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Abstract—The diffusion of social networks introduces new
challenges and opportunities for advanced services, especially
so with their ongoing addition of location-based features. We
show how applications like company and friend recommendation
could significantly benefit from incorporating social and spatial
proximity, and study a query type that captures these two-
fold semantics. We develop highly scalable algorithms for its
processing, and use real social network data to empirically verify
their efficiency and efficacy.

I. INTRODUCTION

The emergence of social networks (SNs) brings a new
era in the organization and browsing of online information.
Manufacturers and service providers are becoming increasingly
interested in exploiting popular SNs to promote their products
and services. At the same time, location-based services are an
indispensable feature in SNs. The most popular SN, Facebook,
includes a set of location-based features, while others (such as
Foursquare) rely explicitly on the management of user loca-
tions. Motivated by this trend, we investigate the integration
of social and spatial information in a single query.

Consider a service like badoo.com, where a user u1 who
is looking for company to have lunch or watch a movie,
may browse the profiles of nearby users and invite them to
join him/her. Existing systems apply a traditional k-nearest
neighbor query, potentially with some binary conditions (re-
garding age, sex, etc), to provide u1 with the profiles of
users in the vicinity. While recommended users are indeed
near u1 geographically, her true preferences of companions
would be better captured if SN information was also taken
into account. Assume, for example, that the users’ Euclidean
coordinates and social connections are as shown in Figures
1(a) and 1(b), respectively. The closest user to u1 in the spatial
domain is u5. However, u4 might be a better match because he
locates only slightly farther (compared to u5) but is “closer”
in the social network. Conversely, the closest user socially
(u2) may be too far spatially. Therefore, to provide meaningful
recommendations, both social proximity and spatial proximity
should be integrated in the search.

In this extended abstract we summarize [1], where we
propose and study the social and spatial ranking query (SSRQ).
SSRQ reports the top-k users in the SN based on a ranking
function that incorporates social and spatial distance from the
query user.
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Fig. 1. Motivating example

II. PROBLEM FORMULATION

We consider a set of SN users with known Euclidean coor-
dinates. The SN is modeled as an undirected, weighted graph
containing an edge for every pair of users that are friends. The
edge weight indicates the strength of their relationship – the
smaller the weight, the stronger the friendship.

We define spatial proximity between users ui and uj as
their Euclidean distance d(ui, uj). We measure their social
proximity as the shortest path distance between them in the
SN, denoted as p(ui, uj). We use this measure because it is
demonstrated to effectively capture social proximity/influence
[2], [3]. Following common practice in combining measure-
ments from different domains, we apply a linear function over
the (normalized) social and spatial proximity to rank users.
Given a query user uq , the joint distance of ui ∈ U is:

f(uq, ui) = α · p(uq, ui) + (1− α) · d(uq, ui) (1)

where α is a (user- or application-specified) real number
between 0 and 1 that determines the relative significance of
proximity in the two domains. The SSRQ query returns the
k users with the smallest joint distance to uq (for a positive
integer k). Note that our definition uses normalized social
and spatial proximities, by dividing raw distances with the
maximum pairwise distance in Euclidean space and in the
social graph, respectively.

III. SSRQ ALGORITHMS

We first present two simple solutions, Social First Ap-
proach (SFA) and Spatial First Approach (SPA); then we
hybridize them into an elaborate algorithm, Twofold Search
Approach (TSA); finally, we describe our most advanced
solution, Aggregate Index Search (AIS), which summarizes
both social and spatial information into the same index, and
runs a unified search on that index.



SFA considers users in increasing social distance from
uq , using Dijkstra’s algorithm. For every user popped from
Dijkstra’s search heap, SFA also computes her Euclidean
distance to uq and, in turn, her joint distance. The k closest
users found so far are kept in an interim result. Let u be the last
user popped, and fk be the joint distance of the k-th (i.e., most
distant) user in the interim result. The social distance of every
un-processed user is at least p(uq, u). Thus, when α · p(uq, u)
becomes greater than fk, the interim result is finalized.

SPA considers users in increasing Euclidean distance, using
an incremental nearest neighbor search around uq . For every
encountered user, SPA computes her social distance to uq . It
maintains in an interim result the k encountered users with the
smallest joint distances to uq . Let u be the last encountered
user. The interim result is finalized when (1 − α) · d(uq, u)
becomes greater than fk (value fk is defined as in SFA).

TSA performs two incremental searches around uq , one
in the social and the other in the spatial domain. In its first
phase, TSA retrieves users from both domains in a round-robin
fashion. Users encountered in the social domain, have their
joint distance computed directly, and are used to maintain
an interim result of the k best. Instead, users encountered
in the spatial domain are held in a candidate set (to defer
computation of their social distance). Let tp and td be the
social and spatial distance of the last encountered user in the
respective domain. The first phase of TSA terminates when
α·tp+(1−α)·td ≥ fk. This condition guarantees that the only
users that may belong to the final result are either in the interim
result or in the candidate set. In the second phase of TSA, only
the social search continues. Once a user from the candidate
set is encountered, her joint distance becomes known; if it is
smaller than fk, the interim result is updated accordingly. TSA
terminates when no un-processed user from the candidate set
may enter the interim result (taking into account her actual
spatial distance and that her social distance is at least as large
as the social distance tp where social search has reached).

In [1] we describe optimizations for TSA. One of them
replaces round-robin probing (in the first phase of TSA) with
the Quick Combine strategy [4]. Another enhances TSA by
the landmark approach [5]. This approach associates each user
with a vector that stores pre-computed social distances from a
set of anchor users in the social graph. That vector is used at
runtime to derive a lower bound of p(uq, u) for every user u
in the candidate set (in the second phase of TSA).

Although TSA utilizes tighter bounds than SFA and SPA, it
may still visit numerous users who are close in the social graph
but far away in the spatial domain, and vice versa. The reason
is that the two searches are oblivious of each other, and may
be accessing completely different users. This motivates AIS,
which summarizes both social and spatial information into the
same index, and runs a unified search on it.

The index of AIS is a multi-level spatial partitioning struc-
ture, where each node is augmented with a social summary.
AIS builds on the landmark approach. The social summary of
a node is produced by the landmark vectors of users inside
its spatial extent, using a novel aggregation method. Given the
landmark vector of the query user uq , the social summary of
a node can be used to derive a lower bound for the social
distance of all underlying users to uq . On the other hand, the

spatial extent of the node provides a lower bound for the spatial
distance of these users to uq too. Combining the two bounds
into Equation 1, we derive a lower bound for the joint distance
of any user under the node. The latter enables a branch-and-
bound search that visits index nodes in increasing order of their
lower bounds. AIS terminates when fk in its interim result is
smaller than the lower bound of the next node to be visited.

In [1] we enhance AIS with optimizations. We accelerate
graph search by a hybrid bi-directional shortest path technique,
which uses Dijkstra’s algorithm in one direction and A∗ in the
other. We also employ computation sharing in deriving shortest
paths from uq to different users. Finally, as AIS proceeds and
explores a larger part of the SN, we exploit the knowledge
gained to tighten the landmark-derived lower bounds.

IV. REPRESENTATIVE EXPERIMENTS

We use two real datasets. Gowalla, from snap.stanford.edu,
contains 196K users. Foursquare, used in [6], contains 1.88M
users. Our implementation is in C++. Data and indices are
kept in main memory. In Figure 2 we test different values of
α, i.e., different weighing of social versus spatial proximity.
Label TSA corresponds to the landmark-aided version of TSA,
while TSA-QC to its Quick Combine variant.
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Fig. 2. Effect of α

SFA examines vertices in increasing social distance order,
which implies that for large α the first few processed vertices
are highly likely to already produce the result. TSA and
TSA-QC are also more socially-led (than spatially), since their
second phase relies entirely on graph search, thus benefiting
from a large α. SPA is spatially-led and hence its performance
worsens with α. AIS is robust to α and retains a clear lead
over alternatives, which is the case in all experiments in [1].
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