1,
the difference being that j is ignored when considering L4, and
search starts as if k was the first element in this cost list. That is,
the top assignment A for N3 is {a,d,g,k|8}. The second best is the
smallest-cost descendant of A; among {b,d,g,k|10}, {a,e,g,k|12},
{a,d,h,k|11.5}, and {a,d,g,l|16}, we pick the first as A′.

After splitting the root, the CH methodology suggests that the next
best matching overall (A3) is the smallest-cost A′ assignment in
the leaves of the branch-decision tree. By comparing the second
matchings of the leaves, {b,d,g,j|8.5} and {b,d,g,k|10} (for N2 and
N3, respectively), we choose the former as A3. Note that at this

stage we cannot tell the overall ranking of the remaining {b,d,g,k|10}.
Leaf N2 that owns A3 is split into N4 and N5, and their own top
and second best assignments are computed.

The fourth best assignment A4 is chosen among the second best
assignments A′ of the leaves (N3, N4, N5), i.e., from N5. Observe
that at that point the overall ranking of the second best matchings
in the remaining leaves is unknown, indicated by an asterisk (next
to A5 and A6).

In general, the rule to compute the top-2 assignments in a node
with constraint sets I and O is (i) to ignore the entire cost lists of
all mandatory pairs in I , as they are directly included in both A
and A′, and (ii) in the remaining cost lists, to ignore the pairs that
belong toO. Top-2 computation considers only the remaining lists,
and proceeds similarly to Section 4.1. Algorithm 2 summarizes
MCH. Note that the child node constraints I and O in Line 7 are
produced from N in the way described in Section 2.2.

Algorithm 2 Modified CH
1: Initialize empty setR
2: Form root of branch-decision tree from A1, A2

3: R := {A1}
4: whileR contains fewer than K assignments do
5: N := the leaf with the smallest-cost A′

6: R := R∪ {A′}
7: Split N ; get top-2 matchings in children
8: ReturnR

Analysis: Each output assignment requires splitting a node in the
branch-decision tree. Thus, we have a maximum of 2 · K nodes.
Every node requires computing top-2 assignments (subject to I and
O constraints) which takes O(|P |) time; this is to find the min-
score descendant A′ of the node’s top assignment A. To report the
next best assignment we need to search through the leaves of the
tree at cost O(K) – there are at most K − 1 leaves at any point.
Overall, the time complexity of MCH is O(K(|P |+K)).

6. BEST NEIGHBOR ALGORITHM
MCH exploits in part the properties of the αTop-K query (in com-
puting top-2 matchings), but it does not utilize in full the power
of Lemma 1 and the problem’s characteristics. Here we present
the Best Neighbor algorithm (BN), which builds on the idea of the
assignment tree to derive a more efficient αTop-K technique. It
abandons CH and extends the EB principles instead.

The main problem of EB is that for every reported assignment, K
others (descendants) are pushed into the search heap. This leads to
a large heap size and to prohibitively slow processing. BN solves
this problem, and guarantees that no more than two assignments are
en-heaped per reported matching, i.e., that no more than 2 ·K push
operations are necessary overall. In addition to accelerating pro-
cessing, this also keeps memory consumption low. The following
two definitions are important for the description of BN.

DEFINITION 2. Seed assignment: If an assignment A is dis-
covered through (i.e., as a descendant of) another Aseed, we call
the latter the seed of A.

DEFINITION 3. Sibling assignments: We call siblings the as-
signments that have the same seed.

Figure 4 illustrates the general idea in BN. The assignment tree
refers to the same setting as Figure 2 and juxtaposes processing in

{a,d,g,j|6.5}

{b,d,g,j|8.5} {a,e,g,j|10.5}{a,d,h,j|10}{a,d,g,k|8}

{a,d,h,k|11.5} {a,e,g,k|12}{b,d,g,k|10}

A1

A2 A3

{a,d,g,l|16}

de
sce
nd
an
t

d
es
ce
n
d
an
t

Siblings (with seed A1)

Siblings (with seed A2)

Figure 4: Example of assignment tree in BN

EB and BN. The crucial observation in BN is that in the second
level of the assignment tree, for example, we may (i) sort the de-
scendants of the root, (ii) drop their links with the root, except for
the smallest-cost one, and (iii) link the siblings with each other in
ascending cost order. In the figure, the descendants of the root form
the horizontal chain below it, linked in ascending cost order from
left to right. Dropping the seed-descendant links, as point (ii) sug-
gests, does not affect the reporting order of the siblings, because
anyway the smaller-cost ones will be visited before the larger in
a Dijkstra-like search of the assignment tree. The benefit is that
only the smallest-cost descendant (i.e., {a,d,g,k|8}, shown shaded)
needs to be en-heaped after popping the root. In turn, when A2 =
{a,d,g,k|8} is reported, only the two striped nodes are en-heaped;
the first is its immediately larger-cost sibling {b,d,g,j|8.5}, the sec-
ond is its own smallest-cost descendant {b,d,g,k|10} (i.e., the first
matching in the sibling chain that corresponds to seed A2). Ex-
cept for the root, each popped/reported assignment pushes exactly
two others. Note that most siblings and descendants of a popped
matching will never be en-heaped due to their large costs.

6.1 Algorithm Design and Optimizations
Search in the assignment tree requires addressing several issues,
while it is also enables powerful optimizations.

Limiting push operations: The first issue arises from Definitions
2 and 3. Since an assignment A may be a descendant of multiple
others, there are many possible seeds for it. Similarly, A has mul-
tiple sets of siblings (one for each possible seed). While we could
maintain all seeds of A and en-heap its next siblings for each seed
when A is popped, this would lead to many push operations. To
avoid this, for every assignment A we record a single seed Aseed,
which is the first matching that led to en-heaping A. In Figure 4,
for instance, {b,d,g,k|10} keeps A2 = {a,d,g,k|8} as its only seed.
If A is subsequently encountered via another seed Ax, and at some
point it needs to be en-heaped as the (first or the) next costlier sib-
ling among the descendants of Ax, we will detect that A is already
in the search heap4, and instead push its immediately larger-cost
sibling for seed Ax. This way we avoid unnecessary push opera-
tions and significantly accelerate processing (while retaining cor-
rectness, since siblings of Ax are encountered in the right order).

Assignment evaluation: Another issue in BN is that when an as-
signment A is popped, all its descendants must be evaluated in or-

4In our sorted-container heap implementation, re-en-heap is pre-
vented by detection of sorting key (i.e., f(A) value) duplication.

der to be sorted. Blindly applying Definition 1 to derive the de-
scendants and computing the total cost of each of them is com-
putationally expensive. An efficient way to evaluate and sort the
descendants is the following. Each pair 〈pi, sj〉 in seed A refers to
the cost list Li for some object pi ∈ P . The descendant that corre-
sponds to Li has cost equal to the seed assignment’s f(A) plus the
cost increase between seed’s pair 〈pi, sj〉 and the next item in Li.
Consider the descendants of the rootA1 ={a,d,g,j|6.5} in Figure 1.
The cost of the descendant that corresponds to L2, i.e., {a,e,g,j},
is f(A1) (which is 6.5) plus the cost difference between items d
and e (which is 4). Since component f(A1) is common among de-
scendants, to sort them we may only use the cost difference in the
corresponding cost list, e.g., 2 in the case of L1, 4 in the case of L2,
etc. In case of unequal weights wi in Equation 1, cost differences
are multiplied by the corresponding weight wi before sorting.

Sibling bookkeeping: A key point about BN is that the descen-
dants of every seed must be kept in memory. This is important so
that when the next sibling for a seed must be en-heaped, we do not
have to re-evaluate and re-sort all descendants to identify it. We
keep the sorted descendants of each popped assignment in a sep-
arate structure, the sibling table. An issue with this approach is
that every seed has |P | descendants. This requires storing a total of
K · |P |matchings in the sibling table and consumes a large amount
of space. A key observation to cure the problem is that a maximum
of K descendants are necessary per seed, because in no case will
we need to report more than K assignments. Assume that (during
BN execution) we pop an assignment Ai and our result set at that
point includes |R| < K results. We keep in the sibling table only
the K − |R| smallest-cost descendants of Ai, because under no
circumstances will we need more matchings to fill R. In Figure
4 for K = 4, when A2 is popped only its K − |R| = 2 low-
est cost descendants are kept in the sibling table (i.e., {b,d,g,k|10}
and {a,d,h,k|11.5}), and the rest ({a,e,g,k|12} and {a,d,g,l|16}) are
discarded.

Assignment storage: A necessary remark regards the storage of
assignments. Since each matching includes |P | object-supplier
pairs, and we are targeting large datasets P , explicitly represent-
ing the matchings incurs a significant space overhead. Therefore,
we record the contents of an assignment implicitly via a pair of val-
ues; the first indicates its seed, and the second the object identifier
where it differs from the seed. For instance, in Figure 4, matching
{a,d,h,k|11.5} is represented as 〈A2, 3〉 (where A2 is just an iden-
tifier of the seed assignment), implying that it can be derived from
A2 by replacing its pair for object p3 with the immediately costlier
one in list L3. In turn, A2 identifies the root as seed and indicates
that it differs in the pair of p4. The root itself is found from the first
elements in the cost lists.

Regarding correctness of BN, the sorting of the search heap en-
sures reporting assignments in ascending cost order. This fact, in
conjunction with Lemma 2, guarantees correctness.

LEMMA 2. Assuming that BN has discovered so far the top-n
assignments (where n ∈ N∗), the next best matchingAn+1 is inside
its search heap.

PROOF. Without loss of generality, assume that no pair of as-
signments have the same cost. All possible seeds of the next best
matching An+1 have smaller costs, and therefore they must have
been popped previously. Consider one of the possible seeds, say
Ai. First, all the descendants of Ai with cost smaller than An+1

have been reported already; otherwise, this would contradict the

fact that An+1 is the next best matching. Second, for the same
reason, An+1 has the smallest cost among all the non-reported de-
scendants of Ai. Thus, when Ai (or its latest reported descendant
with Ai as seed) was popped, it either en-heaped An+1 as its best
non-en-heaped descendant (as its next best sibling, respectively),
or the only reason it failed to do so is because An+1 was already in
the heap via another seed.

Algorithm 3 provides the pseudo-code of BN. For every popped
assignment Atop, Lines 9-10 en-heap its next (larger-cost) sibling
with the same seed, skipping those that are already inside the search
heap H . Lines 11-16 en-heap the smallest-cost descendant of Atop

that is not in H . The descendant stores Atop as its seed. Note
that the sibling table is organized per seed; e.g., Line 5 stores the
descendants under seed A1, and Line 17 under seed Atop.

Algorithm 3 Best Neighbor Algorithm
1: Initialize empty setR and empty min-heap H
2: Form A1 from first entries of cost lists;R := {A1}
3: Sort the descendants of A1 in ascending cost order
4: Push the smallest-cost descendant into H
5: Store the K − 1 next descendants in sibling table
6: whileR contains fewer than K assignments do
7: Atop := pop(H)
8: R := R∪ {Atop}
9: Anxt := next sibling of Atop that is not in H

10: Push Anxt into H
11: Sort descendants of Atop in ascending cost
12: A := the smallest-cost descendant of Atop

13: if A is already in H then
14: A := next smallest-cost descendant of Atop

15: Go to Line 13
16: Push A into H (with Atop as its seed)
17: Store the K − |R| next descendants in sibling table
18: ReturnR

Table 4 demonstrates BN in the example of Figure 1. The seed of
each en-heaped assignment is shown in parentheses next to it (in
the right column of the table). Processing up to Iteration 2 is the
same as discussed in Figure 4. Recall that when A2 = {a,d,g,k|8}
is popped, only the two smallest-cost descendants are kept in the
sibling table. Similarly, when A3 = {b,d,g,j|8.5} is reported, only
its lowest cost descendant is maintained (because K − |R| = 1 at
that point). This descendant is {c,d,g,j|9.5}, and it is en-heaped in
Iteration 3 along with the next sibling ofA3, {a,d,h,j|10}. Note that
if {c,d,g,j|9.5} happened to be already inside H (via another seed),
no descendant of A3 would be en-heaped, since the sibling table
includes no more.

Table 4: Example of BN (K = 4)
Result setR Heap contents

1 {a,d,g,j|6.5} {a,d,g,k|8}(A1)
2 {a,d,g,j|6.5}

{a,d,g,k|8}
{b,d,g,j|8.5}(A1)
{b,d,g,k|10}(A2)

3 {a,d,g,j|6.5}
{a,d,g,k|8}
{b,d,g,j|8.5}

{c,d,g,j|9.5}(A3)
{b,d,g,k|10}(A2)
{a,d,h,j|10}(A1)

4 {a,d,g,j|6.5}
{a,d,g,k|8}
{b,d,g,j|8.5}
{c,d,g,j|9.5}

{b,d,g,k|10}(A2)
{a,d,h,j|10}(A1)
{c,d,g,k|11}(A4)

6.2 Analysis and Instance Optimality of BN
Each output assignment requires sorting its |P | descendants (taking
O(|P | log |P |) time) and en-heaping two new assignments. The
“pop one, push two” feature of BN suggests that the heap size never
exceeds K, implying an O(logK) cost per push/pop operation.
Overall, the time complexity of BN isO(K ·(|P | log |P |+logK)).

Regarding access cost, we show that BN may access in each list Li

at most one position deeper than an optimal-access-cost algorithm
would. Let di be the position of the deepest element in i-th list that
appears in any of the final top-K assignments. To ensure correct-
ness, any αTop-K algorithm must reach at least depth di in the i-th
list. We prove that BN (and the same holds for EB) accesses at most
di + 1 elements from list Li. Assume that Ai is the assignment in
the αTop-K result that includes the deepest element in the i-th list
(i.e., the element at position di). Since all assignments encountered
by BN must have had their seed popped (and therefore reported as
a result assignment), the deepest we look into Li is position di + 1
when considering the descendants of Ai.

Access cost is not a major concern in αTop-K processing per se.
The result includes exactlyK matchings, which means that at most
the first K items from each cost list could appear in the top-K
assignments. The instance optimality of BN becomes important in
case of incremental αTop-K where numerous assignments may be
output before a satisfactory one is found.

7. CROSS PROBE ALGORITHM
In this section we propose the Cross Probe algorithm (CP), which
extends our framework in two independent directions. First, in a
centralized processing environment (as assumed so far), CP offers
an alternative to MCH and BN with reduced space consumption.
Second, CP enables parallel and distributed αTop-K processing.
This allows for vast reductions in running time when multiple pro-
cessors are available, and at the same time extends applicability to
decentralized environments too. CP relies on Lemma 3 below.

Consider the merging of two (disjoint) object sets P1 and P2 to
compute the αTop-K result of their union. Any produced matching
A must include all objects in P1 ∪ P2. Thus, it can be broken
into components AP1 and AP2 , each specifying the suppliers for
objects in P1 and P2, respectively. Either ofAP1 andAP2 is a valid
matching in the respective object set. Furthermore, from Equation
1 it follows that f(A) = f(AP1) + f(AP2). It holds that:

LEMMA 3. Let P1 and P2 be two disjoint object sets, and R1,
R2 be their respective αTop-K results (over the same supplier set
S and for the same parameter K). The αTop-K result for object
set P1 ∪ P2 comprises strictly assignments of the form Ai ∪ Aj

where Ai ∈ R1 and Aj ∈ R2.

PROOF. LetR be the αTop-K result for P1 ∪P2. Suppose that
there is an assignmentA ∈ R whose first componentAP1 does not
belong to the αTop-K result for P1, i.e., f(Ai) < f(AP1) for each
Ai ∈ R1 (for simplicity, we ignore ties). This means that for every
Ai ∈ R1 we can construct an assignment Ai ∪ AP2 for P1 ∪ P2

with cost smaller than A (the cost of the resulting assignment is
f(Ai)+ f(AP2) which is less than f(A) = f(AP1)+ f(AP2), as
follows from the hypothesis that f(Ai) < f(AP1) ∀Ai ∈ R1). In
turn, this implies that there areK matchings for P1∪P2 with costs
smaller than A, which is a contradiction. The proof that the second
component AP2 belongs toR2 is symmetric.

Table 5: Example of CP (K = 4)
New resultRint Heap Contents

1 {A1,W|7.5} {A1,X|8.5}
{A2,W|9}

2 {A1,W|7.5}
{A1,X|8.5}

{A2,W|9}
{A2,X|10}
{A1,Y|10.5}

3 {A1,W|7.5}
{A1,X|8.5}
{A2,W|9}

{A3,W|9.5}
{A2,X|10}
{A1,Y|10.5}

4 {A1,W|7.5}
{A1,X|8.5}
{A2,W|9}
{A3,W|9.5}

{A2,X|10}
{A1,Y|10.5}
{A3,X|10.5}
{A4,W|10.5}

7.1 Memory-bound Processing
As we show in the experiments, the memory requirements of MCH
and BN may grow substantially when |P | orK are very large (e.g.,
see Figures 9 and 11). CP trades, in a tunable way, computation
efficiency for smaller space consumption. The idea is to partition
the object set P into equi-sized subsets, and process them one by
one. CP first computes the αTop-K result of the first partition us-
ing BN, and places it into an interim result set Rint (we choose
BN because it is significantly faster than competitors). Then, it
runs BN on the second partition and computes its αTop-K result
Rtmp. Each assignment in Rint and Rtmp can be treated atomi-
cally as a list item with a cost, and therefore Rint and Rtmp can
be seen as two cost lists. Lemma 3 guarantees that the αTop-K
result on the union of the partitions can be found among all pos-
sible combinations of items from the two lists, which is itself an
αTop-K problem. Hence, CP runs EB on Rint and Rtmp, in or-
der to compute the new interim result (we use EB because when
only two lists are involved, it en-heaps just two assignments per
reported matching (like BN) and is preferred due to its simplicity).
Next, BN is run on the third partition, whose result is treated as
a new list; EB is run on this list and the current interim result in
order to produce the new interim result Rint, and so on. When all
partitions are processed, Rint is reported as the overall result R.
Algorithm 4 provides the pseudo-code of CP.

Algorithm 4 Cross Probe Algorithm
1: Partition P into M equi-sized subsets (P1 to PM)
2: Rint := BN(P1, K)
3: for i from 2 to M do
4: Rtmp := BN(Pi, K)
5: Rint := EB(Rtmp ∪Rint, K)
6: ReturnRint

To illustrate, assume that K = 4 and the top-4 assignments in
the current interim result Rint are W,X, Y, Z with costs 1, 2, 4,
and 7, respectively. Suppose that the new partition includes the
objects in Figure 1 – we apply BN on them, receiving as Rtmp

the assignments A1, A2, A3, A4, as described previously in Table
4. To produce the new interim result, we run EB with input Rtmp

and the current Rint. Table 5 sketches this EB process. Observe
that the elements of both cost lists are not object-supplier pairs,
but entire assignments. The first assignment in the new interim
result is the combination ofA1 andW with cumulative cost 7.5. Its
descendants are {A1,X|8.5} and {A2,W|9} which are en-heaped,
and so on. The fourth row of the table shows the new interim result.

As we show in the experiments, although CP is slower than MCH
and BN, it consumes very little space. The tradeoff between the
space and time requirements of CP is controlled by the partition
size. Small partitions imply little memory consumption but slow
processing, and vice versa. Essentially, the larger the partitions, the
more CP performs like BN.

7.2 Parallel and Decentralized Processing
Lemma 3 has another useful application. It allows for parallel pro-
cessing and, thus, greater scalability. So far we considered αTop-K
computation on a single processor. However, if several are avail-
able, the various object partitions of CP can be processed in par-
allel by different processors (to derive their local αTop-K results).
Subsequently, the results of various partitions can be (treated as
cost lists themselves and be) further processed to retrieve the over-
all αTop-K result. Note that Lemma 3 extends trivially to cases
where more than two object sets are merged, i.e., we are not bound
to two-way aggregation of partition results, but multi-way is also
possible (albeit EB should be replaced by BN in this case).

A similar direction is to apply Lemma 3 to fully decentralized ar-
chitectures. Assume that each object maintains its own cost list
and also has some computation and communication capabilities,
but there is no central processor to carry out query processing. The
first object could send the top-K elements of its cost list to the sec-
ond object. The latter would run EB to produce the αTop-K result
for the first two objects, forward it to the third, and so on until all
objects have run EB over their local list and the partial result they
received; the last object derives the overall result.

8. INCREMENTAL PROCESSING
So far we have focused on standard αTop-K, but our methods ap-
ply to incremental αTop-K too. As explained in Introduction, this
is useful when a decision maker (or an application) repetitively re-
quests for the next best assignment until a satisfactory one is found.

By their nature, all our algorithms can incrementally output the next
best matching, without knowingK in advance. In EB, the heap can
be popped iteratively, reporting its top as the next best matching. In
Table 3, if no K were specified, processing would be identical,
and the fifth best matching would be the next assignment popped
(A5 ={b,d,g,k|10}). MCH also works incrementally by default, as
its reporting/splitting mechanism is independent of K.

Incremental BN is similar to EB. However, we need to store all the
descendants of each popped assignment, i.e., theK−|R| limit can-
not be applied. In the example of Table 4, Iteration 3 would keep in
the sibling table all descendants of A3 (instead of just one). Since
this may consume considerable space, only the first few descen-
dants could be kept in the sibling table; if more are needed later,
we may compute and store the next few descendants, and so on.

Regarding CP, we initialize a (local) incremental BN process on
each partition. The local BN results form the input of a (global) in-
cremental BN, which probes the local searches whenever a (global)
en-heap requires accessing the next unavailable local item.

9. DISCUSSION
Here we cover several extensions and features of our methods.

Selective assignment: In Section 3 we made the assumption that
every object can be assigned to any supplier. In practice, there may

be cases where this does not hold. EB, MCH, and BN deal with this
situation by establishing the convention that any supplier sj which
cannot provide an object pi has cost cij = ∞. To save space, a
single infinite entry is needed per cost list. If a popped assignment
includes an infinite entry, the algorithm has already reported all
valid matchings and terminates.

Object quantities: Another note regards object quantities, i.e., sit-
uations where multiple instances of an object pi need to be assigned
to suppliers. In this case, we may treat each instance as a separate
cost list. This is necessary so that different instances of pi can be
assigned to different suppliers. If there is an additional requirement
that all instances of an object must be assigned to the same supplier,
a single list is used with its cij values multiplied by the number of
instances (or weight wi incremented accordingly).

Result post-processing: The nature of αTop-K suggests that the
top-K assignments may share large numbers of common object-
supplier pairs. In some applications, the decision maker might wish
to examine small-cost assignments, which however are sufficiently
different from each other. For situations like that, our framework
could be invoked for a large K value, e.g., in the order of several
hundreds or more if necessary. The αTop-K results could then
be post-processed to choose a few of them as representative (suffi-
ciently distinct) alternatives, using a method similar in spirit to [2],
described in Section 2.3.

10. EXPERIMENTS
In this section we evaluate our algorithms, focusing on processing
time and space requirements. All methods access the first K items
per cost list at most. For MCH and BN the truncated cost lists
are kept in memory throughout execution, while CP needs only
the (truncated) lists of the current partition processed. We enhance
MCH and CP with compact assignment representation, and with
the optimized descendant evaluation technique in Section 6.1.

In Section 10.2 we present experiments with real data. We use the
Jester collection5, because it is a real dataset of sufficiently large
scale that comprises actual preference values (ratings). Specifi-
cally, it includes ratings of 73,421 users on 100 jokes [14]. There
are 4.1 million ratings, each being a real number in the range (-10,
10). Users play the role of P (objects), jokes that of S (suppli-
ers), and ratings that of cij values. We use the opposite of each
rating to comply with the convention that lower cij implies higher
preference. On the average, each cost list holds 56 entries.

To establish the generality of our results, and gain control over
more parameters (namely, |P | and |S|), we also experimented on
synthetic data in Section 10.3. For that set of experiments we gen-
erated the cij values randomly and independently. All algorithms
were executed on an Intel Xeon 64-bit 3.16GHz CPU.

By default, we assume equal weights wi for every object in P (re-
ferring to Equation 1 and cost function f). However, we also ex-
amine unequal weights of different distributions.

Before presenting our full-scale experiments, in Section 10.1 we
use small problem instances in order to verify (i) the deficiencies
of EB and (ii) the inability of rank join algorithms to deal with our
problem. We subsequently disqualify these approaches from our
full-fledged empirical evaluation.

5Available at http://eigentaste.berkeley.edu/dataset/

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 20 40 80 160

T
im

e
[s

ec
]

K

Best Neighbor
Modified CH
Cross Probe

HRJN*
EB
J*

(a) 5,000 real objects

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 20 40 80 160

T
im

e
[s

ec
]

K

Best Neighbor
Modified CH
Cross Probe

HRJN*
EB
J*

(b) 5,000 synthetic objects

Figure 5: Impact of result size K (5,000 objects only)

10.1 Ineffectiveness of EB and Rank Join
In Section 2.1 we explained that αTop-K can theoretically be re-
duced to rank join processing, where the join condition is always
true. Specifically, each sorted relation corresponds to a cost list Li,
every “join” result (i.e., every combination of entries in the cost
lists) represents a possible matching A, and the sum of cij values
in A indicate its cost f(A). We use HRJN* and J* as representa-
tives of the rank join class. We compare them against our meth-
ods for only 5,000 objects, so that they terminate within reasonable
time. These objects are random samples of the Jester and the syn-
thetic datasets, respectively. In our small-scale comparison we also
include (the optimized version of) EB.

The computation time of the algorithms for various K values is
shown in Figures 5(a) and 5(b) for 5,000 real and 5,000 synthetic
data, respectively. For CP, the partition size used is 1/10 of the
object set P . We postpone the discussion on the trends and per-
formance of our advanced algorithms for the subsequent sections
on the complete datasets. Considering HRJN*, in the charts we
observe its clear inability to scale, being 17-19 times slower than
the least efficient of our advanced methods (CP). J* is slower than
HRJN*, as also found in [16] for the rank join problem.

As explained in Section 2.1, the high-level reason is that rank join
algorithms are designed for a different problem where there are real
joins (whereas in our case every matching is a candidate), there is
a small number of input relations, and the objective is to reduce
I/O cost (not CPU time). To be specific, performance in our set-
ting depends on the number of evaluated matchings. The issue in
HRJN* is that each new tuple fetched from a relation (i.e., cost list)
is joined with all tuples fetched so far in all other relations/lists.
Suppose there are |P | = 3 lists. If we fetch an item from one
list and the other two have been explored up to depths d1 and d2
respectively, then d1 ·d2 matchings need to be evaluated. This prod-
uct has |P | − 1 factors and becomes intractable for large numbers
of lists. The main problem with J*, on the other hand, is that it
uses a form of uninstantiated elements in en-heaped assignments
(which are therefore incomplete) in order to enable its A* pruning.
When the number of lists is large, heap operations on incomplete
assignments dominate its processing time and cripple performance.

EB is very inefficient as well, due to the en-heaping of O(K2)
assignments. This also explains the trends of its processing time.
In the following experiments we focus on large-scale problems and
on the advanced αTop-K algorithms only (i.e., MCH, BN and CP).

10.2 Real Data
In this section we experiment on the Jester data. We first consider
the effect of partition size on CP. Figure 6 shows its processing
time and peak memory requirements; partition sizes are expressed
as fractions of |P |, ranging from 1/160 to 1/5. K is fixed to 20.

 0

 10

 20

1/160 1/40 1/20 1/10 1/5

T
im

e
[s

ec
]

Partition Size (fraction of |P|)

Cross Probe

(a) Processing time

 0

 1

 2

 3

1/160 1/40 1/20 1/10 1/5

S
pa

ce
 [M

B
yt

es
]

Partition Size (fraction of |P|)

Cross Probe

(b) Memory requirements

Figure 6: Impact of partition size on CP (Jester data)

 0

 50

 100

 150

20 80 160 320 640 1280

T
im

e
[s

ec
]

K

Best Neighbor
Modified CH
Cross Probe

(a) Processing time

 0

 20

 40

 60

 80

20 80 160 320 640 1280

S
pa

ce
 [M

B
yt

es
]

K

Best Neighbor
Modified CH
Cross Probe

(b) Memory requirements

Figure 7: Impact of result size K (Jester data)

Small partitions imply slower processing. The reason is that for
each partition, not all of its K (local) assignments appear in the
final αTop-K result, which means waste of computations for the
extra matchings computed. The smaller the partition, the fewer the
utilized local assignments. On the other hand, memory consump-
tion is dominated by the cost lists, and thus requirements increase
almost linearly with partition size. In the following we use 10 par-
titions in CP (fraction 1/10) as it strikes a good balance between
space and time.

In Figure 7 we investigate the effect of K on MCH, BN and CP. In
MCH, every reported assignment requires splitting its owning node
N into two leaves. The first assignment of each leaf comes from
N itself, but the second best (i.e., A′) must be computed. Hence,
roughly 2 · K assignments are computed overall, which explains
the near-linear increase of running time with K. In BN, every re-
ported assignment requires en-heaping another two, leading again
to a linear relationship between running time and K. CP relies on
a BN building block and follows a similar trend.

The most efficient algorithm is BN – it is 2.0 to 2.2 times faster than
the runner-up (MCH). This confirms that BN exploits to a larger
degree the specific properties of the problem. Both methods form
two new assignments per reported matching. The difference is that
MCH computes them both from scratch (the A′ matchings in the
leaves created by splitting N). BN, on the other hand, finds the
sibling of the popped assignment directly (from the sibling table),
and only needs to compute its best descendant. Often times, no
sibling is en-heaped at all, since the K − |R| rule may have left
no more descendants in the sibling table for some seeds, leading to
further improvement. On the other hand, CP is the slowest method.

Memory requirements are dominated by the space allocated for the
(truncated) cost lists. Space consumption for all approaches in-
creases with K, because the necessary part of the cost lists grows.
Interestingly, the increase rate drops whenK ≥ 80 and slows down
further after K = 160. In Jester dataset the average cost list holds
56 entries. This means that the majority of lists are already stored
in memory in their entirety for K = 80, and a further increase in

 0

 50

 100

 150

20 80 160 320 640 1280

T
im

e
[s

ec
]

K

Best Neighbor
Modified CH
Cross Probe

(a) Uniform weights

 0

 50

 100

 150

20 80 160 320 640 1280

T
im

e
[s

ec
]

K

Best Neighbor
Modified CH
Cross Probe

(b) Zipf weights

Figure 8: Processing time for unequal weights wi (Jester data)

K does not affect the space they occupy. For K ≥ 160 almost
all lists are entirely stored in memory, and the increase in space re-
quirements is now due to encountering (and thus representing/en-
heaping) more assignments as K grows.

BN and MCH use similar space, since they keep the same number
of cost lists. CP requires the least space, because at any point it
keeps in memory only a subset of the |P | cost lists. By trading pro-
cessing time for lower space requirements (in a tunable way), CP
can effectively capture the specific time-versus-space requirements
of the application at hand.

In Figure 8 we repeat the previous experiment, using however un-
equal object weights wi. In Figure 8(a) we plot processing time for
weights uniformly distributed in range (0,1] and in Figure 8(b) for
weights that follow Zipf distribution with parameter 0.2. The trends
are similar to the equal-weight setting, indicating that the weight
distribution does not significantly affect performance. Memory re-
quirement plots are practically identical to Figure 7(b) and omitted.

10.3 Synthetic Data
Here we present experiment results with synthetic data, so that (i)
we are able to vary the number of objects and suppliers to assess
scalability (this is not possible with the real data) and (ii) verify that
the performance trends in Section 10.2 are not specific to the Jester
dataset. Table 6 shows value ranges for the tested parameters, with
their defaults in bold. In each chart we vary one parameter and
set the rest to their defaults. We finetuned the partition size for CP
similarly to Figure 6 and chose size 1/10 of |P | as the default.

Table 6: Experiment Parameters
Parameter Value Range

K 20, 80, 160, 320, 640, 1280
|P | 10, 50, 100, 500, 1000 (×1000)
|S| 8, 32, 128, 512, 2048

We first examine scalability with |P | and |S|. In Figure 9 we vary
the number of objects |P | from 104 to 106 and keep the remain-
ing parameters to their defaults. A larger object set implies that
the number of possible assignments increases, making the prob-
lem tougher. The number of descendants per seed is |P |. The im-
plication is that more assignments need to be evaluated and com-
pared whenever a matching is included in the result for both BN
and MCH. The former however is around 1.5 times more efficient
in all cases. The effect is similar for CP, whose partitions grow
larger (recall that we set their size to 1/10 of |P |). Also, memory
consumption increases with |P |, since more cost lists are stored.

In Figure 10 we measure the impact of |S| (number of suppliers)
on performance. There is an interesting observation here. The CPU

 0.1

 1

 10

 100

10 50 100 500 1000

T
im

e
[s

ec
]

Number of Objects [x1000]

Best Neighbor
Modified CH
Cross Probe

(a) Processing time

 0.1

 1

 10

 100

10 50 100 500 1000

S
pa

ce
 [M

B
yt

es
]

Number of Objects [x1000]

Best Neighbor
Modified CH
Cross Probe

(b) Memory requirements

Figure 9: Impact of number of objects |P | (synthetic data)

 0

 1

 2

 3

8 128 512 2048

T
im

e
[s

ec
]

Number of Suppliers

Best Neighbor
Modified CH
Cross Probe

(a) Processing time

 0

 5

 10

 15

 20

8 128 512 2048

S
pa

ce
 [M

B
yt

es
]

Number of Suppliers

Best Neighbor
Modified CH
Cross Probe

(b) Memory requirements

Figure 10: Impact of number of suppliers |S| (synthetic data)

time for all methods originally increases until |S| reaches K (i.e.,
20), and then it plateaus. The reason is that when |S| < K the algo-
rithms reach the end of several cost lists, thus needing to consider
fewer alternatives/descendants. Since cost lists are shorter (hav-
ing length |S|), memory requirements are lower too. On the other
hand, when |S| ≥ K, only the first K items (i.e., the first 20) of
each list need to be stored and processed. Therefore, for |S| ≥ 20,
processing time and peak memory stabilize.

In Figure 11 we vary K and keep the remaining parameters to their
defaults. The results are similar to Figure 7, with a slightly smaller
gap between BN and alternatives. Finally, like in Jester data, alter-
native object weight settings have a minor effect on performance
and the corresponding charts are omitted for brevity.

 0

 50

 100

 150

 200

20 80 160 320 640 1280

T
im

e
[s

ec
]

K

Best Neighbor
Modified CH
Cross Probe

(a) Processing time

 0

 30

 60

 90

 120

20 80 160 320 640 1280

S
pa

ce
 [M

B
yt

es
]

K

Best Neighbor
Modified CH
Cross Probe

(b) Memory requirements

Figure 11: Impact of result size K (synthetic data)

10.4 Parallel Processing
In Figure 12 we investigate the performance of BN and MCH when
multiple processors are available. In the presence ofM processors,
the object set is partitioned into M subsets. Each partition is as-
signed to a processor, which applies BN on it (or MCH for the
white bars). The M derived results are assigned to one of the (now
unoccupied) processors, which executes an M -way BN on them
(or M -way MCH for the white bars) to produce the final αTop-K
result. We use from 1 up to 4 processors and plot running times for
Jester and synthetic data. The processing cost drops significantly
with M , illustrating great scalability potential via parallelism. To-
tal memory requirements are practically unaffected by M and are

 0

 1

 2

1 2 3 4

T
im

e
[s

ec
]

Number of Processors

Best Neighbor
Modified CH

 0

 1

 2

1 2 3 4

T
im

e
[s

ec
]

Number of Processors

Best Neighbor
Modified CH

 0

 1

 2

1 2 3 4

T
im

e
[s

ec
]

Number of Processors

Best Neighbor
Modified CH

 0

 1

 2

1 2 3 4

T
im

e
[s

ec
]

Number of Processors

Best Neighbor
Modified CH

(a) Jester data

 0

 1

 2

1 2 3 4

T
im

e
[s

ec
]

Number of Processors

Best Neighbor
Modified CH

 0

 1

 2

1 2 3 4

T
im

e
[s

ec
]

Number of Processors

Best Neighbor
Modified CH

 0

 1

 2

1 2 3 4

T
im

e
[s

ec
]

Number of Processors

Best Neighbor
Modified CH

 0

 1

 2

1 2 3 4

T
im

e
[s

ec
]

Number of Processors

Best Neighbor
Modified CH

(b) Synthetic data

Figure 12: Processing time with multiple processors

similar to those reported in previous experiments (forM = 1), thus
omitted from the figure.

10.5 Summary of Experiments
BN is consistently the most efficient αTop-K algorithm. CP re-
quires the least memory, trading efficiency for space; as the number
of partitions drops, CP slowly degenerates to BN (which happens
when a single partition is used). All advanced algorithms scale
gracefully to object sets in the order of millions. Furthermore, our
framework allows for vast performance improvements via paral-
lelism when multiple processors are available.

11. CONCLUSION
In this paper we study the top-K assignment query (αTop-K). We
propose highly scalable algorithms for its processing, one of which
offers a controllable tradeoff between time and space requirements.
We also extend our framework with parallel and decentralized ver-
sions of our methods. The practicality of our algorithms is veri-
fied through experiments on real and synthetic data. An interest-
ing direction for future work is αTop-K processing with uncertain
(or probabilistic) object-supplier costs, e.g., when the costs are re-
placed by ranges of possible values.

12. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice Hall, 1993.
[2] S. Basu Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu.

Constructing and exploring composite items. In SIGMOD
Conference, pages 843–854, 2010.

[3] Boeing.
www.boeing.com/commercial/747family/pf/pf_facts.html.

[4] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection
queries over relational databases: Mapping strategies and
performance evaluation. ACM Trans. Database Syst.,
27(2):153–187, 2002.

[5] R. E. Burkard, M. Dell’Amico, and S. Martello. Assignment
Problems. SIAM, 2009.

[6] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,
and J. R. Smith. The onion technique: Indexing for linear
optimization queries. In SIGMOD Conference, pages
391–402, 2000.

[7] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing top-k
selection queries over multimedia repositories. IEEE Trans.
Knowl. Data Eng., 16(8):992–1009, 2004.

[8] C. R. Chegireddy and H. W. Hamacher. Algorithms for
finding k-best perfect matchings. Discrete Applied
Mathematics, 18(2):155 – 165, 1987.

[9] U. Derigs. A Shortest Augmenting Path Method for Solving
Minimal Perfect Matching Problems. Networks,
11(4):379–390, 1981.

[10] E. W. Dijkstra. A note on two problems in connexion with
graphs. Num. Mathematik, 1:269–271, 1959.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, pages 102–113, 2001.

[12] D. Gale and L. S. Shapley. College admissions and the
stability of marriage. The American Mathematical Monthly,
69:9–15, 1962.

[13] A. V. Goldberg and R. Kennedy. An efficient cost scaling
algorithm for the assignment problem. Mathematical
Programming, 71(2):153–177, 1995.

[14] K. Y. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering algorithm.
Inf. Retr., 4(2):133–151, 2001.

[15] V. Hristidis and Y. Papakonstantinou. Algorithms and
applications for answering ranked queries using ranked
views. VLDB Journal, 13(1):49–70, 2004.

[16] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. VLDB J.,
13(3):207–221, 2004.

[17] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4):1–58, 2008.

[18] E. L. Lawler. A procedure for computing the k best solutions
to discrete optimization problems and its application to the
shortest path problem. Mgmt. Science, 18(7):401–405, 1972.

[19] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k
queries over web-accessible databases. ACM Trans.
Database Syst., 29(2):319–362, 2004.

[20] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the Society for Industrial
and Applied Mathematics, 5(1):32–38, 1957.

[21] K. G. Murty. An algorithm for ranking all the assignments in
order of increasing cost. Oper. Res., 16(3):682–687, 1968.

[22] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter.
Supporting incremental join queries on ranked inputs. In
VLDB, pages 281–290, 2001.

[23] C. R. Pedersen, L. Relund Nielsen, and K. A. Andersen. An
algorithm for ranking assignments using reoptimization.
Comput. Oper. Res., 35(11):3714–3726, 2008.

[24] S. J. Russell and P. Norvig. Artificial intelligence - a modern
approach: the intelligent agent book. Prentice Hall, 1995.

[25] K. Schnaitter and N. Polyzotis. Evaluating rank joins with
optimal cost. In PODS, pages 43–52, 2008.

[26] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou.
Branch-and-bound Processing of Ranked Queries. Inf. Syst.,
32(3):424–445, 2007.

[27] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and
D. Srivastava. Ranked join indices. In ICDE, pages 277–288,
2003.

[28] L. H. U, N. Mamoulis, and K. Mouratidis. A fair assignment
algorithm for multiple preference queries. PVLDB,
2(1):1054–1065, 2009.

[29] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis.
Capacity constrained assignment in spatial databases. In
SIGMOD Conference, pages 15–28, 2008.

[30] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao. On
efficient spatial matching. In VLDB, pages 579–590, 2007.

[31] Z. Zhang, S. won Hwang, K. C.-C. Chang, M. Wang, C. A.
Lang, and Y.-C. Chang. Boolean + ranking: querying a
database by k-constrained optimization. In SIGMOD
Conference, pages 359–370, 2006.

