
Strong Location Privacy: A Case Study
on Shortest Path Queries

[Invited Paper]

Kyriakos Mouratidis

School of Information Systems
Singapore Management University

kyriakos@smu.edu.sg

Abstract— The last few years have witnessed an increasing
availability of location-based services (LBSs). Although partic-
ularly useful, such services raise serious privacy concerns. For
example, exposing to a (potentially untrusted) LBS the client’s
position may reveal personal information, such as social habits,
health condition, shopping preferences, lifestyle choices, etc.
There is a large body of work on protecting the location privacy
of the clients. In this paper, we focus on shortest path queries,
describe a framework based on private information retrieval
(PIR), and conclude with open questions about the practicality
of PIR and other location privacy approaches.

I. INTRODUCTION

The wide availability of positioning systems and the dif-
fusion of smart-phones has led to an expanding market of
location-based services (LBSs). Clients of these services may
use their mobile devices to get driving directions to their
destination, to retrieve facilities close to their location (e.g.,
clinics, pharmacies, police stations), to learn who of their
social contacts are nearby, etc.

Practical as these services may be, users view them with
increasing skepticism. The very nature of the queries may
disclose personal information (such as health status, shopping
habits, lifestyle choices, etc) which may be tracked and mis-
used by the LBS. Possible forms of misuse include commercial
profiling, unsolicited and intrusive advertising, etc. The recent
example of a leading mobile device company, which had been
tracking the locations of its clients without their consent [1],
[24], underlines the serious privacy risks in using LBSs.

Two general approaches have been taken so far to hide
the location of the querying client from the LBS; location
obfuscation, and PIR-based methods. The first category in-
cludes schemes that replace the client’s position with a nearby
location [28], with a spatial region that encloses it [14], [8], or
with a set of candidate locations (including the client’s actual
position) [4], [11]. Location obfuscation is said to offer weak
privacy, in the sense that the LBS always learns some (albeit
not exact) information about the user location.

The second class of methods relies on private information
retrieval (PIR) [2]. PIR is a primitive that allows a data item
(e.g., a disk page) to be retrieved from a server, without
the server obtaining any clues about which item was re-
trieved. Unlike obfuscation, PIR offers cryptographic privacy

guarantees, based on reductions to problems that are either
computationally infeasible or theoretically impossible to solve.
In this sense, PIR-based methods offer strong location privacy
(e.g., [17], [10]). The downside of these techniques is that PIR
is generally resource-intensive. Although recent PIR protocols
achieve reasonable response times (in the order of seconds
over Gigabyte databases [25]), incorporating them into spatial
query processing is not straightforward nor always practical.

In this paper, we use shortest path queries in transportation
networks as an example to showcase issues, challenges and
performance implications of the two paradigms, with a focus
on the PIR approach. A transportation network could represent
the road segments in a city, where each segment is associated
with a cost (e.g., its length or the time required to drive through
it). The query computes the sequence of road segments to
reach from a source s (usually the client’s current location)
to a destination t so that the summed cost along the path
is minimized. This is one of the most common queries in
LBSs. Examples of popular services that support shortest
path computation include Google Maps, Map Quest, etc. Note
that, unlike range and nearest neighbor queries, shortest path
computation may disclose information not only about the
current position of the client, but also about her intended
destination and path taken.

The paper is structured as follows. Section II surveys
existing location privacy techniques, including two obfuscation
methods for shortest path queries. Section III outlines a PIR-
based methodology that offers strong privacy, i.e., where the
LBS answers shortest path queries without deducing any in-
formation about them. Section IV sketches two techniques that
implement this methodology. Section V presents representative
performance results. Section VI concludes the paper with
thoughts about the practicality of location privacy approaches,
and with open questions that future research should consider.

II. OVERVIEW OF EXISTING WORK

A. Obfuscation Methods

Spatial k-anonymity is a type of obfuscation for location
privacy that is inspired by the concept of k-anonymity in
relational databases [21]. The architecture includes (i) the
clients, (ii) the LBS that hosts a spatial database and answers



queries on it, and (iii) a trusted mediator, commonly referred to
as the Anonymizer. The clients update the Anonymizer about
their most recent locations, and forward to it their queries.
Posed a spatial query, the Anonymizer replaces the coordinates
of the originating client u with a region (usually a square or a
circle) that includes u and at least k− 1 other clients. This k-
anonymous region is forwarded to the LBS, which reports back
to the Anonymizer possible query answers for any point inside
the region. The Anonymizer filters the results, and forwards to
u the actual answer to its query. The privacy assurance offered
to clients is that, even if the LBS knows the exact locations of
all clients, it is unable to identify which among the k clients
inside the anonymous region is the query originator.

There exist several spatial k-anonymity methods for range
and nearest neighbor (NN) queries in Euclidean space [14],
[8], as well as adaptations that drop the Anonymizer from
the model, and instead have the clients collaboratively form
the k-anonymous regions [3], [7]. There also exist spatial k-
anonymity methods for NN processing on road networks [23],
[15]; here, instead of a spatial region, a set of road segments is
used to anonymize u, with the requirement that at least k− 1
other clients are also located on these segments.

Another class of obfuscation methods use fake locations
instead of k-anonymous regions. In [4], [11], for instance, the
client forwards to the LBS a set of fake query locations along
with her actual position. The assumption is that the LBS is
unaware of clients’ locations, so that it is unable to tell apart
the decoys. Another approach is to choose a fake location
u′ near the client and forward it as the query point [28],
[18]. In this setting, nearest neighbor queries can be answered
by incrementally fetching from the LBS the NNs of u′ and
stopping when the set of retrieved data objects is guaranteed
to contain the NNs of the actual client’s location.

There are two obfuscation methods to protect shortest path
queries in road networks, [12] and [22]. The former assumes
the existence of an Obfuscator, which plays a role similar to
the Anonymizer, i.e., it serves as a trusted mediator between
the clients and the LBS. A client u querying about the shortest
path from a source s to a destination t, relays its request to the
Obfuscator. The Obfuscator appends s and t with a number
of decoys, producing obfuscation sets S and T , which it then
forwards to the LBS. The LBS computes all shortest paths
from any candidate source in S to any candidate destination
in T . Upon receipt of these paths, the Obfuscator picks the
one that corresponds to the real source and destination, and
reports it to the client. To improve performance, [12] suggests
choosing decoys close to the real s and t, respectively.

On the other hand, [22] replaces the source and destination
with their containing regions. Unaware of the exact s and t
locations, the LBS computes multiple shortest paths between
the two regions. To achieve reasonable performance, [22]
presents an approximate scheme, i.e., the reported path has
a bounded deviation in distance units from the shortest path.

By definition, obfuscation methods disclose some informa-
tion about the query location, thus providing weak privacy.
For instance, spatial k-anonymity methods reveal to the LBS

that the user lies inside the k-anonymous region, which is
only a part of the entire data space (and usually a small one).
Similarly, in methods that append u with decoys, the LBS
is offered a finite set of alternatives for u to be located at.
If the LBS can additionally disqualify some decoys (e.g., via
contextual knowledge), its chances of guessing correctly the
client’s location increase. On the other hand, in [28], [18] the
LBS does not acquire the actual client location, but it still
gains information about her whereabouts, because u′ lies in
her vicinity.

For the specific case of shortest path privacy, in [12] the LBS
obtains knowledge of a finite set of alternatives for s and t (|S|
and |T | candidate locations, respectively) which, moreover, lie
near the actual source and destination, providing a rough idea
of their positions. [22], on the other hand, reveals the regions
that contain the source and destination.

Although not an obfuscation method per se, another ap-
proach considered for location privacy is space transformation
[9], [26], [27]. In this model, the database owner, who is
different from the LBS, maps the data from the original
Euclidean space into a transformed space using a keyed
function. A querying client u (in possession of the secret key)
converts her location into the transformed space and forwards
it to the LBS. The latter, although unaware of the secret key
and thus unable to map the data and query back to the original
space, is still able to compute the query result. [9] supports
approximate NN processing, [26] provides exact NN results,
and [27] additionally answers range queries. Transformation
techniques are meant for single client settings, because pos-
session of the secret key by multiple ones implies that any
client may collude with the LBS to “decrypt” another’s query.
Also, transformation schemes are susceptible to access pattern
attacks [25]. For example, the LBS may observe the access
frequencies of items in the transformed space and use them in
tandem with contextual knowledge about the original space to
deduce a (partial) mapping between the two spaces.

B. PIR-based Methods

Private information retrieval (PIR) is a primitive for re-
trieving data hosted by a server, without the server learning
anything about the clients’ access patterns [2]. The privacy
guarantees of PIR protocols rely on reductions to problems
that are either computationally infeasible or theoretically im-
possible to solve (for a complete survey of PIR techniques and
an in-depth description of their inner workings, the interested
reader is referred to [5]).

Many types of single-server PIR are known to incur pro-
hibitive computation and/or communication overheads for
sizable datasets [20]. However, recent hardware-aided PIR
protocols are shown to be more practical. These protocols
utilize a tamper-resistant, secure co-processor (SCP) that is
installed at the server and is trusted by the clients. For
example, [25] features constant communication and amortized
polylogarithmic computation cost.

PIR schemes have been applied in the context of spatial
queries. The first such method appeared in [6] for NN pro-



cessing, but relied on a particularly expensive PIR protocol.
Subsequent proposals utilize hardware-aided PIR and report
more reasonable computation/communication overheads for
NN retrieval (a few seconds for Gigabyte databases) [10], [17].
Importantly, [17] asserts that it is not enough to retrieve disk
pages from the LBS via a PIR protocol, but the number of
pages accessed should be the same for all queries. Otherwise,
clues may be given about the data of interest and therefore
about the query itself. As a case study, in the following we
describe a recent PIR-based framework for private shortest
path queries [16].

III. A PIR-BASED METHODOLOGY FOR SHORTEST PATHS

In this section, we frame the problem, define the privacy ob-
jective and outline a provably secure methodology for private
shortest path computation. We then present characteristics of
SCP technology and of the employed PIR protocol that guide
solution design.

A. Problem Formulation and System Model

Query: A road network is modeled as a weighted graph G =
(V,E), where V is the set of nodes, and E the set of edges.
The nodes v ∈ V represent junctions, or positions on a road
where the traffic conditions or the orientation change, such
as road turns. Every edge e ∈ E connects two nodes and is
associated with a positive weight w(e) that models the cost to
traverse e, e.g., the traveling time from one node to the other,
the length of e, etc. A path from a source node s ∈ V to a
destination node t ∈ V is a sequence of edges starting at s
and leading to t. The cost of a path is defined as the sum of
costs across its edges. The path from s to t with the smallest
cost is called the shortest path and is denoted as SP (s, t). E
is assumed to include directed edges and s, t to lie on two
network nodes. The discussion easily extends to undirected
edges and s, t that lie anywhere on the road network. All nodes
have Euclidean coordinates associated with them.

Architecture: The road network G is hosted by an LBS – G
may be owned by the LBS itself or another entity. The LBS
stores on the disk the graph data and any indexing information
thereof, organized in equal-sized blocks (pages). The clients of
the LBS pose shortest path queries on G, and the LBS needs to
report the results back to them. A secure co-processor (SCP)
is installed at the LBS, and offers a PIR interface for clients
to retrieve disk pages from the database of the LBS. Details
about the SCP and the PIR protocol employed are given in
Section III-B. Although we assume that the database resides
on disk, the PIR interface (and the entire framework presented)
applies to storage in main memory or a solid state drive.

The architecture is visualized in Figure 1. When a client
wishes to pose a query, she establishes an encrypted con-
nection (e.g., SSL) with the SCP and answers the query via
a multi-round protocol. In each round, the client requests
specific disk pages from the SCP, which retrieves them from
the database (one by one) in a way oblivious to the LBS. The

Database

Client

Page requests

Data pages

SCP

LBS

SSL connection

Fig. 1. System architecture

data fetched determine the page requests in the next round,
and so on, until the shortest path is computed.

Adversary: The adversary in this model is the LBS. We
assume that it knows the client’s identity (e.g., via user log-in)
or may infer it1. The adversary is curious, but not malicious
[25], i.e., it wishes to gain information about the clients’
queries, yet it executes page access routines correctly, and
would not falsify the data in any way. The road network
information and its index (if any) are not encrypted, i.e., their
plaintext is available to the LBS, who may well be their owner.
The adversary is also aware of the processing protocol in use.
Its computational power is polynomially bounded (a common
assumption that enables the use of cryptographic primitives,
such as secure hash functions, etc).

Security Objective and Privacy Guarantee: The objective is
practical protocols for processing shortest path queries at the
LBS without the latter deducing any information about the
queries. The database comprises a set of files, e.g., a header
file, a graph data file, an index file, etc. Similar to [17], it is
required that every shortest path query follows the same query
plan – this is necessary in order to achieve the privacy goal,
as will become clear in the security proof below. Specifically,
we need to ensure that every query (i) executes in the same
number of rounds, (ii) in each round it accesses the same files
in the same order, and (iii) from each file accessed in a specific
round, it retrieves the same number of pages. The query plan is
determined by the processing protocol (we will see how) and
is publicly available. For example, if the protocol suggests that
in the second round 5 pages are fetched from file F1 and then
10 from file F2, every query in its second round must fetch 5
pages from F1 followed by 10 from F2 (in this order). This
implies that even though a certain query may need fewer than
the specified pages from a file, the protocol pads its requests
with dummy page retrievals in order to conform to the query
plan. The following theorem proves that this methodology
achieves the security objective.

Theorem 1: The above methodology leaks no information
to the adversary about the shortest path query. Equivalently,
every processed query is indistinguishable from any other.

Proof: Each page requested from a file is retrieved via an
established PIR protocol. Therefore, the adversary is oblivious
of which page of the file is being read. What is only visible
to the LBS is that a page is being accessed in the specific file.
Since all queries follow the same query plan, the number of

1Even without user log-in (such as in Google Maps), identification is pos-
sible via background knowledge (e.g., user profile/search history), especially
if information about the client’s source and destination also leaks.



page retrievals in the various files and their chronological order
is identical for all queries, lending the adversary no means
to tell any two of them apart. For this reason too, even if
the exact same query is re-executed, the LBS is unable to
detect that it is processing the same query. Having established
that the adversary gains no information from query execution,
the proof is completed by the fact that it is also unable to
intercept the client’s page requests (to the SCP) and the page
contents sent back from the SCP (to the client), because they
are transmitted via a secure connection (SSL).

The general methodology described above fulfills our pri-
vacy objective. However, the challenge now lies in determining
specific processing schemes which (i) ensure that all queries
follow the same query plan, and (ii) are practical in terms
of performance (e.g., in terms of query response time, space
overhead, etc). Before presenting any schemes, we provide
some background about hardware-aided PIR that determines
the design principles.

B. Background and Design Considerations

A PIR interface is required to enable clients to securely
access the database of the LBS – as explained in Section II-B,
hardware-aided PIR is currently the only practical option. To
provide a readily deployable framework, we rely on existing
SCP technology and PIR protocols. Hence, we review their
properties and limitations.

The SCP is trusted by the clients and installed at the process-
ing server. It has access to the server’s disk and may execute a
set of cryptographic primitives. SCPs support complete tamper
detection, so that clients may remotely assess whether they
operate unmolested and unobserved by any potential adversary.
The tamper-resistance of SCPs comes at the cost of excessive
heat dissipation which, in turn, limits their computation speed
and memory capacity. General purpose SCPs are available
in the market, such as the IBM 4764 PCI-X Cryptographic
Coprocessor.

To fetch disk pages obliviously from the database of the
LBS, the protocol of [25] is employed, due to its superior
performance (note however that alternative PIR protocols
could be used). Retrieving a disk page has an amortized
computation cost of O(log2 N), where N is the total number
of pages in the accessed file. The amortized complexity is
used because some retrievals may involve reorganization in
parts of the file. In absolute terms, a real implementation on
IBM 4764 takes around one second to retrieve a page from
a Gigabyte file. The communication cost incurred is constant,
i.e., the amount of data transferred to the client (via the SSL
connection) have the same size as the original disk page read.

The computation cost of the protocol, albeit much smaller
than other PIR approaches, is still several times larger than a
plain (unsecured) disk read. To ensure viability, a key objective
in solution design is to keep the number of pages fetched
per query (i.e., per shortest path computation) as small as
possible. This will also limit the communication cost.

Importantly, the protocol of [25] requires that the SCP has
at least c ·

√
N memory, where c is a parameter with a typical

value of 10. In conjunction with the limited memory on the
SCP, this implies that files larger than a certain size cannot
be supported – in the experiments we present later, the SCP
(IBM 4764) has 32 MByte RAM and may support files up to
2.5 GByte. It is also indicative that the memory capacity in
SCP technology increases much slower than, say, hard disk
capacity. Therefore, in the solution design it is essential to
keep the database size small.

A final remark regards the choice to adopt a multi-round
methodology, i.e., to have the client lead query processing
with repetitive page requests. One could wonder why the
processing logic is not completely shipped to the SCP, so
that it runs locally the necessary rounds of the protocol, and
directly reports to the client the query result (shortest path).
The reason is that programming on the SCP is particularly
cumbersome, and also that complicated code may lead to
prolonged execution due to the aforementioned overheating
issues. Hence, the SCP is used merely as an interface to
securely fetch specific disk pages (one at a time), using off-
the-shelf functionality.

IV. PIR-BASED PRIVACY SCHEMES

Here, we present two processing schemes that follow the
methodology described in Section III. As already established,
the main performance factors are query processing cost and
database size. Note that the former is linked directly to the
maximum number of pages needed for any possible source-
destination pair (due to the fixed query plan requirement).

A. Concise Index Scheme

The first scheme is termed Concise Index (CI). It features a
minimal space overhead and a manageable query processing
cost. In CI the database consists of four files, namely the
header, the look-up, the network index and the region data
file; we denote them as Fh, Fl, Fi, Fd, respectively. Their
roles are as follows.

• Header: CI partitions the network into regions. The header
helps the client map her source and destination to their host
regions. It also includes the query plan.

• Look-up: It enables browsing the network index file.
• Network index: It includes pre-computed information that

helps guide the shortest path search.
• Region data: It stores the actual network information of

each region, i.e., node coordinates, adjacency lists, etc.

We first present the pre-processing steps in CI, i.e., network
partitioning and pre-computation (Sections IV-A.1 and IV-
A.2). Next, we describe the exact contents of each file (Section
IV-A.3). Then, we discuss the derivation of the query plan and
the query processing algorithm (Section IV-A.4).

1) Network Partitioning: CI, as well as subsequent
schemes, relies on a partitioning of the road network into
regions. The choice of partitioning method is important. One
requirement is that it must be easily representable in terms of
Euclidean coordinates. The reason is that clients are unaware



x

y

o

6

4

5

62 10

10

72.5

R1

Fig. 2. KD-tree partitioning and border nodes

of node or region identifiers2, and may only express their
source and destination in terms of Euclidean coordinates. An-
other requirement is that it should facilitate query processing,
implying that regions should be chosen such that shortest paths
are likely to cross as few of them as possible. Last but not
least, the partitioning information should be expressible in a
concise form, because it will be sent to the clients (as part of
Fh) over a communication network.

A simple partitioning method is to superimpose a KD-tree
(in Euclidean space) on the road network. This technique
produces regions of comparable quality (in terms of facilitating
shortest path computation) to more sophisticated alternatives
[13]. Additionally, the tree structure (which essentially de-
termines the mapping between Euclidean coordinates and
network regions) can be represented in a very concise form.

Each leaf of the tree holds the nodes that lie inside its
spatial extent; a node’s information includes its identifier, its
coordinates and its adjacency list (i.e., the list of adjacent
nodes and the weights of the corresponding edges). Every leaf
determines a region and is associated with a region identifier
Ri. Figure 2 illustrates the KD-tree partitioning of a sample
road network. The bold lines correspond to the split lines of the
tree nodes. Region R1 is defined by the leaf shown shaded, and
holds the information of all nodes inside. The tree structure
can be represented simply by the splitting coordinate (either
on the x or y axis) used in every node of the tree.

The idea in CI is that node information for each region is
placed in a single disk page. That is enforced by splitting tree
nodes until the network information in each leaf fits in a page.

2) Pre-computation: CI pre-computes and materializes
some shortest path information. Key in this process is the
notion of border nodes. These are intersection points of the
network edges with the splitting lines of the KD-tree. In Figure
2, for example, region R1 has 6 border nodes, represented
as solid squares. Border nodes are treated as normal network
nodes during pre-processing, but they are discarded afterwards
(i.e., not stored).

2Node and region identifiers are a matter of naming during database
creation, and cannot be assumed known to the client in advance.

x

y

o

R1 R2

R3 R4

R5 R6

R7
R8

v1

v3

v2

Fig. 3. Shortest paths between border nodes

The fundamental property of border nodes is that any path
starting from a source s inside some region Rs to a destination
outside of it must pass through one of the border nodes of
Rs. Similarly, any path to a destination t in region Rt (from
a source outside of it) passes through a border node of Rt.
Consider a shortest path SP (s, t) and let v and v′ be the border
nodes of the source and destination region, respectively, that
appear in this path. Due to its cost minimality, SP (s, t) is
guaranteed to include SP (v, v′). The above facts combined
suggest that SP (s, t) passes necessarily via SP (v, v′) for
some border node pair (v, v′). In Figure 3, assume that s is
somewhere in R1 and t in R8. If the shortest path SP (s, t)
passes through border node v1, it necessarily includes either
SP (v1, v2) (shown red) or SP (v1, v3) (shown blue), where
v2 and v3 are the border nodes of R8.

Based on this observation, CI computes for every pair of
regions Ri, Rj the shortest paths from all border nodes in Ri

to all border nodes in Rj . Let Si,j be the set of intermediate
regions crossed by at least one of these paths. For example, the
consideration of border node pair (v1, v2) in Figure 3 would
include (the identifiers of) R3, R4, R7 into region set S1,8.
By definition, any shortest path from a source in Ri to a
destination in Rj may pass only through Ri, Rj and regions
in Si,j . This pre-computation process is also necessary for Si,j

sets where i = j (i.e., when source and destination regions are
the same) because a shortest path between border nodes of Ri

might still pass through a neighboring region.
3) File Formation: After partitioning and pre-computation,

the four files are formed.

Region Data File (Fd): As mentioned previously, Fd includes
exactly one page for every region Ri. Inside it keeps the
network information of Ri, including node identifiers, their
adjacency lists and incident edge weights.

Network Index File (Fi): Fi contains the pre-computed Si,j

information. The region sets Si,j are stored into pages in
ascending order of composite key (i, j). They are placed
contiguously into pages, with the objective of minimizing the
total number of pages each of them spans. In particular, for
Si,j sets with size smaller than a page (as in the vast majority
of cases), we prevent them from stretching over two pages.



S1,1S1,2 S1,3 S1,4 S1,5 S1,6 S1,7 S1,8 S2,1 S2,2 S2,3 S2,4 …

Page 1 Page 2 Page 3 Page 4

(1,1)|1 (1,2)|1 (1,3)|1 (1,4)|1 ...

Fi

Fl

page no.(i,j) value

(1,5)|2

Fig. 4. Fl and Fi example

This implies that during file formation, if the free space in a
page is not enough to host the next Si,j set (in (i, j) order),
the space is left unutilized and the region set is placed in the
next page of the file. This is important in order to reduce the
PIR retrieval cost per region set. Figure 4 (in its lower part)
illustrates an example of Fi. The striped space at the end of
the pages is unutilized.

Look-up File (Fl): Fl is essentially a dense index over Fi,
as shown in Figure 4. Specifically, for every (i, j) pair, Fl

stores a look-up entry that indicates the page number in Fi that
holds region set Si,j . The Fl entries are sorted on composite
key (i, j). The pages in Fl are packed, i.e., each stores the
maximum possible number of look-up entries. This implies
that for any pair (i, j), a division by that number indicates the
Fl page that holds the corresponding look-up entry (which in
turn leads to the actual Si,j data in Fi).

Header File (Fh): The header includes the KD-tree informa-
tion that allows mapping s and t to their host regions. For
each leaf of the KD-tree (i.e., for each region) the header
also stores (i) a region identifier (e.g., R1, R2, etc), and
(ii) the page number in Fd that holds the actual network
information of the region. The header additionally specifies
the query plan and meta-data about the other three files (e.g.,
filename, size, record length for Fl, etc). Fh is small and
needs to be downloaded by every client who wishes to pose a
query. Therefore, it discloses no information about the query
itself, and is downloaded in full directly from the LBS, without
involving the PIR interface.

4) Query Processing: Consider a client who wishes to
know the shortest path from source s to destination t, and
ignore the query plan for the time. In the first round of
processing, the client receives the header file Fh. Based on
the coordinates of s and t, she uses the KD-tree information
to determine the source and destination regions Rs, Rt. Note
that there is no requirement that s and t are network nodes;
they could lie anywhere on the road network.

In the second round, the client uses the PIR interface and
fetches the page in the look-up file Fl that corresponds to pair
(s, t). She extracts the look-up entry for the specific pair and
learns the page number in the network index file Fi that stores
the Ss,t set. In the third round, she fetches that page from Fi

(via the SCP); if Ss,t stretches to nearby pages, they are also
retrieved.

In the fourth round, the client requests (via the SCP) the
pages of Fd that include the network information of Rs,

Rt, and all regions in Ss,t. Upon receipt of these data, she
possesses a subgraph of G that is guaranteed to contain the
desired shortest path. SP (s, t) is computed using Dijkstra’s
algorithm in this subgraph.

Query Plan: In addition to the above accesses, the query plan
may require extra (dummy) page retrievals. In the first round
the entire Fh is downloaded. In round two, there is always a
single page fetched from Fl. In round three, we force each
query to retrieve as many pages from Fi as the maximum
number of pages spanned by any Si,j set. This means that
even if a single Si,j set spreads over three pages in the file
(while every other fits in one or two), any query will need
to make three retrievals in Fi. An important implementation
detail here is that the client does not know in advance how
many pages Ss,t spans, but she knows from the query plan
that the maximum it could be is three. Therefore, it requests
for the page indicated by the look-up entry for pair (s, t) plus
the subsequent two pages.

Regarding round four, let m be the maximum number of
regions inside any Si,j set. Recall that each region’s data fit
in a single page of Fd. The query plan ensures that every query
accesses m+ 2 pages in Fd (the extra two pages account for
Rs and Rt).

B. Passage Index Scheme
As we will see in the experiments, CI requires little extra

space compared to simply storing the raw network data.
However, the longest paths in G may span a considerable
number of regions (implying that value m, mentioned in the
previous paragraph, may be large). That leads to a significant
number of PIR accesses in Fd which dominate the response
time. Motivated by this fact, the Passage Index (PI) scheme
uses more space, but achieves a drastic reduction in the number
of pages needed, and thus in response time.

In PI, instead of having the client retrieve all intermediate
regions between Rs and Rt, we materialize an exact subgraph
that links them. Specifically, pre-computation is the same as
in CI. However, instead of keeping Si,j , we record for every
pair of Ri and Rj the exact edges that appear in one or more
shortest paths between their border nodes. Essentially, these
edges define a subgraph Gi,j , such that every shortest path
from Ri to Rj is guaranteed to pass entirely through the union
of Ri, Rj and Gi,j . In the example of Figure 3, G1,8 includes,
among others, the edges that belong to the two shortest paths
(shown in red and blue).

PI involves four files, formed as explained in Section IV-
A.3, the difference being that the network index file includes
the Gi,j information (instead of Si,j). Placement into physical
pages follows the same principles. In query processing, how-
ever, there are only three rounds. The first two are identical to
CI, while the third fetches (i) from Fi the subgraph Gs,t that
corresponds to the source and destination regions, and (ii) the
two pages in Fd that hold the network information of Rs and
Rt. Regarding the query plan, let h be the maximum number
of pages spanned by any subgraph Gi,j in the network index
file. Each shortest path computation should retrieve in the



first round the entire header (directly from the LBS, without
involving the SCP), in the second round one page from Fl,
while in the third round exactly h pages from Fi and two
pages from Fd. Note that if h = 1, which may be the case
for a small network, PI answers the query with only four PIR
accesses.

In PI the network index file vastly dominates the space
requirements. To reduce its size, the crucial observation is that
subgraphs Gi,j exhibit locality (i.e., for nearby (i, j) pairs
the subgraphs share many common edges). This enables an
in-page compression technique. When inserting Gi,j into an
Fi page, we chose as reference the subgraph in the same
page with the largest number of common edges, and store
as delta information the edges in Gi,j that are missing from
the reference subgraph.

V. EXPERIMENTS

In this section, we provide representative empirical results
on a real road network. In addition to the PIR-based methods
(CI and PI), we include measurements for an obfuscation
method based on [12] (OBF); this is for the sake of a
performance indication only, because privacy-wise OBF leaks
substantial information about the client queries, as explained
in Section II-A.

All methods were implemented in C++ and executed on
a machine with an Intel Core2 Quad CPU 2.83 GHz and
4 GByte of RAM. The evaluation uses the Argentina road
network (with 85,287 nodes and 88,357 edges), obtained from
the Digital Chart of the World3. The machine uses a Seagate
320 GB (7,200 RPM) hard disk,4 with 11 ms disk seek time,
125 MBbyte/s disk read/write rate, and 4 KByte disk page size.
The IBM 4764 PCI-X Cryptographic Coprocessor5 is adopted
as the SCP; its performance is simulated strictly. The SCP has
32 MByte memory and may support file sizes up to 2.5 GByte.
Table I summarizes the specifications of the SCP and the hard
disk (these values determine the time to retrieve a disk page via
the PIR interface, as detailed in [25]). The client communicates
with the LBS using a link with round trip time of 700ms and
bandwidth 384 Kbit/s (i.e., 48 Kbyte/s) – this corresponds to
a moving client connected via a 3G data network [19].

TABLE I
SYSTEM SPECIFICATIONS

System parameter Value
Disk page size 4 KByte
Disk seek time 11 ms

Disk read/write rate 125 MByte/s
SCP read/write rate 80 MByte/s

SCP encryption/decryption rate 10 MByte/s
Communication bandwidth 384 Kbit/s (48 Kbyte/s)

Communication round-trip time 700ms

3http://www.maproom.psu.edu/dcw/
4http://www.seagate.com/www/en-us/products/desktops/

barracuda hard drives/
5http://www-03.ibm.com/security/cryptocards/pcixcc/

overhardware.shtml

 1

 10

 100

 1000

 10000

 0  10  20  30  40  50  60  70  80

R
es

po
ns

e 
tim

e 
(s

)

Size of |S| and |T|

OBF
CI
PI

Fig. 5. Effect of |S| on OBF, with |S| = |T | (Argentina)

TABLE II
COMPONENTS OF RESPONSE TIME (ARGENTINA)

Method CI PI
Response time (s) 105.45 58.17

PIR time (s) 88.09 54.21
Communication time (s) 17.34 3.94

Client-side computations (s) 0.02 0.01
PIR page accesses of 193 of 2 of
the region data file 775 775

PIR page accesses of 2 of 36 of
the network index file 1,327 274,788

Total storage space (MB) 8.40 1,102

The average response time of a method is measured by
running a workload of 1,000 shortest path queries. It denotes
the elapsed time from query submission until obtaining the
shortest path result. It consists of: (i) server processing time,
(ii) communication time, and (iii) client-side computation
time. For the obfuscation method (OBF), component (i) refers
to the processing of obfuscated queries at the server. For the
PIR-based methods, component (i) corresponds to the PIR time
for fetching disk pages from the database.

Figure 5 illustrates the response time of the obfuscation
method (OBF). To reduce the amount of information leaked
(w.r.t. the original method in [12]), we form the obfuscation
sets of s and t with decoys randomly and uniformly chosen
in the road network, as opposed to selecting locations near
them. The figure shows the overall response time versus the
size of obfuscation sets S and T (where |S| = |T |) on the
Argentina network. As expected, OBF is more efficient for
small obfuscation sets. However, for |S| and |T | greater than
20, OBF is slower than CI and PI (whose response times are
represented by horizontal lines) due to its large communication
and server processing costs.

Regarding the comparison between the strong privacy meth-
ods, CI and PI, in Table II we present measurements using the
same road network (Argentina). In both cases, the response
time is dominated by the PIR cost, while the communication
time and the client-side computations account only for a small
fraction of the total time. PI is almost two times more efficient
than CI. To interpret performance, the table also shows the
number of PIR accesses in the region data and network index
files. CI incurs 5 times more PIR accesses than PI. However,



they have a smaller difference in response time. This is because
PI performs retrievals on a much larger network index file than
CI, i.e., each access costs more. Table II also presents the space
requirements of the schemes. PI has the largest database, due
to its voluminous index.

VI. OPEN QUESTIONS AND CONCLUSION

After an exposure to location privacy paradigms, there are
important questions and concerns to consider. We know that
LBSs are curious about the locations/queries of their clients
(e.g., [1], [24] mentioned in the Introduction). Research has
looked ahead, and there are solid methods (or a good start at
least) for protecting location privacy. The questions, however,
that will judge the significance of these contributions (and will
guide future research) should be answered by the users. For
example, do they care to protect their location from the LBSs
or they trust them enough to let them collect these data? If the
users are concerned about their privacy, to what degree are they
willing to sacrifice system responsiveness in order to protect
it? Would they be convinced by the (sort of ad-hoc) spatial k-
anonymity model, or they demand strong privacy guarantees?
In the latter case, would they tolerate two orders of magnitude
longer response times (w.r.t. unprotected query processing)?

Other questions that will determine the significance of
location privacy techniques is whether LBSs are willing to
adopt a private query processing model. This option would
disallow them gain of valuable information about their users
and would incur both one-off and ongoing costs. For example,
trusted hardware (e.g., SCPs) is expensive. Private processing
schemes add both space and time overheads, to be born by the
LBS. In the case of PI, for example, processing cost is several
times higher than unprotected processing, and requires around
1 GByte storage for a network of fewer than 100,000 nodes.
The only incentive for LBSs to adopt a private processing
option would be if the users strongly demanded it, or by fear
that competition may start offering it. A general impression is
that this demand has started showing, but whether it is strong
enough remains to be seen.

The research frontier could also make private processing
options more appealing, by offering solutions of improved
space and time overheads, or by proposing different privacy
models. For shortest path queries, for example, lossless or
lossy compression of network data (taking into account their
characteristics/structure) could improve the performance of
CI/PI. Another idea is to develop approximate schemes with
bounded cost deviation from the actual shortest path. The
adoption of a different model, other than PIR or obfuscation,
could also lead to a convincing and more practical solution.

REFERENCES

[1] J. Cheng. How Apple tracks your location without your consent and
why it matters. http://arstechnica.com/apple/news/2011/04/how-apple-
tracks-your-location-without-your-consent-and-why-it-matters.ars, April
2011.

[2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In FOCS, pages 41–50, 1995.

[3] C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial cloaking
algorithm for anonymous location-based service. In GIS, pages 171–178,
2006.

[4] M. Duckham and L. Kulik. A formal model of obfuscation and
negotiation for location privacy. In Pervasive, pages 152–170, 2005.

[5] W. I. Gasarch. A survey on private information retrieval (column:
Computational complexity). Bulletin of the EATCS, 82:72–107, 2004.

[6] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan.
Private queries in location based services: anonymizers are not necessary.
In SIGMOD Conference, pages 121–132, 2008.

[7] G. Ghinita, P. Kalnis, and S. Skiadopoulos. PRIVE: anonymous location-
based queries in distributed mobile systems. In WWW, pages 371–380,
2007.

[8] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preventing
location-based identity inference in anonymous spatial queries. IEEE
TKDE, 19(12):1719–1733, 2007.

[9] A. Khoshgozaran and C. Shahabi. Blind evaluation of nearest neighbor
queries using space transformation to preserve location privacy. In SSTD,
pages 239–257, 2007.

[10] A. Khoshgozaran, C. Shahabi, and H. Shirani-Mehr. Location privacy:
going beyond k-anonymity, cloaking and anonymizers. Knowl. Inf. Syst.,
26(3):435–465, 2011.

[11] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous communication
technique using dummies for location-based services. In ICPS, pages
88–97, 2005.

[12] K. C. K. Lee, W.-C. Lee, H. V. Leong, and B. Zheng. Navigational
path privacy protection: navigational path privacy protection. In CIKM,
pages 691–700, 2009.

[13] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm.
Partitioning graphs to speedup Dijkstra’s algorithm. ACM Journal of
Experimental Algorithmics, 11, 2006.

[14] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new Casper: Query
processing for location services without compromising privacy. In
VLDB, pages 763–774, 2006.

[15] K. Mouratidis and M. L. Yiu. Anonymous query processing in road
networks. IEEE TKDE, 22(1):2–15, 2010.

[16] K. Mouratidis and M. L. Yiu. Shortest path computation with no
information leakage. PVLDB, 5(8):692–703, 2012.

[17] S. Papadopoulos, S. Bakiras, and D. Papadias. Nearest neighbor search
with strong location privacy. PVLDB, 3(1):619–629, 2010.

[18] D. Riboni, L. Pareschi, and C. Bettini. Integrating identity, location,
and absence privacy in context-aware retrieval of points of interest. In
MDM, pages 135–140, 2011.

[19] P. Romirer-Maierhofer, F. Ricciato, A. D’Alconzo, R. Franzan, and
W. Karner. Network-wide measurements of TCP RTT in 3G. In TMA,
pages 17–25, 2009.

[20] R. Sion and B. Carbunar. On the practicality of private information
retrieval. In NDSS, 2007.

[21] L. Sweeney. k-anonymity: A model for protecting privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(5):557–570, 2002.

[22] C. R. Vicente, I. Assent, and C. S. Jensen. Effective privacy-preserving
online route planning. In Mobile Data Management (1), pages 119–128,
2011.

[23] T. Wang and L. Liu. Privacy-aware mobile services over road networks.
PVLDB, 2(1):1042–1053, 2009.

[24] C. Williams. Apple under pressure over iphone location tracking.
http://www.telegraph.co.uk/technology/apple/8466357/Apple-under-
pressure-over-iPhone-location-tracking.html, April 2011.

[25] P. Williams and R. Sion. Usable PIR. In NDSS, 2008.
[26] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure kNN

computation on encrypted databases. In SIGMOD Conference, pages
139–152, 2009.

[27] M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis. Enabling search
services on outsourced private spatial data. VLDB J., 19(3):363–384,
2010.

[28] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. Spacetwist: Managing
the trade-offs among location privacy, query performance, and query
accuracy in mobile services. In ICDE, pages 366–375, 2008.


