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Abstract

In this paper we study a novel query type, called direct neighbor query. Two objects in a dataset are direct neighbors (DNs) if
a window selection may exclusively retrieve these two objects. Given a source object, a DN search computes all of its direct
neighbors in the dataset. The DNs define a new type of affinity that differs from existing formulations (e.g., nearest neighbors,
nearest surrounders, reverse nearest neighbors, etc) and finds application in domains where user interests are expressed in the form
of windows, i.e., multi-attribute range selections. Drawing on key properties of the DN relationship, we develop an I/O optimal
processing algorithm for data indexed with a spatial access method. In addition to plain DN search, we also study its K-DN and
all-DN variants. The former relaxes the DN condition – two objects are K-DNs if a window query may retrieve them and only up
to K − 1 other objects – whereas the all-DN variant computes the DNs of every object in the dataset. Using real, large-scale data,
we demonstrate the efficiency and practicality of our approach, and show that it vastly outperforms a competitor constructed from
previous work.
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1. Introduction

In this work we focus on systems and applications where
users browse databases via window queries. Consider a database
where objects correspond to available services or products and
are represented as rectangles in a d-dimensional space. A win-
dow query retrieves all objects that fall inside a user-specified
axis-parallel rectangle. Fig. 1(a) illustrates a database with 10
objects in two-dimensional space. W1, shown with a dashed
border, is an example of a window query that returns r7 and r10
in the result.

Alternative query types, such as nearest neighbors (NN) [1]
and reverse nearest neighbors (RNN) [2], browse data based on
the notion of spatial distance, provided that objects bear geo-
graphic coordinates. Inherent in the distance notion is the as-
sumption that different dimensions can be combined in a pre-
determined way into Euclidean distance or another Lp metric.

However, in many settings the data dimensions represent
different aspects of the problem and are not directly compa-
rable to each other. Thus, it is not meaningful to combine
dimensions into a distance measure in determining the simi-
larity between objects. In such settings, window queries are
the only reasonable representation of user interests. An exam-
ple is on-line property agencies like propertyguru.com.sg, on
which owners, agents and developers post details of units for
rental/sale. Potential buyers/tenants may browse available op-
tions by specifying ranges of their desired price and floor-area
requirements (i.e., via window queries). For instance, in Fig.
1(a) the two dimensions could correspond to the rent and floor
area, respectively. Another example is kayak.com. In this por-
tal, users planning to fly between two cities may browse the

available flight options by specifying acceptable ranges for the
price and duration of the flight.

Since user interests are captured by window queries, simi-
larity ought to be defined based on windows and, specifically,
on the potential of data objects to co-exist in the same query
result. Assume that the objects in Fig. 1(a) correspond to alter-
native services/products. To identify the immediate alternatives
to r10 (called the source), its provider/manufacturer would want
to know which objects are likely to be retrieved together with
r10 by user queries. Consider alternatives r3 and r1. On one
hand, there exist windows that would retrieve only r3 and the
source (r10). On the other hand, for a query to report the source
and object r1, it must necessarily report r3 as well. In this as-
pect, r3 is a more immediate competitor/alternative to r10 than
r1. To capture this fact, we define direct neighbors as follows.

Definition 1. Given a dataset S, we define as direct neighbor
(DN) of a source object q any other data object r ∈ S which
may be exclusively retrieved (along with q) by a window query.
In other words, there exists an axis-parallel window that over-
laps only with q and r.

A DN query at source q retrieves all its DNs in S. In the
example of Fig. 1(a), for source object r10, the result com-
prises r3, r4, r6, r7 and r9. Applications of the DN query in-
clude competitor and marketability analysis, recommendation
of alternatives, etc.

Competitor Analysis: Identifying the DNs of q could be used
to improve its competitiveness with respect to directly compa-
rable products/services [3], e.g., via competitor-aware adver-
tisement or appropriate reconfiguration/redesign of q itself. For
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Figure 1: DN and all-DN search

instance, the marketing team behind a property (or the airline
offering a flight) would be interested in knowing which its im-
mediate competitors are with respect to the rent-area criteria
(airfare-duration), and potentially reconsider its pricing.

In certain dimensions there may be a clear preference di-
rection (i.e., higher/larger values may be more desirable). For
example, in the property scenario one could assert that lower
price (equivalently, larger size) is generally preferable. The
DN query, being independent of preference directions (if any),
would also report properties that are costlier and smaller than
the source q, i.e., theoretically less preferable. Such DNs are
also useful for competitor analysis because they may indicate
a potential to, say, mark up the price of q, or more aggres-
sively advertise it against these competitors, or take into ac-
count (qualitative) factors other than price/area that may be in-
volved in a client’s decision. While clear preference directions
may or may not exist in the data dimensions1, this is irrelevant
to DN retrieval, its semantics and its applicability.

Exclusive Retrieval Region: The DNs of a source object q also
demarcate its exclusive retrieval region. Any window query
that completely lies in this region and overlaps q is guaranteed
to only overlap q. That is, the exclusive retrieval region defines
the maximal search area where q is the only result of a win-
dow query, and by itself provides an indication of the compet-
itiveness and marketability of q. Fig. 1(b) shows the exclusive
retrieval region of source r10. The region is delineated by the
DNs of r10 (i.e., r3, r4, r6, r7 and r9). Its derivation is discussed
later in the paper.

Recommendation of Alternatives: In a system where user
queries are expressed by windows, the DNs are natural can-
didates for alternative recommendations. That is, if a user is
currently viewing object q, the search portal could suggest the
DNs of q as alternatives for consideration. Alternative recom-
mendations are common in property, flight or hotel room search
systems, such as tripadvisor.com and booking.com (where users

1For instance, a dimension could be the storey number where preference of
lower, higher or middle floors is a personal choice [4].

may browse accommodation options based on price and aver-
age user ratings).

The rationale behind DN formulation is that (since user in-
terests are captured by windows) the similarity or comparability
between two objects q and r is determined by the number of in-
tervening objects retrieved by any window query overlapping q
and r. In this regard, the definition can be generalized to pro-
vide a partial ordering of competitors based on the number of
intervening objects. That is, the fewer the intervening objects,
the more immediate threat posed by a competitor. This moti-
vates the K-DN formulation, which reaches a broader set of
alternatives by relaxing the DN condition.

Specifically, an object r ∈ S is a K-DN of source q if there
is a query window that intersects r, q and fewer than K other
objects in S. K may or may not be known in advance. The
latter case entails incremental K-DN processing where K can
be incremented iteratively without the need to run the query
from scratch, instead resuming it from where it last stopped.
K-DN search finds application in scenarios similar to plain DN,
the difference being that the scope of, say, competitor analysis
is wider so that more alternatives are taken into consideration.

Another variant of DN search with practical relevance is the
all-DN query. An all-DN query computes the DN set of every
object in dataset S. As we explain later, the DN relationship
is symmetric. Therefore, the output of the all-DN query may
be visualized as an undirected graph in which the nodes corre-
spond to objects, and the edges to instances of DN relationship.
Fig. 1(c) illustrates the all-DN result for our 10-rectangle exam-
ple. In addition to applications of the plain DN query, all-DN
search can aid in optimizing a spatial index for window query
processing, as follows.

Suppose that a data-partitioning index (e.g., an R-tree [5,
6]) is to be bulk-loaded with the 10 rectangles depicted in Fig.
1(a), i.e., to be built bottom-up from scratch [7, 8]. As follows
directly from the definition of DN relationship, objects that are
direct neighbors of each other are likely to be accessed by the
same window query. Hence, it is beneficial (in lowering I/O
cost) to store them in the same leaf node of the index. This
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can be achieved by computing the DN graph in Fig. 1(c), then
performing a min-cut clustering (while constraining the cluster
sizes by the leaf node capacity) before assigning object clusters
to the leaves. Additional bulk-loading heuristics could also be
formulated on the basis of the DN graph. A straightforward,
yet inefficient way to answer the all-DN query is to perform a
plain DN search for each r ∈ S. We develop an algorithm that
improves performance by three orders of magnitude compared
to this naı̈ve solution.

The DN definition is irrelevant to the shape of data objects.
We center on rectangular objects with axis-parallel sides, al-
though our techniques also apply to point data and arbitrar-
ily shaped objects (see Sec. 3.4). Our focus on rectangles is
because they are more general than points and probably the
most common/intuitive representation of services and products
in multi-dimensional spaces. The extent of a data object in a
dimension could capture a degree of fuzziness or its intrinsic
association with a range of values. For example, each flight in
kayak.com is associated with the range of prices that are of-
fered by different online ticketing agencies (and potentially in
different ticket classes). Hotel options in tripadvisor.com are
associated with a range for price per night, depending on the
exact dates of visit, etc.

As we show later in this paper, the DN problem and its vari-
ants are meaningful in low-dimensional spaces. We therefore
assume that dataset S is indexed by a spatial access method,
such as the R-tree. Our contributions are summarized as fol-
lows:
• We introduce and formalize a new query (DN) and its vari-

ants (K-DN and all-DN);
• We devise I/O optimal algorithms for DN andK-DN queries

over data organized by a spatial index;
• We develop a sophisticated algorithm for all-DN processing

that outperforms by orders of magnitude a repetitive appli-
cation of DN search.
The rest of the paper is organized as follows. Sec. 2 surveys

related work. Sec. 3 introduces DN processing, while Sec. 4
and 5 present our K-DN and all-DN algorithms, respectively.
Sec. 6 then extends DN search to higher dimensions. Sec. 7
empirically evaluates our techniques, and Sec. 8 concludes the
paper.

2. Related Work

DN processing has not been studied before, yet here we re-
view related query types, such as nearest neighbor, nearest sur-
rounder, and skyline queries. We also survey the segment tree,
a data structure that we adapt for our framework.

A nearest neighbor query (NN) retrieves from a spatial dataset
the object that lies closest to a user-specified source point q.
For NN processing over datasets indexed by a spatial access
method, the depth-first and best-first paradigms have been con-
sidered in [1] and [9], respectively. The latter is shown to be
superior in I/O cost. Assume that the dataset is indexed by an
R-tree. Starting from the root of the R-tree, encountered index

entries e are pushed into a min-heap with mindist(e, q) as key,
i.e., the minimum distance between the source point q and the
minimum bounding rectangle (MBR) of e. Iteratively, the top
entry of the heap is popped and its corresponding R-tree node
is accessed from disk; then, its child entries are en-heaped. The
process is repeated until the first data entry (object) is popped
and reported as the NN. If more nearest neighbors are required,
the process continues and the next data entry popped is the sec-
ond NN, and so on. The method is incremental in that it can
keep reporting the next NN without needing to specify in ad-
vance how many neighbors are required in total. Also, it is I/O
optimal, i.e., it fetches from disk the minimum possible number
of R-tree nodes.

Another related problem is nearest surrounder search (NS)
[10]. Given a spatial dataset S and a source point q, an NS query
retrieves a set RNS ⊆ S of objects, each being the nearest
neighbor of q with the scope of interest constrained at some
range of angles around q. Objects in RNS collectively cover
the whole angle range [0◦, 360◦] around q; these objects have
a clear line of sight from q, unblocked by other objects. The
NS query differs from the conventional NN query in taking into
account directional information of the nearest neighbors. The
method proposed in [10] uses an angular sweeping technique to
process the R-tree that indexes S. This approach also extends
to K-tier NS retrieval, where the line of sight between q and
each NS object may cross up to K − 1 others. NS (and K-tier
NS) methods exist only for two dimensions and for point (zero-
extent) source objects. NS search and similar visibility queries
(e.g., [11]) are different by definition from our problem, as we
also elaborate in Sec. 3.1. In that section, however, we devise a
baseline DN approach (which works only for two-dimensional
data) that uses NS as a building block.

The DN query also relates to preference handling, which
aims to formulate and capture, qualitatively or quantitatively,
user preferences [12, 13, 14]. An example is to deduce that
the user prefers option A to option B, if attributes of A are
‘better’ than those of B according to some predefined prefer-
ence relationship on attribute values. A qualitative preference
model typically employs binary relationships such as partial or-
dering between options. In contrast, a quantitative model cap-
tures preferences via scoring functions on option attributes [12].
Various tools (called operators) have been devised to retrieve
the most preferable records from databases, including winnow
[12], best [15], and preference selection [16]. These opera-
tors are based on built-in predicates of the SQL language or
designed as standalone functions embedded into SQL systems
[17]. DN search does not fall under either category of pref-
erence handling, since it does not rely on any partial order or
preference function model.

Work on skyline processing and its variants ([18, 19, 20]) is
also relevant to ours. Consider a dataset S where each object
has two attributes, x and y. An object here could correspond
to a transportation option between two specific cities, with at-
tributes price (x) and total duration (y). Assume that all options
have different x and y values. An object (travel option) r is
said to dominate another object r′ if both of r’s attributes are
no larger than those of r′. Essentially, this implies that option
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r is preferable to r′ because the former is both cheaper and
faster. The skyline of S comprises all objects that are not dom-
inated by any other object. Branch-and-bound skyline (BBS)
is an I/O optimal skyline algorithm [20] that utilizes an R-tree
on S. BBS accesses the tree nodes in ascending mindist or-
der from the most “preferable” corner of the data space. In our
example, this corner is the origin of the data space. Once a
data object is found, it is added to the skyline. Subsequently
encountered R-tree nodes (or objects) are accessed (included in
the skyline, respectively) only if they are not dominated by any
object currently in the skyline. K-skyband is a generalization
of the skyline that includes all objects dominated by fewer than
K others. BBS extends to K-skyband computation, retaining
its I/O optimality.

The skyline query can be used for recommendation of al-
ternatives. However, its semantics (and therefore its domain
of applicability) is different from DN. The skyline operator is
not input-sensitive, meaning that the result is always the same
and it does not depend on any user input. In our transportation
options example, the skyline options (i.e., those not dominated
by any other in the input dataset) are only dependent on the
dataset itself. No input is required from the user nor is there
any way to alter the skyline result. Instead, the DN query is
input-sensitive – the DN result depends on the source object q
and varies with its extent and location. Another key difference
is that the DN query pertains (and offers an auxiliary decision
support mechanism) to systems where the users browse options
via window queries. In contrast, the skyline operator requires
simply a fixed and monotonic preference order in each data di-
mension (e.g., the smaller the price/duration of a travel option
the better). Despite the differences in semantics, nature, and ap-
plication domain, our processing techniques utilize an (adapted)
skyline algorithm as a building block to derive a subset of DNs.

The dynamic skyline receives as input, in addition to data,
a set of query objects2. Each data object is represented by the
vector of its distances from every query object. A data object
belongs to the dynamic skyline if its distance vector is not dom-
inated by that of any other data object. The distances between
data and query objects can be Euclidean [21], road network
distances [22] or general metric distances [23]. The problem
differs from ours in that (i) DN search involves a single input
dataset (data objects only), (ii) dynamic skylines are defined
over (distance) vectors whereas the DN relationship is defined
over rectangles and, most importantly, (iii) DN search captures
the exclusive co-existence of two objects in the result of a win-
dow query instead of the dominance (or not) between them.

In a sense, DN search is related to influence set compu-
tation, i.e., identification of objects that could affect or be af-
fected by a source object q. The concept of influence sets was
introduced in [2], and formulated as a reverse nearest neighbor
search (RNN) at q. The RNN set of q includes those objects
r in a dataset S that have q as their nearest neighbor. RNN
processing has received significant attention; [24] provides a

2The concept of dynamic skyline was introduced in [20] to refer to a more
general problem. We focus on its spatial versions due to their higher relevance
to DN formulation.
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Figure 2: Example of segment tree and stabbing query at q = 5.8

comprehensive survey of existing work.
By definition, the DN query retrieves different objects than

RNN. There is an interesting similarity though – window queries
in DN play the role of NN queries in RNN. Specifically, given
a source object q, DN search (or RNN search) discovers those
objects around which, if a window query (a NN query, respec-
tively) is issued, the result will exclusively include q. This cor-
respondence implies that the type of influence stemming from
the DN relationship is meaningful in domains where user in-
terests are expressed by window queries, whereas the influence
derived from the RNN relationship is meaningful in applica-
tions where users browse data by NN queries.

There is a similar analogy with the reverse top-K query
[25] too. In the reverse top-K problem, the input comprises
a dataset S and a set of scoring functions. Each function is de-
fined over the attributes of S and assigns a score to every object
r ∈ S. The objective is to determine, for a source object q ∈ S,
which of the functions include it in their top-K result. This
problem cannot be mapped to ours. For example, the top-K
queries/functions are known in advance, and the influence of q
relates to functions rather than other objects in S. However, it
is interesting that a reverse query notion (top-K in this case) is
used to discover entities (functions) influenced by the source.

The reverse skyline query is defined in [26]. That work
considers a spatial version of dominance before reversing it.
Specifically, the input includes a source point q and a set of
d-dimensional data points. A data point r is said to dynami-
cally dominate another r′ with respect to q if the projection of
r on each of the d axes lies closer to q than the corresponding
projection of r′. Now, a data point r belongs to the reverse sky-
line of q if q is not dynamically dominated by any other point
with respect to r. Although again a connection exists with our
problem, here we consider window queries instead of dynamic
dominance. To further stress the difference, note that reverse
skyline is not a symmetric relationship (i.e., the fact that r be-
longs to the reverse skyline of q does not mean that the converse
holds too). In contrast, the DN relationship is symmetric, as ex-
plained in Sec. 5.

The definition of the all-DN graph resembles to some ex-
tent the concept of Gabriel graph in computational geometry
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[27]. Given a set S of points in the Euclidean plane, the Gabriel
graphG uses S as its vertex set. There is an edge between nodes
(i.e., points) r and r′ if and only if the circle whose diameter
has r and r′ as endpoints is empty. A fundamental difference
between all-DN graph and Gabriel graph is that the latter is
defined strictly for points, not rectangles. Another distinction
is that its edges represent empty circles (with specific, fixed
diameter) versus axis-parallel rectangular windows (with arbi-
trary diagonal). The different edge definition leads to different
topologies; for instance, the Gabriel graph is planar (no edge
intersects another) which is not the case in all-DN graph (e.g.,
see Fig. 1(c)). The Gabriel graph could be defined under the
L∞ norm (instead of the Euclidean), where an edge between
points r and r′ exists if and only if the square with diagonal
corners r and r′ is empty. The problem is still defined only for
points (and the Gabriel graph remains planar). The edges cor-
respond to empty squares with a specific diagonal versus com-
pletely arbitrary axis-parallel windows (with unknown diagonal
and arbitrary side-length proportions).

Our algorithms rely on the segment tree [28]. This is a
balanced binary tree used for efficiently answering stabbing
queries on a set of line segments, i.e., reporting all segments
in a one-dimensional space that envelop a given query point.
Consider a set of line segments S = {s1, s2, ..., sN}, each de-
limited by two endpoints. To construct a segment tree on S,
we sort the 2N different endpoints into an ascending sequence
P = (p1, p2, ..., p2N ). The endpoints in P divide the one-
dimensional space (−∞,∞) into 2N + 1 atomic intervals. A
binary tree T is constructed bottom-up, with the leftmost leaf
node covering the leftmost interval (−∞, p1], the second leaf
covering (p1, p2], and so on. Each internal node in T covers
the union of the intervals of its two children. Every (internal
or leaf) node nj in T stores a segment list Lj containing those
segments of S that completely cover the node’s interval but not
the interval of its parent. To answer a stabbing query at point
q, T is traversed from the root, reporting all the segments in
the lists of those nodes nj whose interval envelops q. The seg-
ment tree has O(N logN) construction time, O(logN) inser-
tion time, and O(κ+ logN) query time where κ is the number
of segments in the result.

Fig. 2 illustrates a segment tree built on five line segments,
a, b, c, d, and e. The line segments and their exact intervals are
depicted at the bottom of the figure. Inside each tree node we
draw the corresponding splitting value (implicitly defining its
covering interval), and next to the node we present its segment
list. Suppose the user issues a stabbing query at point q = 5.8,
shown as a vertical dashed line. The search begins from the
root. Comparison with the splitting value therein (i.e., 6) directs
the search to the left child, and in turn, from that node to its right
child, and so on until it reaches a leaf node. The visited nodes
are shown in bold border. The union of the segment lists in
visited nodes forms the query result, i.e., segments {b, c}.

3. Direct Neighbor Search

Given a dataset S and a source object q in a d-dimensional
space, a data object r ∈ S is a direct neighbor (DN) of q if

Table 1: Notation
Symbol Description
S set of data objects
N cardinality of S
Tx, Ty segment trees on x- and y-extents of objects
Li the object list of leaf node ni in a segment tree
Ii interval covered by leaf node ni in a segment tree
n−, n+ boundary leaf nodes in a segment tree

there exists a (d-dimensional) axis-parallel window that inter-
sects only q and r. Our focus is on low-dimensional spaces
– as we explain in Sec. 6.1, the DN problem is meaningful
when dimensionality is low, because the number of DNs grows
quickly with d. For ease of presentation, we consider two di-
mensions before extending our methodology to more (in Sec.
6). We assume rectangular (source and data) objects with axis-
parallel sides. Notwithstanding this, our work applies to point
data, which may be treated as zero-extent rectangles, and to ar-
bitrarily shaped objects (discussed in Sec. 3.4). The objects
may or may not overlap. We target disk-resident datasets S,
organized by a spatial index like the R-tree.

Suppose that the data space is [0, Xmax][0, Ymax] and the
extent of the source q is [q.xl, q.xh][q.yl, q.yh]. We perform
DN retrieval in the four stripes and four quadrants of q. The
east stripe is the area defined by the right edge of q, extending
horizontally to the right border of the data space, i.e., the area
[q.xh, Xmax][q.yl, q.yh]. The east stripe of an example source q
is shown in Fig. 3(a). The north-east quadrant (NE) is the axis-
parallel area extending diagonally from the NE corner of q to
the NE corner of the data space, i.e., [q.xh, Xmax][q.yh, Ymax].
Fig. 3(b) shows the NE quadrant of an example source q. The
other stripes and quadrants are defined accordingly. Note that
q, the four stripes and the four quadrants define a partition of
space into 9 regions. We first consider DN search inside the
quadrants, proposing two methods for this, then in the stripes.
Objects that intersect q are directly reported as DNs (we estab-
lish the convention that all of these objects belong to the DN
set).

For simplicity, we initially assume that objects in S fall
completely inside a single stripe or quadrant. This assumption
is relaxed in Sec. 3.3. Our objective is to minimize the total
processing cost, comprising I/O and CPU time. Table 1 lists
the frequently used notation.

3.1. DN Search in Quadrants

In Fig. 3(b), point qd marks the NE corner of q. A prelimi-
nary approach to derive the DNs in the NE quadrant is to issue
a constrained NS search at qd, limiting the visibility search to
the 90◦ angle NE of qd. The surrounders derived are a superset
of the DNs (in NE quadrant). To see this, if rectangle r is a
DN of q, by definition there is a query window that exclusively
intersects r and q. Since r is in the NE quadrant, this query
window must include qd. Also, because this window intersects
no other object, there is visibility between qd and r. Therefore,
the quadrant DNs are also NSs. On the contrary, an NS is not
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always a DN; e.g., r3 is visible from qd but not a DN (every
query window overlapping r3 and q necessarily intersects r2
and r4 too). Before presenting how false positives (NSs that are
not DNs) can be eliminated, we define the notion of minimum
intersection area.

Definition 2. The Minimum Intersection Area (MIA) of an
object r (lying in a specific quadrant) is the axis-parallel rect-
angle defined by qd and the closest corner of r to qd.

The striped area in Fig. 3(b) is the MIA of r4. It is easy
to see that any query window that intersects an object r and q
must envelop the MIA of r. This leads to the following crucial
observation.

Observation 1. An object r (lying in a specific quadrant) is a
DN if and only if its MIA intersects no other object.

Observation 1 helps to disqualify NSs that are not DNs. Let
RNS be the set of constrained NSs. In a straightforward appli-
cation of the observation, we may check for every r ∈ RNS
whether its MIA intersects any other object in S; if so, r is
disqualified. The remaining NSs are the DNs. This approach
would require multiple window queries in S (as many as the to-
tal number of NSs), incurring considerable I/O overhead. On a
closer inspection, the overhead can be eliminated. Specifically,
if there exist objects in S that overlap the MIA of a candidate
r ∈ RNS , at least one of them will be visible from q, and
therefore already in RNS . This implies that we need to check
the MIA of r only against objects in RNS , rather than against
the entire S.

We term the above approach constrained NS (CNS). Its main
drawback is that it accesses a superset of the strictly needed
objects (e.g., r3 in Fig. 3(b)). In our experiments with real
and synthetic data (Table 4) the number of NSs is an order
of magnitude larger than that of actual quadrant DNs, leading
to a large false positive ratio. Accessing these false positives
translates to unnecessary I/Os. Also, NS queries require a sig-
nificant amount of computations, due to the angular sweeping

mentioned in Sec. 2. Observation 1 paves the way for a more
efficient (and I/O optimal) method, named skyline DN (SDN),
via Lemma 1.

Lemma 1. The DNs of q in a quadrant are exactly the skyline
objects in this quadrant, with qd as origin and each object rep-
resented by its closest corner to qd.

Proof 1. By definition, a point p is dominated by those and only
those points p′ that fall inside the rectangle defined by p and
the origin, called dominating rectangle of p. Thus, p is a sky-
line point if and only if its dominating rectangle is empty. In
our context, since the skyline is defined on the objects’ corners
that are closest to qd, the dominating rectangles of these cor-
ners correspond to the MIAs of the respective objects. From
Observation 1 it follows that the skyline and quadrant DN sets
are identical.

Based on Lemma 1, SDN computes the DNs in each quad-
rant using the I/O optimal BBS algorithm [20].

3.2. DN Search in Stripes

An object r is a DN of q in a stripe, say the east, if a rect-
angle can be found to exclusively intersect r and q’s right edge
st, i.e., there exists a horizontal ray from some point on st to
a point on r’s left edge that intersects no other object. In Fig.
3(a), for example, the east stripe DNs of q are r1, r2, r3. To
identify such DNs, we sweep from st to the right, examining
objects r (in the east stripe) in increasing r.xl order. For each
object r encountered, we check if the previously considered ob-
jects in this stripe (collectively) block r from st. If not, r is
a DN. The search terminates when the DNs discovered so far
block all the remaining objects in the stripe.

To iteratively discover objects in increasing r.xl order, we
utilize the R-tree on S. The process is similar to a best-first
incremental NN search at q, as described in Sec. 2, where the
sorting key of the min-heap is mindist from st. The difference
is that the search is constrained to the east stripe and that R-tree
nodes that are blocked from st by already encountered DNs are
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pruned (i.e., not visited). In Fig. 3(a), for instance, the illus-
trated R-tree node that holds r5 and r6 is pruned (not accessed
at all) during the search because it is fully blocked by the previ-
ously reported DNs r1, r2, r3. Object r4, although popped from
the search heap, also fails the visibility check and is excluded
from the DN set. The I/O optimality of the best-first NN algo-
rithm in [9], in conjunction with the pruning of blocked nodes,
guarantees optimality for the stripe DN search too.

Lemma 2. The stripe DN algorithm is I/O optimal.

Proof 2. As long as the left edge of (the MBR of) an R-tree node
n is not collectively blocked by the DNs of q, the node must be
accessed because it may hold DNs. To prove the lemma, we
must show that only such nodes are accessed. In our algorithm,
a prerequisite to visit a node n is that the DNs found thus far
do not completely block it from q. To complete the proof, we
show that the remaining DNs, i.e., those found after visiting n,
cannot block any part of its left edge. This is obvious – since
R-tree entries and DNs are encountered (i.e., popped from the
search heap of the incremental NN search) in increasing order
of distance from q, all DNs found after visiting n are further
from q and hence cannot possibly block any part of n.

To efficiently perform the “visibility” check for objects and
R-tree nodes encountered during the incremental NN search,
we use an adaptation of the segment tree. When the search
begins, we initialize an empty segment tree TE . The first NN
of q in the stripe is a DN (by definition it cannot be blocked by
any other object), and its y-extent is inserted into TE . Before
our incremental NN search visits any R-tree node, the y-extent
of the node’s MBR is probed against TE to detect whether any
part of its left edge is exposed to st. If completely blocked,
it is pruned (ignored). The same check is performed for every
discovered NN r. If r is not (completely) blocked, it is reported
as a DN, and its y-extent is inserted into TE .

In our adapted segment tree, segments are stored only at
the leaves of TE . Those segments that are included in the list
of an internal node in a conventional segment tree are instead
replicated in the lists of all its descendant leaves. To check an
object (or internal R-tree node) with extent [yl, yh], we issue
a stabbing query on TE at point yl. Let n− be the leaf of TE
that covers yl. We traverse the leaves to the right of n− until
we reach the leaf n+ that covers yh. If any of the segment lists
between n− and n+ is empty, the object (or R-tree node) passes
the test, i.e., a part of its left edge is exposed to st.

DN search in the other three stripes is similar. Note that the
y-extents are used in searching the east and west stripes, while
the x-extents are used for the north and south ones.

3.3. Complete DN Algorithm

In general, an object may intersect q and/or more than one
quadrant or stripe. Essentially, the extent of q, the four stripes
and the four quadrants partition the data space into 9 disjoint
regions. If an object r intersects more than one region, r is
conceptually divided into parts, each falling entirely within one

Table 2: Heap contents and result formation
Heap Contents Result

1 < N7, 1 >< N8, 4 >< N9, 23 > ∅

2 < N2, 1 >< N8, 4 > ∅
< N1, 13 >< N9, 23 >

3 < r4, 1 >< N8, 4 >< r3, 5 > ∅
< N1, 13 >< N9, 23 >

4 < N8, 4 >< r3, 5 > {r4}< N1, 13 >< N9, 23 >

5 < N3, 4 >< r3, 5 >< N4, 10 > {r4}< N1, 13 >< N9, 23 >

6 < r5, 4 >< r3, 5 >< r6, 9 > {r4}< N4, 10 >< N1, 13 >< N9, 23 >
7 < N4, 10 >< N1, 13 >< N9, 23 > {r4, r5, r3, r6}

8 < r7, 10 >< N1, 13 > {r4, r5, r3, r6}< r8, 17 >< N9, 23 >

9 < r1, 13 >< r8, 17 > {r4, r5, r3, r6, r7}< r2, 18 >< N9, 23 >
10 < N9, 23 > {r4, r5, r3, r6, r7, r1, r8}
11 ∅ {r4, r5, r3, r6, r7, r1, r8}

of the regions3. The parts are processed independently for the
corresponding stripe/quadrant. The final set of reported DNs is
the union of the objects that intersect q, and the DNs that are
found in the stripes and quadrants. The following discussion
refers to our advanced DN algorithm that uses the efficient SDN
technique for quadrant search (the case for CNS is similar).

The search for objects that intersect q, and for DNs in the
stripes and quadrants can be performed concurrently, in a sin-
gle traversal of the R-tree in order to avoid unnecessary I/Os in
re-reading R-tree nodes. This is possible, because the search in
each quadrant or stripe visits R-tree nodes in increasing dis-
tance from q. This means that there can be a single search
heap (sorted on mindist(e, q) of encountered R-tree entries e)
that serves all the 8 quadrant/stripe searches. During the R-tree
traversal, four skyline lists (one per quadrant) and four segment
trees (one per stripe) are maintained. Entries (objects) with
zero mindist intersect q, and are therefore accessed (reported
as DNs) directly. A detailed pseudo-code for this complete,
single-traversal DN search is provided in the Appendix.

Since the BBS and stripe DN components of our algorithm
are I/O optimal (as proven in [20] and Lemma 2), and since we
also avoid re-fetching the same nodes from disk, the overall DN
method is I/O optimal, i.e., it performs the minimum possible
number of I/Os for the given R-tree structure.

Example 1. We illustrate our complete DN algorithm with Fig.
4. For simplicity, we only show the NE quadrant, and north and
east stripes. Table 2 shows the search heap contents and the DN
set in various stages. First, we read the root of the R-tree on S,
and push its three entries N7, N8, N9 into the search heap. We
then pop the top entry N7, fetch it from disk and en-heap its
children. This process continues until we pop object r4 in step
3. It falls in the north stripe and we directly insert it into the
result set and into the north segment tree TN . In step 6, we pop
r5 which intersects the NE quadrant and the east stripe. We
conceptually partition r5 and treat each portion as a separate

3Note that this is an implicit partitioning used only for the processing of the
specific DN query. It is not persistent, i.e., it does not affect the representation
of r on the disk.
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Figure 4: Example of DN search

object in the respective quadrant/stripe. It is a DN in both the
NE quadrant and the east stripe, and is thus appended to the re-
sult. It is also inserted into the NE skyline and into TE (the east
segment tree). Subsequently popped objects r3 and r6 are also
DNs, and are inserted into TN and TE , respectively. In step 9,
object r2 is popped after r1 and r8. It fails the visibility check
against TN (because it is completely blocked by r3 and r4) and
is discarded. Step 10 pops index entry N9 which intersects the
NE quadrant and the east stripe. We conceptually divide N9

into two portions. Its portion in the east stripe fails the visi-
bility check against TE , and its second portion is dominated by
the DNs already in the NE skyline (i.e., r5). Thus,N9 is ignored
(not read from disk). At that stage the heap is empty, and the
DN search terminates with result set {r4, r5, r3, r6, r7, r1, r8}.

An issue worth mentioning regards the exclusive retrieval
region (ERR) of q, described in Introduction. By definition, this
region is bounded by the DNs. In a quadrant, the bound is the
skyline over the quadrant’s DNs. In a stripe, the ERR includes
the area that is not blocked by the stripe’s DNs. In other words,
the ERR can be derived by iteratively subtracting from the en-
tire space the area that is dominated by each quadrant DN and
the area that is blocked by each stripe DN (where dominance
and horizontal blocking are defined by the specific quadrant or
stripe, as explained in Sec. 3.1 and 3.2).

3.4. Arbitrary Object Shapes

So far we have focused on rectangular objects. Our tech-
niques, however, extend easily to arbitrary object shapes.

Stripe DNs. The stripes are processed similarly to rect-
angular objects. The difference is that the object lists of the
segment tree (used for a specific stripe) hold both the MBR and
the exact geometry of each discovered DN. In checking the vis-
ibility of an R-tree node, the exact geometries in the object lists
are only taken into account when their MBRs intersect that of
the R-tree node in question. Visibility check for a leaf node

entry (i.e., MBR of a data object) proceeds similarly, except
that if the MBR intersects (the actual geometry of) a DN, the
object’s exact geometry must also be fetched to complete the
check. Consider, for example, Fig. 5(a) and DN search in the
east stripe. Assume that r1 is the only DN found so far. The
next encountered node is r2, which overlaps the MBR of r1.
The exact geometry of r1 is also overlapping the MBR of r2,
and we can only determine whether the latter is a DN by fetch-
ing its own exact geometry too. The comparison reveals that a
part of r2 is unblocked and therefore it is a DN. On the other
hand, we may infer that r3 is not a DN without fetching any
exact object geometries, because its MBR does not overlap that
of r1, and it is fully blocked by it.

Quadrant DNs. The quadrant search traverses the R-tree
of S following the BBS strategy as normal. An internal R-
tree node is loaded only if it is not dominated by any existing
skyline object. The MBR of a skyline object can be used for
quick dominance check. If the R-tree node does not intersect
the MBR, dominance (or not) is definitively decided based on
their closest corners to q. If there is overlap, the skyline object’s
exact geometry must be taken into account.

When a leaf node entry is popped (i.e., the MBR of a data
object), we check whether the MBR is dominated by any object
already in the skyline. If not, we fetch the exact geometry of
the corresponding object from the disk and push it into the heap
with its actual minimum distance from q as key value. If the
object is popped subsequently, we check (using its exact geom-
etry) whether it is dominated by any existing skyline object. If
not, it is added to the skyline and to the DN set.

In Fig. 5(b), for instance, assume that we have discovered
one DN so far, r1. We can infer that r3 is not a DN using only
MBR information; the MBR of r3 does not overlap that of r1
and is also dominated by it. In contrast, when we encounter r2
we cannot make safe conclusions based on its MBR (because
it overlaps r1); therefore, we fetch its exact geometry, and en-
heap it with its actual distance as key. When the latter is popped
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Figure 5: DN search for arbitrarily shaped objects

again, we compare its exact geometry with that of r1 and deter-
mine that a part of it is not dominated. Thus, r2 is also a DN. A
detail regards the dominance check between exact geometries
represented as polygons: object r2 is not dominated by r1 be-
cause one of its polygon vertices (the left-most in this case) is
not dominated by any vertex of r1.

4. K-Direct Neighbor Search

An intuitive way to compute a broader spectrum of “neigh-
bors” is to relax the DN condition to allow up to some number
of intervening objects in the query window (in addition to q and
each of its DNs). Specifically, an object r ∈ S is a K-DN of
q if and only if there exists a query window that intersects q, r,
and no more than K − 1 other objects. The K-DN query is a
generalization of plain DN (the latter corresponds to K = 1).

Stripe K-DNs. Following a similar definition to plain DN,
an object r is aK-DN of q in a stripe, say the east, if there exists
a horizontal ray from any point on q’s right edge st to a point
on r’s left edge that cuts through fewer thanK other objects. In
Fig. 3(a), for example, the 2-DNs of q in the east stripe include
the 1-DNs r1, r2, r3, plus objects such as r4 and r6 which can
be “reached” from q via a horizontal ray that cuts across exactly
one other object. In the case of r4 the intervening object is r2.

Identifying K-DNs in a stripe is similar to plain DN. Take
the east stripe as example. A stripe-constrained, incremental
NN query is posed at st (i.e., the right side of q), examining
objects r in increasing r.xl order. Whenever a K-DN is found,
it is inserted into the segment tree TE . When the constrained
NN search considers whether to visit (i.e., read from disk) an
internal node of the R-tree, we probe TE and examine all its
leaf nodes that overlap the y-extent of the R-tree node. If at
least one of them has fewer than K objects in its list, the R-tree
node is visited. Data objects r discovered in the NN search are
reported as K-DNs if they pass the same test, or disqualified
otherwise. The stripe DN operation is I/O optimal, with the
constrained NN search following the best-first paradigm [9] in

q

r1

r4qd

r2
r3

NE quad.

r6

r5

r7

Figure 6: 2-DNs in NE quadrant (2-skyband)

conjunction with pruning R-tree nodes that fail the segment tree
test. The proof is similar to Lemma 2.

Quadrant K-DNs. The definition of MIA and Observation
1 extend to K > 1. Let r be an object in a quadrant. As es-
tablished in Sec. 3.1, any query window that intersects both q
and r must completely envelop the MIA of r. Thus, the neces-
sary and sufficient condition for r to be a K-DN is that its MIA
intersects fewer than K other objects.

CNS can be used to retrieve such objects using a K-tier
(90◦-constrained) NS query. However, this inherits the defi-
ciencies identified in Sec. 3.1, namely that a superset of the
actual K-DNs is returned, which entails unnecessary I/Os and
a post-processing (filtering) step. As we show in the experi-
ments, the problem is exacerbated as K increases, because a
larger fraction of the NSs are not DNs.

On the other hand, Lemma 3 extends SDN to K > 1, en-
abling I/O optimal processing. Let qd be the corner of q that an-
chors the quadrant to be processed. Recall that the K-skyband
is a generalization of the skyline that includes objects that are
dominated by fewer than K others.
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Lemma 3. The K-DNs of q in a quadrant are exactly the K-
skyband objects in the quadrant, with qd as origin and each
object represented by its closest corner to qd.

Proof 3. Let r ∈ S be an object in the quadrant of qd. The
necessary and sufficient condition for r to be a K-DN is that
its MIA intersects fewer than K other objects. Any object r′ in
the quadrant of qd that overlaps r’s MIA has, by definition, its
closest corner to qd inside the MIA, and vice versa. Hence, r is
aK-DN if and only if its MIA contains fewer thanK closest-to-
qd corners of other objects, i.e., it is dominated by fewer than
K objects.

Fig. 6 illustrates a 2-DN search in the NE quadrant of q.
The bold staircase line corresponds to the 2-skyband bound-
ary, implying that anything that does not touch this boundary
and lies further NE from it (i.e., further to the right and top),
is dominated by at least 2 objects. The 2-skyband comprises
objects whose closest corner to q either falls on the staircase
line (like r6) or lies SW from it (like r1). The 2-DN set (equiv-
alently, the 2-skyband) includes r1, r2, r4, r5, r6, r7. Object
r3 is not a 2-DN because it is dominated by r2 and r4. The
K-DNs in each quadrant can be computed with the I/O optimal
K-skyband BBS algorithm of [20].

Similar to the complete plain DN case in Sec. 3.3, all the
K-DNs (in the stripes or quadrants, or those intersecting q) can
be retrieved in a single traversal of the R-tree that indexes S,
yielding an overall I/O optimal solution. Furthermore, adopt-
ing the branch-and-bound paradigm in the SDN-based K-DN
method for the stripes and the quadrants lends two desirable
properties, namely, that the method is progressive and incre-
mental. Progressive implies that DNs can be reported as they
are discovered, without waiting for the algorithm to terminate.
The incremental nature of our method implies that there is no
need to fix K in advance. Should the user originally specify a
K value that turns out to be too small, the retrieval of DNs for
a larger K does not need to start from scratch, but can resume
from where the previous (smallerK) search stopped. Of course,
to support incremental processing, pruned R-tree nodes and re-
jected objects cannot be discarded, but must be kept (sorted on
increasing distance from q) in anticipation of an increase in K.

Example 2. Consider the example in Figure 4, and assume q
retrieves K-DNs with K = 2. The K-DN search differs from
DN search in the way it prunes non-result objects. We focus on
pruning and omit other details for simplicity. The search is ex-
actly the same as before until step 10 in Table 2, where r2 is kept
as a 2-DN because, while using the north segment tree TN to
verify the visibility of r2, we find that only r4 is blocking it from
q. Next we have to check N9, since parts of it are blocked by
only one object according to the east segment tree TE . Children
r9 and r10 ofN5 pass the check, since none of them is separated
by two or more objects from q. In the NE quadrant, r11 is a 2-
DN whereas r12 is not, because the MIA of r12 intersects r5 and
r11. Now the heap becomes empty, and the search terminates
with result set {r4, r5, r3, r6, r7, r1, r8, r2, r9, r11, r10}.

5. All-Direct Neighbor Query

Another extension to DN search is the all-DN (ADN) query.
Given a set of objects S, an ADN query computes for each ob-
ject in S all its DNs. A straightforward way to process ADN
queries is to apply a plain DN search using, in turn, each object
r ∈ S as source. Clearly, this approach is inefficient. Perfor-
mance can be improved if the entire R-tree is loaded in memory
to avoid multiple reads from the disk (since all of its contents
need to be accessed anyway). However, the CPU cost remains a
major drawback. In the following we describe an algorithm for
ADN processing that significantly reduces the processing time
of individual DN retrievals, by sharing computations among
them.

5.1. Fundamental Properties of DNs

We begin with observations/properties of DN relationship.

Observation 2. The DN relationship is symmetric.

By definition, if object r′ is a DN of another object r, there
exists a query window intersecting only r′ and r, regardless of
whether r′ lies in a stripe or quadrant of r. Thus, r is a DN of
r′ too.

According to Observation 2, the ADN query requires find-
ing the DNs in only two quadrants and two stripes of each ob-
ject instead of four. For example, we may consider only the
NW and SW quadrants, and only the west and south stripes.
The rationale is that if another object r′ is a DN with respect to,
say, the NE quadrant of r, then r′ will definitely identify r as a
DN in its SW quadrant.

Observation 3 formulates an important property of quadrant
DNs. We take the SW and NW quadrants as an example, and
illustrate in Fig. 7.

Observation 3. Given a rectangle r and its set of DNs in the
SW (or NW) quadrant, there exists a portion on the right side
of each of these DNs that is horizontally unblocked from the
vertical edge of the quadrant.

Fig. 7(a) illustrates that the DNs in the SW quadrant of r
are all visible via horizontal rays shot from the vertical quad-
rant edge (i.e., the vertical half-line with qd as initial point).
The DNs are shown with solid border, and the horizontal rays
are shown as arrows. Observation 3 follows from Observation
1. DN r4, for instance, is definitely “visible” by some horizon-
tal ray, because its MIA (and therefore the bottom edge of the
MIA) intersects no other object. The converse, however, is not
true; in other words, not all objects visible via horizontal rays
are DNs. The two objects with dashed border (r3, r6) are both
visible but are not DNs. The situation in the NW quadrant is
similar (see Fig. 7(b)).

Our ADN algorithm, presented next, builds on the above
observations to achieve efficient processing.
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5.2. The All-DN Algorithm
Our approach aims to maximize computation sharing among

DN retrievals of the objects in S. It achieves this by using two
segment trees, Tx and Ty , and performing a sweep of the data
space from left to right. Based on Observation 2, we compute
for each r ∈ S its DNs in the SW and NW quadrants, and the
west and south stripes.

Fetching all the objects4 from disk, we first construct a seg-
ment tree Tx on their x-extents. Each leaf node nxk in Tx is
associated with a list Lx

k of objects whose x-extents overlap the
interval corresponding to nxk . Objects stored in Lx

k are main-
tained in ascending order on their lower y-values. Fig. 8 illus-
trates a segment tree on the x-extents of 6 objects. Fig. 8(a)
shows on the x-axis the intervals Ixk associated with each leaf,
and Fig. 8(b) presents the tree structure and the object lists Lx

k

of the leaves. Note that the superscript x indicates the dimen-
sion indexed by the segment tree, but is omitted from the figure
for clarity.

In constructing Tx, we do not insert objects one by one.
Instead, Tx is bulk-loaded. After sorting the objects in S on
their lower x-values, we use the resulting 2|S| + 1 x-intervals

4Note that any ADN algorithm has to read S from the disk. Also, the
size of Tx is manageable, as we show in experiments. In seriously memory-
constrained systems, a disk-based segment tree can be used [29].

(and their object lists) as leaf nodes. Then, we build the segment
tree bottom-up.

After constructing Tx, we scan from its leftmost leaf node
to the rightmost. For each leaf nxk , we consider the objects in
its list in ascending lower y-value and compute their DNs (in
the SW and NW quadrants, and in the west and south stripes).
After processing all the objects in the list, we proceed to the
next leaf node, until all the leaves are visited. The details are as
follows.

South stripe DNs. Suppose {nx1 , nx2 , ..., nx
2|S|+1} is the se-

quence of leaf nodes in Tx. Starting from the leftmost leaf’s list
and moving to the right, we identify as DNs (in the south stripe)
every pair of successive objects 〈ri, ri+1〉 in the list. Correct-
ness is obvious, since by definition there is no object between ri
and ri+1 in the x-interval of the corresponding leaf. Consider,
for example, Fig. 9. The list for node nxk contains (among oth-
ers) objects r10 and r11. Due to the sorting of the list on lower
y-value, r10 and r11 are placed consecutive to each other and,
hence, they are correctly reported as DNs.

The remaining DNs (west, SW, NW) are also discovered
during the aforementioned left-to-right scanning of Tx. This
task is facilitated by a second segment tree Ty , similar to Tx,
which however (i) is built on the y-extents of objects, and (ii)
is incrementally populated. Ty is empty initially. On encoun-
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tering an object r in some Tx node for the first time, we insert
it into Ty (according to its y-extent). The objects in the leaves
of Ty are sorted in ascending order on their upper x-value. In
the following we explain how Ty enables the retrieval of the re-
maining three types of DNs and helps in sharing computations
in the ADN retrieval.

West stripe DNs. Whenever an object r is inserted into
a leaf node nyk of Ty , we immediately identify the last object
in nyk as a DN with respect to the west stripe of r. This is
because that object has the largest upper x-value among all the
objects to the left of r, in the y-interval that corresponds to nyk.
Continuing the example in Fig. 9, Fig. 10(a) and 10(b) illustrate
the leaf node lists in Ty before and after the insertion of r11. For
clarity, the superscript y is omitted from the leaf names, and
leaves irrelevant to the example are not shown. The insertion
creates a new leaf in Ty , and r11 is appended in the object lists
of ny13, n

y
14, n

y
15. The rightmost objects in these lists are r11’s

west DNs (r4 in Ly
13, along with r9 in Ly

14 and Ly
15).

NW and SW DNs. Ty is used for efficient NW and SW DN
search too. Without loss of generality, assume that no pair of
objects have exactly the same lower or upper x-value. Consider
again the scanning of leaf nodes in Tx in the process of retriev-
ing the south and west DNs. For each leaf nxk , the left bound of
its associated interval is due to either the lower or upper x-value
of an object. In Fig. 9, for instance, the left bound of nxk is due
to the lower x-value of r11, whereas the left bound of nxk+1 is
due to the upper x-value of r11. For leaf nodes of the former
category, we compute the NW and SW DNs of the responsible
object; i.e., when considering nxk we compute the NW/SW DNs
of r11, whereas no NW/SW processing is needed for nxk+1.

We now focus on nxk and the SW processing for r11. By
definition, all the SW DNs of r11 are inside the gray area in
Fig. 9, i.e., inside the region [0, r11.xl][r10.yh, r11.yl]. Note
that this “stripe” is delimited by r10, the preceding object in the
list of nxk . Since the left bound of nxk is attributed to r11.xl and
r10 is in Lx

k too, it holds that r10.xl < r11.xl, i.e., there is a
portion of r10 protruding to the left of nxk . This portion of r10
disqualifies any object lower than the gray area from being a

Leaf of Ty Object list 

n1 {r8} 

n2 {r8, r10} 

n3 {r10}  

n4 {r3} 

n5 {r3,r6} 

n6 {r6} 

n7 {} 

n8 {r2,r7} 

n9 {r2,r5,r7} 
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Figure 10: Inserting r11 into Ty

SW DN of r11.
To identify the DNs in the gray area, we use Observation 3

as a filtering step to produce an (inclusive) list R of candidate
SW DNs. Specifically, we utilize Ty to retrieve those objects
in the gray area that are horizontally unblocked from the left of
line segment se (shown in the figure). The process is similar
to retrieving an object’s west DNs using Ty . Fig. 10(b) shows
the state of Ty when processing r11. The leaves that overlap se
(on the y-extent) are ny4 up to ny12. R is formed by collecting
the last (i.e., rightmost) objects in the lists of these Ty leaves,
i.e., R = {r4, r1, r5, r7, r6, r3}. The leaves of Ty are scanned
from ny12 towards ny4 (i.e., from higher y-values to lower ones),
leading to an inherent sorting ofR according to upper y-values.
This sorting facilitates subsequent refinement.

The refinement step eliminates non-DN entries fromR based
on Lemma 1, i.e., by finding the skyline objects in it. Due to the
inherent ordering in R, the time needed for skyline processing
is linear to |R|. We scanR from the first to the last object, i.e.,
in decreasing upper y-value. The first object, r4, must be a SW
DN as its highest y-value means that it cannot be dominated by
any other candidate. For each subsequent candidate r in R to
be a skyline object (i.e., a DN), it must have an upper x-value
larger than that of the last identified DN. Note that this sin-
gle comparison saves considerable computations compared to
checking r for dominance against all the skyline objects found.
In our example, the second candidate, r1, is not a DN because
its upper x-value is lower than that of r4. The third candidate,
r5, passes this check against r4 and becomes the last reported
DN. Thus, the fourth candidate, r7, is checked against r5 only
(as opposed to the entire skyline). Object r7 is reported as a
DN, and subsequently disqualifies r6 and r3, leading to r4, r5
and r7 being the final SW DNs of r11.

A symmetric filter-and-refine procedure is used to retrieve
the NW DNs of r11. The difference is that the corresponding
(gray) search area is refined by r12, the next object in the list
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Algorithm 1: ADN
Input: a set S of objects
Output: setRDN of DN pairs in S

1 build segment tree Tx on x-extents of objects in S;
2 Nx ← sequence of leaf nodes of Tx;
3 initialize an empty segment tree Ty;
4 RDN = ∅;
5 for i = 1 to |Nx| do
6 let Lx

i be the object list of node nxi ;
7 for each object rj in Lx

i do
8 append the pair 〈rj−1, rj〉 toRDN ;
9 if left bound of nxi is due to rj .xl then

10 RDN = RDN∪
SearchGrayArea(Tx, Ty, rj);

11 insert rj into Ty according to its y-extent;
12 for each leaf nyk covered by [rj .yl, rj .yh] do
13 append the pair 〈rj , r′〉 toRDN , where

r′ is the last object in the list of nyk;

14 returnRDN ;

of nxk . If r11 is the last object in Lx
k , the search area extends

upwards to the boundary of the data space. Also, the traversal of
Ty nodes that fall in the search area is performed in increasing
y-order, leading to an R that is sorted on the lower (instead of
the upper) y-value of the candidate objects.

Note that the filtering and refinement steps (for either SW
or NW DNs) have a cost linear to the size ofR, since no sorting
is required in the skyline computation. The latter is taken care
of by the structure of Ty . There is thus only a one-time cost in
inserting each encountered object into Ty which, once spent, is
utilized by all the subsequently considered objects. This avoids
many unnecessary computations (compared to independent DN
retrievals for every r ∈ S). Finally, the algorithm extends triv-
ially to all-K-DN processing, following a methodology similar
to Sec. 4.

The detailed ADN algorithm is given in Algorithm 1. Line 8
finds DN pairs from the north and south stripes, line 10 searches
for SW and NW DNs in the gray area (using Algorithm 2),
whereas line 13 identifies the west and east stripe DNs.

6. DN Search in Higher Dimensions

Our methodology extends beyond two dimensions while re-
taining its I/O optimality. In this section we discuss the three-
dimensional case (i.e., d = 3) and then generalize to more di-
mensions. Prior to that, however, we establish that DN search
is meaningful primarily in low-dimensional spaces, and justify
our focus on this setting.

6.1. Effect of Dimensionality

A hyper-rectangle q in d dimensions has 2d vertices – in
two-dimensional terms, vertices correspond to corners. Equiv-
alently, each of the vertices defines a space partition. In a way

Algorithm 2: SearchGrayArea
Input: Tx, Ty , an object rj
Output: NW and SW DNs of rj

1 RSW = ∅;
2 issue a stabbing query on Ty at rj .yl;
3 let n+ be the resulting leaf node in Ty;
4 scan from n+ towards the leaves with smaller y-values

until reaching the boundary of a leaf n− whose last
object’s upper x-value satisfies xh > rj .xl;

5 letR be the sequence of the last objects in the lists for
the leaves between [n+, n−];

6 whileR is not empty do
7 remove the first object r′ fromR;
8 let r′′ be the last added DN toRSW ;
9 if r′.xh > r′′.xh then append 〈rj , r′〉 toRSW ;

10 RNW = ∅;
11 issue a stabbing query on Ty with rj .yh;
12 let n− be the resulting leaf node in Ty;
13 scan from n− towards the leaves with greater y-values

until reaching the boundary of a leaf n+ whose last
object’s upper x-value satisfies xh > rj .xl;

14 letR be the sequence of the last objects in the lists for
the leaves between [n−, n+];

15 whileR is not empty do
16 remove the first object r′ fromR;
17 let r′′ be the last added DN inRNW ;
18 if r′.xh > r′′.xh then append 〈rj , r′〉 toRNW ;

19 returnRSW ∪RNW ;

similar to quadrants, the DNs in each of these 2d partitions co-
incide with the skyline objects (the details of why this is the
case are discussed later in this section). On the other hand, it
is known that the number of skyline points increases exponen-
tially with dimensionality [30]. Since the DN set is a superset of
2d skylines (each of exponential cardinality with d), the number
of DNs increases at least exponentially with d. In other words,
in high dimensionality the DN set includes a large fraction of
the dataset S. This limits the usefulness of the query, since the
very motivation of the DN problem is to identify a small subset
of S as immediate competitors of q. Its diminishing selective
power with d suggests that it is more meaningful in low dimen-
sional spaces (a feature common in many queries, like skylines
[30], NNs [31], etc). Furthermore, in practice, window queries
in applications like propertyguru.com.sg and kayak.com (men-
tioned in Introduction) typically do not involve more than three
or four dimensions. Notwithstanding this, our DN processing
methodology extends to d > 2 and remains I/O optimal (re-
gardless of dimensionality).

6.2. Processing in Three Dimensions

In three dimensions, the source and data objects are three-
dimensional boxes, and S is indexed by a 3-D R-tree. The DN
relationship is expressed in terms of 3-D window queries, i.e.,
two objects are DNs if and only if they can be exclusively inter-
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Figure 11: DN search in three dimensions

sected by some axis-parallel box. The geometry of the source
object q includes 8 vertices, 6 faces, and 12 edges. Each of
these elements defines a partition, which leads to 27 partitions
in total (including box q itself) as shown in Fig. 11(a).

The treatment of vertices is similar to that of quadrants in
two dimensions. Consider the partition defined by vertex qd in
Fig. 11(b). The MIA of an object r that falls in this partition
is the three-dimensional box with a diagonal from qd to the
vertex of r that is closest to qd. Lemma 1 extends trivially to
three dimensions; the DNs in a vertex partition are the skyline
objects in this partition with the vertex (i.e., qd) as origin. BBS
can be used to compute the 3-D skyline in an I/O optimal way
[20]. Note that CNS is no longer applicable, because there is
currently no NS algorithm for more than two dimensions.

Faces are handled like stripes in 2-D, the difference being
that a spatial access method (e.g., a main-memory 2-D R-tree)
is used instead of a segment tree for visibility check. An incre-
mental NN search is initiated at the face, directed outside of q.
Denote the face as st and its 2-D R-tree as Tst. The projections
of encountered DNs on st (projections are necessarily rectan-
gular) are inserted into Tst. The incremental NN search in the
index of S prunes nodes and ignores objects whose projections
on st are entirely covered by DN projections already in Tst.5

In Fig. 12(a), the rectangles on face st are the projections
of three objects (numbered according to the subscripts of the
objects). r1 is the first NN of st, and is thus a DN. Object r2 is
not a DN because its projection is fully covered by that of r1. If
r2 were the MBR of an index node, it would be pruned. On the
other hand, r3 is a DN because it is not fully blocked by r1. At
this stage, Tst includes the projections of r1 and r3 (i.e., of the
DNs found so far).

Edges require special treatment. Each edge ed has two fixed
dimensions and one variable. In Fig. 12(b), the x and y di-
mensions are fixed (every point on ed has the same x and y
coordinates) while z is variable. The MIA of an object r in the
partition of ed is the box defined by ed and the closest edge of
r that is parallel to ed. Objects that could potentially disqual-
ify r from being a DN must first of all dominate it in the fixed

5To perform this check, when considering an object r (or an index node), we
process a window query in Tst to retrieve all the DN projections (rectangles)
that overlap with that of r. After subtracting these rectangles from the projec-
tion of r using a polygon clipping algorithm [32], we check whether there is a
residual. If so, the object (or node) passes the test.

dimensions (x and y). Such a dominating object r′ ∈ S dis-
qualifies the part of r that overlaps with its z extent (if there is
any overlapping). In Fig. 12(b), for instance, r1 dominates r2
in the subspace of fixed dimensions (i.e., the x : y plane). In the
variable dimension (z), the z-extent of r1 only partially covers
that of r2 (see their projections on ed), and disqualifies only that
part of r2. The remaining part of r2 may still be exclusively in-
tersected (along with q) by a three-dimensional window query,
i.e., r2 is a DN.

Formally, an object r in the partition of edge ed is a DN if
and only if the objects that dominate it in the fixed dimensions
do not collectively cover its extent in the variable dimension.
The proof resembles that of Lemma 1 and is omitted. We adapt
BBS to perform DN search in the partition of ed. The algo-
rithm proceeds like a skyline computation, i.e., with an incre-
mental NN search at ed. A node is visited (or an object included
in the DN set) if the DNs found so far that dominate it in the
fixed dimensions, do not collectively cover its entire extent in
the variable dimension. The search inherits the I/O optimality
of BBS algorithm.

The DN search inside q and in the partitions defined by ver-
tices, faces and edges can be completed in a single R-tree traver-
sal, similar to Sec. 3.3, which guarantees overall I/O optimality.

6.3. Beyond Three Dimensions

The geometry of a d-dimensional hyper-rectangle q includes
d types of elements; e.g., in two dimensions we have vertices
and edges (defining quadrants and stripes), while in three di-
mensions we additionally have faces. Every element has m
fixed dimensions and d −m variable ones, where 1 ≤ m ≤ d.
When m = d the element is a vertex, and a skyline search re-
trieves exactly the DN set in the corresponding partition. In all
other cases (m < d), an object r can only be disqualified by
objects that dominate it in the fixed dimensions. Each of these
dominating objects disqualifies the portion of r that overlaps
with it in the variable dimensions. Note that this applies also
to the m = 1 case (e.g., stripes in two dimensions, or faces in
three) where there is a single fixed dimension, and dominance
degenerates to closeness to q (thus the incremental NN search
on the fixed dimension that we used previously for stripes and
faces). Each of these partitions can be processed with BBS
where a node or object is pruned if the already discovered DNs
that dominate it in the fixed dimensions, collectively cover its
entire extent in the variable dimensions. The DN search for
all the partitions (and for DNs inside q) can be performed in a
single R-tree traversal, thus guaranteeing I/O optimality.

Regarding K-DN search in higher dimensions, it follows
the principles presented in this section. Under the same gener-
alized definition of dominance (which takes into account fixed
and variable dimensions), K-DN search disqualifies/prunes R-
tree nodes and data objects that are dominated by at least K re-
sult objects found so far. All-DN extension is similar to Sec. 5,
where all objects are loaded into a segment tree on one dimen-
sion, and an (incrementally populated) R-tree on the remaining
dimensions plays the role of Ty to facilitate dominance check-
ing.
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Figure 12: DN search in face and edge partition

7. Empirical Evaluation

In this section, we evaluate our algorithms using real and
synthetic data. For the two-dimensional experiments, we ob-
tained three real datasets from the R-tree portal6, namely LB,
TCB and CA. LB and CA contain 53K and 2.2M MBRs, re-
spectively, of roads and streets in Long Beach and California.
TCB contains 556K MBRs of residential blocks in four Amer-
ican states. The distribution in CA is highly skewed, whereas
LB and TCB are more evenly spread out. The MBRs in each of
them are treated as data objects in the experiments. To control
the dataset cardinality, we also produced synthetic data with the
generator of Theodoridis et al. from the R-tree portal7. The
generated rectangles are distributed in a [0, 10000][0, 10000]
space uniformly, and have a side-length of 10 units on average.

Table 3: Plain DN results

Dataset # of I/Os CPU time (msec)
SDN CNS SDN CNS

LB 29 61 24 306
TCB 17 129 61 313
CA 22 174 67 400

Synthetic 55 112 74 226

Table 4: Number of DNs and NSs
Dataset Stripe DNs Quad. DNs NSs

LB 12 6 72
TCB 14 3 53
CA 11 10 69

Synthetic 11 13 126

Our evaluation also includes higher-dimensional experiments.
For these, we use the HOTEL dataset (from hotelsbase.org),
which contains 418,843 hotel records with four attributes, namely
stars, price, number of rooms, and number of facilities. We nor-
malized the dataset to a [0,10000]4 space. Since hotel records

6http://www.rtreeportal.org
7http://www.rtreeportal.org/software/SpatialDataGenerator.zip

correspond to points, we extended them to hyper-rectangles
with average side-length of 10 units.

All the datasets are indexed with R∗-trees [6], using a page
size of 4KBytes. The algorithms are implemented in C++, and
run on a Ubuntu machine with a 2GHz Intel Core Duo CPU and
2 GBytes of main memory.

7.1. Comparison with Related Query Types
Before investigating processing performance, it is essential

to quantify how different the results of this new query (DN) are
from those of related query types, namely, nearest neighbors
(NN) and nearest surrounders (NS). First, we process K-DN
queries for K = 1 to K = 6 and record the result sets (in this
experiment we focus merely on the composition of the result).
Then, we process NN and NS queries at (the centroid of) the
same source objects as DN search8. In the NN case, we produce
as many NNs as the cardinality of the correspondingK-DN set.
In the NS case, we retrieve K-tier NSs for the same K value as
the respective K-DN set.

To compare the result sets, we compute the Jaccard similar-
ity coefficient, a standard means to measure similarity between
sets [33]. The Jaccard coefficient of two setsA andB is defined
as the cardinality of their intersection divided by the cardinality
of their union, i.e., as |A∩B||A∪B| . Fig. 13 plots the Jaccard coeffi-
cient of NN and NS results with DN sets for differentK values.

There are three key observations. First, NN sets have a
higher similarity to DNs than NSs. A reason for this is that
we “favor” NN by producing the same number of NNs as DNs
(this number could not be known in advance, unless we run
a K-DN query first); on the other hand, K-tier NS sets have
very different (i.e., larger) cardinality than K-DNs. Second,
the more oblong the objects in a dataset, the more the NN and
NS results deviate from the DNs. This explains why in LB, CA,
and Synthetic the Jaccard similarity is considerably smaller that
TCB – objects in TCB have an average aspect ratio of 1.908,
whereas the average aspect ratios in LB, CA, and Synthetic are
6.631, 5.920, and 3.857, respectively. The final observation is
that similarity generally drops for larger K. This is expected,

8Recall that there exist NS methods only for point sources in two-
dimensional domains.
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Figure 13: Jaccard coefficient of NN and NS sets w.r.t. DN results

because as K increases, so do the sizes of the compared result
sets, and therefore the differences between the semantics of the
queries become more pronounced.

7.2. Experiments in Two Dimensions

Plain DN results. We first consider plain DN search in two
dimensions. We compare our SDN-based algorithm versus the
baseline CNS-based method, denoted in the charts as SDN and
CNS, respectively. For fairness, we enhanced the latter with
a single-traversal optimization (similar to that in Sec. 3.3) to
avoid multiple reads of the same R-tree nodes. Moreover, its NS
search component uses the most efficient algorithm proposed in
[10] (termed Sweep in that work). Performance is measured in
terms of I/O cost and CPU time. Note that due to the single
traversal feature of both algorithms, the existence or not of a
cache does not affect the I/O cost (because the R-tree nodes are
accessed at most once).

For each line in Table 3, we use one of the four datasets as
S and choose the source object at random among its rectangles.
In this experiment, the cardinality of Synthetic is set to 100K.
Every reported measurement is the average over 100 queries (at
different source objects). CNS incurs 2 to 8 times more I/Os
(in LB and CA, respectively). The reason is that the majority of
quadrant NSs are false positives, i.e., they are not actually DNs.
Table 4 illustrates the average number of stripe DNs, quadrant
DNs, and NSs. The number of NSs is an order of magnitude
larger than actual quadrant DNs, which implies a large false
positive ratio in CNS and translates to a considerable number
of (unnecessary) I/Os. Furthermore, turning again to Table 3,
CNS requires significantly more CPU time. The reason is not
only that there are too many NSs, but also that angular search
in CNS is more complex than skyline computation.

In Fig. 14, we examine the effect of dataset cardinality N
on the performance of CNS and SDN. We use synthetic data
to effectively vary N from 10K to 500K. The results show that
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Figure 14: Plain DN, effect of N (Synthetic dataset)
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Figure 15: K-DN search, effect of K (TCB dataset)

although both algorithms incur proportionally higher costs with
a larger N , SDN continues to maintain a substantial lead over
CNS. At N = 500K, for instance, SDN incurs around half the
I/O cost of CNS, and one third the CPU time.

K-DN results. We evaluate SDN and CNS forK-DN search.
For brevity, we present results only for the TCB dataset (the
trends and relative performance for the other datasets are sim-
ilar). In Fig. 15, we vary K from 1 to 6 and measure the I/O
cost and CPU time of the algorithms. Each plotted value is the
average over 100 randomly chosen source objects. CNS incurs
one to two orders of magnitude more I/Os than SDN (in Fig.
15(a)). The gap in CPU time is even wider (in Fig. 15(b));
CNS requires several seconds to process a DN query, whereas
SDN spends less than 100msec in all cases. SDN’s superior
performance is due to its I/O optimal and CPU-efficient BBS
search. In contrast, CNS wastes I/O and CPU time on the nu-
merous false positives (NSs that are not DNs). The problem
is exacerbated as K increases from 1 to 6 (corresponding to 1-
tier to 6-tier NS retrieval); the average number of NSs found by
CNS grows from 53 to 6593 per query, among which there are
only 3 to 10 actual DNs.

Next, we repeat the previous experiment and examine the
space requirements in the incremental version of SDN versus
knowing K in advance9. Table 5 presents the peak memory
consumption of the incremental and plain (i.e., non-incremental)
SDN for differentK values. The former utilizes only 2% to 6%
more space. The dominant factor in space consumption is heap
size, which is the same in both methods. The extra space in
the incremental version is due to storing nodes and objects that

9Note that the two versions have identical I/O cost and practically the same
CPU time, i.e., the performance of incremental SDN matches the SDN curves
in Fig. 15.
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Table 5: Memory usage of Incremental vs. Non-Incr. SDN (KB)
SDN K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
Incr. 21.3 22.7 24.7 26.4 28.7 30.6
Plain 20.8 21.9 24.1 25.8 27.5 28.9

Table 6: All-DN results

Dataset CPU time (sec) Memory (MB)
ADN sADN ADN sADN

LB 1 1714 3.6 2.6
TCB 40.5 25389 52.6 25
CA 67.8 49967 82.3 46.9

Synthetic 5.1 10823 9.5 4.8

would normally be pruned. Compared to the heap size, this
overhead is minimal. WhenK = 6, for example, the maximum
number of heap entries is 1165, while the number of pruned
nodes/objects is 69.

All-DN results. We examine the performance of our all-
DN algorithm described in Sec. 5, which we denote as ADN.
For baseline, we construct a competitor, termed straightforward
ADN (sADN), that invokes SDN for each object in the dataset.
For fairness, our implementation of sADN utilizes Observation
2, i.e., DNs are computed only for two of the stripes and two
of the quadrants. Here we focus on CPU time as the main per-
formance metric, since both algorithms load the entire dataset
in memory. We also measure the space requirements to verify
practicality. As shown in Table 6, ADN achieves substantial
performance gains over sADN for all datasets, owing to two
factors.

First, for every object r ∈ S, sADN constructs four segment
trees to store the DNs in the stripes. This is repeated for every
object. ADN avoids this deficiency by maintaining two global
segment trees. Furthermore, ADN finds the stripe DNs with
negligible effort (recall that it identifies as south stripe DNs ev-
ery pair of successive objects in the leaf node lists in Tx). The
west stripe DNs are also computed inexpensively, while insert-
ing r into Ty .

Second, sADN needs to perform dominance checks in two
quadrants of every object r ∈ S. In contrast, ADN finds the
candidate SW (or NW) DNs of each object ri with a linear
scan of the leaf nodes in Ty that cover the y-extent between
ri and ri−1 (ri+1, respectively), i.e., between ri and the pre-
ceding (succeeding) object in the object list Lx

k that includes ri.
Filtering false positives is also performed with a simple com-
parison per candidate. Obviously, an arithmetic comparison is
much cheaper than a dominance check. In LB, for instance,
ADN scans 62 leaves in Ty per object on the average, whereas
sADN performs 515 dominance checks per object. This leads
to another significant gain for ADN.

Turning to the memory consumption in Table 6, we ob-
serve that ADN uses about twice the space of sADN. This is
because ADN maintains two segment trees in memory. Even
so, the space requirements of ADN are well within the capacity
of modern PCs. For example, ADN occupies around 82 MBytes
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Figure 16: All-DN, effect of N (Synthetic dataset)
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Figure 17: K-DN search in 3-D, effect of K (HOTEL dataset)

for the CA dataset, which contains 2.2M MBRs. As explained
in Sec. 5.2, under strict memory constraints, we could resort to
a disk-based segment tree [29].

Continuing the evaluation of ADN, in Fig. 16 we exam-
ine scalability with dataset cardinality N . ADN is consistently
three orders of magnitude faster than sADN (between 1300 and
4500 times), with double the memory footprint.

7.3. Experiments in Higher Dimensions

The remaining experiments evaluate our methodology in
higher dimensions. We use HOTEL as the four-dimensional
dataset, and we also extract its first three dimensions to form
the three-dimensional dataset. CNS does not apply here (be-
cause NS methods exist only for two dimensions). Hence, we
focus on the nature of the problem and on the performance of
SDN.

In Fig. 17 and 18 we assess the performance of SDN ver-
sus K on three-dimensional and four-dimensional data, respec-
tively. The trend observed here is similar to Fig. 15, but the
cost is considerably higher than in two dimensions. The main
reason is that the number of DNs increases with d, as elaborated
in Sec. 6.1. For instance, the number of DNs (K = 1) in the
two-dimensional synthetic dataset with 100K objects is 24, ver-
sus 673 in three dimensions (for the same dataset cardinality).
In the HOTEL dataset, the number is 7308 in three dimensions,
and 10385 in four dimensions. Another reason is that, for a
fixed cardinality, space becomes sparser in higher dimensions
[31], which causes the search area to expand. Finally, the R-
tree structure itself degrades with dimensionality, thus reducing
the effectiveness of pruning. For a given dataset and R-tree
structure, however, SDN is I/O optimal, i.e., the reported I/O
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Figure 18: K-DN search in 4-D, effect of K (HOTEL dataset)

cost is the smallest possible by any exact, non-precomputation
algorithm.

8. Conclusion

In this work, we introduce a new query, called direct neigh-
bor (DN) search. Two objects in a dataset are DNs if it is pos-
sible for a window query to overlap these objects and no other.
A DN query retrieves all the DNs of a given source object. DN
search and its variants, K-DN and all-DN, have wide applica-
bility in competitor analysis. We present algorithms for DN,
K-DN and all-DN search. Experiments on real and synthetic
data verify that our algorithms vastly outperform baseline solu-
tions built upon existing work.

A direction for future work is DN search for containment
queries that are not axis-parallel windows but arbitrary regions.
Another challenging direction regards the exploding number of
DNs with dimensionality – it would be useful to devise tech-
niques that prioritize among the DNs and possibly choose/compute
only a subset of them.
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in: ICDE, 2010, pp. 365–376.

[26] E. Dellis, B. Seeger, Efficient computation of reverse skyline queries, in:
VLDB, 2007, pp. 291–302.

[27] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational
Geometry: Algorithm and Applications, Springer-Verlag, 2008.

[28] J. L. Bentley, D. Wood, An optimal worse case algorithm for reporting
intersections of rectangles, IEEE Trans. on Computers C-29 (7) (1980)
571–577.

[29] L. Arge, D. E. Vengroff, J. S. Vitter, External-memory algorithms for pro-
cessing line segments in geographic information systems, Algorithmica
47 (1) (2007) 1–25.

[30] Z. Zhang, Y. Yang, R. Cai, D. Papadias, A. K. H. Tung, Kernel-based
skyline cardinality estimation, in: SIGMOD, 2009, pp. 509–522.

[31] K. S. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is ‘nearest
neighbor’ meaningful?, in: ICDT, 1999, pp. 217–235.

[32] B. R. Vatti, A generic solution to polygon clipping, Commun. ACM 35 (7)
(1992) 56–63.

[33] M. Levandowsky, D. Winter, Distance between sets, Nature 234 (1971)
34–35.

Appendix

This appendix provides pseudo-code for the complete DN algo-
rithm described in Sec. 3.3. First, in Algorithm 3 we sketch its
visibility check building block, used for stripe DNs. Note that
in Line 3, leaf n+ is the one that covers value r.yh (for east/west
stripe) or r.xh (for north/south stripe).

The complete DN algorithm, using SDN quadrant search,
is given in Algorithm 4. We traverse the R-tree on S from the
root, and insert each encountered R-tree entry e into a min-heap
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Algorithm 3: IsStripeDN(st,r,T )
Input: a stripe st of q, an object (or an R-tree node’s

MBR) r, segment tree T corresponding to st
Output: a boolean value indicating whether r is a DN

1 issue a stabbing queries on T at (1) r.yl for the east and
west stripes, or (2) r.xl for the north and south stripes;

2 let n− be the leaf containing the query point;
3 for each leaf ni between n− and n+ do
4 let Li be the object list for ni;
5 if |Li| = 0 then return true;

6 return false;

sorted on mindist(q,e), i.e., the minimum distance between e
and q. The top entry e is popped from the heap iteratively,
and processed according to whether e intersects q in any of the
stripes and quadrants. If e corresponds to an internal R-tree
node that is not pruned in lines 27-28 or 38-39, we fetch this
node from the disk and push its child entries into the heap; if e
is an un-pruned data object, we output it as a DN. This process
is repeated until the heap is empty.

Algorithm 4: DN search
Input: an R-tree on S, a source object q
Output: setRDN of the DNs of q

1 initialize empty result sets RE ,RW ,RN ,RS for the east,
west, north, south stripes, and RNE ,RNW ,RSW , RSE

for the northeast, northwest, southwest, southeast
quadrants of q; and an empty result setRDN ;

2 initialize four empty segment trees TE , TW , TN , TS ;
3 initialize an empty min-heap H;
4 insert all the entries in the R-tree root into H;
5 while H is not empty do
6 remove the top entry e from H;
7 if e is completely inside q then
8 if e is a data entry then insert it intoRDN ;
9 else, read the whole sub-tree rooted at e and

insert all of its data objects intoRDN ;

10 if e partially overlaps q then
11 if e is a data entry then
12 if e intersects X , where

X ∈ {E,W,N, S,NE,NW,SW,SE},
insert e into RX ;

13 else
14 fetch the node n pointed by e;
15 insert all the entries in n into H;

16 if e is completely outside q then
17 if e intersects one of the 4 stripes then
18 let X ∈ {E,W,N, S} be that stripe;
19 if IsStripeDN(X ,e,TX )=false then
20 discard e;
21 else
22 if e is a data entry then
23 insert e into RX ;
24 insert e into TX ;
25 else
26 fetch the node n pointed by e;
27 insert all the entries in n into H;

28 if e intersects one of the 4 quadrants then
29 let X ∈ {NE,NW,SW,SE} be that quad.;
30 if e is dominated by an element in RX then
31 discard e;
32 else
33 if e is a data entry then
34 insert e into RX ;
35 else
36 fetch the node n pointed by e;
37 for each entry e′ in n do
38 if e′ is dominated by an element

in RX then
39 discard e′;
40 else
41 insert e′ into H;

42 returnRDN = RDN ∪
⋃

X∈{E,W,N,S,NE,NW,SW,SE}
RX ;
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