
Spatial Queries in Wireless Broadcast Environments

Invited Paper
∗

Kyriakos Mouratidis
School of Information Systems

Singapore Management University
80 Stamford Road, Singapore 178902

kyriakos@smu.edu.sg

ABSTRACT
Wireless data broadcasting is a promising technique for in-
formation dissemination that exploits the computational ca-
pabilities of mobile devices, in order to enhance the scala-
bility of the system. Under this environment, the data are
continuously broadcast by the server, interleaved with some
indexing information for query processing. Clients may tune
in the broadcast channel and process their queries locally
without contacting the server. In this paper we focus on
spatial queries in particular. First, we review existing meth-
ods on this topic. Next, taking shortest path computation as
an example, we showcase technical challenges arising in this
processing model and describe techniques to address them.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Algorithms, Design, Performance

Keywords
Spatial Queries, Shortest Path Computation, Air Indices

1. INTRODUCTION
Mobile devices with computational and wireless commu-

nication capabilities are becoming increasingly popular. At
the same time, the technology behind positioning systems
is constantly evolving, enabling the integration of low-cost
GPS devices in any portable unit. Consequently, new mo-
bile computing applications emerge, allowing users to issue
location-dependent queries in a ubiquitous manner. For in-
stance, users of these applications can request for the nearest

∗Material based on [14] and [16] appearing in Proceedings
of VLDB’10 and IEEE Transactions on Mobile Computing
respectively.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE ’12, May 20, 2012 Scottsdale, Arizona, USA
Copyright 2012 ACM 978-1-4503-1442-8/12/05 ...$10.00.

business or service to their location, navigate to a target ad-
dress, locate personal contacts on a map or receive alerts
such as warnings of traffic jams.

To answer a location-based query, such as navigation to a
specific address, the device typically either (i) pre-loads the
map data and runs the query locally, or (ii) it connects to a
location server through a GSM/3G/Wi-Fi service provider.
The option of storing the map information locally imposes
heavy requirements on the already limited storage of the
mobile device and it is viable only for few pre-selected maps.
In case the user travels to a new city/country, this option
would fail. Moreover, storing maps locally may result in
routing decisions based on outdated network information.

On the other hand, given the growing number of users
and services, the option of querying online location servers
is already facing scalability limitations, a situation expected
to worsen in the near future. While coping with increasing
query loads necessitates continuous infrastructure upgrades
at the side of service providers, a greater challenge is net-
work congestion. According to [21] the number of mobile
subscribers has risen by 250% in the last 3.5 years, while
data traffic volume from handheld devices is growing by
more than 10 times per year. The main concern of mobile
service providers in the Mobile World Congress 2010 [1] was
that the number of data-capable phones is growing faster
than network capacity, so network overload is considered an
immediate risk, and data traffic management is becoming a
major priority for the telecommunications industry.

A promising solution to the above problem is the wireless
broadcast model [11]. In this model the location server re-
peatedly broadcasts the data on the air (using GSM, 3G, Wi-
Fi, HD radio, or even a Bluetooth network), while the clients
tune in the broadcast channel and process their queries lo-
cally. Since the server’s hardware requirements are low, mul-
tiple servers could be installed at different locations to pro-
vide coverage in large areas. The main advantage of the
broadcast model is that it can support an arbitrary num-
ber of users/queries, since no processing takes place at the
server, and the network overhead is irrelevant to the num-
ber of clients. A side benefit is that user privacy is guaran-
teed, as the location server is unaware of user positions and
queries; this has been a serious concern recently [3, 17].

Wireless broadcasting has been considered for spatial
queries, such as traditional range and nearest neighbor (NN)
processing (e.g., [16, 26, 28]). In this paper we provide a gen-
eral background for the wireless broadcast environment and
briefly review spatial processing techniques designed for this
setting. Using shortest path computation as a case study, we

take a closer look into the challenges and solutions described
in [14].

2. WIRELESS BROADCASTING
In the wireless broadcast model the server repeatedly

transmits identical broadcast cycles, each containing the en-
tire database and potentially some indexing information
(called air index). The broadcast cycle consists of fixed-size
packets, defining the smallest information unit transmitted.

The most common data organization method is the (1,m)
interleaving scheme [11], shown in Figure 1. The data ob-
jects are divided into m distinct segments, and each data
segment in the transmission schedule is preceded by a com-
plete version of the index. This way the client may receive
a copy of the index (and start processing its query) immedi-
ately after the completion of the currently transmitted data
segment. [11] also introduces an alternative, distributed in-
dex that reduces the degree of replication in order to further
improve performance. Specifically, instead of the entire in-
dex being replicated prior to each data segment, only the in-
dex that corresponds to the subsequent segment is included
(i.e., replication occurs at the upper levels of the index tree).Broadcast cycle iBroadcast cycle i-1 Broadcast cycle i+1

Index bucket Data bucketData segment 1 Data segment 2 Data segment m
Figure 1: The (1,m) interleaving scheme

The main objective of air indices is to minimize the power
consumption at the mobile client. Although in a broadcast
environment the uplink transmissions are avoided, receiv-
ing all the downlink packets from the server is not energy-
efficient. For instance, the (widely used) 802.11 WaveLAN
card consumes 1.65W, 1.4W, and 0.045W in transmit, re-
ceive, and sleep states respectively [12]. Therefore, it is
imperative that the client switches to the sleep mode (i.e.,
turns off the receiver) whenever the transmitted packets do
not contain any useful information. Based on the data or-
ganization technique in Figure 1, query processing at the
mobile client is performed as follows: (i) the client tunes in
the broadcast channel when the query is issued, and goes
to sleep until the next index segment arrives, (ii) the client
uses the index to determine when the data objects that sat-
isfy its query will be broadcast, and (iii) the client goes to
sleep and returns to the receive mode only to retrieve the
corresponding data objects.

To measure the efficiency of an indexing method, two per-
formance metrics have been considered in the literature: (i)
tuning time, i.e., the total time that the client stays in re-
ceive mode to process the query, and (ii) access latency, i.e.,
the total time elapsed from the moment the query is issued
until the moment that all the result objects are received. In
other words, the tuning time is a measure of the power con-
sumption at the mobile client, while access latency reflects
the user-perceived system responsiveness.

Most of the existing work on query processing for wire-

less data broadcast focuses on relational data and indices.
Imielinski et al. [10] introduce two methods, namely hashing
and flexible index, for retrieving records based on their key
values. The same authors [11] propose the aforementioned
(1,m) and distributed index techniques, and study their per-
formance for the B+-tree index. Hu et al. [9] consider multi-
attribute queries, and investigate the performance of three
indices (index tree, signature, and hybrid index) under this
scenario. In another study, Xu et al. [23] propose the expo-
nential index, which offers the ability to adjust the trade-off
between access latency and tuning time.

3. AIR INDICES FOR SPATIAL QUERIES
Hambrusch et al. [7] explore the possibility of broadcast-

ing spatial data together with a data partitioning index.
They present several techniques for spatial query process-
ing that adjust to memory limitations at the mobile device.
The authors evaluate their methods experimentally for range
queries (using the R∗-tree [2] as the underlying index), and
illustrate the feasibility of this architecture.

Xu et al. [24] and Zheng et al. [29] focus on single near-
est neighbor (NN) search in broadcast environments. Both
methods utilize a pre-computed Voronoi diagram that can
answer any NN query by identifying the Voronoi cell that
encloses it. Specifically, the Voronoi diagram of the data ob-
jects is built prior to the construction of the air index. The
D-tree [24] then recursively partitions the data space (con-
taining the Voronoi cells) into areas with a similar number
of cells. This procedure is repeated until each area contains
exactly one cell. On the other hand, the grid-partition index
[29] divides the space into disjoint grid cells, each intersect-
ing multiple Voronoi cells. Both methods are found superior
to broadcast solutions based on R∗-trees.

Zheng et al. [27] investigate another class of NN queries,
namely linear NN (LNN) queries, in the context of wireless
broadcast systems. A LNN query retrieves the NNs of every
point on a line segment, i.e., the solution comprises of a
series of points, each being the NN of a particular segment
of the line. The authors adjust the methods introduced by
Tao et al. [22] to fit the broadcast environment, and show
that their techniques outperform the näıve solution where
there is no index available.

Focusing on kNN search on the air, [25] proposes an ap-
proximate kNN query processing algorithm that is not guar-
anteed to always return k objects. The idea is to use an es-
timate r of the radius that is expected to contain at least k
points. Using this estimate, the search space can be pruned
effectively at the beginning of the search process. The au-
thors also introduce a learning algorithm that adaptively
re-configures the estimation algorithm to reflect the distri-
bution of the data. Regarding query processing, two differ-
ent approaches are proposed: (i) the standard R∗-tree index
enhanced with the aforementioned pruning criterion, and
(ii) a new sorted list index that sorts objects on each spatial
dimension. The sorted list method is shown to be superior
to the R∗-tree only for small values of k.

Gedik et al. [5] describe several algorithms to improve
kNN query processing in sequential-access R-trees. They
investigate the effect of different broadcast organizations on
the tuning time, and also propose the use of histograms to
enhance the pruning capabilities of the search algorithms.
Park et al. [20] focus on reducing the access latency of kNN
search by accessing the data segment of the broadcast cycle.

In particular, they propose a method where the data objects
are sorted according to one spatial coordinate. This way,
the client does not need to wait for the next index segment
to arrive, but can start query processing immediately by
retrieving the actual data objects.

The Hilbert Curve Index (HCI) [26] is a general frame-
work for processing both range and kNN queries in wireless
broadcast systems. HCI is based on the (1,m) interleav-
ing scheme. It exploits the linear access of the broadcast
channel by transforming the two-dimensional space into a
one-dimensional, using the Hilbert space-filling curve [13].
Once the objects are mapped onto the Hilbert curve, they
are indexed with a B+-tree which is then broadcast on the
air (as the index segment). Range queries are processed as
follows. Consider Figure 2(a) where the Hilbert values range
from 0 to 15, and the query region is the shaded rectangle.
The client first determines the first (a) and the last (b) points
on the Hilbert curve that intersect the query window (illus-
trated as crosses in the figure). Letting H(a) and H(b) be
the Hilbert values of a and b, the client listens to the first
broadcast index segment, and retrieves all objects inside the
Hilbert range [H(a), H(b)]. In our example, H(a) = 2 and
H(b) = 13 (note that the Hilbert value of a point is the
integer that corresponds to its closest solid square in the
two-dimensional space). Objects p1, p2, p3, p4 are identified
(with H(p1) = 2, H(p2) = 6, H(p3) = 7, H(p4) = 9), but
not all of them satisfy the query. Thus, they are mapped
back to the two-dimensional space, and their associated data
are received (from the corresponding data segment) only if
they are inside the query region. In our example, the result
includes only p1.

0 1

23

4

5 6

7 8

9 10

11

1213

14 15

y

x(0,0)

q

× ×a b

p4
p3

p2
p1

(a) Range query

0 1

23

4

5 6

7 8

9 10

11

1213

14 15

y

x(0,0)

q

p4
p3

p2
d max

p1

(b) 2-NN query

Figure 2: HCI examples

In HCI, kNN queries are processed with a two-step ap-
proach. In the first step, the query point q is mapped
onto the Hilbert curve, and the k objects closest to q (on
the curve) are determined. In the second step, the maxi-
mum distance dmax (from q) across these k objects is calcu-
lated, and a range query is processed (in the way described
above) to retrieve a set of candidate neighbors. Within this
set, the k closest objects to q are identified by comparing
their individual distances from q. Figure 2(b) exemplifies
this procedure for a 2-NN query q, where H(q) = 8. In
the first step, the client identifies the k = 2 data objects
with the closest Hilbert values to H(q) = 8; these are p3
and p4, with H(p3) = 7 and H(p4) = 9 respectively. In
the second step, the client additionally retrieves p1 and p2
since they fall inside the circle with center at q and radius

dmax = max(dist(p3), dist(p4)) (shown shaded). Among
these candidate objects, the k = 2 closest ones (i.e., p1 and
p2) are selected and their contents are retrieved from the
corresponding data segments.

The Distributed Spatial Index (DSI) [28] is another gen-
eral air index, supporting both range and kNN queries. DSI
is a distributed index that aims at minimizing the access
latency at the cost of an increased tuning time. Similar to
HCI, it uses the Hilbert curve to order the data. The broad-
cast cycle is constructed as follows. The ordered data are
partitioned into a number of frames. Each frame holds a
fixed number of consecutive objects (on the Hilbert curve)
and an index table. Each entry of the index table contains
a pointer to a subsequent frame, along with the minimum
Hilbert value inside that frame. Specifically, the ith entry
points to the eith subsequent frame, where e is a system pa-
rameter. Figure 3 illustrates a situation where each frame
contains 2 data objects, e = 2, and the subscripts of the
objects coincide with their Hilbert order. The index table of
every frame contains pointers (and the corresponding mini-
mum Hilbert values) to the 1st, 2nd, 4th, and 8th subsequent
frame; the arrows in the figure represent the index entries
in Frame 1. These exponentially increasing frame intervals
enable fast access to both nearby and distant frames. To
identify the object with a specific Hilbert value, the client
listens to the current frame, and follows the pointer to the
furthest frame that does not exceed the target Hilbert value
(i.e., goes to sleep until that future frame is broadcast). The
procedure is repeated for this coming frame and terminates
when the search converges to the frame that contains the
target object. Query processing in DSI is similar to HCI, re-
lying on the locality preservation of the Hilbert curve. The
improved access latency of DSI stems mainly from the fact
that the client retrieves indexing information directly when
it first tunes in the channel (instead of waiting for the next
index segment to be broadcast).

Index table Data

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8

H(p3) H(p9)
H(p5)

Frame 9 ...

H(p17)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 ...

Figure 3: DSI example

In the Broadcast Grid Index method (BGI) [16], the data
objects are initially partitioned using a regular grid, i.e., a
grid with equi-sized cells. Each grid cell holds the coordi-
nates of objects that lie inside it, plus their total number.
This information forms the index of BGI. The full object
data are divided into m segments using the (1,m) scheme,
and a copy of the index precedes each segment.

In order to compute a kNN query, the algorithm performs
two steps. In the first step, the client receives index informa-
tion for the cells. Using the extent and number of objects
in each cell, it calculates an upper bound dmax of the ra-
dius around its position that contains at least k objects.
In the second step, the device receives from the broadcast
cycle only the objects within distance equal to or smaller
than dmax. As the client receives index information about
more cells or more object coordinates, it reduces the up-
per bound dmax incrementally, excluding more unnecessary

packets each time. BGI can additionally support continu-
ous kNN queries. These are standing queries that require
continuous re-evaluation as the data objects move.

Another body of work considers situations in wireless
broadcasting where error rates are high and vary signifi-
cantly across the system. [19] proposes adaptive error cor-
rection techniques to keep access latency and tuning time
low. It also develops adaptive query processing methods
that cater for the different error rates of individual clients.
The same authors demonstrate the feasibility of their tech-
niques, and of wireless broadcasting in general, using a real
running prototype [18].

4. CASE STUDY: SHORTEST PATH
We chose the context of shortest path queries to show-

case key considerations in a wireless broadcast system and
describe the approach proposed in [14] to address them.

4.1 Query Definition and Challenges
Unlike spatial techniques described in Section 3, shortest

path queries involve no data objects, but a graph – in the
context of location-based services, this graph is typically a
road network. That is a directed weighted graph G = (V ,
E). V is the set of nodes vi, each of the form < idi, xi,
yi >, denoting the identifier and the spatial coordinates of
the node. E is the set of edges (vi, vj), each modeled as a
triplet < idi, idj , wij > that contains the identifiers of the
connected nodes vi and vj and the weight wij of the edge;
wij may correspond to the edge’s length, travel time, toll
fee, etc. The shortest path between a source node vs and
a target node vt is the edge sequence connecting vs and vt
with the minimum sum of edge weights. The sum of edge
weights along the shortest path is called the graph distance
between vs and vt.

A common technique to compute a shortest path is Di-
jkstra’s [4] algorithm. Initially, nodes adjacent to vs are
pushed into a min-heap with their graph weights from vs as
sorting keys. The top node v in the heap is popped in every
iteration and expanded, i.e., its adjacent nodes v′ are en-
heaped with key equal to that of v plus the weight of edge
(v, v′). The process stops when vt is popped. The shortest
path is returned by tracing backwards the expansions that
lead to vt.

Let’s attempt to apply Dijkstra’s algorithm in the wireless
broadcast setting. The broadcast cycle includes the road
network information, i.e., the adjacency lists of all nodes.
Assume that the client’s device somehow knows when to
wake up to receive the adjacency information of the source
node vs. Upon receipt of this information, it pushes in a
Dijkstra heap all the adjacent nodes of vs. Letting v be
the node at the head of the heap, Dijkstra needs to listen
to v’s adjacency list. As this information may have already
been broadcast, the device might need to wait for the next
broadcast cycle. The access latency of this approach is unac-
ceptable, as the device may have to wait for as many cycles
as the number of nodes popped by Dijkstra. Since there is
no way to tell in advance what the source and the target of
user queries will be, it is not possible to organize the nodes
in the broadcast cycle in a certain order so that every needed
node appears later than the previously de-heaped one. The
situation could be improved if the network was partitioned
into regions and the adjacency lists for the same region were
broadcast together. Still, however, when Dijkstra search

 R1 R2 R3 R4 R5 R6

 Min Max Min Max Min Max Min Max Min Max Min Max

R1 1 5 6 8 1 4 3 7 8 9

R2 1 5 1 3 2 5 1 2 2 4

R3 4 6 1 3 5 8 2 4 1 4

R4 1 3 2 4 5 8 2 3 4 7

R5 3 6 1 3 2 4 1 3 1 2

R6 7 9 2 4 1 2 5 6 1 3

R1 R2

R4

R3

R5 R6

Figure 4: EB index

reaches the borders of the current region, the device might
have to wait for the next cycle to receive network informa-
tion about the neighboring regions.

Due to this problem, selective tuning is not feasible in Di-
jkstra’s adaptation. An idea would be for the client to listen
to the entire broadcast cycle, and then process the query
locally in the complete network. Access latency this way
never exceeds one cycle. However, this approach incurs a
prohibitively long tuning time (all packets of the cycle are re-
ceived). Other established techniques, like A∗ search [8], or
common pre-computation-based approaches (ArcFlag [15],
Landmark [6], etc), run into similar problems. This calls for
processing methods specifically designed for the broadcast
setting. [14] proposes two such methods, described in the
following sections.

4.2 Elliptic Boundary (EB) Method
Intuitively, in order to efficiently process shortest path

queries we have to partition the road network into regions
and use an index structure to guide the search through them.
To keep access latency and tuning time low, the index should
be particularly concise, much more than existing indices de-
signed for disk-resident networks. The Elliptic Boundary
method (EB) follows this approach.

Its crux is to first provide the client with an upper bound
of the shortest path distance between vs and vt. This bound
is used to prune (i.e., to avoid listening to) network infor-
mation about nodes that lie too far away from vs and vt to
affect the shortest path search. This is achieved by parti-
tioning the network into regions, and placing in the index of
EB information about the minimum and maximum possible
distance from any partition to any other. EB owes its name
to the fact that the search area is reminiscent of a network-
based ellipse with foci the regions of vs and vt (although the
search space is by no means an ellipse or any other geomet-
ric shape, as no relationship between network distance and
Euclidean distance is assumed).

The index of EB includes two components. The first is
a KD-tree that partitions the road network and provides a
mapping of (the Euclidean coordinates of) nodes into the
resulting regions. The second component specifies mini-
mum/maximum graph distances between every pair of re-
gions. Figure 4 gives an example of the second component
for a network partitioned in the 6 regions shown in the left
part of the figure. To keep the access latency low, the index
is replicated m times in the broadcast cycle, following the
(1,m) scheme.

Posed a query, the client tunes in the broadcast channel,
and listens to the current packet. It retrieves a pointer to
the next index and sleeps. It wakes up when the index starts
being broadcast, and receives it in its entirety. The regions
Rs and Rt that include the source and target nodes are
identified (using the KD-tree in the first component of the
index). The second component of the index specifies the
maximum possible graph distance between any node in Rs

R1 R2 R3 R4

R5
R6

R7 R8

R9 R10 R11 R12

R13 R14 R15 R16

Figure 5: Shortest paths from R1 to R16

and any node in Rt. This value serves as an upper bound of
the shortest path distance. In Figure 4, if the source vs is in
region R1 and the destination vt in region R5, the maximum
shortest path distance is 7 (see entry (R1, R5) in the array).

The next step is to determine which regions must be re-
ceived. The client needs to listen to only those regions R for
which the sum of minimum distance from R1 to R plus the
minimum distance from R to R5 is no larger than 7. Hence,
the client needs to receive (i) the source and target regions
R1, R5, and (ii) regions R2 (1 + 1 < 7) and R4 (1 + 2 < 7).
Regions R3 and R6 are not necessary since the sum of their
minimum distances is larger than 7.

Upon deciding which regions are necessary, the client
sleeps and wakes up when their data (contained nodes and
adjacency lists thereof) are broadcast. When all necessary
regions are downloaded, the client performs a Dijkstra search
in their union (a sub-graph of the network) and derives the
shortest path. Observe that access latency never exceeds
one broadcast cycle in EB.

4.3 Next Region (NR) Method
While EB allows for selective tuning, its search space (i.e.,

the set of regions received by the client) may still be large.
The problem is exacerbated when the source and destina-
tion are far away, as EB’s network-based ellipse includes an
increasing number of regions. In the extreme case where vs
and vt are located in the furthest regions, it is possible that
EB needs to receive all regions.

In this section we describe the Next Region method (NR),
which avoids the above problem. The server again pre-
computes the shortest paths between all border nodes of
different regions, but now the index keeps for each pair of
Ri, Rj the identifiers of intermediate regions appearing in
any shortest path between any of their border nodes. These
regions are guaranteed to contain the shortest path from any
node in Ri to any node in Rj .

Consider the example in Figure 5. The source is in region
R1, which has two border nodes. The destination is in R16,
which has a single border node. There are two shortest
paths between the border nodes of R1 and R16. One of
them traverses regions R2, R6, R7, R11 and R12, and the
other regions R5, R6, R7, R11 and R12. The NR index
records that any shortest path from R1 to R16 may only
pass through the union of the above region sets (shown gray
in the figure).

NR does not place the whole index information in a single
segment. Instead it distributes it in the broadcast cycle by
forming local, region-specific indices, transmitted immedi-
ately before the corresponding regions. This eliminates the
need for (1,m) interleaving and keeps access latency low.

 R1 R2 R3 R4 R5

 R6 R7 R8 R9 R10

 R11 R12 R13 R14 R15

 R16 R17 R18 R19 R20

 R21 R22 R23 R24 R25

Figure 6: Needed regions

 R1 R2 R3 R4 R5

 R6 R7 R8 R9 R10

 R11 R12 R13 R14 R15

 R16 R17 R18 R19 R20

 R21 R22 R23 R24 R25

12
th

 R1 R2 … R24 R25

R1 R1 R13 R13

R2 R1 R13 R13

…

R24 R13 R13 R24

R25 R13 R13 R24

Figure 7: NR algorithm; receiving 12th local index

Figure 6 shows the structure of the cycle, where the unla-
beled slot before each region corresponds to its index. The
index of region R is an array with n rows and n columns,
where n is the total number of regions. Every entry (Ri, Rj)
of the array indicates the next region Rnxt in the broadcast
cycle that may be needed for a shortest path from Ri to Rj .
Note that Rnxt could be R itself.

Posed a query, the device tunes in the channel, receives
the current packet, and waits until the subsequent index is
broadcast. The client receives this index, and finds out what
the next required region Rnxt is (depending on the source
and target regions). It wakes up when Rnxt is broadcast and
keeps listening until the immediately next local index is also
received. From that index it determines the next needed
region, and so on. When the latest index received indicates
that Rnxt is a region that the client already possesses, lis-
tening stops and a (locally run) Dijkstra search computes
the shortest path over all downloaded regions.

To exemplify, consider the broadcast cycle in Figure 6.
The user wants to find the shortest path from a source in R1

to a destination in R25. The needed regions for this shortest
path computation are shown in gray color, but the client
does not know this in advance. Assume that the query is
posed while R11 data are broadcast, which points the client
to the 12th local index. The position of this index in the
broadcast cycle is shown in the left part of Figure 7 and its
contents in the right. The index suggests that R13 is the
next needed region, so the device sleeps and wakes up to
receive R13 and also the adjacent index (i.e., the 14th). The
14th index indicates that R14 is also required, so the client
continues to receive data from the channel, until then 15th
index points to R19, as shown in Figure 8. The device sleeps
until R19 is broadcast, and so on. The process continues
this way until R8 is received and the 9th index points to the
already available R13. Listening stops and the shortest path
is computed locally.

Similarly to EB, the access latency in NR does not exceed
one broadcast cycle. Regarding tuning time and memory re-
quirements, NR is superior to EB, as the client listens only to
a subset of the regions necessary in EB. The same holds for
CPU time at the client (for the local execution of Dijkstra).

 R1 R2 R3 R4 R5

 R6 R7 R8 R9 R10

 R11 R12 R13 R14 R15

 R16 R17 R18 R19 R20

 R21 R22 R23 R24 R25

15
th

 R1 R2 … R24 R25

R1 R1 R19 R19

R2 R1 R19 R19

…

R24 R19 R19 R24

R25 R19 R19 R24

Figure 8: NR algorithm; receiving 15th local index

Pre-computation cost is identical to EB (assuming the same
partitioning), as the same number of shortest paths among
regions are computed. For an extensive empirical evaluation
on real road networks the reader is referred to [14].

5. CONCLUSIONS
The continuing diffusion of mobile devices enables a flour-

ishing market of location-based services, but also poses seri-
ous scalability concerns. This motivates the wireless broad-
cast model, where a server repeatedly transmits the entire
database, while clients selectively tune in the communica-
tion channel and process their queries locally. In this pa-
per we review spatial query processing in wireless broadcast
environments and use shortest path computation as an ex-
ample of specific challenges and solutions considered in that
setting. Given the limitations faced in traditional query pro-
cessing architectures and the ability of wireless broadcasting
to alleviate many of them, it bears strong potential to serve
as an alternative or a complement to common computation
paradigms. It is therefore a promising research direction to
extend the air indexing literature with solutions for other
query types, be them of a spatial nature or otherwise.

6. REFERENCES
[1] Mobile World Congress: Network Breaking Point,

February 17 2010.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R∗-tree: An efficient and robust access
method for points and rectangles. In SIGMOD, pages
322–331, 1990.

[3] C.-Y. Chow, M. F. Mokbel, and W. G. Aref. Casper*:
Query processing for location services without
compromising privacy. ACM TODS, 34(4), 2009.

[4] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271,
1959.

[5] B. Gedik, A. Singh, and L. Liu. Energy efficient exact
kNN search in wireless broadcast environments. In
GIS, pages 137–146, 2004.

[6] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A∗ search meets graph theory. In
SODA, pages 156–165, 2005.

[7] S. E. Hambrusch, C.-M. Liu, W. G. Aref, and
S. Prabhakar. Query processing in broadcasted spatial
index trees. In SSTD, pages 502–521, 2001.

[8] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE TSSC, 4(2):100–107, 1968.

[9] Q. Hu, W.-C. Lee, and D. L. Lee. Power conservative
multi-attribute queries on data broadcast. In ICDE,
pages 157–166, 2000.

[10] T. Imielinski, S. Viswanathan, and B. R. Badrinath.
Power efficient filtering of data an air. In EDBT, pages
245–258, 1994.

[11] T. Imielinski, S. Viswanathan, and B. R. Badrinath.
Data on air: Organization and access. IEEE TKDE,
9(3):353–372, 1997.

[12] E.-S. Jung and N. H. Vaidya. An energy efficient MAC
protocol for wireless LANs. In INFOCOM, 2002.

[13] I. Kamel and C. Faloutsos. On packing R-trees. In
CIKM, pages 490–499, 1993.

[14] G. Kellaris and K. Mouratidis. Shortest path
computation on air indexes. PVLDB, 3(1):747–757,
2010.

[15] E. Köhler, R. H. Möhring, and H. Schilling. Fast
point-to-point shortest path computations with
arc-flags. In 9th DIMACS Implementation Challenge -
Shortest Paths, 2007.

[16] K. Mouratidis, S. Bakiras, and D. Papadias.
Continuous monitoring of spatial queries in wireless
broadcast environments. IEEE Trans. Mob. Comput.,
8(10):1297–1311, 2009.

[17] K. Mouratidis and M. L. Yiu. Shortest path
computation with no information leakage. PVLDB,
5(8):692–703, 2012.

[18] E. Müller, P. Kranen, M. Nett, F. Reidl, and T. Seidl.
A general framework for data dissemination simulation
for real world scenarios (demo). In MOBICOM, 2008.

[19] E. Müller, P. Kranen, M. Nett, F. Reidl, and T. Seidl.
Air-indexing on error prone communication channels.
In DASFAA (1), pages 505–519, 2010.

[20] K. Park, M. Song, and C.-S. Hwang. An efficient data
dissemination schemes for location dependent
information services. In ICDCIT, pages 96–105, 2004.

[21] J. Pigg. Mobile backhaul: Will the levees hold?, 2009.

[22] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest
neighbor search. In VLDB, pages 287–298, 2002.

[23] J. Xu, W.-C. Lee, and X. Tang. Exponential index: A
parameterized distributed indexing scheme for data on
air. In MobiSys, 2004.

[24] J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. Energy
efficient index for querying location-dependent data in
mobile broadcast environments. In ICDE, pages
239–250, 2003.

[25] B. Zheng, W.-C. Lee, and D. L. Lee. Search k nearest
neighbors on air. In MDM, pages 181–195, 2003.

[26] B. Zheng, W.-C. Lee, and D. L. Lee. Spatial queries in
wireless broadcast systems. Wireless Networks,
10(6):723–736, 2004.

[27] B. Zheng, W.-C. Lee, and D. L. Lee. On searching
continuous k nearest neighbors in wireless data
broadcast systems. IEEE Trans. Mob. Comput.,
6(7):748–761, 2007.

[28] B. Zheng, W.-C. Lee, K. C. K. Lee, D. L. Lee, and
M. Shao. A distributed spatial index for error-prone
wireless data broadcast. VLDB J., 18(4):959–986,
2009.

[29] B. Zheng, J. Xu, W.-C. Lee, and D. L. Lee.
Grid-partition index: a hybrid method for
nearest-neighbor queries in wireless location-based
services. VLDB J., 15(1):21–39, 2006.

