Joint Search by Social and Spatial Proximity (Extended Abstract)

Kyriakos Mouratidis
School of Information Systems
Singapore Management University
kyriakos@smu.edu.sg

Jing Li, Yu Tang and Nikos Mamoulis
Department of Computer Science
University of Hong Kong
{jli, ytang, nikos}@cs.hku.hk

Abstract—The diffusion of social networks introduces new challenges and opportunities for advanced services, especially so with their ongoing addition of location-based features. We show how applications like company and friend recommendation could significantly benefit from incorporating social and spatial proximity, and study a query type that captures these two-fold semantics. We develop highly scalable algorithms for its processing, and use real social network data to empirically verify their efficiency and efficacy.

I. INTRODUCTION

The emergence of social networks (SNs) brings a new era in the organization and browsing of online information. Manufacturers and service providers are becoming increasingly interested in exploiting popular SNs to promote their products and services. At the same time, location-based services are an indispensable feature in SNs. The most popular SN, Facebook, includes a set of location-based features, while others (such as Foursquare) rely explicitly on the management of user locations. Motivated by this trend, we investigate the integration of social and spatial information in a single query.

Consider a service like badoo.com, where a user \(u_1 \) who is looking for company to have lunch or watch a movie, may browse the profiles of nearby users and invite them to join him/her. Existing systems apply a traditional \(k \)-nearest neighbor query, potentially with some binary conditions (regarding age, sex, etc), to provide \(u_1 \) with the profiles of users in the vicinity. While recommended users are indeed near \(u_1 \) geographically, her true preferences of companions would be better captured if SN information was also taken into account. Assume, for example, that the users’ Euclidean coordinates and social connections are as shown in Figures 1(a) and 1(b), respectively. The closest user to \(u_1 \) in the spatial domain is \(u_5 \). However, \(u_4 \) might be a better match because he locates only slightly farther (compared to \(u_5 \)) but is “closer” in the social network. Conversely, the closest user socially (\(u_2 \)) may be too far spatially. Therefore, to provide meaningful recommendations, both social proximity and spatial proximity should be integrated in the search.

In this extended abstract we summarize [1], where we propose and study the social and spatial ranking query (SSRQ). SSRQ reports the top-\(k \) users in the SN based on a ranking function that incorporates social and spatial distance from the query user.

![Motivating example](image)

Fig. 1. Motivating example

II. PROBLEM FORMULATION

We consider a set of SN users with known Euclidean coordinates. The SN is modeled as an undirected, weighted graph containing an edge for every pair of users that are friends. The edge weight indicates the strength of their relationship – the smaller the weight, the stronger the friendship.

We define spatial proximity between users \(u_i \) and \(u_j \) as their Euclidean distance \(d(u_i, u_j) \). We measure their social proximity as the shortest path distance between them in the SN, denoted as \(p(u_i, u_j) \). We use this measure because it is demonstrated to effectively capture social proximity/influence [2], [3]. Following common practice in combining measurements from different domains, we apply a linear function over the (normalized) social and spatial proximity to rank users.

Given a query user \(u_q \), the joint distance of \(u_i \in U \) is:

\[
f(u_q, u_i) = \alpha \cdot p(u_q, u_i) + (1 - \alpha) \cdot d(u_q, u_i)
\]

where \(\alpha \) is a (user- or application-specified) real number between 0 and 1 that determines the relative significance of proximity in the two domains. The SSRQ query returns the \(k \) users with the smallest joint distance to \(u_q \) (for a positive integer \(k \)). Note that our definition uses normalized social and spatial proximities, by dividing raw distances with the maximum pairwise distance in Euclidean space and in the social graph, respectively.

III. SSRQ ALGORITHMS

We first present two simple solutions, Social First Approach (SFA) and Spatial First Approach (SPA); then we hybridize them into an elaborate algorithm, Twofold Search Approach (TSA); finally, we describe our most advanced solution, Aggregate Index Search (AIS), which summarizes both social and spatial information into the same index, and runs a unified search on that index.
SFA considers users in increasing social distance from \(u_q \), using Dijkstra’s algorithm. For every user popped from Dijkstra’s search heap, SFA also computes her Euclidean distance to \(u_q \) and, in turn, her joint distance. The \(k \) closest users found so far are kept in an interim result. Let \(u \) be the last user popped, and \(f_k \) be the joint distance of the \(k \)-th (i.e., most distant) user in the interim result. The social distance of every un-processed user is at least \(p(u_q, u) \). Thus, when \(\alpha \cdot p(u_q, u) \) becomes greater than \(f_k \), the interim result is finalized.

SPA considers users in increasing Euclidean distance, using an incremental nearest neighbor search around \(u_q \). For every encountered user, SPA computes her social distance to \(u_q \). It maintains in an interim result the \(k \) encountered users with the smallest joint distances to \(u_q \). Let \(u \) be the last encountered user. The interim result is finalized when \((1 - \alpha) \cdot d(u_q, u)\) becomes greater than \(f_k \) (value \(f_k \) is defined as in SFA).

TSA performs two incremental searches around \(u_q \), one in the social and the other in the spatial domain. In its first phase, TSA retrieves users from both domains in a round-robin fashion. Users encountered in the social domain, have their joint distance computed directly, and are used to maintain an interim result of the \(k \) best. Instead, users encountered in the spatial domain are held in a candidate set (to defer computation of their social distance). Let \(t_p \) and \(t_d \) be the social and spatial distance of the last encountered user in the respective domain. The first phase of TSA terminates when \(\alpha \cdot t_p + (1 - \alpha) \cdot t_d \geq f_k \). This condition guarantees that the only users that may belong to the final result are either in the interim result or in the candidate set. In the second phase of TSA, only the social search continues. Once a user from the candidate set is encountered, her joint distance becomes known; if it is smaller than \(f_k \), the interim result is updated accordingly. TSA terminates when no un-processed user from the candidate set may enter the interim result (taking into account her actual spatial distance and that her social distance is at least as large as the social distance \(t_p \) where social search has reached).

In [1] we describe optimizations for TSA. One of them replaces round-robin probing (in the first phase of TSA) with the Quick Combine strategy [4]. Another enhances TSA by the landmark approach [5]. This approach associates each user with a vector that stores pre-computed social distances from a set of anchor users in the social graph. That vector is used at runtime to derive a lower bound of \(p(u_q, u) \) for every user \(u \) in the candidate set (in the second phase of TSA).

Although TSA utilizes tighter bounds than SFA and SPA, it may still visit numerous users who are close in the social graph but far away in the spatial domain, and vice versa. The reason is that the two searches are oblivious of each other, and may be accessing completely different users. This motivates AIS, which summarizes both social and spatial information into the same index, and runs a unified search on it.

The index of AIS is a multi-level spatial partitioning structure, where each node is augmented with a social summary. AIS builds on the landmark approach. The social summary of a node is produced by the landmark vectors of users inside its spatial extent, using a novel aggregation method. Given the landmark vector of the query user \(u_q \), the social summary of a node can be used to derive a lower bound for the social distance of all underlying users to \(u_q \). On the other hand, the spatial extent of the node provides a lower bound for the spatial distance of these users to \(u_q \) too. Combining the two bounds into Equation 1, we derive a lower bound for the joint distance of any user under the node. The latter enables a branch-and-bound search that visits index nodes in increasing order of their lower bounds. AIS terminates when \(f_k \) in its interim result is smaller than the lower bound of the next node to be visited.

In [1] we enhance AIS with optimizations. We accelerate graph search by a hybrid bi-directional shortest path technique, which uses Dijkstra’s algorithm in one direction and \(A^* \) in the other. We also employ computation sharing in deriving shortest paths from \(u_q \) to different users. Finally, as AIS proceeds and explores a larger part of the SN, we exploit the knowledge gained to tighten the landmark-derived lower bounds.

IV. Representative Experiments

We use two real datasets. Gowalla, from snap.stanford.edu, contains 196K users. Foursquare, used in [6], contains 1.8SM users. Our implementation is in C++. Data and indices are kept in main memory. In Figure 2 we test different values of \(\alpha \), i.e., different weighing of social versus spatial proximity. Label TSA corresponds to the landmark-aided version of TSA, while TSA-QC to its Quick Combine variant.

Fig. 2. Effect of \(\alpha \)

SFA examines vertices in increasing social distance order, which implies that for large \(\alpha \) the first few processed vertices are highly likely to already produce the result. TSA and TSA-QC are also more socially-led (than spatially), since their second phase relies entirely on graph search, thus benefiting from a large \(\alpha \). SPA is spatially-led and hence its performance worsens with \(\alpha \). AIS is robust to \(\alpha \) and retains a clear lead over alternatives, which is the case in all experiments in [1].

REFERENCES

