
[Research Article

Query processing in spatial databases containing obstacles

JUN ZHANG{, DIMITRIS PAPADIAS*{, KYRIAKOS MOURATIDIS{ and

ZHU MANLI§

{School of Computer Engineering, Nanyang Technological University, Nanyang

Avenue, Singapore, 639798

{Department of Computer Science, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong

§Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore, 119613

(Received 8 March 2005; in final form 6 June 2005)

Despite the existence of obstacles in many database applications, traditional

spatial query processing assumes that points in space are directly reachable and

utilizes the Euclidean distance metric. In this paper, we study spatial queries in

the presence of obstacles, where the obstructed distance between two points is

defined as the length of the shortest path that connects them without crossing any

obstacles. We propose efficient algorithms for the most important query types,

namely, range search, nearest neighbours, e-distance joins, closest pairs and

distance semi-joins, assuming that both data objects and obstacles are indexed by

R-trees. The effectiveness of the proposed solutions is verified through extensive

experiments.

Keywords: Spatial databases; Query processing; Visibility graph

1. Introduction

This paper presents the first comprehensive approach for spatial query processing

in the presence of obstacles. As an example of an ‘obstacle nearest-neighbour

query’, consider figure 1, which asks for the closest point of q, where the definition

of distance must now take into account the existing obstacles (shaded areas).

Although point a is closer in terms of Euclidean distance, the actual nearest

neighbour is point b (i.e. it is closer in terms of the obstructed distance). Such a query

is typical in several scenarios, e.g. q is a pedestrian looking for the closest restaurant,
and the obstacles correspond to buildings, lakes, streets without crossings, etc. The

*Corresponding author. Email: dimitris@cs.ust.hk

Figure 1. Obstacle nearest-neighbour query example.

International Journal of Geographical Information Science

Vol. 19, No. 10, November 2005, 1091–1111

International Journal of Geographical Information Science
ISSN 1365-8816 print/ISSN 1362-3087 online # 2005 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/13658810500286935

same concept applies to any spatial query, e.g. range search, spatial join, and closest

pair.

Despite the lack of related work in the Spatial Database literature, there is a

significant amount of research in the context of Computational Geometry, where

the problem is to devise main memory, shortest path algorithms that take obstacles

into account (e.g. find the shortest path from point a to b that does not cross any

obstacle). Most existing approaches (reviewed in section 2) construct a visibility

graph, where each node corresponds to an obstacle vertex, and each edge connects

two vertices that are not obstructed by any obstacle. The algorithms pre-suppose the

maintenance of the entire visibility graph in main memory. However, in our case,

this is not feasible due to the extreme space requirements for real spatial datasets.

Instead, we maintain local visibility graphs only for the obstacles that may influence

the query result (e.g. for obstacles around point q in figure 1).

In the data-clustering literature, cod-clarans (Tung et al. 2001) clusters objects into

the same group with respect to the obstructed distance using the visibility graph,

which is pre-computed and materialized. In addition to the space overhead,

materialization is unsuitable for large spatial datasets due to potential updates in the

obstacles or data (in which case, a large part or the entire graph has to be re-

reconstructed). Estivill-Castro and Lee (2001) discuss several approaches for

incorporating obstacles in spatial clustering. Despite some similarities with the

problem at hand (e.g. visibility graphs), the techniques for clustering are clearly

inapplicable to spatial query processing.

Another related topic regards query processing in spatial network databases

(Papadias et al. 2003), since in both cases, movement is restricted (to the under-

lying network or by the obstacles). However, while obstacles represent areas where

movement is prohibited, edges in spatial networks explicitly denote the permitted

paths. This fact necessitates different query-processing methods for the two cases.

Furthermore, the target applications are different. The typical user of a spatial

network database is a driver asking for the nearest petrol station according to

driving distance. On the other hand, the proposed techniques are useful in

cases where movement is allowed in the whole data space except for the stored

obstacles (vessels navigating in the sea, pedestrians walking in urban areas).

Moreover, some applications may require the integration of both spatial net-

work and obstacle-processing techniques (e.g. users who need to find the best

parking space near their destination, so that the sum of travel and walking dis-

tance is minimized).

For the following discussion, we assume that there is one or more datasets of

entities, which constitute the points of interest (e.g. restaurants, hotels) and a single

obstacle dataset. The extension to multiple obstacle datasets or cases where the

entities also represent obstacles is straightforward. Similar to most previous work on

spatial databases, we assume that the entity and the obstacle datasets are indexed by

R-trees (Guttman 1984, Sellis et al. 1987, Becker et al. 1990), but the methods can be

applied with any data-partition index. Our goal is to provide a complete set of

algorithms covering all common query types. The rest of the paper is organized as

follows: section 2 surveys the previous work focusing on directly related topics.

Sections 3, 4, 5, 6, and 7 describe the algorithms for range search, nearest

neighbours, e-distance joins, closest pairs, and distance semi-joins, respectively.

Section 8 provides a thorough experimental evaluation, and section 9 concludes the

paper with some future directions.

1092 J. Zhang et al.

2. Related work

Sections 2.1 and 2.2 discuss query processing in conventional spatial databases and

spatial networks, respectively. Section 2.3 reviews obstacle path problems in main

memory and describes algorithms for maintaining visibility graphs. Section 2.4

summarizes the existing work and identifies the links with the current problem.

2.1 Query processing in the Euclidean space

For the following examples, we use the R-tree of figure 2, which indexes a set of

points {a, b, … , k}, assuming a capacity of three entries per node. Points that are

close in space (e.g. a and b) are clustered in the same leaf node (N3), represented as a

minimum bounding rectangle (MBR). Nodes are then recursively grouped together

following the same principle until the top level, which consists of a single root. R-

trees (like most spatial access methods) were motivated by the need to efficiently

process range queries, where the range usually corresponds to a rectangular window

or a circular area around a query point. The R-tree answers the range query q

(shaded area) in figure 2 as follows. The root is first retrieved, and the entries (e.g.

E1, E2) that intersect the range are recursively searched because they may contain

qualifying points. Non-intersecting entries (e.g. E4) are skipped. Notice that for non-

point data (e.g. lines, polygons), the R-tree provides just a filter step to prune non-

qualifying objects. The output of this phase has to pass through a refinement step

that examines the actual object representation to determine the actual result. The

concept of filter and refinement steps applies to all spatial queries on non-point

objects.

A nearest-neighbour (NN) query retrieves the k (k>1) data point(s) closest to a

query point q. The R-tree NN algorithm proposed by Hjaltason and Samet (1999)

keeps a heap with the entries of the nodes visited so far. Initially, the heap contains

the entries of the root sorted according to their minimum distance (mindist) from q.

The entry with the minimum mindist in the heap (E2 in figure 2) is expanded, i.e. it is

removed from the heap, and its children (E5, E6, E7) are added together with their

mindist. The next entry visited is E1 (its mindist is currently the minimum in the

heap), followed by E3, where the actual 1NN result (a) is found. The algorithm

terminates, because the mindist of all entries in the heap is greater than the distance

of a. The algorithm can be easily extended for the retrieval of k nearest neighbours

(kNN). Furthermore, it is optimal (it visits only the nodes necessary for obtaining

the nearest neighbours) and incremental, i.e. it reports neighbours in ascending order

of their distance to the query point, and can be applied when the number k of

nearest neighbours to be retrieved is not known in advance.

Figure 2. R-tree example.

Query processing in spatial databases containing obstacles 1093

The e-distance join finds all pairs of objects (s,t) sgS, tgT within (Euclidean)

distance e from each other. If both datasets S and T are indexed by R-trees, the R-

tree join algorithm (Brinkhoff et al. 1993) synchronously traverses the two trees,

following entry pairs if their distance is below (or equal to) e. The intersection join,

applicable for region objects, retrieves all intersecting object pairs (s,t) from two

datasets S and T. It can be considered as a special case of the e-distance join, where

e50. Several spatial join algorithms have been proposed for the case where only one

of the inputs is indexed by an R-tree, or no input is indexed.

A closest-pairs query outputs the k (k>1) pairs of points (s,t) sgS, tgT with the

smallest (Euclidean) distance. The algorithms for processing such queries (Corral

et al. 2000) combine spatial joins with a nearest-neighbour search. In particular,

assuming that both datasets are indexed by R-trees, the trees are traversed

synchronously, following the entry pairs with the minimum distance. Pruning is

based on the mindist metric but this time defined between entry MBRs. Finally, a

distance semi-join returns for each point sgS its nearest-neighbour tgT (distance

semi-joins are sometimes referred to as all nearest-neighbour queries). This type of

query can be answered either (1) by performing a NN query in T for each object in S

or (2) by outputting closest pairs incrementally, until the NN for each entity in S is

retrieved (Hjaltason and Samet 1999).

2.2 Query processing in spatial networks

Papadias et al. (2003) study the above query types for spatial network databases,

where the network is modelled as a graph and stored as adjacency lists. Spatial

entities are independently indexed by R-trees and are mapped to the nearest edge

during query processing. The network distance of two points is defined as the

distance of the shortest path connecting them in the graph. Two frameworks are

proposed for pruning the search space: Euclidean restriction and network expansion.

Euclidean restriction utilizes the Euclidean lower-bound property (i.e. the fact that

the Euclidean distance is always smaller than or equal to the network distance).

Consider, for instance, a range query that asks for all objects within network

distance e from point q. The Euclidean restriction method first performs a

conventional range query at the entity dataset and returns the set of objects S9

within (Euclidean) distance e from q. Given the Euclidean lower bound property, S9

is guaranteed to avoid false misses. Then, the network distance of all points of S9 is

computed, and false hits are eliminated. Similar techniques are applied to the other

query types, combined with several optimizations to reduce the number of network

distance computations.

The network expansion framework performs query processing directly on the

network without applying the Euclidean lower-bound property. Consider again the

example network range query. The algorithm first expands the network around

the query point and finds all edges within range e from q. Then, an intersection join

algorithm retrieves the entities that fall on these edges. Nearest neighbours, joins,

and closest pairs are processed using the same general concept.

2.3 Obstacle path problems in main memory

Path problems in the presence of obstacles have been extensively studied in

Computational Geometry (de Berg et al. 1997). Given a set O of non-overlapping

obstacles (polygons) in 2D space, a starting-point pstart and a destination pend, the

1094 J. Zhang et al.

goal is to find the shortest path from pstart to pend which does not cross the interior of

any obstacle in O. Figure 3(a) shows an example where O contains three obstacles.

The corresponding visibility graph G is depicted in figure 3(b). The vertices of all the

obstacles in O, together with pstart and pend constitute the nodes of G. Two nodes

ni and nj in G are connected by an edge if and only if they are mutually visible (i.e.

the line segment connecting ni and nj does not intersect any obstacle interior). Since

obstacle edges (e.g. n1n2) do not cross obstacle interiors, they are also included in G.

It can be shown (Lozano-Pérez and Wesley 1979) that the shortest path contains

only edges of the visibility graph. Therefore, the original problem can be solved by:

(1) constructing G and (2) computing the shortest path between pstart and pend in G.

For the second task, any conventional shortest-path algorithm (Dijkstra 1959, Kung

et al. 1986) suffices. Therefore, we focus on the first problem, i.e. the construction of

the visibility graph. A naı̈ve solution is to consider every possible pair of nodes in G

and check if the line segment connecting them intersects the interior of any obstacle.

This approach leads to a running time of O(n3), where n is the number of nodes in G.

In order to reduce the cost, Sharir and Schorr (1984) perform a rotational plane-

sweep for each graph node and find all the other nodes that are visible to it. Using

the example of figure 3, we present the main idea of the algorithm by assuming that

node pstart is being processed. The target is to find all the nodes that are visible from

pstart, so that the corresponding edges can be added to G. The algorithm starts with a

sweep line (horizontal line in figure 4(a)). The event points for plane-sweep are

defined by the nodes of G (excluding pstart).

The obstacle edges intersecting the sweep line are maintained in a binary search

tree to support visibility checking. For instance, the edges (e1, e2, e3, e4) intersecting

Figure 3. Obstacle path example.

Figure 4. Example of rotational plane sweep.

Query processing in spatial databases containing obstacles 1095

the initial position of the sweep line are stored in the tree of figure 4(b), according to

their distance from pstart, e.g. those that are farther than e2 are stored in the right

subtree of the root, and those with a distance smaller or equal (to pstart) in the left

subtree. The nodes are sorted according to their cyclic (counter-clockwise) order

around pstart and considered in this order. When a node n is encountered, the

algorithm performs the following operations: (1) it searches the tree to determine if n

is visible from pstart (i.e. whether the distance between pstart and n is smaller or equal

to the distances between pstart and all the edges currently in the tree); if yes, it adds

an edge pstartn to G; (2) it inserts to the tree the incident edges (of n) that lie on the

counter-clockwise side of the half-line pstartn; and (3) it removes from the tree the

incident edges that lie on the clockwise side of pstartn (such edges cannot obstruct

any node that will be considered after n). The sorting and the plane-sweep for each

node take a time of O(n log n). Since the process has to be repeated for all nodes, the

total cost is O(n2 log n).

Subsequent techniques for visibility graph construction involve sophisticated data

structures and algorithms, which are mostly of theoretical interest. The worst case

optimal algorithm (Welzl 1985, Asano et al. 1986) performs a rotational plane-sweep

for all the vertices simultaneously and runs in O(n2) time. The optimal output-sensitive

approaches (Ghosh and Mount 1987, Rivière 1995, Pocchiola and Vegter 1996) have a

running time of O(m + n log n), where m is the number of edges in G. If all obstacles are

convex, it is sufficient to consider the tangent visibility graph (Pocchiola and Vegter

1995), which contains only the edges that are tangent to two obstacles.

2.4 Discussion

In the rest of the paper, we utilize several of these findings for efficient query

processing. First, the Euclidean lower-bound property also holds in the presence of

obstacles, since the Euclidean distance is always smaller than or equal to the

obstructed distance. Thus, the algorithms of section 2.1 can be used to return a set of

candidate entities, which includes the actual output as well as a set of false hits. This

is similar to the Euclidean restriction framework for spatial networks, discussed in

section 2.2. The difference is that now we have to compute the obstructed (as

opposed to network) distances of the candidate entities. Although we take

advantage of visibility graphs to facilitate obstructed distance computation, in our

case it is not feasible to maintain in memory the complete graph due to the extreme

space requirements for real spatial datasets. Furthermore, pre-materialization is

unsuitable for updates in the obstacle or entity datasets. Instead, we construct

visibility graphs online, taking into account only the obstacles and the entities

relevant to the query. In this way, updates in individual datasets can be handled

efficiently, new datasets can be incorporated in the system easily (as new

information becomes available), and the visibility graph is kept small (so that

distance computations are minimized).

3. Obstacle range query

Given a set of obstacles O, a set of entities P, a query point q and a range e, an

obstacle range (OR) query returns all the objects of P that are within obstructed

distance e from q. The OR algorithm processes such a query as follows: (1) it first

retrieves the set P9 of candidate entities that are within Euclidean distance e (from q)

using a conventional range query on the R-tree of P; (2) it finds the set O9 of

1096 J. Zhang et al.

obstacles that are relevant to the query; (3) it builds a local visibility graph G9

containing the elements of P9 and O9; (4) it removes false hits from P9 by evaluating

the obstructed distance for each candidate object using G9.

Consider the example OR query q (with e56) in figure 5(a), where the shaded

areas represent obstacles and points correspond to entities. Clearly, the set P9 of

entities intersecting the disk C centred at q with radius e constitutes a superset of the

query result. In order to remove the false hits, we need to retrieve the relevant

obstacles. A crucial observation is that only the obstacles intersecting C may

influence the result. By the Euclidean lower-bound property, any path that starts

from q and ends at any vertex of an obstacle that lies outside C (e.g. curve in

figure 5(a)) has a length larger than the range e. Therefore, it is safe to exclude the

obstacle (o4) from the visibility graph. Thus, the set O9 of relevant obstacles can be

found using a range query (centred at q with radius e) on the R-tree of O. The local

visibility graph G9 for the example of figure 5(a) is shown in figure 5(b). For

constructing the graph, we use the algorithm of (Sharir and Schorr 1984), without

tangent simplification.

The final step evaluates the obstructed distance between q and each candidate. In

order to minimize the computation cost, OR expands the graph around the query

point q only once for all candidate points using a traversal method similar to that

employed by Dijkstra’s algorithm (Dijkstra 1959). Specifically, OR maintains a

priority queue Q, which initially contains the neighbours of q (i.e. n1 to n4 in

figure 5(b)) sorted by their obstructed distance. Since these neighbours are directly

connected to q, the obstructed distance dO(ni,q), 1(i(4, equals the Euclidean

distance dE(ni,q). The first node (n1) is de-queued and inserted into a set of visited

nodes V. For each unvisited neighbour nx of n1 (i.e. nx1V), dO(nx,q) is computed,

using n1 as an intermediate node, i.e. dO(nx,q)5dO(n1,q) + dE(nx,n1). If dO(nx,q)(e, nx

is inserted in Q. Figure 6 illustrates the OR algorithm.

Note that it is possible for a node to appear multiple times in Q, if it is found

through different paths. For instance, in figure 5(b), n2 may be re-inserted after

visiting n1. Duplicate elimination is performed during the de-queuing process, i.e. a

node is visited only the first time that it is de-queued (with the smallest distance from

q). Subsequent visits are avoided by checking the contents of V (set of already visited

nodes). When the de-queued node is an entity, it is reported and removed from P9.

The algorithm terminates when the queue or P9 is empty.

Figure 5. Example of obstacle-range query.

Query processing in spatial databases containing obstacles 1097

4. Obstacle nearest-neighbour query

Given a query point q, an obstacle set O and an entity set P, an obstacle nearest-

neighbour (ONN) query returns the k objects of P that have the smallest obstructed

distances from q. Assuming, for simplicity, the retrieval of a single neighbour (k51)

in figure 7, we illustrate the general idea of ONN algorithm before going into detail.

First, the Euclidean nearest neighbour of q (object a) is retrieved from P using an

incremental algorithm (e.g. Hjaltason and Samet 1999 in section 2.1), and dO(a,q) is

computed. Due to the Euclidean lower-bound property, objects with a potentially

smaller obstructed distance than a should be within Euclidean distance

dEmax5dO(a,q). Then, the next Euclidean neighbour (f) within the dEmax range is

retrieved, and its obstructed distance is computed. Since dO(f,q),dO(a,q), f becomes

the current NN, and dEmax is updated to dO(f,q) (i.e. dEmax continuously shrinks).

Figure 6. OR algorithm.

Figure 7. Example of obstacle nearest-neighbour query.

1098 J. Zhang et al.

The algorithm terminates when there is no Euclidean nearest neighbour within the

dEmax range.

It remains to clarify the obstructed distance computation. Consider, for instance,

figure 8 where the Euclidean NN of q is point p. In order to compute dO(p,q), we first

retrieve the obstacles o1, o2 within the range dE(p,q) and build an initial visibility
graph that contains o1, o2, p, and q. A provisional distance dO1(p,q) is computed

using a shortest-path algorithm (we apply Dijkstra’s algorithm). The problem is that

the graph is not sufficient for the actual distance, since there may be obstacles (o3,

o4) outside the range that obstruct the shortest path from q to p.

In order to find such obstacles, we perform a second Euclidean range query on the

obstacle R-tree using dO1(p,q) (i.e. the large circle in figure 8). The new obstacles o3

and o4 are added to the visibility graph, and the obstructed distance dO2(p,q) is

computed again. The process has to be repeated, since there may be another obstacle

(o5) outside the range dO2(p,q) that intersects the new shortest path from q to p. The

termination condition is that there are no new obstacles in the last range, or
equivalently, the shortest path remains the same in two subsequent iterations,

meaning that the last set of added obstacles does not affect dO(p,q) (note that the

obstructed distance can only increase in two subsequent iterations as new obstacles

are discovered). The pseudo-code of the algorithm is shown in figure 9. The initial

visibility graph G9, passed as a parameter, contains p, q, and the obstacles in the

Euclidean range dE(p,q).

Figure 8. Example of obstructed-distance computation.

Figure 9. Obstructed-distance computation.

Query processing in spatial databases containing obstacles 1099

The final remark concerns the dynamic maintenance of the visibility graph in

main memory. The following basic operations are implemented, to avoid re-building

the graph from scratch for each new computation:

N Add_obstacle(o,G9) is used by the algorithm of figure 9 for incorporating new

obstacles in the graph. It adds all the vertices of o to G9 as nodes and creates

new edges accordingly. It removes existing edges that cross the interior of o.

N Add_entity(p,G9) incorporates a new point in an existing graph. If, for instance,

in the example of figure 8, we want the two nearest neighbours, we reuse the

graph that we constructed for the 1st NN to compute the distance of the second

one. The operation adds p to G9 and creates edges connecting it with the visible

nodes in G9.

N Delete_entity(p,G9) is used to remove entities for which the distance

computations have been completed.

N Add obstacle performs a rotational plane-sweep for each vertex of o and adds

the corresponding edges to G9. A list of all obstacles in G9 is maintained to

facilitate the sweep process. Existing edges that cross the interior of o are

removed by an intersection check. Add entity is supported by performing a

rotational plane-sweep for the newly added node to reveal all its edges. The

delete entity operation just removes p and its incident edges.

Figure 10 illustrates the complete algorithm for retrieval of k (>1) nearest

neighbours. The k Euclidean NNs are first obtained using the entity R-tree, sorted in

ascending order of their obstructed distance to q, and dEmax is set to the distance of

the kth point. Similar to the single NN case, the subsequent Euclidean neighbours

are retrieved incrementally while maintaining the k (obstructed) NNs and dEmax

Figure 10. ONN algorithm.

1100 J. Zhang et al.

(except that dEmax equals the obstructed distance of the kth neighbour), until the
next Euclidean NN has a larger Euclidean distance than dEmax.

5. Obstacle e-distance join

Given an obstacle set O, two entity datasets S, T and a value e, an obstacle e-

distance join (ODJ) returns all entity pairs (s,t), sgS, tgT such that dO(s,t)(e.

Based on the Euclidean lower-bound property, the ODJ algorithm processes an

obstacle e-distance join as follows: (1) it performs an Euclidean e-distance join on

the R-trees of S and T to retrieve entity pairs (s,t) with dE(s,t)(e; (2) it evaluates

dO(s,t) for each candidate pair (s,t) and removes false hits. The R-tree join algorithm

(Brinkhoff et al. 1993) (see section 2.1) is applied for step (1). For step (2), we use the

obstructed distance computation algorithm of figure 9.
Observe that although the number of distance computations equals the

cardinality of the Euclidean join, the number of applications of the algorithm can

be significantly smaller. Consider, for instance, that the Euclidean join retrieves five

pairs: (s1, t1), (s1, t2), (s1, t3), (s2, t1), (s2, t4), requiring five obstructed distance

computations. However, there are only two objects s1, s2gS participating in the

candidate pairs, implying that all five distances can be computed by building only

two visibility graphs around s1 and s2. Based on this observation, ODJ counts the

number of distinct objects from S and T in the candidate pairs. The dataset with the
smallest count is used to provide the ‘seeds’ for visibility graphs. Let Q be the set of

points of the ‘seed’ dataset that appear in the Euclidean join result (i.e. in the above

example Q5{s1,s2}). Similarly, P is the set of points of the second dataset that

appear in the result (i.e. P5{t1,t2,t3,t4}). The problem can then be converted to: for

each qgQ and a set P9#P of candidates (paired with q in the Euclidean join), find

the objects of P9 that are within obstructed distance e from q. This process corres-

ponds to the false-hit elimination part of the obstacle range query and can be proce-

ssed by an algorithm similar to OR (figure 6). To exploit spatial locality between
subsequent accesses to the obstacle R-tree (needed to retrieve the obstacles for the

visibility graph for each range), ODJ sorts and processes the seeds by their Hilbert

order (see Bially 1969). The pseudo-code of the algorithm is shown in figure 11.

6. Obstacle closest-pair query

Given an obstacle set O, two entity datasets S, T, and a value k>1, an obstacle

closest-pair (OCP) query retrieves the k entity pairs (s, t), sgS, tgT, that have the

Figure 11. ODJ algorithm.

Query processing in spatial databases containing obstacles 1101

smallest dO(s, t). The OCP algorithm employs an approach similar to ONN.

Assuming for example, that only the (single) closest pair is requested, OCP: (1)

performs an incremental closest pair query (Corral et al. 2000) on the entity R-trees

of S and T, and retrieves the Euclidean closest pair (s,t); (2) evaluates dO(s,t) and

uses it as a bound dEmax for Euclidean closest-pairs search; (3) obtains the next

closest pair (within Euclidean distance dEmax), evaluates its obstructed distance and

updates the result and dEmax if necessary; (4) repeats step (3) until the incremental

search for pairs exceeds dEmax.

Figure 12 shows the OCP algorithm for retrieval of k closest pairs. In particular,

OCP first finds the k Euclidean pairs, evaluates their obstructed distances, and treats

the maximum distance as dEmax. Subsequent candidate pairs are retrieved

incrementally, continuously updating the result and dEmax until no pairs are found

within the dEmax bound. Note that the algorithm (and ONN presented in section 4)

is not suitable for incremental processing, where the value of k is not set in advance.

Such a situation may occur if a user just browses through the results of a closest pair

query (in increasing order of pair distances), without a pre-defined termination

condition. Another scenario where incremental processing is useful concerns

complex queries: ‘find the city with more than 1 M residents, which is closest to a

nuclear factory’. The output of the top-1 CP may not qualify the population

constraint, in which case the algorithm has to continue reporting results until the

condition is satisfied.

In order to process incremental queries, we propose a variation of the OCP

algorithm, called iOCP (for incremental), shown in figure 13. When an Euclidean CP

(s, t) is obtained, its obstructed distance dO(s, t) is computed, and the entry ,(s, t),

dO(s, t). is inserted into a queue Q. The observation is that all the pairs (si, tj) in Q

such that dO(si, tj)(dE(s, t), can be immediately reported, since no subsequent

Euclidean CP can lead to a lower obstructed distance. The same methodology can

be applied for deriving an incremental version of ONN.

7. Obstacle distance semi-join

Given an obstacle set O and two entity datasets S and T, an obstacle distance semi-

join (ODS) returns for each point sgS its obstacle NN tgT. A real-world query of

Figure 12. OCP algorithm.

1102 J. Zhang et al.

this form could be: ‘for each hotel in a city, find the closest cinema in terms of

(obstructed) walking distance’. As discussed in section 2.1, two algorithms can be

used to process Euclidean distance semi-joins: the first performs a NN query in T for

each object in S, and the second algorithm outputs closest pairs incrementally, until

the NN for each entity in S is found. Both approaches can be adapted in our case, by

simply replacing the Euclidean with the obstructed distance metric. The problem of

the second approach is that subsequent pairs reported by the iOCP algorithm do not

exhibit locality, and therefore, the local visibility graph for each pair has to be

computed from scratch. Furthermore, when the obstructed distance between some

points in S and their NN is large (due to different data distributions), a high

percentage of the total number of pairs in S6T must be reported (by iOCP) before

the query result is complete.

Instead, we adopt the first approach, i.e. we perform |S| ONN queries, but reuse

the already computed visibility graphs. In order to achieve locality, we (1)

sequentially process all objects of the same leaf node of S sorted by their Hilbert

value and (2) consider leaf nodes according to the Hilbert value of their centroids. In

this way, entities that are close in space are processed immediately after each other

using visibility graphs with many common components. Furthermore, external

sorting of S is avoided, since the Hilbert value of leaf nodes can be obtained by

traversing the tree, but stopping above the leaf level. The Hilbert values of actual

objects are obtained when the corresponding leaf node is loaded.

The next question is how to effectively update the visibility graph and at the

same time not exceed the available memory space. When new obstacles or entities

have to be included in the visibility graph, we use the add_obstacle and add_entity

functions discussed in section 4. If the updated graph does not fit in memory,

we evict a sufficient number of entities (of T) and obstacles, starting with the far-

thest ones (in terms of obstructed distance) from the current entity sgS being

processed. If these entities or obstacles are needed for future computations, they are

reloaded. After the processing of an entity s terminates, s is removed from the graph

with all the edges associated with it (we use the function delete_entity, as presented

in section 4). The algorithm for visibility graph updating (VGU) is shown in

figure 14.

The ODS algorithm is a transformed version of the ONN presented in section 4,

which, instead of building a new visibility graph, applies VGU to augment the graph

of the previously processed point. Owing to the expected high locality of subsequent

Figure 13. iOCP algorithm.

Query processing in spatial databases containing obstacles 1103

entities (achieved by the application of Hilbert order in the R-tree nodes), the graph

update operations are minimized.

8. Experiments

In this section, we experimentally evaluate the CPU time and I/O cost of the proposed
algorithms, using a Pentium III 733 MHz PC. We employ R*-trees (Becker et al.

1990), assuming a page size of 4K (resulting in a node capacity of 204 entries) and an

LRU buffer that accommodates 10% of each R-tree participating in the experiments.

The obstacle dataset contains |O|5131 461 rectangles, representing the MBRs of

streets in Los Angeles (see Penn State University Libraries) (but as discussed in the

previous sections, our methods support arbitrary polygons). To control the density of

the entities, the entity datasets are synthetic, with cardinalities ranging from 0.01?|O|

to 10?|O|. The distribution of the entities follows the obstacle distribution; the entities
are allowed to lie on the boundaries of the obstacles but not in their interior. For the

performance evaluation of the range and nearest-neighbour algorithms, we execute

workloads of 200 queries, which also follow the obstacle distribution.

8.1. Range queries

First, we present our experimental results on obstacle range queries. Figure 15(a)
and (b) show the performance of the OR algorithm in terms of I/O cost and CPU

time, as functions of |P|/|O| (i.e. the ratio of entity to obstacle dataset cardinalities),

fixing the query range e to 0.1% of the data universe side length. The I/O cost for

entity retrieval increases with |P|/|O| because the nodes that lie within the (fixed)

range e in the entity R-tree grow with |P|. However, the page accesses for obstacle

retrieval remain stable, since the number of obstacles that participate in the distance

computations (i.e. those intersecting the range) is independent of the entity dataset

cardinality. The CPU time grows rapidly with |P|/|O|, because the visibility graph
construction cost is O(n2 log n), and the value of n increases linearly with the number

of entities in the range (note the logarithmic scale for CPU cost).

Figure 16 depicts the performance of OR as a function of e, given |P|5|O|. The I/O

cost increases quadratically with e because the number of objects and nodes

Figure 14. VGU algorithm.

1104 J. Zhang et al.

intersecting the Euclidean range is proportional to its area (which is quadratic with

e). The CPU performance again deteriorates even faster because of the O(n2 log n)

graph construction cost.

The next experiment evaluates the number of false hits, i.e. objects within the

Euclidean, but not in the obstructed range. Figure 17(a) shows the false-hit ratio

(number of false hits/number of objects in the obstructed range) for different

cardinality ratios (fixing e50.1%), which remains almost constant (the absolute

number of false hits increases linearly with |P|). Figure 17(b) shows the false-hit ratio

Figure 15. Cost vs |P|/|O| (e50.1%).

Figure 16. Cost vs e (|P|5|O|).

Figure 17. False hit ratio by OR.

Query processing in spatial databases containing obstacles 1105

as a function of e (for |P|5|O|). For small e values, the ratio is low because the

numbers of candidate entities and obstacles that obstruct their view are limited. As a

result, the difference between Euclidean and obstructed distance is insignificant. On

the other hand, the number of obstacles grows quadratically with e, increasing the

number of false hits.

8.2 Nearest-neighbour queries

This set of experiments focuses on obstacle nearest-neighbour queries. Figure 18

illustrates the costs of the ONN algorithm as a function of the ratio |P|/|O|, fixing the

number k of neighbours to 16. The page accesses of the entity R-tree are not

seriously affected by |P|/|O| because, as the density increases, the range around the

query point where the Euclidean neighbours are found decreases. As a result, the

obstacle search radius (and the number of obstacles that participate in the

obstructed distance computations) also declines. Figure 18(b) confirms this

observation, showing that the CPU time drops significantly with data density.

Figure 19 shows the performance of ONN for various values of k when |P|5|O|.

As expected, both the I/O cost and CPU time of the algorithm grow with k, because

a high value of k implies a larger range to be searched (for entities and obstacles) and

more distance computations. Figure 20(a) shows the impact of |P|/|O| on the false hit

ratio (k516). A relatively small cardinality |P| results in large deviation between

Euclidean and obstructed distances, therefore incurring a high false-hit ratio, which

Figure 18. Cost vs |P|/|O| (k516).

Figure 19. Cost vs k (|P|5|O|).

1106 J. Zhang et al.

is gradually alleviated as |P| increases. In Figure 20(b), we vary k and monitor the

false-hit ratio. Interestingly, the false-hit ratio obtains its maximum value for k<4

and starts decreasing when k.4. This can be explained by the fact that, when k

becomes high, the set of k Euclidean NN contains a large portion of the k actual

(obstructed) NN, despite their probably different internal ordering (e.g. the 1st

Euclidean NN is 3rd obstructed NN).

8.3 e-distance joins

We proceed with the performance study of the e-distance join algorithm, using

|T|50.1|O| and setting the join distance e to 0.01% of the universe length.

Figure 21(a) plots the number of disk accesses as a function of |S|/|O|, ranging from

0.01 to 1. The number of page accesses for the entity R-trees grows much more

slowly than the obstacle R-tree because the cost of the Euclidean join is not very

sensitive to the data density. On the other hand, the output size (of the Euclidean

join) grows rapidly with the density, increasing the number of obstructed distance

evaluations and the accesses to the obstacle R-tree (in the worst case, each Euclidean

pair initiates a new visibility graph). This observation is verified in figure 21(b) which

shows the CPU cost as a function of |S|/|O|.

In figure 22(a), we set |S|5|T|50.1|O| and measure the number of disk accesses for

varying e. The page accesses for the entity R-tree do not have large variance (they

range between 230 for e50.001% and 271 for e50.1%) because the node extents are

large with respect to the range. However, as in the case of figure 22(a), the output of

the Euclidean joins (and the number of obstructed distance computations) grows

Figure 20. False-hit ratio by ONN.

Figure 21. Cost vs |S|/|O| (e50.01%, |T|50.1|O|).

Query processing in spatial databases containing obstacles 1107

rapidly with e, which is reflected in the page accesses for the obstacle R-tree and the

CPU time (figure 22(b)).

8.4 Closest pairs

Next, we evaluate the performance of closest pairs in the presence of obstacles.

Figure 23 plots the cost of the OCP algorithm as a function of |S|/|O| for k516 and

|T|50.1|O|. The I/O cost of the entity R-trees grows with the cardinality ratio (i.e.

density of S), which is caused by the Euclidean closest-pair algorithm (similar

observations were made by Corral et al. (2000)). On the other hand, the density of S

does not significantly affect the accesses to the obstacle R-tree because a high

density leads to a closer distance between the Euclidean pairs. The CPU time of the

algorithm (shown in figure 23(b)) grows rapidly with |S|/|O|, because the dominant

factor is the computation required for obtaining the Euclidean closest pairs (as

opposed to obstructed distances).

Figure 24 shows the cost of the algorithm with |S|5|T|50.1|O| for different values

of k. The page accesses for the entity R-trees (caused by the Euclidean CP

algorithm) remain almost constant, since the major cost occurs before the first pair

is output (i.e. the k closest pairs are likely to be in the heap after the first Euclidean

NN is found, and are returned without extra IOs). The accesses to the obstacle R-

tree and the CPU time, however, increase with k because more obstacles must be

taken into account during the construction of the visibility graphs.

Figure 23. Cost vs |S|/|O| (k516, |T|50.1|O|).

Figure 22. Cost vs e (|S|5|T|50.1|O|).

1108 J. Zhang et al.

8.5 Distance semi-joins

We evaluate the performance of the ODS algorithm for distance semi-joins by

varying |S| and |T|. Initially, we fix |T|50.1|O| and plot the number of disk accesses
(figure 25(a)) and CPU time (figure 25(b)) as a function of |S|/|O|, which ranges from

0.01 to 1. The number of page accesses to the entity R-trees increases with |S|,

because each object of S necessitates an NN query (thus, S has to be scanned). On

the other hand, the I/O cost for the obstacle R-tree is almost stable because for a

large |S|/|O|, although we need to perform more NN queries, each query (1) reuses

the already-computed visibility graph (of the previous query) and (2) requires fewer

node accesses to the obstacle R-tree, since the distance where the Euclidean NN is

found is smaller (similar to figure 18(a)). The CPU time grows due to the increasing
number of queries with S|/|O|.

Finally, figure 26 shows the cost of ODS for fixed |S|50.1|O| and |T| ranging from

0.01|O| to |O|. The I/O cost for the entity R-trees grows with |T| because each

Euclidean NN query becomes more expensive. The page accesses to the obstacle

R-tree and the CPU time, however, decrease with |T|/|O|, because (1) the number of

obstructed distance computations is stable (it only depends on |S|), and (2) each

computation requires fewer obstacles.

9. Conclusion

This paper tackles spatial query processing in the presence of obstacles. Given one

or two entity datasets and a set of polygonal obstacles, our aim is to answer spatial

Figure 25. Cost vs |S|/|O| (|T|50.1|O|).

Figure 24. Cost vs k (|S|5|T|50.1|O|).

Query processing in spatial databases containing obstacles 1109

queries with respect to the obstructed distance metric, which corresponds to the

length of the shortest path that connects them without passing through obstacles.

This problem has numerous important applications in real life, and several main

memory algorithms have been proposed in Computational Geometry. Surpris-

ingly, there is no previous work for disk-resident datasets in the area of Spatial

Databases.

Combining techniques and algorithms from both the aforementioned fields, we

propose an integrated framework that efficiently answers most types of spatial

queries (i.e. range search, nearest neighbours, e-distance joins, closest pairs, and

distance semi joins), subject to obstacle avoidance. Our solutions exploit local

visibility graphs and effective R-tree algorithms to achieve efficiency both in terms

of I/O cost and CPU time. Being the first thorough study of this problem in the

context of massive datasets, this paper opens a door to several interesting directions

for future work. For instance, as objects move in practice, it would be interesting to

study obstacle queries for moving entities and/or moving obstacles.

Acknowledgements

This research was supported by the grant HKUST 6178/04E from Hong Kong RGC

and the grant RGg/05 form NTU URC/AcRF.

References
ASANO, T., GUIBAS, L., HERSHBERGER, J. and IMAI, H., 1986, Visibility of disjoint polygons.

Algorithmica, 1, pp. 49–63.

BECKER, B., KRIEGEL, H., SCHNEIDER, R. and SEEGER, B., 1990, The R*-tree: an efficient and

robust access method. In 9th ACM SIGMOD International Conference on

Management of Data, Atlantic City, NY, 23–25 May (ACM Press), pp. 322–331.

BIALLY, T., 1969, Space-filling curves: their generation and their application to bandwidth

reduction. IEEE Transactions on Information Theory, 15, pp. 658–664.

BRINKHOFF, T., KRIEGEL, H. and SEEGER, B., 1993, Efficient processing of spatial joins using

R-trees. In 12th ACM SIGMOD International Conference on Management of Data,

Washington, DC, 26–28 May (ACM Press), pp. 237–246.

CORRAL, A., MANOLOPOULOS, Y., THEODORIDIS, Y. and VASSILAKOPOULOS, M., 2000, Closest

pair queries in spatial databases. In 9th ACM SIGMOD International Conference on

Management of Data, Dallas, TX, 16–18 May (ACM Press), pp. 189–200.

DE BERG, M., VAN KREVELD, M., OVERMARS, M. and SCHWARZKOPF, O., 1997, Computa-

tional Geometry, pp. 305–315 (Berlin: Springer).

Figure 26. Cost vs |T|/|O| (|S|50.1|O|).

1110 J. Zhang et al.

DIJKSTRA, E., 1959, A note on two problems in connection with graphs. Numerische

Mathematik, 1, pp. 269–271.

ESTIVILL-CASTRO, V. and LEE, I., 2001, Fast spatial clustering with different metrics in the

presence of obstacles. In 9th ACM International Symposium on Advances in

Geographic Information Systems, Atlanta, GA, 9–10 November (ACM Press), pp.

142–147.

GHOSH, S. and MOUNT, D., 1987, An output sensitive algorithm for computing visibility

graphs. IEEE Foundations of Computer Science.

GUTTMAN, A., 1984, R-trees: A dynamic index structure for spatial searching. In 3rd ACM

SIGMOD International Conference on Management of Data, Boston, MA, 18–21 June

(ACM Press), pp. 47–57.

HJALTASON, G. and SAMET, H., 1999, Distance browsing in spatial databases. ACM

Transactions on Database Systems, 24, pp. 265–318.

KUNG, R., HANSON, E., IOANNIDIS, Y., SELLIS, T., SHAPIRO, L. and STONEBRAKER, M., 1986,

Heuristic search in data base systems. In 1st International Conference on Expert

Database Systems, Kiawah island, SC (Benjamin-Cummings Publishing), pp.

537–548.

LOZANO-PÉREZ, T. and WESLEY, M., 1979, An algorithm for planning collision-free paths

among polyhedral obstacles. Communication of ACM, 22, pp. 560–570.

PAPADIAS, D., ZHANG, J., MAMOULIS, N. and TAO, Y., 2003, Query processing in spatial

network databases. In 29th International Conference on Very Large Data Bases,

Berlin, Germany, 9–12 September (Morgan Kaufmann), pp. 790–801.

POCCHIOLA, M. and VEGTER, G., 1995, Minimal tangent visibility graph. Computational

Geometry: Theory and Applications, 6, pp. 303–314.

POCCHIOLA, M. and VEGTER, G., 1996, Topologically sweeping visibility complexes via

pseudo-triangulations. Discrete Computational Geometry, 16, pp. 419–453.

RIVIÈRE, S., 1995, Topologically sweeping the visibility complex of polygonal scenes. In 11th

Annual ACM Symposium on Computational Geometry, Vancouver, British Columsia,

5–7 June (ACM Press), pp. 436–437.

SELLIS, T., ROUSSOPOULOS, N. and FALOUTSOS, C., 1987, The R + -tree: a dynamic index for

multi-dimensional objects. In 13th International Conference on Very Large Data

Bases, Brighton, UK, 1–4 September (Morgan Kaufmann), pp. 507–518.

SHARIR, M. and SCHORR, A., 1984, On shortest paths in polyhedral spaces. In 16th Annual

ACM Symposium on Theory of Computing.

TUNG, A., HOU, J. and HAN, J., 2001, Spatial clustering in the presence of obstacles. In 17th

International Conference on Data Engineering, Heidelberg, Germany, 2–6 April (IEEE

Computer Society), pp. 359–367.

WELZL, E., 1985, Constructing the visibility graph for n line segments in O(n2) time.

Information Processing Letter, 20, pp. 167–171.

Penn State University Libraries, Available online at: http://www.maproom.psu.edu/dcw

(accessed 14 October 2005).

Query processing in spatial databases containing obstacles 1111

