
Marrying Top-k with SkylineQueries: Relaxing the Preference
Input while Producing Output of Controllable Size

Kyriakos Mouratidis
†

Keming Li
‡

Bo Tang
‡§

†
School of Computing and Information Systems, Singapore Management University

‡
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,

Department of Computer Science and Engineering, Southern Univ. of Science and Technology

§
Research Inst. of Trustworthy Autonomous Systems, Southern Univ. of Science and Technology

kyriakos@smu.edu.sg; likm2020@mail.sustech.edu.cn; tangb3@sustech.edu.cn

ABSTRACT
The two most common paradigms to identify records of prefer-

ence in a multi-objective setting rely either on dominance (e.g., the

skyline operator) or on a utility function defined over the records’

attributes (typically, using a top-𝑘 query). Despite their prolifera-

tion, each of them has its own palpable drawbacks. Motivated by

these drawbacks, we identify three hard requirements for practical

decision support, namely, personalization, controllable output size,

and flexibility in preference specification. With these requirements

as a guide, we combine elements from both paradigms and propose

two new operators, ORD and ORU. We perform a qualitative study

to demonstrate how they work, and evaluate their performance

against adaptations of previous work that mimic their output.

CCS CONCEPTS
• Information systems→ Top-k retrieval in databases.

KEYWORDS
Top-𝑘 query; Skyline; Multi-dimensional datasets

ACM Reference Format:
Kyriakos Mouratidis, Keming Li, Bo Tang. 2021. Marrying Top-k with Sky-

line Queries: Relaxing the Preference Input while Producing Output of

Controllable Size. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD’21), June 20–25, 2021, Virtual Event, China.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3457299

1 INTRODUCTION
In the era of ubiquitous access to the Internet, users are presented

with numerous alternatives to cover their everyday needs. Choosing

from the available alternatives generally entails the consideration

of multiple, often conflicting aspects. Indeed, multi-objective opti-

mization has been a traditional research topic [29, 44, 64], whose

practical relevance has increased in the current, fully connected

reality. For a large set of alternatives (i.e., 𝑑-dimensional records),

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457299

there are two main paradigms to determine those of most interest

to the user, namely, based on dominance or ranking by utility.
The first paradigm considers that a record dominates another

if all its attributes are more preferable. The skyline includes the
records that are not dominated [14], while the k-skyband those

dominated by a maximum of (𝑘 − 1) others [58]. The dominance

paradigm is intuitive to the user. On the downside, it has two major

shortcomings: (i) it is not personalizable, reporting the same result

for every user, and (ii) its output size (i.e., the number of reported

records) is uncontrollable, and often overwhelming [12, 30].

Personalization (i.e., serving the specific preferences of an indi-

vidual user) is a hard requirement for decision support, especially

nowadays, when large amounts of personal information are avail-

able via smartphones, fitness trackers, online activities, etc. Regard-

ing the output size, Hick’s law, known since the 50’s, suggests that

controlling the number of results presented to the user is essential

to the quality of the decision and to the user experience [34, 37].

That law has been used as a cornerstone in eCommerce applica-

tions, meta-search engines, etc [32, 35]. Dictating the output size

is crucial also because of design considerations, such as display

size, device capabilities, connection speed, etc. Hence, another hard

requirement is for output-size specified (OSS) operators.

The second paradigm, ranking by utility, associates each record

with a score via a (user-specific) function over the records’ attributes.

Most commonly, the utility function is a weighted sum, with user

preferences expressed by 𝑑 per-attribute weights𝑤𝑖 (together com-

prising a preference vector w). This linear type of scoring has been

the most proliferate since the inception of ranking by utility [23, 42],

and is shown by user studies to effectively model the way humans

assess tradeoffs in real-life multi-objective decisions [60].

Ranking by utility, in the form of a top-𝑘 query, is both person-

alized and OSS. Its Achilles’ heel, however, lies in specifying the

“correct” weights, since a small change inw can drastically alter the

top-𝑘 result [39, 80]. Vector w is assumed to be either input directly

by the user or somehow mined (e.g., via online behavior and review

mining [41, 71], pairwise comparisons of example records [40, 60],

or some other preference learning technique [24]). In the former

case, a user cannot be reasonably expected to quantify with absolute

precision the relative importance of the various attributes. In the lat-

ter, preference learning methods come with an understanding that

the minedw is only an estimate. This shortcoming motivates a third

hard requirement for practical decision support, which is relaxed
preference input, i.e., some flexibility in the specified preferences.

https://doi.org/10.1145/3448016.3457299
https://doi.org/10.1145/3448016.3457299


In this paper, we aim to bring together the strong points of both

paradigms (dominance-based and ranking by utility), while avoid-

ing their drawbacks. In particular, we propose two operators that

uphold all the three hard requirements we have established, namely,

(i) being OSS, (ii) being personalized, and (iii) having a relaxed pref-

erence input. To achieve personalization, we employ linear scoring,

due to its demonstrated effectiveness in modeling human decision

making [60]. However, we consider the input w as a best-effort es-

timate. We therefore relax it, by incrementally expanding it equally

on all directions in the preference domain. Conceptually, at the orig-

inal w, this corresponds to ranking by utility (e.g., a top-𝑘 query

at w). As the expansion radius grows, it gradually shifts towards

standard dominance, including in the output additional records that

cater to alternative preferences, similar to w. The stopping radius
is indirectly (yet strictly) determined by the desired output size𝑚.

Research on both standard paradigms has considered their

individual weaknesses, but no existing work satisfies all three

hard requirements. The skyline literature includes formulations

that control the output size by loosening the definition of domi-

nance [15, 45, 72], identifying representatives [33, 46, 49, 65], or

considering subspaces [16, 69]. For example, Lin et al. [49] report

the𝑚 skyline members that dominate the most non-skyline records,

while Chan et al. [16] shortlist the 𝑚 records that belong to the

most subspace skylines. These definitions aim to produce the most

competitive or the most representative skyline records in a general

sense, without a specific user in mind, thus lacking personalization.

Centered more on utility, studies on regret-minimizing sets re-

port 𝑚 representative records from the dataset. Typically, they

define the regret ratio as the relative difference between the utility

of the top-scoring record in the selected subset and the top-scorer

in the entire dataset. Their objective is to minimize the aggregate

(usually, the maximum) regret ratio across every possible utility

function [57, 74], i.e., the reported subset is meant to satisfy as it

best can all possible users, without an intent for personalization.

Two recent studies, [20] and [54], attempt to relax the preference

input in ranking by utility. That is, they assume that the preference

input is a convex polytope 𝑅 instead of a vector w. Concordantly,
they report the records that could be among the 𝑘 most preferable

for any w ∈ 𝑅 (for 𝑘 = 1 and 𝑘 ≥ 1 in [20] and [54], respectively).

Unfortunately, these methods are not OSS and, worse yet, come

without even an estimate of the output size, i.e., the user/application

is in the dark on whether 𝑅 is too large or too small to produce, even

approximately, the required number of records. Furthermore, these

approaches may remove the need for a particular w, but require
specifying a polytope 𝑅 in the preference domain. Deciding 𝑅 is left

to the user or application, a choice that becomes tougher consider-

ing that the dynamics in the preference domain are hard to gauge.

In usability terms, specifying the output size𝑚 is arguably more

tangible and more relatable to the user/application than specifying

a polytope in the preference domain.

Our operators, ORD and ORU, satisfy all three hard require-

ments. They expand the preference input w in a similar way, how-

ever, they retain a stronger flavor of either paradigm each. ORD
employs an adaptive notion of dominance that is guided by𝑚, while

ORU sticks closer to ranking by utility. Hard requirements aside,

practicality also demands responsiveness and scalability. We make

Operator Personalized OSS Flexible Input
Skyline/𝑘-Skyband ✘ ✘ ✔

Top-𝑘 ✔ ✔ ✘
OSS skylines ✘ ✔ ✔

Regret-minimizing sets ✘ ✔ ✔
Fixed-region techniques ✔ ✘ ✔

Proposed (ORD and ORU) ✔ ✔ ✔

Table 1: Multi-objective queries and their properties

geometric observations and establish propositions that lead to ef-

ficient processing. Our algorithms are orders of magnitude faster

than adaptations of previous work, which can merely simulate the

ORD/ORU output, and still, without OSS guarantees.

In Table 1, we summarize the properties of existing multi-

objective queries, and juxtapose them with our operators. In Sec-

tion 2, we offer a more comprehensive description of related work.

2 RELATEDWORK
The two traditional alternatives to determine the most preferable

records from a dataset 𝐷 with 𝑑 attributes, are based on dominance

and on ranking by utility score. A record dominates another if it is
at least as preferable in all dimensions, and strictly more preferable

in at least one dimension. The records that are not dominated by

any other comprise the skyline [14] while, more generally, those

dominated by fewer than 𝑘 form the 𝑘-skyband [58]. In contrast, in

the ranking approach, the score of a record is typically defined as the

weighted sum of its attributes for a vector of 𝑑 user-specific weights.

The top-𝑘 set includes the 𝑘 records with the largest scores [38].

For large, indexed datasets, the most common processing algo-

rithms in both cases follow the branch-and-bound methodology.

BBS [58] visits index nodes and data records in increasing distance

from the top corner of the data space (i.e., the corner with the maxi-

mum possible attribute values), using a min-heap to organize them

by that distance. It maintains as skyline/𝑘-skyband the records dom-

inated by none/fewer than 𝑘 records encountered so far. BBR [66]

computes the top-𝑘 set by visiting index nodes and data records in

decreasing (upper bound of) score, using a max-heap. The first 𝑘

records popped from the heap are the top-𝑘 .

OSS Skylines: The size of the skyline is uncontrollable and often-

times very large [30]. That being a major shortcoming, there have

been several approaches to limit it.

Chan et al. [15] consider that a record r𝑖 𝑚-dominates another
r𝑗 for an𝑚 ≤ 𝑑 if there is a subspace of𝑚 dimensions where r𝑖
dominates r𝑗 . A smaller𝑚 implies a smaller skyline, thus control-

ling its size. Koltun and Papadimitriou [45] propose 𝜖-dominance,

where the attributes of a record r𝑖 are multiplied by (1+𝜖) to check
whether it dominates another record r𝑗 . In the same spirit, Xia et

al. [72] increment the attributes of r𝑖 by an absolute 𝛿 value on

all (appropriately scaled) dimensions. Other studies aim to select

the𝑚 most representative skyline records. The dominance count
of a record, i.e., the number of records it dominates, has been used

as a measure of its importance [28, 68, 77]. By that intuition, Lin

et al. [49] choose the 𝑚 skyline records that dominate the most

other records. Lee and Hwang [46] propose a pivot-based space

partitioning for that problem, while Gao et al. [25] enhance it by fa-

voring representatives that dominate the less frequently dominated

non-skyline records. The latter’s performance is improved by Han

et al. [33]. By a different, distance-based intuition, Tao et al. [65]



choose as representatives the𝑚 skyline records that minimize the

distance from the remaining skyline members.

Sarma et al. [61] pick 𝑚 records from the skyline, so that the

probability that a random user would click on one of them is max-

imized. Assuming that a record r𝑖 is interesting if its attributes

exceed a certain threshold per dimension, and that the distribu-

tion of the threshold values is known, they propose approximate

and sampling methods to select the𝑚 representatives. Magnani et

al. [50] consider various measures of diversity and significance, and

assume a linear combination of these two factors as the objective

function that the𝑚 chosen skyline records must maximize.

Another approach considers membership in subspace sky-

lines [59, 67]. Chan et al. [16] report the 𝑚 skyline records that

appear in themost subspace skylines. Vlachou and Vazirgiannis [69]

measure importance according to dominance in different subspaces,

and assume propagation of importance via dominance links. An-

other formulation considers that some attributes are more impor-

tant [43, 52]; Lee et al. [47] select representatives according to

skyline membership in the induced prioritized subspaces.

Most OSS skylines do not take into account a user’s personal

preferences. An exception, in abstract terms at least, are Bartolini

et al. [10], who consider that record attributes correspond to user-

specific ratings. If a user has not provided ratings for records r𝑖
and r𝑗 , but at least a fraction of similar users have indicated ratings

where r𝑖 dominates r𝑗 , the same is assumed for the user at hand

too. The required fraction indirectly controls the skyline size. The

focus in [10] is to infer dominance when user ratings (i.e., record

attributes) are missing. In contrast, in our target applications the

records’ attributes are given and no information for other users is

required. Another distinction between OSS skylines and our work is

that they consider 𝑘 = 1, i.e., once dominated, a record is eliminated.

Instead, our operators may dig deeper, to larger 𝑘 values, because

they can rely on the personal preferences (roughly) specified by w.

Regret Minimization:Work on regret-minimizing sets (RMS) pro-

duces an𝑚-sized subset 𝑆 ⊂ 𝐷 that tries to satisfy as it best can any

possible user. In the original formulation [57], the regret ratio for

a user is defined as the relative difference between the maximum

utility score in 𝑆 and that in the entire 𝐷 . The objective for 𝑆 is to

minimize the maximum regret ratio for any possible user. There

have been many follow-up studies (e.g., [7, 75]), considering also

RMS variants, most notably 𝑘-RMS [18] (where the regret ratio re-

flects the difference between the top-scorer in 𝑆 and the top-𝑘-th in

𝐷), minimizing the average regret ratio [79], defining regret based

on the rank of records [8], etc. A survey is given in [74]. RMS stud-

ies are not concerned with personalization. Also, even if fed with

our operators’ stopping radius, they cannot reproduce our output.

For example, to solve classic RMS [57], it suffices to consider only

skyline records. In contrast, our output may also include records

below the skyline. Moreover, RMS and its common variants are

NP-hard for 𝑑 > 2 [74]. Thus, research has focused on approximate

solutions. Conversely, we develop exact ORD/ORU algorithms.

Inspired by RMS, but aiming for personalization, interactive re-
gret minimization (IRM) involves the user in the search process [56].

Initially oblivious of her preferences, IRM goes through multiple

rounds of interaction. In each round, it presents her with a number

of records and asks her to choose the best, thus learning her (latent)

preference vector increasingly well. When the regret ratio is guaran-

teed to be small enough (or the actual top-scorer is found), the last

record chosen becomes the answer for this user. The original IRM

method [56] involves artificial records in its interactions, which is

resolved in [73]. The latter is enhanced in [81] by asking the user to

sort the presented records (instead of just choosing the best). IRM

assumes a different query processing model altogether, requiring

active user involvement. Moreover, its objective is to eventually

identify the one record with maximum utility, and thus considers

only records on the skyline or convex hull.

Fixed-region Techniques: The closest related studies to our work
are [20] and [54]. Given a convex preference polytope𝑅, Ciaccia and

Martinenghi [20] define that r𝑖 𝑅-dominates r𝑗 if r𝑖 scores higher
than r𝑗 for any w ∈ 𝑅. They propose an 𝑅-dominance test which

checks one linear condition per extreme vertex of 𝑅, and compute

the 𝑅-skyline (i.e., the records that are not 𝑅-dominated by any

other) by integrating that test into standard skyline algorithms.

They also introduce an operator that reports as potentially optimal
every r𝑖 that is the top record for at least one w ∈ 𝑅. To check a

record for potential optimality, they solve a linear programming (LP)

problem defined according to the extreme vertices of 𝑅. Mouratidis

and Tang [54] extend potential optimality to𝑘 ≥ 1, i.e., they identify

the records that appear in the top-𝑘 result for at least one w ∈ 𝑅.

In a more advanced variant, they explicitly report every possible

(order-insensitive) top-𝑘 set for any w ∈ 𝑅. They first disqualify

records 𝑅-dominated by 𝑘 or more others. Among the remaining

candidates, they determine the top-𝑘-th in each partition of 𝑅 and,

accordingly, the (order-insensitive) prefix of the top-𝑘 set.

In terms of practicality, the operators in [20] and [54] lack the

OSS property, meaning that the user/application cannot determine

(or even predict) the size of the output. The techniques themselves

cannot be extended to our problem, because they rely on 𝑅 being

fixed and given in advance. For example, their 𝑅-dominance and

LP tests are defined according to the extreme vertices of 𝑅, and are

contingent on these vertices being fixed and known. Furthermore,

they require 𝑅 to be a convex polytope. In contrast, in our case 𝑅

is not specified, and the preference region (even if it were given

in advance) is effectively a hyper-sphere, not a polytope. If we ap-

proximate hyper-spheres with hyper-cubes and make repetitive

calls for different side-lengths of 𝑅 in an exploratory manner, the

approaches in [20] (for 𝑘 = 1) or [54] (for general 𝑘) could somehow

simulate our operators, but even with that slack, they would require

an excessive number of trials/executions to produce an output of

exactly𝑚 records. In other words, a second compromise is neces-

sary, i.e., allow them to terminate when the output size is “almost”

𝑚 (e.g., within a 10% deviation). Our framework not only produces

output of the exact desired size (strictly OSS), but it also reports

order-sensitive top-𝑘 results anywhere within its stopping radius 𝜌 .

Related Top-𝑘 Work: On the top-𝑘 front, there are studies for un-

specific or unknown preference vectorw that are somewhat related

to our work. For example, Soliman et al. [63] compute the most

probable top-𝑘 result if w is a random, uniformly distributed vector.

Uncertain records/attributes have also been considered, leading to

probabilistic top-𝑘 outputs [6, 21, 76]. On the other hand, Zhang et

al. [80] compute the preference region that corresponds to a given

top-𝑘 result, in a task which, loosely speaking, is inverse from ours.



1

w3

w1

w

w21 1

0

(a) The preference domain for𝑑 = 3

1

w3

w1

w

w21 1

0

(b) Hyper-plane𝑈v (r𝑖 ) = 𝑈v (r𝑗 )

Figure 1: Preference domain, and minidist 𝜌𝑖, 𝑗 example

3 PROBLEM FORMULATION
We consider that the available options are represented as

𝑑-dimensional records r = ⟨𝑥1, 𝑥2, ..., 𝑥𝑑 ⟩ in a dataset 𝐷 indexed

by a spatial access method, e.g., an R-tree [11, 62]. We make the

convention that the larger the attributes the better, yet our findings

adapt easily to cases where some/all attributes are to be minimized.

Given a preference vector v of 𝑑 non-negative weights 𝑤𝑖 , the

utility score of a record r is defined as their inner product, i.e.,

𝑈v (r) =
∑𝑑
𝑖=1

𝑥𝑖 ·𝑤𝑖 . Accordingly, the top-𝑘 result comprises the 𝑘

records with the highest scores. Ordering 𝐷 by utility is indepen-

dent from the magnitude of v [36, 48], thus we assume preference

vectors where

∑𝑑
𝑖=1

𝑤𝑖 = 1. In other words, the domain of the pref-

erence vectors, called preference domain, is the unit (𝑑 − 1)-simplex

in a space whose𝑑 axes correspond to the𝑤𝑖 values, i.e., the simplex

Δ𝑑−1 = {v ∈ IR
𝑑
+ |
∑𝑑
𝑖=1

𝑤𝑖 = 1}. For 𝑑 = 3, the preference domain is

an equilateral triangle, shown in gray in Figure 1(a). Effectively, any

valid preference vector is represented as a vertex in that triangle.

For 𝑑 = 4, the preference domain is a tetrahedron, and so on.

Let w be a best-effort estimate of the user’s preference vector,

henceforth called the seed, and consider the preference vectors v
within distance 𝜌 from w, i.e., where |v − w| ≤ 𝜌 . If a record r𝑖
scores at least as high as another r𝑗 for every such vector v, and
strictly higher for at least one of them, we say that r𝑖 𝜌-dominates r𝑗 .
The records that are 𝜌-dominated by fewer than 𝑘 others form the

𝜌-skyband. This general notion includes the 𝜌-skyline as a special
case for 𝑘 = 1. Note that a larger 𝜌 implies a larger 𝜌-skyband. In

the extreme settings, 𝜌 = 0 renders the 𝜌-skyband equivalent to a

traditional top-𝑘 query at w, while 𝜌 = ∞ makes it equivalent to

the standard 𝑘-skyband1. We may now define our first operator,

abbreviated as ORD to stress its OSS property, relaxed input, and

stronger dominance-oriented flavor.

Definition 1 (ORD). Given the seed vector w and the required
output size𝑚,ORD reports the records that are 𝜌-dominated by fewer
than 𝑘 others, for the minimum 𝜌 that produces exactly𝑚 records in
the output.

Observe that user and application are both transparent to 𝜌 ,

which relieves them from being concerned with the complex dy-

namics of the preference domain. The appropriate 𝜌 is determined

automatically by our framework, according to the desired output

size𝑚. Our second operator shares that trait too, but follows more

closely the ranking by utility paradigm, thus its abbreviation, ORU.

1
If r𝑖 scores no lower than r𝑗 for every vector in the preference domain, and higher

for at least one vector therein, then (and only then) r𝑖 dominates r𝑗 [19].

Definition 2 (ORU). Given the seed vector w and the required
output size𝑚, ORU reports the records that belong to the top-𝑘 result
for at least one preference vector within distance 𝜌 from w, for the
minimum 𝜌 that produces exactly𝑚 records in the output.

While beyond the requirements of Definition 2, a byproduct of

our ORU algorithm is the reporting of the specific (order-sensitive)

top-𝑘 result for any vector within radius 𝜌 from w. This enables
additional applications, like determining the most stable [80] or the

most representative [63] top-𝑘 results in the vicinity ofw, according
to the volume of the preference regions that produce them.

Our ORD/ORU techniques require no precomputation other

than a general-purpose spatial index on𝐷 . This implies that updates

in 𝐷 affect only (and are readily supported by) the index. Also, it

enables the integration of common predicates into our framework.

For example, should the user impose arbitrary range predicates (e.g.,

price between $150 and $200, size between 400ft
2
and 600ft

2
, etc),

we may execute a multi-dimensional range query on 𝐷 , followed

by ORD/ORU in the selected part of the index/dataset.

Multi-objective querying generally loses its meaning in high

dimensions. For instance, for more than a handful of dimensions

almost every record tends to belong to the skyline [16, 30], while

utility-wise the scores of all records tend to converge [55, 78]. We,

hence, focus on low-dimensional settings. A final remark is that

although we position our work within preference-based record

shortlisting for a human user, our techniques apply to general

multi-objective scenarios where the suitability of available options

is defined by a linear function over the options’ attributes.

4 OSS DOMINANCE-BASED OPERATOR
The output ofORD is a 𝜌-skyband, and in particular the one for the

smallest 𝜌 that includes𝑚 records. We make several observations

that lead to an efficient ORD processing methodology.

4.1 Observations and Main Idea

Properties of Candidate Records:Without loss of generality, as-

sume that no two records coincide or score the same for the seed

vector w. Unless a record belongs to the traditional 𝑘-skyband, it

cannot belong to the top-𝑘 result for any preference vector [14].

Hence, for any 𝜌 , the 𝜌-skyband is a subset of the 𝑘-skyband. There-

fore, the latter includes all the candidates we may need for ORD.
Consider a record r𝑖 among them. The remaining candidates fall

into three categories regarding their potential to 𝜌-dominate r𝑖 :
• Records that score lower than r𝑖 for the seed vector w cannot

𝜌-dominate it for any radius 𝜌 (because any 𝜌 includes the seed

itself). By the way, a corollary of this is that the top-𝑘 records of

w belong to the 𝜌-skyband for every 𝜌 .

• Records that dominate r𝑖 in the traditional sense, score higher

for any preference vector, thus they 𝜌-dominate r𝑖 for any 𝜌 .

• The remaining records (i.e., those that do not dominate r𝑖 but
score higher than it for w) 𝜌-dominate r𝑖 for a non-empty range

of 𝜌 values, as we explain next.

Consider a record r𝑗 that falls in the third category. As such, it

does not dominate r𝑖 . Also, since𝑈w (r𝑗 ) > 𝑈w (r𝑖 ), record r𝑗 is not
dominated by r𝑖 either. Every pair of records that do not dominate

each other define a hyper-plane with equation𝑈v (r𝑖 ) = 𝑈v (r𝑗 ) that



 

rj

ρi,1 ∞ ρi,2

r1
r2

r3
r4

ρi,5

r5

ρi,7

r7
r6

ρi,8

r8

0 ρ

(a) Intervals where r𝑖 is 𝜌-dominated

r12

r4

 

ρ

 

ρρ9ρ7

r3

ρ8ρ12ρ100
r1
r2

r7
r8

r5
r6

r11

r9
r10

ρ6ρ11 ∞ 

ri

(b) 𝜌-skyband membership intervals

Figure 2: Determining the ORD output

cuts through the preference domain, i.e., it divides Δ𝑑−1
into two

non-empty parts. Since r𝑗 scores higher than r𝑖 for the seed w, it
holds that𝑈v (r𝑖 ) < 𝑈v (r𝑗 ) in the entire part that includes w, while
𝑈v (r𝑖 ) > 𝑈v (r𝑗 ) in the other part. Assuming 𝑑 = 3, Figure 1(b)

illustrates in gray a hyper-plane with equation𝑈v (r𝑖 ) = 𝑈v (r𝑗 ).
Let s𝑖, 𝑗 be the intersection of hyper-plane 𝑈v (r𝑖 ) = 𝑈v (r𝑗 )

with the preference domain Δ𝑑−1
. Geometrically, s𝑖, 𝑗 is a

(𝑑 − 2)-simplex, e.g., for𝑑 = 3 it is a line segment, shown bold in Fig-

ure 1(b). Let also 𝜌𝑖, 𝑗 be the minimum distance between w and any

v ∈ s𝑖, 𝑗 . For any preference vector in Δ𝑑−1
that is within distance

𝜌𝑖, 𝑗 from w, record r𝑗 scores higher than r𝑖 , i.e., r𝑗 𝜌-dominates r𝑖
for every 𝜌 ≤ 𝜌𝑖, 𝑗 . In contrast, it does not 𝜌-dominate r𝑖 for 𝜌 > 𝜌𝑖, 𝑗 .

In implementation terms, we can compute the mindist 𝜌𝑖, 𝑗 using a

quadratic programming solver [31, 53] with (squared) distance as

the minimization objective, subject to the linear constraints that

define s𝑖, 𝑗 , i.e.,𝑈v (r𝑖 ) = 𝑈v (r𝑗 ) and
∑𝑑
𝑖=1

𝑤𝑖 = 1.

Inflection Radius: By considering all records r𝑗 in the third cate-

gory against r𝑖 , they are each mapped into an interval of 𝜌 values

where they 𝜌-dominate it. Figure 2(a) offers an example. Assume

that 𝑘 = 5 and that the 5-skyband includes 8 records that score

higher than r𝑖 for w. Out of these, r𝑖 is dominated in the traditional

sense by 3 (i.e., r3, r4, r6), thus their infinite intervals. The remain-

ing 5 do not dominate r𝑖 , hence, they fall in the third category; they

each have a finite mindist 𝜌𝑖, 𝑗 , mapped to intervals as illustrated.

By sweeping the intervals from left to right, we can easily identify

the 𝜌 value past which r𝑖 is dominated by fewer than 𝑘 others, i.e.,

it becomes part of the 𝜌-skyband. We call that value the inflection
radius of r𝑖 and denote it as 𝜌𝑖 . In our example, 𝜌𝑖 = 𝜌𝑖,7.

A Preliminary Approach: Based on the above, a first-cut ORD
solution is to compute the entire 𝑘-skyband, and for each record

in it, to derive the inflection radius. Then, to output the𝑚 of them

with the smallest inflection radii. To exemplify, assume that the

5-skyband includes 12 records; in Figure 2(b), we map each of them

to an interval of 𝜌 values where it belongs to the 𝜌-skyband, accord-

ing to its inflection radius. These intervals have different meaning

from Figure 2(a). In Figure 2(a), all intervals refer to r𝑖 , helping to
compute its own inflection radius 𝜌𝑖 . In contrast, Figure 2(b) is a

global representation of the 𝜌-skyband for different 𝜌 values. Specif-

ically, if we sweep the chart with a vertical line, the intervals that in-

tersect the line at any position, indicate the 𝜌-skyband members for

the 𝜌 value that corresponds to that position. In our example, assum-

ing that𝑚 = 8, the ORD output is set {r1, r2, r3, r4, r5, r7, r10, r12},
which corresponds to the 𝜌-skyband for 𝜌 = 𝜌12.

An interesting insight is that theORD outputmay vary from stan-

dard ranking by utility (top-𝑘) all the way to traditional dominance-

based querying (𝑘-skyband), depending on𝑚. On the one hand, by

definition, the top-𝑘 records are the only members of the 𝜌-skyband

for 𝜌 = 0, which corresponds to the smallest possible𝑚 (i.e.,𝑚 = 𝑘).

On the other hand, every 𝑘-skyband member will appear to the

𝜌-skyband for a sufficiently large 𝜌 or, equivalently, for a sufficiently

large𝑚. To visualize these extremes, at the leftmost position in Fig-

ure 2(b) the sweeping line intersects only the intervals of the top-𝑘

records (r1 to r5), while at the rightmost
2
the entire𝑘-skyband. That

said, although this generality is welcome, the practical strength of

ORD is for𝑚 values in between these extremes.

4.2 Efficient ORD Processing
The ORD processing idea described so far is a foundation that of-

fers an abstract-level understanding of our method. However, an

efficient solution must address several performance issues. Primar-

ily, we would want to avoid computing the entire 𝑘-skyband in

the beginning of the process. Indeed, the 𝑘-skyband may include

numerous records, many times more than the𝑚 required [12, 30].

Ideally, we want to limit the number of considered candidates to as

tight a superset of the ORD output as possible. The algorithm we

present next serves that objective.

We first invoke a progressive 𝑘-skyband retrieval that fetches its

members one by one, and place them into a candidate set. Impor-

tantly, unlike standard 𝑘-skyband computation, we enforce that its

members are fetched in decreasing score order forw (wewill explain

how shortly). This retrieval order is essential, because when a new

candidate r𝑖 is fetched, we can definitively compute its inflection

radius 𝜌𝑖 already, without having to derive the entire 𝑘-skyband.

The rationale is that only 𝑘-skyband records with higher score may

𝜌-dominate r𝑖 , and these are guaranteed to be fetched before it.

We keep fetching new 𝑘-skyband members in that fashion, until

the candidate set reaches size (𝑚 + 1). At that stage, we evict the
candidate with the largest inflection radius. Also, an important

algorithmic shift takes place. Let 𝜌 be the maximum inflection

radius of the remaining𝑚 candidates. The 𝜌-skyband is guaranteed

to include at least the𝑚 existing candidates, thus 𝜌 upper bounds

the eventual stopping radius of the algorithm. Therefore, from this

point onwards, we switch to fetching 𝜌-skyband members (instead

of 𝑘-skyband members), still in decreasing order of score for𝑤 . The

switch can be performed transparently, as we elaborate later.

To exemplify, consider Figure 2(b). Assume that 𝑘 = 5,𝑚 = 11,

and that we have fetched the𝑚 + 1 = 12 depicted records, in the

order indicated by their subscripts, i.e., r𝑖 was fetched 𝑖-th. To bring
the candidates down to𝑚 = 11, we discard r8, as it has the largest

inflection radius. Practically, that sets 𝜌 to 𝜌8.

As new candidates are fetched, and evictions are made to keep

their total number to𝑚, the current 𝜌 keeps shrinking. Meanwhile,

as 𝜌 shrinks, records tend to 𝜌-dominate more others. This implies

that the 𝜌-skyband retrieval becomes increasingly more selective,

thus filtering out more aggressively regular 𝑘-skyband members

that cannot participate in the ORD result. When the 𝜌-skyband

module cannot fetch any more records, the candidate set is finalized

2
The largest meaningful 𝜌 (although visualized as∞) is the distance between w and

its furthest point in Δ𝑑−1
, since that 𝜌 already covers the entire preference domain.



x1

r1 r2

r3

r4

r5

r6 r7
r8

r9

r10

v1
v2

v3

v4

w

x2

0

(a) Convex hull, facets, and norms

w1

w2

1

1

0

w

v2

v3

v1

v4

ρ

ρ

(b) Top-regions for layer 𝐿1

Figure 3: Fundamental notions and principles

as the ORD result. The latter corresponds to the 𝜌-skyband for 𝜌

equal to the maximum inflection radius across its members.

The ORD algorithm relies on a progressive 𝑘-skyband module,

with the extra requirement to fetch records in decreasing score ac-

cording to w. We use an adaptation of BBS [58] where we visit

index nodes and records in decreasing (upper bound of) score

for w, using a max-heap. Once the (𝑚 + 1)-th record is fetched,

we shift to 𝜌-skyband computation using the exact same heap as

per normal, but replace the regular dominance tests of BBS with

𝜌-dominance, for the current 𝜌 value. The visiting order by score

and the use of 𝜌-dominance tests instead of regular dominance are

permissible modifications to vanilla BBS, because its correctness

is guaranteed as long as no record r𝑗 fetched after another r𝑖 may

dominate r𝑖 [58]. That property is upheld by our visiting order

(by score), both initially for regular dominance, and after the shift

to 𝜌-dominance. Indeed, 𝑈w (r𝑖 ) > 𝑈w (r𝑗 ) ensures that r𝑗 cannot
dominate nor 𝜌-dominate r𝑖 for any 𝜌 . An implementation note on

the adapted BBS regards its 𝜌-dominance building block. That block

tests whether an already-fetched 𝜌-skyband record r𝑖 𝜌-dominates

a not-yet-fetched record r𝑗 (or an unvisited index node whose top

corner is r𝑗 ). The test is performed as explained in Section 4.1, by

comparing the mindist 𝜌𝑖, 𝑗 with 𝜌 .

5 OSS UTILITY-BASED OPERATOR
Our second operator, ORU, adheres more closely to ranking by

utility; it reports records that belong to the top-𝑘 for at least one

preference vector within radius 𝜌 from the seedw, for the minimum

𝜌 that produces exactly𝑚 records. Despite the seeming similarity

to ORD’s definition, the top-𝑘 ranking involved in ORU renders it

innately different, and its solution considerably more complex.

We present important preliminaries (in Section 5.1), a crucial

theorem and algorithmic basis to process ORU (in Section 5.2), and

eventually a complete implementation (in Section 5.3).

5.1 Fundamentals
The abstractions and techniques used for ORU have the notion of

the convex hull at their core [13]. The convex hull of𝐷 is the smallest

convex polytope that encloses all its records. It comprises facets,

each defined by 𝑑 extreme vertices (records) in general position.

The outer polygon in Figure 3(a) is the convex hull of an example

dataset. Facet r1r2 is defined by extreme vertices r1 and r2, etc.

A vector is normal to a hyper-plane when its direction is perpen-

dicular to the hyper-plane. The norm of a facet on the hull is the

normal vector to that facet whose sum of coordinates is 1, and is

directed towards the exterior of the hull. In our example, the norm

of r1r2 is vector v1. Effectively, the norm of a facet can be seen as a

point in the preference domain Δ𝑑−1
.

The top record for a preference vector v is the one met first by

a hyper-plane normal to v that sweeps the data space from the

top corner to the origin [22, 27]. Hence, the top record in 𝐷 is

guaranteed to lie on its convex hull [17, 51]. Since in our case the

weights are non-negative, the top record is among the extreme

vertices of facets with non-negative norms. We call upper hull the
part that corresponds to these facets. In Figure 3(a), the upper hull is

bold (and the rest of the convex hull is dashed). For the shownw, the
top record is r3, as it is met first by the sweeping line normal to w.

To explain the fundamentals of our methodology, assume that
we have already computed the first 𝑘 upper hull layers: the first

layer, 𝐿1, includes the upper hull of 𝐷 ; the second, 𝐿2, includes the

upper hull of𝐷−𝐿1; and, generally, layer 𝐿𝑖 the upper hull of𝐷 after

subtracting layers 𝐿1 to 𝐿𝑖−1. In Figure 3(a), layer 𝐿1 includes records

r1 to r5, and 𝐿2 records r6 to r10. Note that in reality our complete

ORU algorithm does not require such precomputation, but instead
it builds on the fly (i.e., at query time) only parts of the necessary
layers, thus applying to arbitrary 𝑘 , avoiding precomputation costs

(time and space), and extending transparently to dynamic datasets,

i.e., to cases where record insertions/deletions may occur in 𝐷 and

invalidate precomputed information. Also, assume that we already
know the necessary radius 𝜌 for ORU to produce 𝑚 records. Of

course, this too is an assumption we will drop later (in Section 5.3).

Adjacent Set A(r): Consider a record r in layer 𝐿𝑖 . We denote by

F (r) the set of 𝐿𝑖 facets with r as one of their extreme vertices, and

by A(r) the records adjacent to r, i.e., the 𝐿𝑖 records (other than r)
that define facets in F (r). In Figure 3(a), for example, F (r3) =

{r2r3, r3r4} andA(r3) = {r2, r4}. The following Lemmas 1, 2, and 3

are crucial. Note that they refer to records within the same layer 𝐿𝑖 .

Lemma 1. Given a preference vector v whose top record in 𝐿𝑖 is r,
if we start shifting v towards any direction in the preference domain,
the first record in 𝐿𝑖 to outscore r is always in A(r), i.e., among the
records adjacent to r. Furthermore, each of the records in A(r) is the
first outscoring record for some shifting direction of v.

Proof. Let𝐻r be the hyper-plane in the data space that is normal

to v and passes through r. Record r is the top for v, as long as

there is no record above 𝐻r (i.e., in the half-space that includes

the top corner of the data space). Assume that v gradually shifts

towards a specific direction, with 𝐻r always passing through r. As
the orientation of 𝐻r shifts together with v, the first record in 𝐿𝑖
that is met by 𝐻r is the record r𝑖 that will outscore r if we shift v
infinitesimally any further (in the same direction). Suppose that r𝑖
is not inA(r), i.e., it shares no common 𝐿𝑖 facet with r. At the time

that 𝐻r touches r𝑖 , according to the hypothesis, no other record in

𝐿𝑖 should lie above𝐻r. This, however, is a contradiction, because the
convexity of 𝐿𝑖 implies that any hyper-plane that passes through

two non-adjacent records in 𝐿𝑖 (r and r𝑖 , in this case) cuts through

the interior of 𝐿𝑖 , i.e., there is at least one other extreme vertex

(record) in 𝐿𝑖 that lies above 𝐻r. We conclude that the first record

to outscore r, for any direction of shifting v, must be in A(r).
It remains to show that for each record r𝑖 in A(r), there is a

direction of shifting v that makes r𝑖 the first outscoring record.



Let 𝑓 be a facet in F (r) where r𝑖 is a defining vertex. Consider

the shifting of v towards the norm of 𝑓 , equivalently, the shifting

of 𝐻r until it falls on 𝑓 . Since 𝑓 is a facet of the convex hull, it

leaves all 𝐿𝑖 records towards its interior. Thus, there is no 𝐿𝑖 record

above 𝐻r at all times until now. After 𝐻r has fallen on 𝑓 , if v shifts

infinitesimally towards r𝑖 , r𝑖 will become the first to outscore r. □
By Lemma 1, if w shifts clockwise/anticlockwise in Figure 3(a),

r4 and r2, respectively, will be the first 𝐿1 records to outscore r3.

Top-region C(r): Building on Lemma 1, our next proposition re-

veals an important property within 𝐿𝑖 , and helps define the top-
region of a record r ∈ 𝐿𝑖 , i.e., the region C(r) in the preference

domain where every vector has r as its top record in 𝐿𝑖 .

Lemma 2. Let r be a record in 𝐿𝑖 . r is the top-scorer across all 𝐿𝑖
records for those preference vectors v that fall in the convex polytope
C(r) defined by (i.e., whose extreme vertices correspond to) the norms
of the facets in F (r).

Proof. From Lemma 1, we infer that C(r) is determined by

records in A(r), since they are the first to outscore r once v
leaves C(r). In particular, each adjacent record r𝑖 corresponds to
a half-space 𝑈v (r) ≥ 𝑈v (r𝑖 ) in the preference domain (simply ex-

pressing that r should score no lower than r𝑖 anywhere in C(r)).
C(r) is the intersection of all these half-spaces, which (by defini-

tion [13]) is a convex polytope. Each facet of C(r) is attributed
to one of the intersected half-spaces, say, 𝑈v (r) ≥ 𝑈v (r𝑖 ) and, in
effect, to one of the adjacent records, i.e., r𝑖 in this case. In general

position, every extreme vertex of C(r), say v𝑗 , corresponds to the

intersection of (𝑑 − 1) of its facets, i.e., to (𝑑 − 1) equalities of the
form 𝑈v (r) = 𝑈v (r𝑖 ), where each r𝑖 is adjacent to r. Let 𝑆 be the

record set composed of r and these specific (𝑑 −1) adjacent records.
As all records in 𝑆 have the same score according to v𝑗 , by Lemma 1,

such a tie is only feasible if any pair of records in 𝑆 are adjacent

to each other on 𝐿𝑖 . Since, in general position, each facet on 𝐿𝑖 is

defined by 𝑑 records, the records in 𝑆 define a facet 𝑓 in F (r), with
v𝑗 as its norm. In other words, there is a direct one-to-one mapping

between the facets in F (r) and the extreme vertices of C(r). □
By Lemma 2, C(r) can be seen as a dual representation of F (r),

where the former refers to the preference domain and the latter

to the data space. Consider r3 in Figure 3(a). Facet set F (r3) =

{r2r3, r3r4} translates to the top-region defined by their norms v2

and v3, i.e., C(r3) is segment v2v3 in the preference domain. Note

that for 𝑑 = 2, the preference domain Δ𝑑−1
is a line segment.

Order Continuity: Lemmas 1 and 2, in tandem, suggest a conti-

nuity in the score order among 𝐿𝑖 records for every v. Specifically,
the different top-regions for any given layer 𝐿 define a partitioning

of the preference domain, with adjacent records r𝑖 , r𝑗 in 𝐿 having

neighboring top-regions C(r𝑖 ), C(r𝑗 ) in Δ𝑑−1
. Considering layer

𝐿1 in our running example, Figure 3(b) demonstrates the partition-

ing of the preference domain. The top-region of r1 is the segment

from point (0, 1) to v1; of r2 from v1 to v2; of r3 from v2 to v3, etc.

Lemma 3 establishes a property for every vector in a top-region.

Lemma 3. For any preference vector v ∈ C(r), the top-2-nd record
in 𝐿𝑖 is always in A(r), i.e., among the records adjacent to r.

Proof. Let 𝐻v be the hyper-plane (in data space) that is normal

to v. Sweeping the data space with 𝐻v, the first encountered record
in 𝐿𝑖 is, by definition, r. As sweeping continues further, the con-

vexity of 𝐿𝑖 ensures that 𝐻v cuts only through the facets in F (r).

Since 𝐿𝑖 is hollow (i.e., has no records in its interior), the 𝐿𝑖 record

to be encountered next (i.e., the top-2-nd in 𝐿𝑖 ) must be an extreme

vertex of a facet in F (r), i.e., a record in A(r). □

In our example, Lemma 3 implies that the top-2-nd record in layer

𝐿1 for any v ∈ C(r3) is either r2 or r4. Note that all three lemmas

consider a layer in isolation. For instance, although w ∈ C(r3), its
top-2-nd record in the entire 𝐷 is none of r2 or r4, but r8 from 𝐿2.

5.2 An Algorithmic Basis for ORU
In this section, we prove an important theorem and provide an al-

gorithmic basis to processORU. Recall that we assumed we already

know the minimum radius 𝜌 required to produce𝑚 records, and

that the first 𝑘 upper hull layers are precomputed. We do not drop

these assumptions yet. Here we focus on determining the top-𝑘

result for any possible preference vector within radius 𝜌 from the

seed w, in order to form the ORU output.

First, we find all records in layer 𝐿1 whose top-region has mindist

to w no greater than 𝜌 . Let 𝐶 be one of these regions. We already

know the top record in it, say, r. Considering𝐶 in isolation, our next

task is to determine the top-2-nd record anywhere in it (i.e., for any

possible preference vector v ∈ 𝐶), and to partition 𝐶 accordingly.

By Lemma 3, if we only considered 𝐿1, the top-2-nd record for any

v ∈ 𝐶 would be among those adjacent to r. On the other hand, in the
remaining dataset (i.e., if we ignored the records in 𝐿1), the top-2-nd

record would be in 𝐿2 and more specifically, by Lemma 2, among

the 𝐿2 records r𝑖 whose top-region C(r𝑖 ) overlaps 𝐶 . Theorem 1

generalizes this key observation.

Theorem 1. Assume that anywhere in a preference region 𝐶 the
(order-sensitive) top-𝑖 result is the same and it is known. Also, let
𝐿𝑡 be the deepest layer that any of the top-𝑖 records belongs to. The
top-(𝑖 + 1)-th record anywhere in 𝐶 must be in the union of:
• Set (i): The adjacent records to any member of the known top-𝑖

result in its respective layer, and
• Set (ii): The records in the (𝑡 + 1)-th layer (i.e., 𝐿𝑡+1) whose

top-region overlaps 𝐶 .
Proof. Let 𝑆 be the union of all records in the first 𝑡 layers. Due

to Lemma 3, when it is applied to each of the top-𝑖 records in their

respective layer, if we only considered 𝑆 , the top-(𝑖 + 1)-th record

would be in Set (i). On the other hand, if we only considered the rest

of the dataset, i.e., 𝐷 − 𝑆 , the next highest-scoring record would be

in 𝐿𝑡+1 and specifically, by Lemma 2, in Set (ii). Hence, in the overall

product set 𝐷 (i.e., in the union of 𝑆 and 𝐷 − 𝑆), the top-(𝑖 + 1)-th
record anywhere in 𝐶 must be in the union of Sets (i) and (ii). □

Returning to our processing description for region 𝐶 , the top

record (the order-sensitive top-𝑖 result, in the general case) is al-

ready known and fixed anywhere in it, thus we can readily deter-

mine Set (i). We can also extract from 𝐿2 (from 𝐿𝑡+1, in the general

case) the part of the upper hull that corresponds to records in Set (ii);

let us denote that part as 𝐿𝑝𝑟𝑡 . We update the upper hull 𝐿𝑝𝑟𝑡 to also

cover Set (i) records, and denote its updated version as 𝐿𝑢𝑝𝑑 . Next,

we apply Lemma 2 to 𝐿𝑢𝑝𝑑 to identify the top-2-nd records (the

top-(𝑖 + 1)-th, in the general case) for any v ∈ 𝐶 , and we partition

𝐶 accordingly. We continue this process recursively in each pro-

duced partition until the full, order-sensitive top-𝑘 result is known

anywhere in 𝐶 . Repeating that process for all 𝐿1 top-regions with

mindist up to 𝜌 , we derive all the required top-𝑘 results.



w1

w2

1

1

0

v7

v8

v6

v9

C(r3)C(r7)

C(r8)

C(r9)

(a) Top-regions for layer 𝐿2

x1

r2

r4

r7
r8

r9

x2

0

va

vb

(b) 𝐿𝑢𝑝𝑑 upper hull

w1

w2

1

1

0

C(r3)v2

v3

vb

va

(c) Top-2 results in C(r3)

Figure 4: Applying Theorem 1

In our example, assume that 𝜌 is as shown in Figure 3(b). The 𝐿1

top-regions with mindist from w up to 𝜌 correspond to r2, r3, and

r4. Focusing on C(r3) (i.e., segment v2v3), we know already that the

top record is r3, and seek to find the top-2-nd. Set (i) includes r2 and

r4. To determine Set (ii), we refer to 𝐿2. Figure 4(a) illustrates the

𝐿2 top-regions. Among them, those that overlap C(r3) are C(r7),
C(r8), and C(r9). Thus, we form 𝐿𝑝𝑟𝑡 as the part of 𝐿2 that corre-

sponds to r7, r8, r9. Updating 𝐿𝑝𝑟𝑡 to also cover Set (i) (i.e., r2, r4),

results in the upper hull 𝐿𝑢𝑝𝑑 in Figure 4(b). 𝐿𝑢𝑝𝑑 suggests that the

top-2-nd record is one of r2, r8, r4. Furthermore, by Lemma 2, their

𝐿𝑢𝑝𝑑 top-regions (determined by facet norms v𝑎 and v𝑏 ) help parti-

tion C(r3) according to which exactly among them is the top-2-nd.

Figure 4(c) presents the induced partitioning. The top-2 result is

{r3, r2} for preference vectors in v2v𝑎 ; {r3, r8} in v𝑎v𝑏 ; and {r3, r4}
in v𝑏v3. The process repeats recursively in order to determine the

top-3-rd record in each of the three partitions, and so on.

Observe that we may not need to reach as deep as the 𝑘-th layer,

since members of Set (i) could prevent those of Set (ii) to enter the

result, thus giving more “width” to the ORU search (in the data

space) than “depth”. For instance, in Figure 4(b), it could be the case

that none of the 𝐿2 records belongs to 𝐿𝑢𝑝𝑑 , i.e., that the top-2-nd

record comes from 𝐿1 (i.e., r2 or r4) for any v ∈ C(r3).

5.3 Dropping Assumptions; Complete ORU
In this section, we describe our completeORU algorithm. So far, we

have made two impractical assumptions, i.e., that we have already

computed the first 𝑘 upper hull layers, and that we know in advance

the necessary radius 𝜌 to output𝑚 records. Here we drop these

assumptions; the first so that our algorithm is precomputation-free,

and the second because it defies our problem formulation.

Without any precomputed layers or known 𝜌 , our first step

is to produce an overestimate of 𝜌 , denoted as 𝜌 , which ensures

an output size of at least𝑚. That overestimate can be the radius

required so that ORU’s output for 𝑘 = 1 includes𝑚 records. This

radius, for any 𝑘 , is guaranteed to produce at least as many records.

A straightforward approach to derive 𝜌 (based on 𝑘 = 1) would

be to compute the upper hull of the entire dataset 𝐷 , get the 𝑚

top-regions with the smallest mindist to w, and use the largest

mindist among them as 𝜌 . That, however, may be too costly. Ideally,

we would want to localize the upper hull computation to just the

vicinity of w. To achieve this, we exploit the fact that the 𝜌-skyline

is a superset of ORU’s output for the same 𝜌 and 𝑘 = 1, as follows

directly from the definition of 𝜌-dominance.

We use an incremental 𝜌-skyline algorithm, which supports “get

next” calls to extend a 𝜌-skyline for the immediately larger 𝜌 around

w that admits exactly one new record to it. Details on that technique

(for its general, 𝜌-skyband version) are presented in Section 5.3.2.

We initialize that algorithm and prompt it until the 𝜌-skyline in-

cludes𝑚 records. Next, we compute their upper hull 𝐿𝑡𝑚𝑝 . In gen-

eral, not all 𝜌-skyline records will make it to 𝐿𝑡𝑚𝑝 . If that is the

case, we keep prompting the 𝜌-skyline algorithm, and updating the

upper hull 𝐿𝑡𝑚𝑝 to cover the additional records, until 𝐿𝑡𝑚𝑝 includes

𝑚 extreme vertices (records). We use as 𝜌 the final radius reported

by the 𝜌-skyline algorithm. On top of this, note that the final 𝐿𝑡𝑚𝑝

is guaranteed to include all the part of layer 𝐿1 thatORU processing

could possibly need for an output of size𝑚. In other words, the

final 𝐿𝑡𝑚𝑝 can serve already as layer 𝐿1 in subsequent processing.

Using the obtained 𝜌 , we compute the 𝜌-skyband (for the ac-

tual 𝑘 specified in the input). That can be done with a standard

𝑘-skyband algorithm by simply replacing regular dominance tests

with 𝜌-dominance ones (described in the last paragraph of Sec-

tion 4.2). The derived 𝜌-skyband is a guaranteed superset of the

ORU output, thus we place its members into a candidate set 𝑀 .

Even with 𝜌 available, we have only an overestimate of the ac-

tual radius required to output𝑚 records. Thus, computing upper

hull layers directly on 𝑀 would be computationally wasteful. To

circumvent this, and to also ensure an output of exactly𝑚 records,

we employ an advanced, adaptive technique which: (i) gradually

expands 𝜌 around w, moving from 𝜌 = 0 towards 𝜌 , (ii) computes

new upper hull layers on𝑀 as and when needed only, and (iii) pro-

gressively outputs confirmed candidates (i.e., records guaranteed to

be in the ORU result) while the search is ongoing. The latter prop-

erty enables the tightening of 𝜌 on the fly, and hence the shrinking

of the 𝜌-skyband and the elimination of candidates from𝑀 , so that

the layer (i.e., upper hull) computations execute on increasingly

fewer records. This improved implementation is presented next.

5.3.1 Gradually expanding 𝜌 . What we already have is the initial

overestimate 𝜌 , (the necessary part of) layer 𝐿1, and the candidate

set𝑀 . Subsequent ORU search expands concurrently (i) in terms of

radius, from 0 towards 𝜌 , and (ii) in terms of layer depth, computing

on demand (the necessary parts of) deeper 𝐿𝑖 layers.

We treat the structure of all upper hull layers as an implicit tree,

and apply the best-first approach to gradually explore that tree in

increasing distance from the seed w. In particular, we maintain a

min-heap𝑄 that organizes known top-𝑖 results (for 𝑖 ≤ 𝑘) and their

respective preference regions𝐶 , with mindist to w as their key. Let

r be the top record according to w. We start with the top-region of

r (i.e., C(r)), whose mindist is by definition 0. First, we partition

C(r) according to the possible top-2-nd records, which requires

computing 𝐿2 (i.e., the upper hull of record set𝑀−𝐿1) and applying

Theorem 1, as demonstrated in Section 5.2. Each produced partition

is pushed into 𝑄 with key equal to its mindist to w, and associated

with its (now known) top-2 result. Second, for each 𝐿1 record r𝑖 that
is adjacent to r, we push its top-region C(r𝑖 ) into 𝑄 (with {r𝑖 } as
its top-1 result). Then, we iteratively pop the heap. For each region

𝐶 popped from 𝑄 , we distinguish two cases:

Case 1: If 𝐶 corresponds to a top-𝑖 result (with 𝑖 < 𝑘), we partition

it according to the different top-(𝑖 + 1)-th records in𝐶 (using Theo-

rem 1, as in Section 5.2), and push the produced partitions into the

heap (associated with their, now known, top-(𝑖 + 1) results). Apply-
ing Theorem 1 might require computing a new upper hull layer on

the candidate set; details and an optimization are discussed later



C(r3) : {r3}

C(r2) : {r2} C(r4) : {r4}

v2va : {r3, r2} vavb : {r3, r8} vbv3 : {r3, r4}

N1

N2 N3

N4 N6N5

Figure 5: Implicit tree

in this section. Importantly, if 𝐶 corresponds to a top-1 result {r𝑖 },
we additionally push into the heap the top-regions of its adjacent

records (omitting any that were pushed into 𝑄 previously, to avoid

duplication). The reason is that, unlike best-first search in an actual

tree, at the “root level” of our implicit structure, we initially did

not push into 𝑄 the top-regions of all 𝐿1 records, but only those

neighboring C(r). That was in order to save mindist calculations

and unnecessary push operations, since many 𝐿1 top-regions may

lie too far fromw to affectORU processing. Instead, we use the con-

tinuity implied by Lemmas 1 and 2 to gradually push top-regions

from 𝐿1 into 𝑄 , only when one of their neighbors is popped.

Case 2: If𝐶 corresponds to a top-𝑘 result, it is considered finalized.
That is, the top-𝑘 result and its respective region 𝐶 are appended

to the ORU output. Observe that, as we explained in Section 3, our

algorithm goes beyond Definition 2, to output not only records,

but also specific order-sensitive top-𝑘 results, together with the

preference regions that produce them.

The process terminates when the output includes𝑚 distinct records.

The mindist of the last finalized region is the minimum radius 𝜌

that appears in Definition 2. In a nutshell, our ORU methodology

explores (i.e., partitions or finalizes, for 𝑖 < 𝑘 and for 𝑖 = 𝑘 , respec-

tively) regions𝐶 in increasing distance fromw, utilizing the implicit

tree structure to dismiss those too distant to affect the result.

Figure 5 shows the implicit tree for our running example. Each

node 𝑁 𝑗 represents a preference region (i.e., a segment, for 𝑑 =

2) and its respective top-𝑖 result. The root corresponds to the 𝐿1

top-region that includesw, i.e., C(r3). First, we partition C(r3) into
3 regions, namely, v2v𝑎, v𝑎v𝑏 , v𝑏v3, as demonstrated in Figure 4.

Associated with their top-2 results, they conceptually form nodes

𝑁4, 𝑁5, 𝑁6, and are pushed into 𝑄 . We also push the top-regions of

𝐿1 records adjacent to r3, i.e., C(r2), C(r4), associated with their

top-1 results (nodes 𝑁2, 𝑁3). Then, iterative popping commences.

The first popped node is 𝑁5 (with mindist 0, since it actually

includes w), whose top-2 result is {r3, r8}. If 𝑘 = 2, it is finalized

and its top-𝑘 records are output directly (Case 2). Popping contin-

ues with 𝑁4 and 𝑁6, which are finalized too; their top-𝑘 results

contribute two new records to the output (i.e., r2 and r4). If𝑚 = 4,

the process terminates. Otherwise, the next popped node is 𝑁2, for

which we know the top-1 result (i.e., 𝑁2 falls under Case 1). We

will need to partition it by Theorem 1, and push into𝑄 its resulting

“children” (not illustrated). Importantly, since 𝑁2 belongs to 𝐿1, we

will also need to push its neighboring top-regions that were not

encountered before, i.e., C(r1) (not illustrated). The implicit tree is

constructed gradually, with new nodes formed for each Case 1 pop.

An important point on Case 1 is that partitioning 𝐶 according

to its different top-(𝑖 + 1)-th records might require computing a

new upper hull layer. That is, if layer 𝐿𝑡+1 (referring to the value

of 𝑡 in Theorem 1 for 𝐶) was not previously computed, we need

to compute it now. A naïve approach is to simply remove the first

𝑡 layers from the candidate set𝑀 and compute the upper hull on

the remaining candidates. An improvement however is possible,

by shrinking 𝑀 . Recall that our initial 𝜌 estimation assumed we

needed𝑚 records in the 𝜌-skyline. Letting 𝜏 be the number of dis-

tinct records which (i) belong to the top-𝑘 results already finalized,

and (ii) are not members of the 𝜌-skyline, we can roll back the

incremental 𝜌-skyline computation so that it includes only𝑚 − 𝜏

records. This backtracking effectively reduces 𝜌 , and in turn enables

the shrinking of𝑀 to only keep 𝜌-skyband records (for the actual

𝑘 input) for the reduced 𝜌 . The shrinking can be done trivially if

we record the inflection radius for each record in the 𝜌-skyline

during the original 𝜌 estimation, and for each record in the initial

candidate set (i.e., in the 𝜌-skyband for the original 𝜌 estimate).

A concluding remark is that ourORUmethodology is certain not

to overshoot the target output size, i.e., it reports exactly𝑚 records.

To see this, as we explore the preference regions in increasing order

of distance tow, any newly finalized region𝐶 is guaranteed to share

a facet with a previously finalized region. The hyper-plane that

defines this facet corresponds to exactly one order swap between

two records; either an order swap between members of the top-𝑘

result, or a replacement of the top-𝑘-th record by a non-result one.

This means that for each newly finalized region (with the exception

of the very first), there is a maximum of one new record added to

theORU result. Thus, we may stop when we have output exactly𝑚.

5.3.2 Incremental 𝜌-skyband. The OSS property and𝑚 being dic-

tated by the user/application is a central point of our motivation,

and thus a hard requirement for our operators. However, the ORU
algorithm requires as a building block an incremental 𝜌-skyband

module (IRD). While ORU requires this for the 𝜌-skyline only (i.e.,

𝑘 = 1), here we address the arbitrary 𝑘 version, for generality.

The IRD challenge is that, unlikeORD, no 𝜌-dominance can ever

be used to narrow down the search, because every 𝑘-skyband mem-

ber may be output after a sufficient number of “get next” calls. Thus,

the key question is how to serve these calls without computing the

entire𝑘-skyband. Themain idea is to progressively fetch𝑘-skyband

members, but only output them when their inflection radius is no

larger than a gradually growing threshold 𝜌 , introduced later.

IRD invokes a regular 𝑘-skyband algorithm to progressively

fetch its members, in decreasing score order for w. We use BBS [58]

for that building block, but amend its default record/index node

visiting order to order by score, as we did in Section 4.2. Let set 𝑇

hold the 𝑘-skyband records fetched by BBS so far. As ensured by

the score-based fetching order, we can compute the exact inflection

radius for each record in 𝑇 at the time it was fetched.

An invariant of branch-and-bound algorithms, like BBS, is that

at any point during execution, their heap contents (records and

index nodes) represent the not-yet-considered part of the dataset.

Let 𝑆 be the set of all records and nodes currently in the heap. For

simplicity, we extend notation r𝑖 to nodes too, since BBS anyway

represents them by the top corner of their minimum bounding box.

For each r𝑖 ∈ 𝑆 we can compute an inflection radius 𝜌𝑖 based on the

current set 𝑇 . However, that 𝜌𝑖 is just a lower bound of the actual

inflection radius, because BBS may have not yet fetched in 𝑇 all

the 𝑘-skyband records with score larger than 𝑈w (r𝑖 ), i.e., 𝑇 may

currently not include all records that 𝜌-dominate r𝑖 .



Since 𝑆 serves as a representation of all unexplored records, the

minimum 𝜌𝑖 among the members of 𝑆 serves as an overall lower

bound 𝜌 for any non-fetched record. Therefore, every record in 𝑇

with inflection radius no greater than 𝜌 has a confirmed order in

the output of IRD. In other words, these records are guaranteed to

comprise the 𝜌-skyband for radius 𝜌 .

Consider Figure 2(b), where 𝑘 = 5. When IRD is first invoked,

we execute BBS to progressively fetch the first 𝑘 records, i.e., r1 to

r5, which by definition are the top-𝑘 . They are placed into set𝑇 and

also output directly by IRD. When prompted with a “get next” call,

IRD resumes BBS to progressively fetch new 𝑘-skyband members

into𝑇 . Whenever BBS fetches a new record, we update 𝜌 according

to the current contents of the BBS heap (i.e., of set 𝑆). Let r𝑖 be the
not-yet-output record in 𝑇 with the smallest inflection radius. If

𝜌𝑖 ≤ 𝜌 , IRD outputs r𝑖 and pauses. Otherwise, we keep fetching

new records by BBS and updating 𝜌 after each retrieval, until 𝜌

becomes at least as large as the inflection radius of one record in

𝑇 . That record is output by IRD as the next 𝜌-skyband member.

Subsequent “get next” calls are served by resuming this process.

Returning to our example, consider that IRD receives a “get next”

call (after its initialization, which reports the top-5 records all at

once). It resumes BBS, but as it fetches r6, r7, r8 into 𝑇 , assume

that 𝜌 does not become as large as any of the inflection radii in

𝑇 after any of these retrievals. However, when r9 is fetched too,

suppose that the updated 𝜌 becomes greater than (or equal to) 𝜌7.

IRD outputs r7 and pauses (until it receives another “get next” call).

6 EXPERIMENTS
In this section, we present qualitative and performance experiments.

We use both real and synthetic datasets, i.e., HOTEL, HOUSE, NBA,
and ANTI, COR, IND, respectively. HOTEL contains 418,843 hotel

records with 𝑑 = 4 attributes [1]. HOUSE includes 315,265 records

of 𝑑 = 6 types of household expenses [2]. NBA holds 𝑑 = 8 statistics

for 21,960 NBA players [3]. The synthetic datasets represent typical

distributions in multi-objective decisions [14]. Table 2 lists the

problem parameters with their tested and default values (in bold). In

each experiment, we vary one parameter and fix the others to their

defaults. Every measurement is the average for 50 random seeds w.
The datasets are indexed by R-trees and kept in memory. That said,

our methods are applicable to disk-based storage too. All algorithms

were implemented in C++ and run on a machine with Intel i7-7700

CPU at 3.60Ghz and 32Gb RAM. We used QuadProg++ [26] as the

quadratic programming solver, and Qhull [9] for computational

geometric primitives. Our implementation is available at [4].

Parameter Tested and default values
Dataset cardinality |𝐷 | 100K, 400K, 1.6M, 6.4M, 25.6M

Dimensionality 𝑑 2, 3, 4, 5, 6, 7
Parameter 𝑘 1, 5, 10, 15, 20
Output size𝑚 10, 30, 50, 70, 90

Table 2: Parameters, tested values, and defaults

We start with qualitative results to draw a distinction between

our operators and representative previous ones from Table 1.

6.1 Qualitative Study
First, we perform a case study to visualize how the results of ORD
and ORU differ from (i) an OSS skyline, and (ii) a top-𝑚 query for

0.0 0.2 0.4 0.6 0.8 1.0
Assists

0.0

0.2

0.4

0.6

0.8

1.0

R
eb

ou
nd

s

ORD
ORU

top-m 
OSS skyline

Andre Drummond

Rudy Gobert
Joel Embiid

Nikola Jokic

Russell Westbrook

Ben Simmons

Trae Young

(a) Assists-Rebounds, w = (0.49, 0.51)

0.0 0.2 0.4 0.6 0.8 1.0
Points

0.0

0.2

0.4

0.6

0.8

1.0

R
eb

ou
nd

s

ORD
ORU

top-m 
OSS skyline

Andre Drummond

Rudy Gobert Karl-Anthony Towns
Joel Embiid

Giannis 

Paul George

James Harden

Antetokounmpo

(b) Points-Rebounds, w = (0.43, 0.57)

Figure 6: Case study on NBA 2018-19 statistics (𝑘 = 2,𝑚 = 6)

the same vector w. The former reports the𝑚 skyline members that

dominate the most non-skyline records, following the most cited

full-dimensionality OSS skyline definition [49]. We use the NBA

2018-19 season statistics for the total of its 708 players onAssists and

Rebounds (in Figure 6(a)), and Points and Rebounds (in Figure 6(b)),

normalized in the [0, 1] range. We set 𝑘 = 2, 𝑚 = 6, and use

(0.49, 0.51) and (0.43, 0.57) as the seedw, respectively. The results of
the methods are illustrated as differently oriented/colored triangles.

A first observation is that our operators report distinct results

from past approaches (and from each other). For example, in Fig-

ure 6(a) onlyORU reports Trae Young (rising stars challenge player),
while half of its output records are not in the top-𝑚 result, and one

third of them are not in the OSS skyline. The comparison of our

operators with top-𝑚 reveals an even more interesting fact. In Fig-

ure 6(a), top-𝑚 misses Andre Drummond (the rebound leader in

2018-19 season), whom it would report if we only slightly revised

w from (0.49, 0.51) to (0.48, 0.52). Similarly, in Figure 6(b), top-𝑚

misses James Harden (the season’s scoring leader), whom it would

report if we revisedw from (0.43, 0.57) to (0.44, 0.56). The inclusion
of these players in the result of both our operators (in the respec-

tive Figure 6(a) and 6(b) settings) confirms that they successfully

employ some “width” in their search, by reporting records that are

particularly strong for alternative, very similar preferences to the

seed w. Investigations in our full-scale experimental settings, using

the Jaccard coefficient as the similarity measure (charts omitted

in the interest of space), demonstrate that (i) OSS skyline is more

dissimilar to our operators than top-𝑚, as it is not guided by w,
and (ii) top-𝑚 becomes increasingly more dissimilar to ORD/ORU
as𝑚 grows. As an indication for the omitted charts, for IND data

and the default parameters in Table 2, the Jaccard similarity of OSS

skyline to ORD is 0.25, and to ORU it is 0.24. In the same setting,

the Jaccard similarity of top-𝑚 toORD is 0.44, and toORU it is 0.32.

Next, we use real TripAdvisor data and reviews (TA) [5]. TA
includes ratings for 1,850 hotels on 𝑑 = 7 aspects (value, room, lo-

cation, etc), forming dataset 𝐷 . It also includes actual user reviews

for these hotels, each comprising a comment and an overall score.

The reviews offer a practical example of how preference vectors

could be extracted for real users. Specifically, we employ [70], an es-

tablished preference mining method that estimates a user’s weight

vector based on her reviews. Applying [70], we get vectors for

137,563 users. The dataset and vectors from TA are used in the next

experiment on fixed-region methods [20, 54], but at the same time

they offer an end-to-end application example for our techniques.



10 12 14 16 18 20
m

10

15

20

N
o.

 o
f r

ec
or

ds

(a) Output size variability in TA

10 30 50 70 90
m

0

50

100

150

200

250

N
o.

 o
f r

ec
or

ds
(b) Output size variability in IND

Figure 7: Output size analysis of fixed-region techniques

The fixed-region methods require a preference polytope 𝑅 to

be specified as part of their input. We demonstrate that it is not

feasible to estimate the size of 𝑅 required to produce, even approx-

imately, 𝑚 records. Worse yet, even the same polytope 𝑅, when

positioned at different parts of the preference domain, can produce

vastly different output sizes. Specifically, we use 𝑘 = 5 and vary

𝑚 from 10 to 20 (since the dataset in TA is highly correlated and

its 5-skyband includes only 61 hotels). We first execute ORU for

50 randomly selected TA users (preference vectors) and record the

average stopping radius, denoted as 𝜌∗. We then produce a hyper-

cube 𝑅 with volume equal to the hyper-sphere with radius 𝜌∗. Next,
we count the number of distinct records (TA hotels) output by the

fixed-region top-𝑘 operator in [54] when 𝑅 is positioned around

each of the 50 user vectors (we use [54] since [20] works only for

𝑘 = 1). Figure 7(a) presents in box-plot the observed variation in

output size. To confirm, in Figure 7(b), we repeat this process for

our full-scale setting, using random preference vectors, IND data,

the default parameters, and standard range for𝑚 from Table 2. The

box-plots indicate that even with knowledge of 𝜌∗, fixed-region
techniques can produce dramatically different output sizes, which

may hugely under- or over-shoot the target 𝑚. In contrast, our

operators relieve the user/application from the need to meddle with

the preference domain’s complex dynamics, and abide strictly by

the requested output size𝑚. Note that the counterpart of this exper-

iment, using ORD to compute 𝜌∗ and producing the fixed-region

𝑅-skyband, demonstrates an even greater variability than Figure 7

for both TA and IND (charts omitted in the interest of space). For

example, for target𝑚 = 50 in IND data, the fixed-region 𝑅-skyband

outputs from 12 all the way to 269 records.

6.2 ORD Performance
In this section, we evaluate our ORD algorithm. For comparison,

we adapted a fixed-region 𝑅-skyband technique (RSB), as described
at the end of Section 2. In the adaptation, the initial hyper-cube 𝑅

is sized so that its volume ratio to the preference domain equals

the ratio of𝑚 to the expected 𝑘-skyband cardinality (i.e.,
𝑘 ln

𝑑−1 𝑛
𝑑!

,

according to [30]). Based on the size of the 𝑅-skyband computed

for the initial 𝑅, its volume is re-estimated proportionally to the

desired𝑚. The trials (𝑅-skyband computation and 𝑅 re-estimation)

are repeated until the output is within 5% or 10% from𝑚, resulting in

two RSB versions. For the implementation of RSB, we use the index-
based 𝑅-skybandmodule of [54], as it is considerably faster than the

no-index approach of [20]. We also include baseline ORD-BSL that

computes the entire 𝑘-skyband according to Section 4.1, without

the enhancements in Section 4.2.

10-1

100

101

102

1 5 10 15 20

R
un

ni
ng

 ti
m

e 
(s

ec
)

k

ORD-BSL
RSB-5%

RSB-10%
ORD

(a) Effect of 𝑘

10-1

100

101

102

10 30 50 70 90

R
un

ni
ng

 ti
m

e 
(s

ec
)

m

ORD-BSL
RSB-5%

RSB-10%
ORD

(b) Effect of𝑚

10-1

100

101

102

103

104

0.1 0.4 1.6 25.6

R
un

ni
ng

 ti
m

e 
(s

ec
)

|

ORD-BSL 
RSB-5%

RSB-10%
ORD

    
D| (x1,000,000)

6.4

(c) Effect of |𝐷 |

10-2
10-1
100
101
102
103
104

2 3 4 5 6 7

R
un

ni
ng

 ti
m

e 
(s

ec
)

d

ORD-BSL
RSB-5%

RSB-10%
ORD

(d) Effect of 𝑑

Figure 8: ORD versus adaptations and baseline

 0

 0.4

 0.8

 1.2

 1.6

10 30 50 70 90

R
un

ni
ng

 ti
m

e 
(s

ec
)

m

COR
IND

ANTI

(a) Different data distributions, varying𝑚

 0

 1

 2

 3

 4

 5

1 5 10 15 20

R
un

ni
ng

 ti
m

e 
(s

ec
)

k

HOTEL
HOUSE

NBA

(b) Real datasets, varying 𝑘

Figure 9: ORD on different distributions and real datasets

In Figure 8, we present (in logarithmic scale) the running time

for all competitors versus each problem parameter, using IND data.

ORD is 2 to 4 orders of magnitude faster than both versions of RSB,
indicating the impracticality of fixed-region approaches to mimic

its output, despite the ample slack given. The main reason is the

numerous trials required for RSB to “converge” to an acceptable

deviation from𝑚. The runner-up isORD-BSL, which is 1 to 2 orders
of magnitude slower than the fully-enhanced ORD. The results

also demonstrate ORD’s ability to scale. Its running time grows

almost linearly to 𝑘 and𝑚, and sub-linearly to |𝐷 |. It increases more

sharply with 𝑑 , due to the growing complexity of its geometric

building blocks. Still, even for 𝑑 = 7 ORD takes only 3.2s.

Having established the superiority of our ORD algorithm, in Fig-

ure 9(a) we plot its running time for different synthetic distributions.

Processing in ANTI is the slowest. The reason is that dominance

(and, by deduction, 𝜌-dominance too) is less frequent among ANTI
records, thus many candidates need to be considered before ORD
can terminate. COR exhibits the inverse effect. In Figure 9(b), we

use real data and vary 𝑘 . HOTEL and HOUSE have comparable size,

yetORD is faster on HOTEL, due to its smaller dimensionality. NBA
has the smallest cardinality, but the largest dimensionality, which

explains why its line is in between the other two.

6.3 ORU Performance
Turning to ORU, we use for comparison an adaptation of the most

efficient fixed-region top-𝑘 algorithm in [54], termed JAA. We em-

ploy a similar 𝑅 estimation and trial approach as for RSB, allowing



100

101

102

103

104

1 5 10 15 20

R
un

ni
ng

 ti
m

e 
(s

ec
)

k

ORU-BSL
JAA-5%

JAA-10%
ORU

(a) Effect of 𝑘

10-1

100

101

102

103

104

10 30 50 70 90

R
un

ni
ng

 ti
m

e 
(s

ec
)

m

ORU-BSL
JAA-5%

JAA-10%
ORU

(b) Effect of𝑚

100

101

102

103

104

0.1 0.4 1.6 25.6

R
un

ni
ng

 ti
m

e 
(s

ec
)

|D| (x1,000,000)

ORU-BSL
JAA-5%

JAA-10%
ORU

6.4

(c) Effect of |𝐷 |

10-1

100

101

102

103

104

2 3 4 5 6 7

R
un

ni
ng

 ti
m

e 
(s

ec
)

d

ORU-BSL
JAA-5%

JAA-10%
ORU

(d) Effect of 𝑑

Figure 10: ORU versus adaptations and baseline

a deviation of up to 5% or 10% from the desired output size𝑚. We

also include ORU-BSL, a baseline that utilizes the initial overes-

timate 𝜌 in Section 5.3, computes upper hull layers on the entire

candidate set𝑀 , partitions the 𝐿1 top-regions by Theorem 1, and

reports the𝑚-sized union of top-𝑘 records for the closest produced

regions to w.
In Figure 10, we plot the running time of all competitors versus

each problem parameter, in logarithmic scale. ORU-BSL, although
identical to ORU for 𝑘 = 1, generally performs very poorly, failing

to terminate within reasonable time in most large settings. This

demonstrates the vital role of our gradual expansion in terms of

both 𝜌 and layer depth, presented in Section 5.3.1. Indeed, the full-

fledged ORU is 2 to 4 orders of magnitude faster than ORU-BSL.
ORU is also 12 to 134 times faster than JAA-10%, and even more

compared to JAA-5%, confirming the general unsuitability of fixed-

region approaches to our problems. Regarding ORU itself, it scales

well with all parameters. Its running time increases faster than

ORD because, despite the similarities in their definition, the nature

of ORU is significantly more complex. To intuitively see this, deter-

mining whether a record r𝑖 belongs to the 𝜌-skyband of a dataset,

we need a 𝜌-dominance test per competitor at worst. In contrast, to

determine whether a record r𝑖 could appear in the top-𝑘 result for

any vector v within radius 𝜌 from w, we need to consider multiple

combinations of competitors that may outscore r𝑖 , and different v
possibilities within distance 𝜌 from w.

Focusing on our ORU algorithm, in Figure 11(a), we try it on dif-

ferent synthetic data distributions. As expected, the problem is the

toughest in ANTI, and the easiest in COR, for the reason explained

in Figure 9(a). In Figure 11(b), we execute ORU on real datasets.

Unlike Figure 9(b), processing in NBA is slower than HOUSE. The
reason is that NBA’s higher dimensionality affects ORU’s perfor-
mance more thanORD’s.ORU has a stronger geometric nature and

a greater reliance on computational geometric primitives (such as

upper hull computation), whose complexity grows with 𝑑 .

6.4 Discussion
In our default setting, for 400K IND records ORU requires 4.9s,

while for 25.6M records it takes 72s. On the other hand, ORD runs

10-1

100

101

102

103

10 30 50 70 90

R
un

ni
ng

 ti
m

e 
(s

ec
)

m

COR
IND

ANTI

(a) Different data distributions, varying𝑚

100

101

102

103

1 5 10 15 20

R
un

ni
ng

 ti
m

e 
(s

ec
)

k

HOTEL
HOUSE

NBA

(b) Real datasets, varying 𝑘

Figure 11: ORU on different distributions and real datasets

in less than 1s in both cases (0.22s and 0.34s, respectively). That

is, ORD is ready even for applications that require sub-second re-

sponses, while ORU is not quite there. To employ ORU in such

applications, a viable approach is parallelization. At the core of its

execution,ORU partitions numerous regions𝐶 under Case 1 in Sec-

tion 5.3.1. With little synchronization effort, multiple regions could

be (popped fromORU’s min-heap and) partitioned in parallel, since

determining the different top-(𝑖 + 1)-th records in each of these

regions is independent of the others. An orthogonal approach is to

materializethe first upper hull layers of the dataset, similar to the

Onion technique [17], or to cache and reuse the partial upper hulls

from past ORU queries, together with the respective top-regions.

Note that this will benefit performance even if ORU needs to con-

sider (and thus compute on the fly parts of) upper hulls deeper than

the available ones. A more general direction would be to let go of

order-sensitivity in the reported top-𝑘 results (since it is anyway

not required by Definition 2) or to switch to ORD processing if a

region under Case 1 is deemed too small. For the former direction,

algorithmic redesign will be necessary; for the latter, formal guar-

antees should be given to bound the induced deviation from the

exact ORU answer. The last two directions could be promising for

future work.

7 CONCLUSION
This paper draws motivation from the known weaknesses of stan-

dard skyline and top-𝑘 queries. Based on these shortcomings, we

identify three hard requirements for practical decision support in

multi-objective settings: personalization; controllable output size;

and flexibility in preference specification.We argue that no previous

study has effectively satisfied all three requirements, and propose

two new operators (ORD and ORU) to bridge that gap. Our qual-

itative analysis indicates that they offer a novel type of support,

distinct from past practices. Also, our experiments demonstrate that

our algorithms deliver practical and scalable performance. Future

work could explore the directions listed in Section 6.4 and/or con-

sider ORD/ORU in highly skewed or sparse datasets, where multi-

objective querying may be meaningful in higher dimensions too.

ACKNOWLEDGMENTS
Kyriakos Mouratidis was supported by the Singapore Management

University Lee Kong Chian Fellowship. Bo Tang and Keming Li

were supported by the National Science Foundation of China (NSFC

No. 61802163), the Education Department of Guangdong (Grant No.

2020KZDZX1184), and the Guangdong Provincial Key Laboratory

(Grant No. 2020B121201001).



REFERENCES
[1] Hotel dataset. https://www.hotels-base.com.

[2] House dataset. https://www.ipums.org.

[3] NBA dataset. https://www.basketball-reference.com.

[4] ORD and ORU implementation. https://github.com/ghlkm/ordu.

[5] TripAdvisor dataset. https://www.cs.virginia.edu/~hw5x/dataset.html.

[6] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational process-

ing of uncertain data. In ICDE, pages 983–992, 2008.
[7] A. Asudeh, A. Nazi, N. Zhang, and G. Das. Efficient computation of regret-ratio

minimizing set: A compact maxima representative. In SIGMOD Conference, pages
821–834, 2017.

[8] A. Asudeh, A. Nazi, N. Zhang, G. Das, and H. V. Jagadish. RRR: rank-regret

representative. In SIGMOD Conference, pages 263–280, 2019.
[9] C. B. Barber and H. Huhdanpaa. qhull. http://www.qhull.org.

[10] I. Bartolini, Z. Zhang, and D. Papadias. Collaborative filtering with personalized

skylines. IEEE Trans. Knowl. Data Eng., 23(2):190–203, 2011.
[11] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient

and robust access method for points and rectangles. In SIGMOD Conference,
pages 322–331, 1990.

[12] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average

number of maxima in a set of vectors and applications. J. ACM, 25(4):536–543,

1978.

[13] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational geometry:
algorithms and applications. Springer-Verlag TELOS, 2008.

[14] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages
421–430, 2001.

[15] C. Y. Chan, H. V. Jagadish, K. Tan, A. K. H. Tung, and Z. Zhang. Finding k-

dominant skylines in high dimensional space. In SIGMOD Conference, pages
503–514, 2006.

[16] C. Y. Chan, H. V. Jagadish, K. Tan, A. K. H. Tung, and Z. Zhang. On high

dimensional skylines. In EDBT, pages 478–495, 2006.
[17] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith. The onion

technique: Indexing for linear optimization queries. In SIGMOD Conference, pages
391–402, 2000.

[18] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Computing k-regret

minimizing sets. PVLDB, 7(5):389–400, 2014.
[19] J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline queries, front and back.

SIGMOD Rec., 42(3):6–18, 2013.
[20] P. Ciaccia and D. Martinenghi. Reconciling skyline and ranking queries. PVLDB,

10(11):1454–1465, 2017.

[21] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data

and expected ranks. In ICDE, pages 305–316, 2009.
[22] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas. Ad-hoc top-k query answering

for data streams. In VLDB, pages 183–194, 2007.
[23] J. S. Dyer and R. K. Sarin. Measurable multiattribute value functions. Oper. Res.,

27(4):810–822, 1979.

[24] J. Fürnkranz and E. Hüllermeier, editors. Preference Learning. Springer, 2010.
[25] Y. Gao, Q. Liu, L. Chen, G. Chen, and Q. Li. Efficient algorithms for finding the

most desirable skyline objects. Knowl. Based Syst., 89:250–264, 2015.
[26] L. D. Gaspero. Quadprogpp. https://github.com/liuq/QuadProgpp.

[27] S. Ge, L. H. U, N. Mamoulis, and D. W. Cheung. Efficient all top-𝑘 computation -

A unified solution for all top-𝑘 , reverse top-𝑘 and top-𝑚 influential queries. IEEE
Trans. Knowl. Data Eng., 25(5):1015–1027, 2013.

[28] S. Ge, L. H. U, N. Mamoulis, and D. W. Cheung. Dominance relationship analysis

with budget constraints. Knowl. Inf. Syst., 42(2):409–440, 2015.
[29] A. M. Geoffrion, J. S. Dyer, and A. Feinberg. An interactive approach for multi-

criterion optimization, with an application to the operation of an academic

department. Management Science, 19(4-part-1):357–368, 1972.
[30] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal vector

computation. VLDB J., 16(1):5–28, 2007.
[31] D. Goldfarb and A. U. Idnani. A numerically stable dual method for solving

strictly convex quadratic programs. Math. Program., 27(1):1–33, 1983.
[32] J. Gross. Redefining Hick’s law. SMASHING Magazine, 2012. https://www.

smashingmagazine.com/2012/02/redefining-hicks-law/.

[33] X. Han, B. Wang, J. Li, and H. Gao. Ranking the big sky: efficient top-k skyline

computation on massive data. Knowl. Inf. Syst., 60(1):415–446, 2019.
[34] W. E. Hick. On the rate of gain of information. Quarterly Journal of Experimental

Psychology, 4(1):11–26, 1952.
[35] C. Holst. Infinite scrolling, pagination or “load more” buttons? Usability findings

in eCommerce. SMASHING Magazine, 2016. https://www.smashingmagazine.

com/2016/03/pagination-infinite-scrolling-load-more-buttons/.

[36] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A system for the

efficient execution of multi-parametric ranked queries. In SIGMOD Conference,
pages 259–270, 2001.

[37] R. Hyman. Stimulus information as a determinant of reaction time. Journal of
Experimental Psychology, 45(3):188–196, 1953.

[38] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing

techniques in relational database systems. ACM Comp. Surveys, 40(4):11:1–11:58,
2008.

[39] D. R. Insua and S. French. A framework for sensitivity analysis in discrete

multi-objective decision-making. Eur. J. Oper. Res., 54(2):176–190, 1991.
[40] K. G. Jamieson and R. D. Nowak. Active ranking using pairwise comparisons. In

NIPS, pages 2240–2248, 2011.
[41] T. Joachims. Optimizing search engines using clickthrough data. In KDD, pages

133–142, 2002.

[42] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and
Value Trade-Offs. Wiley, 1976.

[43] W. Kießling. Foundations of preferences in database systems. In VLDB, pages
311–322, 2002.

[44] M. Köksalan, J. Wallenius, and S. Zionts. Multiple Criteria Decision Making: From
Early History to the 21st Century. World Scientific Publishing Co. Pte. Ltd., 2011.

[45] V. Koltun and C. H. Papadimitriou. Approximately dominating representatives.

Theor. Comput. Sci., 371(3):148–154, 2007.
[46] J. Lee and S. Hwang. Scalable skyline computation using a balanced pivot

selection technique. Inf. Syst., 39:1–21, 2014.
[47] J. Lee, G. You, and S. Hwang. Personalized top-k skyline queries in high-

dimensional space. Inf. Syst., 34(1):45–61, 2009.
[48] H. Li, T. N. Chan, M. L. Yiu, and N. Mamoulis. FEXIPRO: fast and exact inner

product retrieval in recommender systems. In SIGMODConference, pages 835–850,
2017.

[49] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most representative

skyline operator. In ICDE, pages 86–95, 2007.
[50] M.Magnani, I. Assent, andM. L. Mortensen. Taking the big picture: representative

skylines based on significance and diversity. VLDB J., 23(5):795–815, 2014.
[51] J. Matousek and O. Schwarzkopf. Linear optimization queries. InACM Symposium

on Computational Geometry, pages 16–25, 1992.
[52] D. Mindolin and J. Chomicki. Discovering relative importance of skyline at-

tributes. PVLDB, 2(1):610–621, 2009.
[53] R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms.

part II: convex quadratic programming. Math. Program., 44(1-3):43–66, 1989.
[54] K. Mouratidis and B. Tang. Exact processing of uncertain top-k queries in multi-

criteria settings. PVLDB, 11(8):866–879, 2018.
[55] K. Mouratidis, J. Zhang, and H. Pang. Maximum rank query. PVLDB, 8(12):1554–

1565, 2015.

[56] D. Nanongkai, A. Lall, A. D. Sarma, and K. Makino. Interactive regret minimiza-

tion. In SIGMOD Conference, pages 109–120, 2012.
[57] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. J. Xu. Regret-minimizing

representative databases. PVLDB, 3(1):1114–1124, 2010.
[58] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in

database systems. ACM Trans. Database Syst., 30(1):41–82, 2005.
[59] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao, J. X. Yu, and

Q. Zhang. Towards multidimensional subspace skyline analysis. ACM Trans.
Database Syst., 31(4):1335–1381, 2006.

[60] L. Qian, J. Gao, and H. V. Jagadish. Learning user preferences by adaptive pairwise

comparison. PVLDB, 8(11):1322–1333, 2015.
[61] A. D. Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and J. J. Xu. Representative

skylines using threshold-based preference distributions. In ICDE, pages 387–398,
2011.

[62] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for

multi-dimensional objects. In VLDB, pages 507–518, 1987.
[63] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and M. Tagliasacchi. Ranking with

uncertain scoring functions: semantics and sensitivity measures. In SIGMOD
Conference, pages 805–816, 2011.

[64] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.
Wiley, 1986.

[65] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative skyline. In ICDE,
pages 892–903, 2009.

[66] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou. Branch-and-bound

processing of ranked queries. Inf. Syst., 32(3):424–445, 2007.
[67] Y. Tao, X. Xiao, and J. Pei. Efficient skyline and top-k retrieval in subspaces. IEEE

Trans. Knowl. Data Eng., 19(8):1072–1088, 2007.
[68] E. Tiakas, A. N. Papadopoulos, and Y. Manolopoulos. Progressive processing of

subspace dominating queries. VLDB J., 20(6):921–948, 2011.
[69] A. Vlachou and M. Vazirgiannis. Ranking the sky: Discovering the importance

of skyline points through subspace dominance relationships. Data Knowl. Eng.,
69(9):943–964, 2010.

[70] H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis on review text data: a

rating regression approach. In KDD, pages 783–792, 2010.
[71] H.Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis without aspect keyword

supervision. In KDD, pages 618–626, 2011.
[72] T. Xia, D. Zhang, and Y. Tao. On skylining with flexible dominance relation. In

ICDE, pages 1397–1399, 2008.
[73] M. Xie, R. C. Wong, and A. Lall. Strongly truthful interactive regret minimization.

In SIGMOD Conference, pages 281–298, 2019.

https://www.hotels-base.com
https://www.ipums.org
https://www.basketball-reference.com
https://github.com/ghlkm/ordu
https://www.cs.virginia.edu/~hw5x/dataset.html
http://www.qhull.org
https://github.com/liuq/QuadProgpp
https://www.smashingmagazine.com/2012/02/redefining-hicks-law/
https://www.smashingmagazine.com/2012/02/redefining-hicks-law/
https://www.smashingmagazine.com/2016/03/pagination-infinite-scrolling-load-more-buttons/
https://www.smashingmagazine.com/2016/03/pagination-infinite-scrolling-load-more-buttons/


[74] M. Xie, R. C. Wong, and A. Lall. An experimental survey of regret minimization

query and variants: bridging the best worlds between top-k query and skyline

query. VLDB J., 29(1):147–175, 2020.
[75] M. Xie, R. C. Wong, J. Li, C. Long, and A. Lall. Efficient k-regret query algorithm

with restriction-free bound for any dimensionality. In SIGMOD Conference, pages
959–974, 2018.

[76] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of top-k queries in

uncertain databases with x-relations. IEEE Trans. Knowl. Data Eng., 20(12):1669–
1682, 2008.

[77] M. L. Yiu and N. Mamoulis. Multi-dimensional top-k dominating queries. VLDB
J., 18(3):695–718, 2009.

[78] A. Yu, P. K. Agarwal, and J. Yang. Top-k preferences in high dimensions. IEEE
Trans. Knowl. Data Eng., 28(2):311–325, 2016.

[79] S. Zeighami and R. C. Wong. Finding average regret ratio minimizing set in

database. In ICDE, pages 1722–1725, 2019.
[80] J. Zhang, K. Mouratidis, and H. Pang. Global immutable region computation. In

SIGMOD Conference, pages 1151–1162, 2014.
[81] J. Zheng and C. Chen. Sorting-based interactive regret minimization. In APWeb-

WAIM, pages 473–490, 2020.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 OSS Dominance-based Operator
	4.1 Observations and Main Idea
	4.2 Efficient ORD Processing

	5 OSS Utility-based Operator
	5.1 Fundamentals
	5.2 An Algorithmic Basis for ORU
	5.3 Dropping Assumptions; Complete ORU

	6 Experiments
	6.1 Qualitative Study
	6.2 ORD Performance
	6.3 ORU Performance
	6.4 Discussion

	7 Conclusion
	Acknowledgments
	References

