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Abstract
Balanced multi-way number partitioning (BMNP)
seeks to split a collection of numbers into sub-
sets with (roughly) the same cardinality and subset
sum. The problem is NP-hard, and there are sev-
eral exact and approximate algorithms for it. How-
ever, existing exact algorithms solve only the sim-
pler, balanced two-way number partitioning vari-
ant, whereas the most effective approximate algo-
rithm, BLDM, may produce widely varying subset
sums. In this paper, we introduce the LRM algori-
thm that lowers the expected spread in subset sums
to one third that of BLDM for uniformly distributed
numbers and odd subset cardinalities. We also pro-
pose Meld, a novel strategy for skewed number dis-
tributions. A combination of LRM and Meld leads
to a heuristic technique that consistently achieves a
narrower spread of subset sums than BLDM.

1 Introduction
Number partitioning is a category of NP-complete problems
that has been studied extensively. One of its variants is bal-
anced multi-way number partitioning (BMNP). The input of
BMNP is a set S of n numbers and a positive integer k; the
output is a partition of S into subsets. The subset sum is the
sum of the numbers in a subset, and the subset cardinality
indicates how many numbers it contains. The objective in
BMNP is to partition S into k subsets such that (i) the cardi-
nality of each subset is either bnk c or dnk e numbers, and (ii)
the spread (i.e., the difference) between the maximum and
minimum subset sum is minimized.

BMNP has a wide range of applications, including multi-
processor scheduling [Dell’Amico and Martello, 2001], VLSI
manufacturing [Tasi, 1995], etc. Consider, for example, a
distributed system with k identical processors, and n tasks
with different running-time requirements. Each processor has
a fixed-size run queue for tasks. The scheduling of tasks to
processors such that the CPU load is balanced and run queues
do not exceed their limit is an instance of BMNP, where the
task running-times play the role of numbers, processors the
role of subsets, and run queue size that of subset cardinality.

BMNP is NP-hard [Dell’Amico and Martello, 2001]. To
deal with its hardness, most existing approaches focus on

suboptimal solutions (where the spread is higher than the
minimum possible). Among them, the balanced largest-
first differencing method (BLDM) is currently the most effec-
tive. Originally proposed for balanced 2-way partitioning in
[Yakir, 1996], it was subsequently generalized to arbitrary k
in [Michiels et al., 2003]. BLDM first divides S into k-tuples
(i.e., batches of k numbers). Then it selects and folds two of
them, i.e., it couples their numbers and places the k produced
pair sums into a new k-tuple, aiming to offset the variation
within the original tuples. Folding continues iteratively until
a single k-tuple remains; each of its elements corresponds to
one of the k returned subsets.

While efficient, BLDM often produces partitions that are
very far from optimal. We demonstrate that its spread is par-
ticularly high when the numbers in S follow a roughly uni-
form or a skewed distribution, and identify the reasons be-
hind this. Motivated by these weaknesses, we propose heuris-
tic algorithms LRM and Meld, each tailored to uniform and
skewed data, respectively. We prove analytically and em-
pirically that LRM reduces the expected spread to one third
that of BLDM for uniform data. Meld, on the other hand,
is shown to be significantly more effective than BLDM for
non-uniform distributions (e.g., Zipf, normal, etc). Finally,
we incorporate LRM, Meld and BLDM into a Hybrid algo-
rithm that dynamically adapts to different data characteris-
tics. Extensive experiments confirm that Hybrid consistently
achieves lower spreads than BLDM, yet it remains practical
in terms of computation time.

2 Background
2.1 Related Work
BMNP is a balanced variant of the number partitioning prob-
lem. The latter is NP-complete [Garey and Johnson, 1979],
with many heuristic and exact algorithms proposed for it.
Among them, the KK algorithm [Karmarkar and Karp, 1982]
is the best approximate method for 2-way partitioning, gen-
erating a spread in subset sums in the order of O(1/nα logn)
for some constant α. [Korf, 1998] proposed CKK, an ex-
act algorithm based on the principles of KK. CKK produces
a global optimal solution for 2-way and multi-way partition-
ing, by exhaustively searching a binary tree that covers all
possible combinations of subsets. The SNP and RNP algo-
rithms [Korf, 2009] for k-way partitioning are more efficient



than CKK when k ≤ 5. None of the above algorithms can
ensure a balanced partitioning, i.e., equal subset cardinalities.
Furthermore, the exact algorithms (CKK, SNP and RNP) are
applicable only to small problem sizes.

BLDM is a modification of KK that guarantees the
cardinality of the two resulting subsets to be dn/2e and
bn/2c [Yakir, 1996]. There have been several attempts to
extend BLDM from balanced 2-way to balanced multi-way
number partitioning (BMNP). In [Michiels et al., 2003], a
generalized BLDM is proposed to perform balanced k-way
partitioning for k > 2 in O(n log n) time. Hereafter, we refer
to this generalized algorithm as BLDM.

2.2 Limitations of BLDM
As BLDM [Michiels et al., 2003] is currently the most ef-
fective approximate algorithm for BMNP, we examine it in
detail. Given a set of numbers S, BLDM performs balanced
k-way partitioning as follows. First, S is padded with zero-
value numbers, so that n = |S| = bk for some integer b. The
numbers in S are then sorted in descending order. The sorted
sequence, denoted by (v1, v2, ..., vn), is split into b disjoint
k-tuples pi = (v(i−1)k+1, v(i−1)k+2, ..., vik), for 1 ≤ i ≤ b.
The spread in each pi is δ(pi) = v(i−1)k+1 − vik. Next,
BLDM repeatedly replaces the two k-tuples pi and pj with
the largest spreads with a new k-tuple p′; p′ is the result of
folding pi with pj , by adding the first (largest) value in pi
with the last (smallest) value in pj , the second (largest) value
in pi with the second last (smallest) in pj , and so on. This
process continues until a single k-tuple remains. Each of the
k elements in this final tuple corresponds to one subset of the
produced partitioning.

Although BLDM is very efficient, it performs poorly in two
general scenarios. We explain each scenario with the aid of
an example.

Example 1 Consider a balanced 4-way partitioning on set
S = {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}. BLDM divides S
into three 4-tuples p1 = (12, 11, 10, 9), p2 = (8, 7, 6, 5),
and p3 = (4, 3, 2, 1). Then, the two 4-tuples with largest
spreads, say p1 and p2 (since all the 4-tuples have the
same spread of 3), are folded to form a new 4-tuple p′ =
(17, 17, 17, 17). Next, p′ is folded with p3, yielding the final
4-tuple (21, 20, 19, 18). Tracing back the numbers that con-
tributed to the final tuple, we derive the 4-way partitioning
({12, 5, 4}, {11, 6, 3}, {10, 7, 2}, {9, 8, 1}), with a spread in
subset sums of 21− 18 = 3. This spread is as high as that of
the original 4-tuples. In comparison, an optimal solution is
({12, 5, 2}, {11, 8, 1}, {10, 7, 3}, {9, 6, 4}), with a spread of
only 1.

The scenario in Example 1 occurs when the numbers in S
follow a uniform (or roughly uniform) distribution and b is
odd. In folding pairs of k-tuples, BLDM essentially offsets
their spreads against each other. Since all the initial k-tuples
have nearly the same spread (for uniform data), when b is odd
BLDM will succeed in canceling out pairs of k-tuples as it is
designed to do, leaving nothing to compensate for the last
remaining k-tuple. Consequently, the reported partitioning
inherits the spread of this last k-tuple. Figure 1 illustrates this
situation in a uniform data scenario where k = 4 and b = 3.

(a) three 4-tuples with 
the same spread

(b) after folding 
p1 and p2

(c) folding finished

p1

p3

p2

p3

Figure 1: Folding process of BLDM on three 4-tuples

Each number is represented as a bar with height equal to its
value. Folding p1 and p2 leaves no space for spread offsetting
when p3 is appended to derive the final k-tuple.

Example 2 Consider a balanced 4-way partitioning on
set S = {60, 52, 40, 26, 19, 16, 14, 12, 10, 9, 6, 5}. Af-
ter dividing S into three 4-tuples p1 = (60, 52, 40, 26),
p2 = (19, 16, 14, 12), and p3 = (10, 9, 6, 5), BLDM
folds p1 and p2 first since they have the largest
spreads of 34 and 7. The resulting 4-tuple p′ =
(72, 66, 56, 45) is then folded with p3, yielding the final
4-tuple (77, 72, 65, 55). Thus, the reported partitioning
is ({60, 12, 5}, {52, 14, 6}, {40, 16, 9}, {26, 19, 10}), with a
spread of 77 − 55 = 22. In contrast, the optimal solu-
tion ({60, 6, 5}, {52, 10, 9}, {40, 14, 12}, {26, 19, 16}) has a
spread of only 10.

The scenario illustrated in Example 2 occurs when the
numbers in S follow a skewed distribution. The poor perfor-
mance of BLDM stems from the k-tuple boundaries imposed
right at the beginning of the process, forcing each subset sum
in the final solution to be derived from exactly one number in
each initial k-tuple. If the spread δ of some k-tuple exceeds
the sum of spreads, Σ, of all the other k-tuples, BLDM will
not obtain a final k-tuple with a spread smaller than δ − Σ.

The shortcomings of BLDM highlighted above need to be
addressed, owing to the abundance of uniformly distributed
and of highly skewed data in real applications.

3 The LRM algorithm
In this section, we introduce an algorithm motivated by the
first scenario where BLDM works poorly, i.e., uniformly dis-
tributed numbers with odd subset cardinality b. We begin with
the case of b = 3 before extending to larger odd values of b.

The rationale of LRM is as follows. Let there be three
k-tuples p1, p2 and p3 with means of µ1, µ2 and µ3, respec-
tively. If folding the initial k-tuples could achieve a perfect
balanced partitioning, each subset sum in the final k-tuple
would be equal to µ1 + µ2 + µ3. Targeted at this ideal
subset sum, we design our algorithm to fold the three tuples
simultaneously (instead of performing two consecutive pair-
wise folds). Specifically, we optimistically form each subset
from the leftmost1 (L) number vL in one tuple, the rightmost

1Since each k-tuple is sorted in descending order, its leftmost
number has the maximum positive offset from the mean, whereas



(R) number vR in another tuple, and a compensating number
somewhere in the middle (M) of the remaining tuple that is
closest to

∑i=3
i=1 µi − vL − vR. This gives rise to LRM.

In forming a subset sum, LRM always performs the M op-
eration (to pop a compensating number) in the input tuple that
currently has the smallest spread2. The L and R operations
are carried out on the tuples presently having the largest and
second largest spreads, respectively. This is meant to reduce
the chance of picking a compensating number that might be
more useful for a subsequent subset sum; since the compen-
sating number comes from the tuple with the smallest spread,
the impact of a suboptimal choice (of compensating num-
ber) is small because the tuple is likely to hold other num-
bers with a similar value. Note that the strategy of picking
the leftmost and rightmost numbers from the tuples currently
having the highest spreads is consistent with the largest-first
differencing strategy in KK [Karmarkar and Karp, 1982] and
BLDM [Michiels et al., 2003]. Algorithm 1 describes the
LRM method.

To illustrate LRM, we refer again to Example 1 where we
have p1 = (12, 11, 10, 9), p2 = (8, 7, 6, 5), p3 = (4, 3, 2, 1),
and µ1 + µ2 + µ3 = 19.5. At first, LRM arbitrarily picks
p1 and p2 for the L and R operations, as all three tuples have
the same spread of 3. Popping 12 from p1 and 5 from p2, it
chooses the compensating number from p3 to be 2, because it
has the closest value to 19.5 − 12 − 5 = 2.5. This produces
the first subset {12, 5, 2}. Now the spread in the remainders
p1 = (11, 10, 9), p2 = (8, 7, 6) and p3 = (4, 3, 1) becomes
2, 2 and 3, respectively, causing LRM to pick p3 and p1 for the
L and R operations in the second round. With numbers 4 from
p3 and 9 from p1, 6 is chosen as the compensating number in
p2 that is nearest to 19.5 − 4 − 9 = 6.5, leading to the sec-
ond subset {4, 9, 6}. Repeating this process, we get the third
and fourth subsets, {3, 10, 7} and {1, 11, 8}. The final parti-
tioning of ({12, 5, 2}, {4, 9, 6}, {3, 10, 7}, {1, 11, 8}), with a
spread of only 1, matches the optimal solution and is a major
improvement over BLDM’s spread of 3.

Proposition 1 Consider three k-tuples p1, p2 and p3, com-
prising numbers that follow a uniform distribution. By com-
bining p1, p2 and p3 simultaneously, LRM generates a k-tuple
p′ with an expected spread δ(p′) that is one third of that gen-
erated by BLDM.

Proof. Given that the numbers in S are uniformly distributed,
the three input k-tuples have roughly the same spread of,
say, δ. Moreover, the expected difference between succes-
sive numbers in p1, p2 and p3 is C = δ

k−1 . In each round of
LRM, let pL, pR and pM denote the k-tuples that produce the
leftmost (vL), rightmost (vR) and compensating (vM ) num-
bers. Let µL, µR and µM denote the respective mean of the
tuples. The subset sum generated is:

vL+vR+vM =

3∑
i=1

µi+(vL−µL)+(vR−µR)+(vM−µM )

(1)

the rightmost number has the maximum negative offset.
2We say “currently” because as numbers are removed from the

tuples, their spread is updated to reflect their remaining contents.

On uniform input, the LRM strategy removes numbers from
the k-tuples according to the following rotating pattern:

Round p1 p2 p3
1 leftmost rightmost middle
2 rightmost middle leftmost
3 middle leftmost rightmost
4 2nd leftmost 2nd rightmost middle
5 2nd rightmost middle 2nd leftmost

. . .

Thus, the leftmost number of a tuple is always matched with
the rightmost number of another tuple, the 2nd leftmost num-
ber is matched with the 2nd rightmost number, etc. So, we
have (vL − µL) ≈ (µR − vR), and Formula (1) simplifies to:

vL + vR + vM ≈
3∑
i=1

µi + (vM − µM ) (2)

vM −µM is small in the early rounds, but grows gradually as
the numbers in the middle of the tuples are used up. In round
i ∈ [1, k], |vM −µM | = (b i−16 c+ 0.5)C for even k, whereas
|vM − µM | = (d i+3

6 e − 1)C for odd k. Therefore, the last
two rounds produce subset sums that, respectively, fall below
and above

∑3
i=1 µi by the widest margin, and the difference

between those two subset sums determines the final spread of
the partitioning solution. In fact, the final spread is twice the
value |vM − µM | of the final round k, so:

spread =

{
2(bk−16 c+ 0.5) δ

k−1 for even k
2(dk+3

6 e − 1) δ
k−1 for odd k

(3)

Recall that BLDM yields a final spread of δ, so the spread
ratio of LRM w.r.t. BLDM converges to 1:3 for large k. 2

LRM extends easily to odd values of b larger than 3.
Specifically, the three k-tuples with the largest spreads are
combined through LRM into an interim k-tuple with a small
expected spread. The interim and the remaining k-tuples are
iteratively folded pairwise, in the manner of BLDM, to cancel
out their spreads until we are left with a single tuple. LRM
has a time complexity of O(n log n), as we need to keep the
numbers in each k-tuple sorted so as to find compensating
numbers in logarithmic time (see line 7 in Algorithm 1).

Algorithm 1: LRM
Input: k-tuples p1, p2 and p3 with means µ1, µ2 and µ3

Output: a final k-tuple
1 Sum = µ1 + µ2 + µ3;
2 p′ = ∅;
3 while |p′| < k do
4 let pL, pR, pM be the input k-tuple with the largest,

second largest, and smallest spread, respectively;
5 vL = the leftmost number removed from pL;
6 vR = the rightmost number removed from pR;
7 vM = the compensating number removed from pM

that is closest to (Sum− vL − vR);
8 p′ = p′ ∪ {vL + vR + vM};
9 return p′;



4 The Meld Algorithm
Our second algorithm is designed to handle skewed data,
the second scenario in which BLDM falls short. In case of
skewed data, some k-tuples (e.g., tuple p1 in Example 2) have
a particularly large spread that cannot be effectively canceled
out by folding with the remaining, smaller-spread k-tuples.

For ease of presentation, we consider the case where we
have three input k-tuples (i.e., b = 3) before generalizing
to arbitrary b. Let the tuples be p1, p2 and p3, and suppose
that the spread in p1 is larger than the spread of the other
two combined, i.e., δ(p1) > δ(p2) + δ(p3). Assuming that
δ(p2) > δ(p3), BLDM would fold p1 with p2, and then the
interim tuple with p3. This leads to a final spread that is no
less than δ(p1)− δ(p2)− δ(p3) > 0.

To avoid the pitfall, we deviate from BLDM’s principle of
eliminating the spread whenever a pair of k-tuples is folded,
because in certain occasions a large interim spread may be
needed to counterbalance the excessive spread in another k-
tuple. Specifically, we combine p2 and p3 into an interim tu-
ple p′ with a spread δ(p′) that is larger than δ(p2)+δ(p3) and
as close to δ(p1) as possible, so that the subsequent folding
of p′ with p1 can cancel out their respective spreads.

Our Meld algorithm achieves this by “melding” p2 and
p3, that is, by uniting p2 = (v2,1, . . . , v2,k) and p3 =
(v3,1, . . . , v3,k) into a common sorted sequence p∪ =
(v1, v2, . . . , v2k−1, v2k), and then pairing its numbers so that
the produced k-tuple p′ has values that are (almost) uniformly
spaced in

[
µ2 + µ3 − δ(p1)

2 , µ2 + µ3 + δ(p1)
2

]
. We first iden-

tify in p∪ two number pairs A = {vi, vj} and B = {vl, vm}
that add up to give vi+vj and vl+vm at the two extreme ends
of p′, such that (vi + vj)− (vl + vm) ≈ δ(p1). The next two
number pairs A′ = {v′i, v′j} and B′ = {v′l, v′m}, intended for
the second position from the left and right of p′, are chosen to
meet condition (v′i + v′j) − (v′l + v′m) ≈ δ(p1) − δ−, where

δ− = 2δ(p1)
k−1 is the desired rate of decline among the numbers

in p′. This process is repeated to complete p′.
In pairing the numbers in p∪ as explained above, one may

suggest using an exhaustive search. However, with O(k2)
possible pairs, it takes O(k4) time to compute the difference
between any two of them. Recall that n = bk, so the time
complexity is O(n4), making exhaustive search impractical.
Instead, we adopt a heuristic search strategy.

As shown in Algorithm 2 (lines 4 and 5), in the first it-
eration we place the largest (v1) and smallest (v2k) num-
bers of p∪ into pairs A and B, respectively. For the sec-
ond number in A, we scan from v2k−1 back to v2. Simul-
taneously, we scan from v2 to v2k−1 to complete B. The
scan stops as soon as we encounter vi and v2k−i+1 such that
(v1+v2k−i+1)−(v2k+vi) ≥ δ(p1) for some 2 ≤ i ≤ 2k−1;
these numbers complete the pairs, i.e., A = {v1, v2k−i+1}
and B = {vi, v2k}. The four chosen numbers are removed
from p∪, and we proceed to find the next two pairs A and B
(see lines 4 to 14). The process is repeated until p∪ becomes
empty or it is left with two numbers only (see lines 6 to 8).
The complexity of Meld is O(k2), since in the worst case it
takes O(k2) steps to process all the numbers in p∪.

To illustrate the algorithm, we apply Meld to Example 2,

Algorithm 2: Meld
Input: k-tuple p1, p2 and p3 with δ(p1) > δ(p2) + δ(p3)
Output: a final k-tuple p′

1 p∪ = p2 ∪ p3, sort p∪ in descending order;
2 δ− = 2δ(p1)

k−1 ; p′ = ∅;
3 while |p∪| > 0 do
4 let v1 be the largest number in p∪;
5 let v|p∪| be the smallest number in p∪;
6 if |p∪| = 2 then
7 p′ = p′ ∪ {v1 + v|p∪|};
8 break out of the while loop;
9 for i = 2 to |p∪| − 1 do

10 if (v1 + v|p∪|−i+1)− (v|p∪| + vi) ≥ δ(p1) then
11 break out of the for loop;

12 p′ = p′ ∪ {v1 + v|p∪|−i+1} ∪ {v|p∪| + vi};
13 Remove v1, v|p∪|, vi, v|p∪|−i+1 from p∪;
14 δ(p1) = δ(p1)− δ−;
15 fold p1 with p′ and store the result in p′;
16 return p′;

where S = {60, 52, 40, 26, 19, 16, 14, 12, 10, 9, 6, 5}. Here
p∪ = p2 ∪ p3 = {19, 16, 14, 12, 10, 9, 6, 5}, δ(p1) = 60 −
26 = 34 and δ− = 34 ∗ 2/3 = 22.7. After initializing
A = {19, } and B = {5, }, Meld scans from 6 towards
16 to complete A and from 16 to 6 for B. The scan pro-
duces numbers 16 and 6, without satisfying the condition in
line 10 of Algorithm 2. The iteration is completed by adding
19+16 and 6+5 to p′, and removing these four numbers from
p∪. The next iteration starts with 14 in A and 9 in B. The
scan in lines 9 to 11 yields A = {14, 12} and B = {10, 9},
again without passing the test in line 10. Now we have
p′ = (19 + 16, 6 + 5, 14 + 12, 9 + 10)=(35, 26, 19, 11). Fold-
ing p1 with p′ produces the final partitioning (60 + 11, 52 +
19, 40 + 26, 26 + 35) = (71, 71, 66, 61), with an optimal
spread of 10, a 50% improvement over BLDM’s spread of
22.

The following proposition shows formally that melding p2
and p3 indeed achieves the objective of a wider spread than
folding.

Proposition 2 Melding k-tuples p2 and p3 produces a k-
tuple p′ in which each element is the sum of two numbers
in p2 ∪ p3, such that δ(p′) ≥ δ(p2) + δ(p3).

Proof. Since the numbers in every k-tuple are sorted in de-
scending order by construction, we have:

δ(p2) + δ(p3) = (v2,1 − v2,k) + (v3,1 − v3,k)

= (v2,1 + v3,1)− (v2,k + v3,k) (4)

Now consider the number pairs A and B found in the first it-
eration of Algorithm 2. If the scan in lines 9 to 11 completes
without passing the test in line 10, A holds the two largest
numbers v1 and v2 in p∪, with v1 + v2 ≥ v2,1 + v3,1. More-
over, B holds the two smallest numbers v2k−1 and v2k in p∪,
with v2k−1 +v2k ≤ v2,k+v3,k. Thus, δ(p′) ≥ δ(p2)+δ(p3).
If the scan terminates early, then A = {v1, v2k−i+1} and



B = {vi, v2k} lead to δ(p′) = (v1 + v2k−i+1) − (vi + v2k)
that is just above δ(p1), so δ(p′) > δ(p2) + δ(p3). 2

Meld extends to situations where S is split into more than
three k-tuples. We repeatedly test whether the three k-tuples
pi, pj and pl with the largest spreads satisfy the condition
δ(pi) > δ(pj) + δ(pl). If so, we perform melding to com-
bine them into a new k-tuple; if not, we resort to a folding
operation on pi and pj . Through this process of melding and
folding operations, we eventually obtain a single k-tuple that
represents the final partitioning.

5 The Hybrid Algorithm
LRM and Meld can be applied to produce high-quality solu-
tions when the numbers to be partitioned are known (or have
been tested) to follow a uniform or skewed distribution. To
cope with arbitrary input data without a priori knowledge of
their distribution, we incorporate LRM, Meld and the folding
operation of BLDM into a Hybrid algorithm. Specifically,
whenever the three k-tuples pi, pj and pl with the largest
spreads satisfy the condition δ(pi) > δ(pj) + δ(pl), Meld is
executed. Otherwise, we perform LRM or folding, depending
on whether the number of remaining k-tuples is odd or even.
The process is repeated until we are left with a single k-tuple.

6 Empirical Validation
We implemented BLDM, LRM, Meld and Hybrid in C++
and evaluated them on a PC with an Intel Core Duo 2GHz
CPU. We used three kinds of datasets: (a) The first contains
numbers that are normally distributed with a mean of 1000
and variance from 0.1 × mean to 1.0 × mean. (b) The
second dataset is uniformly distributed, with numbers drawn
from [0, 2000]. (c) The last dataset follows a Zipf distribution
f(x) = 1

xθ in [0, 10000], with θ from 0.1 to 2. Each reported
measurement is the average over 100 trials.

6.1 Impact of Subset Cardinality (b)
In the first experiment, we measure the spread as we vary the
subset cardinality b from 3 to 50 (because LRM and Meld
are designed for b ≥ 3), while fixing the number of subsets
k to 500. This setting corresponds to a balanced 500-way
partitioning. In tandem with the varying b, the dataset size n
increases from 3× 500 to 50× 500.

For the uniform dataset, we report the results separately
for odd and even b, because LRM is designed specifically for
odd b settings. Figure 2(a) shows the spreads for odd b values,
with b = 3, 5, 7..., 49 on the x-axis. The results confirm that
LRM achieves 1

3 the spread of BLDM, as proven in Propo-
sition 1. Meld performs as poorly as BLDM, which is not
surprising; since the condition for melding is never met for
k-tuples with nearly equal spreads, Meld resorts to folding
operations instead. Hybrid is slightly inferior to LRM, be-
cause the former may invoke LRM multiple times (instead of
just once), which is not ideal for uniformly distributed data.

Figure 2(b) illustrates the spread for uniform data and even
b values, with b = 4, 6, 8..., 50 on the x-axis. For even b,
LRM degenerates to BLDM and is thus omitted from the
chart. BLDM achieves partitioning solutions with very small
spreads. This graceful performance is possible only because
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Figure 2: Performance comparison with k fixed at 500

in this experiment there is an even number of k-tuples with
similar spreads that successfully offset each other. Since the
execution conditions for LRM and melding are not met, Hy-
brid relies exclusively on folding operations, leading to the
same partitioning solutions as BLDM. Likewise for Meld.

Next, we turn to the results obtained with the Zipf dataset,
depicted in Figure 2(c). Due to space limitation, the figure
only includes results for θ = 1.2 (where about 95% of the
numbers fall in 20% of the data space). Clearly, BLDM does
not handle skewed data well, for the reasons discussed in Sec-
tion 2.2. LRM exhibits similar performance to BLDM be-
cause, even when b is odd, the data skew in the Zipf distribu-
tion is too high to be offset by applying LRM only once on
the first three k-tuples. In comparison, Meld handles skewed
data successfully, especially for b > 10. We note that Meld
works even better in (omitted) experiments with a larger θ.
Hybrid behaves similarly to Meld, since it invokes the meld-
ing operation extensively.

Turning to normally distributed data, we plot results for
a variance of 0.6 ×mean in Figure 2(d) (the relative perfor-
mance of the algorithms is similar across all variances tested).
Meld and Hybrid outperform BLDM vastly, producing parti-
tioning solutions with spreads less than 1

10 of those gener-
ated by BLDM for b between 18 and 50. This wide differ-
ence arises because the normal distribution leads to relatively
few large and small numbers, while the majority of the values
cluster around the mean. Thus, when the dataset S is carved
into k-tuples, the first few have steep spreads, followed by
many tuples with smaller and smaller spreads, before the pat-
tern reverses. Meld and Hybrid are able to offset those k-
tuples with large spreads in the early iterations, before switch-
ing to folding operations until termination. BLDM and LRM,
however, are not adept at handling such data.
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Figure 3: Performance comparison with fixed b

6.2 Impact of the Problem Size (n)
The next experiment studies the effect of the dataset size, i.e.,
n, on the various algorithms. We increase n progressively
from 8, 000 to 160, 000 while fixing the subset cardinality b.
We report only results for b = 16 (as well as b = 15 for
uniform data). Results for other b settings follow a similar
trend to those shown here. Note that k increases in tandem
with n, from 500 to 10, 000.

For b = 15 and uniform data (Figure 3(a)), LRM and Hy-
brid are consistently better than BLDM. In Figure 3(b), for
b = 16 and uniform data, the spreads produced by all the al-
gorithms drop and then remain close to zero as n increases,
verifying that even cardinalities are generally easier to handle.
For Zipf numbers, Figure 3(c) shows that Meld and Hybrid
outperform BLDM consistently by about 17% across differ-
ent n settings. For normally distributed data (Figure 3(d)),
Meld and Hybrid achieve spreads that are about 10% to 34%
those of BLDM. Across all experiments in Figure 3, the rela-
tive performance of LRM, Meld, Hybrid and BLDM is stable
with respect to n, because it is the data distribution that has a
larger effect on their effectiveness.

6.3 Computation Overhead
Finally, we consider the CPU overhead of the various algo-
rithms. At n = 25, 000 and k = 500, BLDM executes in
under 80 ms in all of our experiments. Despite having the
same time complexity O(n log n) as BLDM, the actual CPU
time incurred by LRM is higher, at about 100 ms. In con-
trast, Meld and Hybrid are more computationally intensive,
owing to the melding operation; their CPU times are less
than 600 ms for the normal distribution, 780 ms for the Zipf
data, and 200 ms for the uniform dataset. Nevertheless, LRM,
Meld and Hybrid are all practical, having very reasonable ex-

ecution times. It is worth mentioning that even for one million
numbers (with, say, k = 500 and normal distribution), they
all complete in less than 4 seconds.

7 Conclusion
In this paper, we study the balanced k-way number partition-
ing problem. Given a set of numbers, the goal is to partition
it into k subsets of equal cardinalities so that the subset sums
are as similar as possible. With the objective of designing
practical solutions for large problem settings, we introduce
two heuristic methods. The first, called LRM, utilizes a pre-
dictable pattern of adding numbers across three batches of k
in order to produce k partial sums that are similar in magni-
tude. The second method, Meld, employs a (seemingly coun-
terintuitive) strategy of melding two batches of k numbers
into a batch of k widely varying partial sums, before offset-
ting them against another high-variance batch. To complete
our framework, we combine LRM and Meld into a Hybrid
algorithm that dynamically adapts to different data charac-
teristics. Extensive experiments confirm the effectiveness of
LRM and Meld for uniform and skewed data, respectively,
while Hybrid consistently produces high-quality partitioning
solutions within short execution times.
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