
Preference Queries in Large Multi-Cost
Transportation Networks

Kyriakos Mouratidis #1, Yimin Lin #2, Man Lung Yiu ∗3

#School of Information Systems, Singapore Management University

80 Stamford Road, Singapore 178902
1
kyriakos@smu.edu.sg

2
yimin.lin.2007@phdis.smu.edu.sg

∗Department of Computing, Hong Kong Polytechnic University

Hung Hom, Hong Kong
3
csmlyiu@comp.polyu.edu.hk

Abstract— Research on spatial network databases has so far
considered that there is a single cost value associated with each
road segment of the network. In most real-world situations,
however, there may exist multiple cost types involved in trans-
portation decision making. For example, the different costs of a
road segment could be its Euclidean length, the driving time, the
walking time, possible toll fee, etc. The relative significance of
these cost types may vary from user to user. In this paper we
consider such multi-cost transportation networks (MCN), where
each edge (road segment) is associated with multiple cost values.
We formulate skyline and top-k queries in MCNs and design
algorithms for their efficient processing. Our solutions have two
important properties in preference-based querying; the skyline
methods are progressive and the top-k ones are incremental. The
performance of our techniques is evaluated with experiments on
a real road network.

I. INTRODUCTION

In most location based services, the users and the facilities

(i.e., points of interest) lie in a road network. Since this

network dictates the movement of users towards the facilities,

the notion of distance between a user and a facility is defined

as the total cost of the shortest path that connects them.

The cost of each traversed road segment is defined as the

length of the segment, the travel time required to drive (or

walk) through it, etc. The traditional range and k nearest

neighbor (kNN) queries have been extensively studied under

this definition of proximity (based on network distance) and

several storage schemes and algorithms have been proposed

for their processing (e.g., [1], [2]).

All these methods consider that there is a single cost type of

interest, i.e., either the path length, or the total travel time, or

the summed toll fees, etc. In practice, however, these multiple

cost types coexist and may collectively affect the decisions of

users (i.e., their preference over the facilities). Furthermore,

the relative importance of the costs is user-dependent; a user

may be interested in minimizing the total travel time (to

reach a facility), while another may be willing to accept a

longer travel time in order to minimize the monetary cost of

the journey (toll fees, fuel consumption). In such multi-cost

transportation networks (MCN), the choice of a facility often

affects multiple users or serves multiple purposes, each with

different reachability requirements. Balancing these require-

ments necessitates computing a skyline [3] over the facilities,

or finding the top-k [4] among them (in case different users

or purposes served can be prioritized, e.g., assigned some

significance weights). Preference queries in MCNs arise in

a variety of logistics, location-allocation and spatial planning

applications.

Consider a logistics scenario where various goods need to

be transferred from the port to a warehouse. There are multiple

locations where the warehouse can be built (or, there are

multiple warehouses we can choose from). Some goods are

sensitive and need to be transferred as fast as possible from

the port to the warehouse (e.g., dairy products), i.e., the route

chosen will minimize the total travel time. On the other hand,

less sensitive products will be moved using the cheapest route

(in terms of oil consumption, or total toll fees).

Figure 1 exemplifies this scenario, showing the port (query

location) as solid point q, and the warehouse locations (facil-

ities) as hollow points p1, p2. The rhombs correspond to toll

gates, each charging 1 $. For either of the two facilities p1 and

p2, the fastest route from q is illustrated by solid arrows, while

the cheapest route is represented by hollow ones. The numbers

in parentheses next to p1, p2 correspond to these shortest paths,

i.e., to the shortest travel time and the smallest monetary cost

respectively. In this setting, if a warehouse (facility), say p1,

were both faster and cheaper to reach than another, say p2,

we would eliminate the latter from consideration; formally,

we would say that p1 dominates p2. In our example, however,

it is not possible to express a preference of a warehouse over

the other, since one (p2) is faster to reach while the other

(p1) is cheaper. Therefore, they should both be reported by

our decision support system as possible facilities of choice.

This motivates the definition and use of the skyline concept in

MCNs.

The above setting also motivates another type of preference

query, namely top-k processing in MCNs. If we had more

information about the relative frequency of sensitive versus

non-sensitive loads moved, we would possibly be able to

balance the time and money criteria accordingly. For example,

if 90% of the products transferred were sensitive, we could

p1 (20 min, 0 $)

q

p2 (10 min, 1 $)

$

$

Fastest way
Cheapest way

$
Toll gate

$

Fig. 1. Multi-cost network example

quantify the suitability of a warehouse p using aggregate cost

function f(p) = 0.9 ·ct +0.1 ·c$, where ct is the (normalized)

time required by the fastest route from q to p, and c$ is the

(normalized) monetary cost of the cheapest path between q
and p. Since the lower f(p) the better, our decision support

system would report the facility that minimizes f(p), or maybe

(if more options are required) the k facilities with the lowest

aggregate costs. This is an instance of a top-k query in an

MCN.

In the above preference queries, the multiple criteria in-

volved had to do with different purposes served by the

facility (i.e., sensitive versus non-sensitive product storage).

In other applications, the existence of multiple criteria is

because different types of users will be served by the facility.

As an example of this latter category consider the situation

where a location must be chosen (from a set of available

residential blocks) to build a housing facility for the students

and instructors of a university. Clearly, the facility should be

built as close to the university as possible. However, closeness

is defined differently for different users, depending on their

means of commuting. Specifically, some students/instructors

are on foot while others drive from/to the university. Since the

shortest path according to walking time may be different than

that according to driving time1, the suitability of a location

depends on two different criteria. Furthermore, if pricing is

also a consideration for people who drive, then the additional

criterion of monetary cost needs to be taken into account.

Although this example is drawn from a different domain

than the warehouse scenario, a decision would be based on

similar MCN preference queries. For simplicity, consider that

the two criteria involved in the current example are driving

time and walking time. A facility dominates another if it is

faster to reach both on foot and by car; the skyline would

contain only the non-dominated locations. Assume now that

we are given the percentages of walking and driving stu-

dents/instructors, say 70% and 30% respectively. A meaningful

aggregate cost function would be f(p) = 0.7 · cw + 0.3 · cd,

where cw and cd are the shortest walking and driving times

between the university q and building block p. In this case,

the facility (or the facilities) of choice would be found by a

1The shortest driving path is usually different from the shortest walking
path, due to the existence of one-way streets, pedestrian-only streets, high-
ways, etc. A real example where this difference is taken into account is
the built-in “Maps” application of the iPhone (or similar features in other
products) where a choice between walking and driving modes is required
when the user requests for the shortest path between two locations.

top-k query.

Similar preference queries are also important in social

networks. Consider for instance a network where the edges

between individuals carry multiple weights, such as the de-

gree of family relationship (if any), the frequency/length

of calls between them, their spatial proximity (in terms of

residential addresses), the amount of time spent in the same

company/university during their career, their number of joint

projects, etc. Skyline and top-k queries in such an MCN could

find the people p that are closest related to a specific individual

q according to the multiple affinity measures. Although social

networks are not our main focus, our work directly applies to

this case too.

Despite the prevalence of MCNs and the significance of

the above preference queries, currently there exists no study

on them neither in the spatial network nor in the operations

research literature. In this paper we formally define skyline

and top-k queries in MCNs, and design efficient algorithms

for their processing. Our skyline methods are progressive, i.e.,

they output the first skyline facilities almost instantly and the

result is populated gradually until the algorithm terminates.

This property is typically useful in online systems [5], where

it is essential that parts of the result become available to

the application as soon as possible, without having to wait

for the algorithm to terminate. On the other hand, our top-

k techniques are incremental, i.e, having obtained the top-i
facilities, the (i + 1)-st can be retrieved without having to

calculate the top-(i + 1) result from scratch. This is crucial in

applications where k (the number of facilities to be retrieved)

is not known in advance.

The rest of the paper is organized as follows. Section II

surveys related work. Section III describes the setting and

formalizes the problems we consider. Section IV presents our

techniques for skyline processing in MCNs, while Section V

extends our framework to top-k queries. Section VI experi-

mentally evaluates our methods, and Section VII concludes

the paper with directions for future work.

II. RELATED WORK

In this section we review related work on preference queries,

road networks, and a relevant operations research problem.

A. Skyline Processing

Consider a relation P with attributes a1, a2, ..., ad. A tuple p
dominates another p′ if all the attributes of p are no larger than

those of p′, and at least one of them is smaller. The skyline of

P contains those tuples that are not dominated by any other.

[3] first considered skyline processing over disk-resident data,

and proposed two methods; one based on the block nested

loops and the other on the divide and conquer paradigm. The

former is improved in [6] and [7] by topologically sorting P
before processing. [8] extends this idea, and additionally may

terminate without scanning the complete ordered input.

An index on P may accelerate processing (e.g., [5], [9],

[10]). [10] is the most efficient method for indexed data. It

utilizes an R-tree [11] on the d attributes of P to incrementally

retrieve the nearest neighbors (NN) to the origin of the data-

space. The first NN is guaranteed to be in the skyline, and is

used to prune the part of the space it dominates. Then, the next

NN is retrieved in the remaining part of the space; it is also

included in the skyline and used to further prune the search

space. The process continues until no more NNs can be found

in the non-dominated part of the space. [10] is I/O optimal,

i.e., it accesses the minimal number of R-tree nodes.

None of the above methods apply to our case, because

they assume that once a tuple is encountered, all its attributes

are directly available (and can thus be used for dominance

checks). This is not the case in MCN skyline, since acquiring

the different costs of a facility is expensive, and also because

knowing one of these costs does not imply that we can directly

retrieve the remaining ones.

B. Top-k Processing

Consider the same relation P and a scoring function f over

its attributes. A top-k query retrieves the k tuples p ∈ P with

the highest f(p) scores. [4] proposes the threshold algorithm

(TA), which is suitable for monotone scoring functions f .

It assumes that the tuples are organized in d sorted lists,

one for each attribute, ordered in descending preference order

according to the specific attribute. TA pops the top element of

each list in a round-robin fashion and computes its score. It

terminates when the k-th best tuple found so far has no smaller

score than threshold T = f(t1, t2, ..., td), where ti is the key of

the next element in the i-th list. The no-random-access flavor

of TA also uses T but it does not compute f(p) directly upon

encountering p in a list; instead, it does so only when p has

been popped by the remaining lists. Our top-k algorithms are

related to this method. However, in our case the costs (playing

the role of attributes) are not available or sorted in advance,

and can only be retrieved by network operations. Also, we do

not maintain any global threshold T ; our termination condition

relies purely on the network-based properties of the search.

[12] extends TA to skyline processing; [12] does not apply to

MCN skylines for the reasons explained above for TA, but also

because it requires random accesses to the tuple attributes.

Assuming a monotone f and the existence of an R-tree on

P , [13] describes an I/O optimal top-k algorithm. It visits

the R-tree nodes in descending order of their maxscore; the

maxscore of a node equals the highest among the scores of

its MBR corners (which is an upper bound of the score of

any tuple under this node). The search terminates when the

k-th best tuple encountered has score no smaller than the

maxscore of the next R-tree node to be visited. This method

is only applicable to the vector space model and assumes that

the attributes (and thus the score) of a tuple can be directly

retrieved upon encountering the tuple.

C. Road Network Databases

A road network is a graph G = {V,E, W}, where V
contains the network nodes (road intersections), E includes

the edges (road segments), and W associates a weight (e.g.,

Euclidean length, travel time, etc) to each edge in E. The

shortest path query is the most common in this setting; it

computes the edge sequence between a source vs and a

destination node vd with the smallest sum of edge weights

(this sum is called the network distance between these nodes).

Dijkstra’s algorithm [14] is the most widely used algorithm

for this query due to its generality and efficiency. It pushes in

a min-heap the adjacent nodes of vs, with keys equal to the

weights of the corresponding edges. It then iteratively pops the

head of the heap, and en-heaps its adjacent unvisited nodes.

The process continues until vd is popped; the shortest path is

formed by tracing back vd’s predecessors in the traversal all

the way until vs.

The A* algorithm [15] improves Dijkstra’s performance,

provided that a lower bound LB(v, vd) is available for the

network distance of every node v from vd. For example, if

network distance is defined as the total (Euclidean) length

of the shortest path between two nodes, then the Euclidean

distance can be used as LB. A* proceeds exactly like

Dijkstra’s algorithm, but uses as sorting key of a node v
its network distance from vs plus LB(v, vd). We focus on

Dijkstra’s algorithm, because we target generic cost types for

which lower bounds typically do not exist. For large graphs,

shortest path search may be accelerated by pre-computing and

materializing all or some of the shortest paths/distances among

network nodes [16], [17], [18], [19].

[1] proposes network expansion (NE), an adaptation of

Dijkstra’s algorithm for disk-resident data. Given a query

location q and a set of facilities P in the network, NE computes

the k nearest facilities (NNs) to q in terms of network distance.

Once an edge’s end-node is popped from the search heap, the

facilities on this edge are read from the disk and pushed into

the heap. The first popped facility is the first NN, the second

is the second NN, and so on. NE is incremental, i.e., the next

NN can be iteratively retrieved by keeping popping the heap.

NE may also be applied to range queries.

[20] proposes the multi-source skyline query, extending the

concept of the spatial skyline [21] to road networks. Given

a set of d query points, each facility p is mapped to a d-

dimensional point, where the i-th dimension corresponds to p’s

network distance from the i-th query point. The result of the

query is the skyline in this d-dimensional space. The main idea

is to search the network concurrently for all query points and

to exploit Euclidean bounds to guide the search. [20] does not

apply to MCN skyline, because it solves a different problem:

it considers a single cost type and is meaningful when a query

set is defined (as opposed to a single query point). Also, in our

case no Euclidean bounds can be used, because we consider

general cost types for which no such bounds are available.

D. Multi-Criteria Pareto Path Computation

MCNs have been considered in the field of operations re-

search for multi-criteria Pareto path computation (MCPP) over

memory-resident data. Given a source vs and a destination

node vd in the MCN, the problem is to compute the skyline

among all possible paths between vs and vd (in terms of the

d MCN cost types). A path dominates another if none of its d

costs is larger. Most approaches build on Dijkstra’s algorithm,

and are categorized into label setting [22], [23] and label

correcting [24], [25], [26] algorithms. If lower bounds are

known for the network distance (according to all cost types),

the traditional A* search may also be adapted to MCPP [27],

[28]. MCPP is inherently different from our MCN skyline,

because (i) the former computes a skyline of paths, while the

latter is a skyline of facilities, (ii) in MCPP there is a single and

given destination, whereas in our case the destination could

be any facility in P , (iii) MCPP considers all possible paths

between vs and vd, but we take into account only the shortest

paths according to each cost type.

III. PROBLEM FORMULATION

In this section we formalize the problem and the queries

we consider. We also state our assumptions and scope of

applicability.

Multi-cost network (MCN): An MCN is a road network

(weighted graph) G = {V,E, W}, where V is the set of nodes,

E is the set of edges, and W is a function that associates

each edge e ∈ E with a cost vector
→

w (e), where
→

w (e) =
{w1, w2, ..., wd}. Values wi (for i = 1...d) are the costs of e
according to the d cost types involved in decision making. For

example, w1 could be the Euclidean length of e, w2 could be

the walking time to reach from one end-node to the other, w3

could be the driving time, w4 could be the toll fee, etc. The

only assumption we make about the wi values is that they are

non-negative2. We assume undirected edges, where the cost

vector to either direction is identical. However, our methods

extend trivially to directed edges. The node information may

or may not include the spatial coordinates of nodes v ∈ V , i.e.,

our methods do not rely on the location of the nodes but only

on the connectivity among them. For ease of presentation, in

the following we often refer to an edge e using its end-nodes

as 〈vi, vj〉.

Facility set P : This is the entire set of points of interest, i.e.,

the set of available facilities that our applications may choose

from. All facilities p ∈ P fall on the edges of the MCN. If a

facility p falls between the end-nodes of an edge e, then the

partial weight from p to either end-node of e is proportional

to their Euclidean distance, while the sum of the two partial

weights is equal to
→

w (e). The facilities may be associated

with additional (non-spatial, non-network-based) information,

e.g., in the warehouse example, this could be the capacity of

the warehouse, name of owner, etc.

Shortest path and smallest cost vectors: Given a query

location q on the MCN, we denote as si(q, p) (for some p ∈
P) the shortest path from q to p in terms of the i-th cost

type, and as ci(q, p) its total cost, i.e., the sum of the wi

values of the edges (partial or not) included in the path3. For

2We consider general costs for which no bounds exist and, thus, we rely
on Dijkstra’s algorithm and its disk-based counterpart, the network expansion
technique (described in Section II-C).

3Note that if q falls in between the end-nodes of an edge, the partial weights
to the end-nodes are defined as described previously for the facilities.

example, s1(q, p) is the path between q and p with the smallest

Euclidean length (with c1(q, p) being its Euclidean length),

and s2(q, p) is the fastest path between q and p in terms of

walking time (with c2(q, p) being the total walking time along

s2(q, p)). The d shortest paths and their costs define vectors
→

s (q, p) and
→

c (q, p) respectively. For simplicity, when the

query location is clear from the context, we omit q from the

notation, e.g., we use
→

s (p) instead of
→

s (q, p).

MCN skyline: Given a query location q on the MCN, its

skyline sky(q) includes those and only those facilities p ∈ P
that are not dominated by any other point p′ ∈ P ; a facility

p′ dominates p if and only if ci(p
′) ≤ ci(p),∀i ∈ [1, d], and

cj(p
′) < cj(p) for some j ∈ [1, d]. Essentially, this means that

there is no facility in {P − sky(q)} that is cheaper to reach

according to all costs than a facility in sky(q).

MCN top-k query: The input of this query includes the

query location q (which must fall on the MCN), an aggregate

cost function f , and an application-defined positive integer

k. Function f maps each facility p to a real number f(p),
called the aggregate cost of p. Function f is defined over
→

c (p), i.e., over the d individual costs ci(p), and is an

increasingly monotone function. This means that if and only

if ci(p) ≤ ci(p
′),∀i ∈ [1, d] for two facilities p, p′ in P then

f(p) ≤ f(p′). The result of the query is a subset top(q)
of P , containing the k facilities with the smallest aggregate

costs, i.e., f(p) ≤ f(p′),∀p ∈ top(q), p′ ∈ {P − top(q)} and

|top(q)| = k. Ties for the k-th facility are resolved arbitrarily.

We must stress that the incremental top-k query does not

require k as an input, but may report iteratively the facility

with the immediately larger aggregate cost than its last output

result.

There exists an interesting connection between the MCN

skyline and the top-k query. Like in their conventional counter-

parts, the skyline contains all facilities that belong to the result

of any top-1 query with an increasingly monotone aggregate

cost function.

We assume that the MCN and the facility set are organized

in secondary storage using an adaptation of the storage scheme

in [2], exemplified in Figure 2. Given a node identifier (e.g.,

vi), the adjacency tree links to the location of a flat file (the

adjacency file) that contains the node’s adjacency list. The first

entry of this list implies that vi is adjacent to vj and provides

the cost vector of edge 〈vi, vj〉; it also has a pointer into the

facility file that stores the facilities lying on the edge. For

each facility (e.g., pm), the facility file includes its Euclidean

distance from the first end-node of the edge (i.e., |vipm|) so

that its partial weights can be computed. The facility tree stores

for each facility p the identifier of the edge it lies in and a

pointer to p’s location in the facility file.

In the following section (Section IV) we describe our

skyline algorithms, which also constitute the basis for the top-

k methods (Section V). Table I summarizes the notation used

in the paper.

v
i

Adj.
tree .

.
.

v
j

v
i+1

.
.
.

w(v
i

v
j

)

.
.
.

p
l

|v
i

p
l

|
v

k

w(v
i

v
k

)

Adjacency file Facility file

p
m

|v
i

p
m

|
→

→ Facility
tree

p
l

p
m

Fig. 2. Network storage scheme

TABLE I

INTERPRETATION OF NOTATION

Symbol Description

v An MCN node
e or 〈vi, vj〉 An MCN edge between nodes vi, vj

d The number of cost types considered
→

w (e) The cost vector of edge e
P The set of facilities
q The query location on the MCN

si(p) Shortest path from q to p w.r.t. i-th cost type
ci(p) Cost of si(p) (in terms of the i-th cost type)
→

s (p) The shortest path vector of facility p
→

c (p) The cost vector of facility p
sky(q) The skyline of q
f(p) The aggregate cost of p

top(q) The top-k set of q
CS Candidate set

IV. MCN SKYLINE PROCESSING

A straightforward way to compute the skyline of a query

location q is to perform d complete network expansions from

q to all facilities p ∈ P , and thus compute their cost vectors
→

c (p). After that, the cost vectors can be processed by any

traditional skyline algorithm (see Section II-A). The problem

of this method is that it reads the entire database (MCN and

facility information) d times, which leads to a prohibitively

long running time. Intuitively, the skyline facilities should be

located close to q, and the MCN should have to be explored

only around it. This is the objective of the Local Search

Algorithm (LSA) described next.

A. Local Search Algorithm

LSA prunes the search space by performing the d cost

expansions concurrently and stopping when none of them may

lead to new skyline facilities. Specifically, LSA initializes one

NN network expansion for each cost type at query location

q. As explained in Section II-C, NNs (i.e., nearest facilities)

can be discovered incrementally for each of the costs. LSA

proceeds in two stages; the growing and the shrinking one.

Growing stage: During the growing stage, candidate sky-

line facilities are identified. LSA iteratively pops the next NN

for one of the expansions, cycling through the d choices in

a round-robin fashion. Every facility (NN) output is included

in the candidate set CS. The growing stage ends when the

first facility is pinned. We say that a facility is pinned when

it has been output by all d expansions, which means that its

complete cost vector
→

c (p) has been computed.

To illustrate the growing stage, we use the example in

Figure 3 where d = 2 and the network distances c1(p), c2(p)
of encountered facilities are plotted in the (conceptual) 2-

dimensional space for ease of illustration. On the left of the

figure we can see the order in which the NNs are popped

for each of the cost types. The NN of q according to c1 is

found first (facility p1) and is inserted into CS. Then, the NN

according to c2 is retrieved (facility p5), and since it is not

inside CS, it is inserted therein. The process continues this

way until p3 is pinned (p3 is first found w.r.t. c2, and when

found w.r.t. c1, its complete cost vector is derived). Growing

stops here, with candidate set CS = {p1, p2, p5}. The vertical

(horizontal) dashed line corresponds to the frontier of network

expansion according to c1 (c2 respectively), i.e., it indicates

how far, in terms of c1 (c2) network distance, the search has

proceeded so far.

c
2

c
10

p
3

Dominance region of p
3

p
5

p
1 Ex

pa
nsi

on
 fro

nti
er

for
 c 1

Expansion frontier for c
2

p
2

p
4

End of growing stage:
CS = {p

1
, p

2
, p

5
}

sky(q) = {p
3

}

p
1

p
2

p
3

p
5

p
5

p
3

p
1

c
2

c
1

Fig. 3. Skyline computation example (d = 2)

The pinned facility can be output directly as part of the sky-

line. In our example, the pinned p3 could only be dominated by

some facility in the striped area. This area is definitely empty,

because otherwise one of the contained facilities would have

been pinned before p3 (note that the stripped area has been

explored for both cost types). Therefore, p3 is a skyline facility.

On the other hand, by definition the pinned facility cannot

dominate any candidate, because they were all encountered

before it, and thus are preferable w.r.t. at least one of the cost

types.

After the first facility is pinned, no more candidates need

to be considered because they are guaranteed to be dominated

by the pinned facility. To illustrate this, consider again Figure

3 upon pinning p3. The shaded area is termed the dominance

region of p3, and any facility (such as p4) that falls inside

it is dominated by p3. Since the d expansions have already

explored the entire space outside the dominance region of the

pinned facility, all possible skyline facilities have already been

encountered and included in CS. What remains to be done is

deciding for each candidate whether it is a skyline facility or

not. This is the role of the shrinking stage4.

Shrinking stage: The shrinking stage continues popping

NNs incrementally for each of the cost types. The difference

is that it ignores any facility that is not in CS (i.e., that is

newly encountered). If a candidate facility p ∈ CS is popped

from the i-th expansion heap, then LSA records its i-th cost

(ci(p)) accordingly. If p is now pinned (i) it is directly output

as a skyline facility, and (ii) we scan the remaining candidates

and eliminate those dominated by p. The shrinking stage (and

LSA) terminates when CS becomes empty.

The rationale behind directly reporting the newly pinned p
as a skyline facility is similar to the case of the first pinned

facility. If another facility p′ were dominating p, then p′ would

have been pinned first (since all p′’s costs are no larger than

p’s, all expansions would encounter it before p). In this case,

p would have been eliminated from the candidate set (upon

pinning p′), which is a contradiction. Thus, p is a skyline

facility.

Regarding dominance checks against the pinned facility p,

the issue is that each candidate has, by definition, at least

one unknown cost. To address this, we rely on the nature of

network expansion, and specifically on the fact that NNs are

discovered in increasing cost order. Since p has been encoun-

tered by all d expansions, we can be sure that any unknown

cost of any candidate is no smaller than the corresponding cost

of p. Therefore, if p dominates a candidate p′ w.r.t. the known

costs of the latter, p is guaranteed to dominate p′ w.r.t. all d
costs.

Another point worth stressing is that, due to the nature of

LSA, dominance checks are performed only when a facility

is pinned. Moreover, dominance checks are performed only

w.r.t. the newly pinned facility, and not with the previously

discovered skyline facilities. The reason is that if a candidate

were dominated by a previously discovered skyline facility,

it would have been directly eliminated at the time when the

latter was pinned (as described above). Due to this inherent

feature, LSA performs a small number of dominance checks

overall.

Continuing our example in Figure 3, after pinning p3, it

is the turn of c2’s expansion to proceed. This pops facility

p1 (which is already in CS) and pins it, since now all its

d = 2 costs are known. Facility p1 is appended to sky(q) (now

sky(q) = {p3, p1}), and then probed against the remaining

candidates (p2 and p5). For p2 only c1(p2) is known, and it

is larger than c1(p1). On the other hand, c2(p2) is not known

(since the second expansion has not reached it yet), but we can

be sure that it will be no smaller than c2(p1). Therefore, we

can safely infer that p1 dominates p2 and eliminate the latter.

4Note that it is possible for some of the candidates to be directly eliminated.
This happens when all their known costs are equal to those of the pinned
facility, which means that they are dominated by it (because their unknown
costs are guaranteed to be no smaller than those of the pinned facility). Such
facilities should be eliminated directly before the shrinking stage commences.
For ease of presentation, we ignore this case, and assume for simplicity that
no ties exist.

On the contrary, we cannot eliminate candidate p5, because its

second cost is smaller than p1.

Next, it is the turn of the first expansion to proceed, which

pops p4. Since p4 /∈ CS, we ignore it, and incrementally

retrieve the next NN (w.r.t. c1), which is p5. Facility p5 is

pinned, and thus included in sky(q). Furthermore, CS is now

empty, and LSA terminates having computed the complete

skyline sky(q) = {p3, p1, p5}. Algorithm 1 is the pseudo-code

of LSA.

Algorithm 1 Local Search Algorithm (LSA)

algorithm LSA(Query Location q)
1: sky(q) := ∅; CS := ∅; stage := Growing
2: Initialize d network expansions at q (one for each cost type)
3: for i = 1 to d do ⊲ Round-robin probing
4: Fetch the next NN p from the i-th expansion
5: if p /∈ CS then
6: if stage == Growing then
7: Insert entry 〈p, Null, Null, ..., ci(p), Null, ...〉 in CS

8: else
9: Update p’s entry in CS, setting its i-th cost to ci(p)

10: if p is pinned then
11: if stage == Growing then
12: stage := Shrinking ⊲ Growing stage ends

13: sky(q) := sky(q) ∪ {p}
14: Eliminate CS entries dominated by p

15: if CS == ∅ then
16: Report sky(q) and terminate

17: if i == d then
18: Go to line 3 (reiterate)

Having sketched the LSA process, we may now enhance

its performance based on some of its intrinsic properties.

First, by definition the first NN for each of the d cost types

cannot be possibly dominated by another facility, and can thus

be directly reported as part of the skyline. This reduces the

number of candidates considered, which in turn may lead to

earlier termination (because LSA no longer has to pin these

skyline facilities, but reports them directly). In Figure 3, for

example, p1 and p5 would be directly reported as skyline

facilities. Therefore, at the end of the growing stage, CS would

only contain p2. Note that if one of these non-pinned facilities

that are included directly in sky(q) is pinned later on, it is then

checked for domination against (and potentially eliminates)

facilities in CS. Continuing our example, after pinning p3,

facility p1 is encountered by c2’s expansion and is pinned.

p1 dominates/eliminates the only candidate (p2), and LSA

terminates (since CS is empty) without having to pin p5.

Another enhancement leverages on the fact that the shrink-

ing stage ignores any newly encountered facility. This means

that we should not have to access the facility file (described

in Figure 2) during any expansion in the shrinking stage,

except when a candidate facility is to be popped. To save

these unnecessary I/Os, while avoiding missing any candidate

facilities, we do the following.

When the first facility is pinned (i.e., when growing ends),

we probe the facility tree and retrieve the edge identifier

of each candidate. With this information in hand, our d

expansions proceed through the network edges without ac-

cessing their contained facilities, but only do so when some

candidate’s edge is encountered. The corresponding candidate

is en-heaped5 and the expansion proceeds as normal, ignoring

any non-candidate facilities. A side improvement achieved

with this optimization, is that the number of heap operations

(translating to CPU time), as well as memory requirements,

are reduced by avoiding en-heaping non-candidate facilities.

Another enhancement is that we may (safely) terminate

some of the d expansions before LSA returns. Specifically,

if we are in the shrinking stage, and the i-th cost of every

candidate has been computed, then the expansion for the i-th
cost type stops, because it can contribute nothing to the search.

This optimization is particularly useful in cases where the cost

distribution of the facilities is such that many skyline facilities

happen to be among the first NNs w.r.t. a specific cost type.

Discussion: LSA could work with a different expansion

probing policy, other than round-robin. For example, we could

be choosing to probe the expansion for which the top heap

element has the smallest key. The problem with this approach

is that if a cost happens to be low in the neighborhood of

q, it would monopolize probing, i.e., other expansions would

be probed late or infrequently. This would lead to pinning

the first facility late. This prolongs the growing stage itself,

but also slows down shrinking because more candidates are

encountered. To exemplify, consider Figure 4. A smallest-first

probing strategy would keep exploring the NNs for c1, because

they have consistently lower c1 cost than the c2 cost of the

first NN for c2 (facility p7); i.e., c1(p1), c1(p2), ..., c1(p7) are

smaller than c2(p7). Similar problems occur when probing the

expansion with the maximum top element (largest-first). Since

we assume no a priori knowledge about the cost distributions,

we choose the round-robin technique that favors no cost, and

would pin a facility early in most cases.

c
2

c
10

p
3

p
5

p
1

p
2

p
4

End of growing stage:
CS = {p

1

, p
2

, …, p
6

}
sky(q) = {p

7

}

p
1

p
2

p
3

p
4

p
5

p
6

p
7 p

7

c
2

c
1 p

6

p
7

.
.
.

Ex
p.

fro
nti

er
for

 c 1
Exp. frontier for c

2

Fig. 4. Smallest-first probing (d = 2)

Based on the observation that the earlier a facility is pinned

5Recall that the standard network expansion en-heaps every encountered
facility, treating it as a network node.

the faster LSA terminates, one could argue that once a NN p
is retrieved for one cost, its remaining d − 1 costs should

be computed directly so that p can be used for candidate

elimination right away. This, however, would not pay off, since

individual cost (i.e., shortest path) computation is itself based

on network expansion, and is costly. Consider again Figure

4. Facility p1 is the first NN retrieved (by c1’s expansion).

Computing its remaining cost c2(p1) would require a network

expansion for c2 that extends further than all other facilities

(p7, p4, ..., p6). This incurs a high CPU and I/O cost, without

particularly assisting LSA in pruning the search space.

Before presenting our next skyline method, we stress that

LSA is progressive; any pinned facility is guaranteed to belong

to the skyline, and can thus be output directly, without having

to wait for LSA to terminate.

B. Combined Expansion Algorithm

LSA clearly improves performance compared to the

straightforward method described in the introduction of Sec-

tion IV, since search only considers the neighborhood of

q. LSA however leaves significant space for improvement

in terms of the I/Os incurred. Specifically, the adjacency

information of an accessed network node or the facility

information of a traversed edge is typically loaded from the

disk multiple times (up to d) for different expansions. This

motivates the Combined Expansion Algorithm (CEA), which

is guaranteed to access each encountered node’s adjacency

information or edge’s contents no more than once. This is

achieved by information sharing among the d expansions as

described below.

We begin our description using a plain (albeit flawed) ver-

sion of information sharing, and then introduce the optimized

CEA. Assume that we allow only one of the d expansions

to access the disk-resident structures of Figure 2; let this be

the expansion for cost c1. The expansion starts incrementally

en-heaping new nodes and facilities. Whenever a node is de-

heaped, its adjacent nodes are loaded; in addition to c1, this

also fetches the remaining d − 1 costs of the corresponding

edges. Therefore, every adjacent node is also pushed into

the remaining d − 1 heaps (with key set according to the

corresponding cost type). The same policy applies to the

encountered facilities too.

The expansion for c1 proceeds normally as described above,

until the first NN is discovered (w.r.t. c1) and placed into

CS. We call each popped network node expanded, because its

adjacency information has been retrieved and its neighboring

nodes have been en-heaped. Note that term expanded applies

only to network nodes popped for cost c1.

Once the first NN for c1 is found, we suspend c1’s ex-

pansion, and expand the network for each of the other costs.

In particular, for each other cost type (say for c2), we keep

popping the head of its expansion heap, until a non-expanded

network node vne is de-heaped. If any facilities have been

popped meanwhile, they are inserted into CS or (if they are

already in CS) their c2 costs are recorded. The expansion for

c2 is suspended at this point, and can only proceed when vne

is expanded by c1’s search. When c2’s search is suspended,

the expansion of c3 commences and proceeds until it pops a

non-expanded node, and so on for the remaining cost types.

We call this the first pass of the algorithm.

In the beginning of the second pass, c1’s expansion resumes

and proceeds until its next NN is found. Any node or facility

en-heaped for c1, is also pushed into the heaps of the other

d−1 costs6. The newly found NN is placed into CS. The other

expansions are considered again one by one, and stop when

they pop a non-expanded node.

This process continues until the first facility is pinned. This

event signifies the end of the growing stage, and forbids the

insertion of any new candidates into CS. Having entered the

shrinking stage, expansions proceed as above until all candi-

dates are either eliminated or reported as skyline facilities.

To conclude the above process, we must explain (i) why

the expansions are suspended and (ii) how we can be sure

that the NNs retrieved so far for costs c2, c3, ..., cd are correct.

Consider the example in Figure 5, representing the situation

in the second pass where the next (second) NN of c1 has been

found (facility p2) and its expansion is suspended. Network

nodes appear as squares. Solid nodes are expanded, i.e., they

have been popped by c1’s expansion (at any point up to its

current suspension), and thus their adjacent nodes have been

pushed into all expansion heaps. Hollow nodes have been en-

heaped but not de-heaped by c1’s expansion, i.e., they are

non-expanded (such an example is node v3, whose complete

adjacency information is unavailable). Nodes omitted from the

figure are nodes not encountered at all by the expansion of c1.

Consider now the expansion of cost type c2. According to the

process described previously, c2’s expansion will be suspended

once v3 is popped; this is the closest (w.r.t. c2) non-expanded

node. Clearly, the process cannot proceed further because not

all neighboring nodes of v3 are known. On the other hand,

the complete information for all nodes and facilities within

distance c2(v3) from q is available; the shaded area in the

figure covers this part of the network (typically there is no

correspondence to a circle or any ordinary geometric shape,

but it is drawn as such for the sake of demonstration). Given

full information for this subgraph, the correctness of network

expansion therein guarantees that the NNs retrieved prior to

suspension are correct (i.e., identical to those of a c2 expansion

in the entire network).

The above algorithm does achieve information sharing, but

it provides no control over the order of NN retrieval among the

different expansions and suffers from a similar problem to the

smallest-first/largest-first variants of LSA. Specifically, if c1

happens to be very skewed, leading the expansion west from

q (i.e., the c1 costs of west edges are considerably smaller than

other directions) then the remaining expansions may remain

suspended for long periods, because they will have to wait for

c1 to de-heap nodes towards, say, the east. In the example of

Figure 5, c1 is exhibiting such a behavior, expanding to the

6The fact that these searches are suspended does not prevent us from
pushing new nodes/facilities into their expansion heaps.

q
v
1

v
2

v
3

Expanded node

Nodes within network
distance c

2

(v
3

) from q

En-heaped, non-
expanded node

v
4

p
1

p
2

Fig. 5. Second pass example

west more so than to the east. In general, a similar situation

occurs whenever c1 follows a different distribution than some

of the remaining costs. This is expected to be often the case

for some costs; e.g., the driving time through main streets is

usually shorter, but the total toll cost increases.

To avoid the above problem, we should somehow multiplex

the d expansions and let them (to some degree) proceed

independently from others, while at the same time sharing

information among them. Additionally, we would like to

achieve round-robin retrieval of NNs among the d expansions.

CEA meets both these targets.

In CEA, only one expansion is allowed to access the disk

at any time, while the information retrieved is also en-heaped

by the remaining d − 1 expansions. However, the right to

access the disk cycles among the d expansions in a round-robin

fashion. When an expansion is given this right, it proceeds

until it retrieves its next NN. Note that if a non-expanded

node is encountered during this search, then the expansion is

not suspended, but proceeds (and accesses the disk-resident

adjacency/facility information) as per normal. Then, the next

expansion resumes until it discovers its next NN, and so on.

We must stress that now a node may be expanded by any

expansion, as long as this expansion has the disk access right.

Figure 6 shows an example of combined expansion where

d = 2, the first cost type (c1) is driving time and the second

(c2) is the Euclidean length of the path (referred to as time

and distance in the figure). The first expansion is probed

first, which en-heaps v1 and v2 with keys 4 and 6 (minutes)

respectively. v1 is popped and expanded, i.e., its adjacent nodes

and the facilities in the corresponding edges are pushed (into

all d = 2 expansion heaps). The next element popped is facility

p1 with c1(p1) = 5 min, which is the first NN for c1. To

achieve round-robin probing, we now need to retrieve the NN

for c2; its heap contains all nodes/facilities fetched for c1,

i.e., v1, v2, and all the nodes and facilities adjacent to v1.

The head of the heap is v1, which has already been expanded

for c1, thus expansion proceeds without any disk accesses.

The next element popped is v2, which was not previously

expanded; its adjacency information is fetched from the disk

and the corresponding nodes and facilities are en-heaped (to

both expansion heaps). Next, p2 is popped with c2(p2) = 4

km. Observe that v1 was expanded for c1, while v2 for c2.

Round-robin probing continues this way, never accessing the

adjacency and neighboring facility information more than once

for the same node.

Node expanded
for time

Node expanded
for distance

En-heaped, non-
expanded node

q v
2

v
1

6 min
3 km

4 min
2 km

p
2p

1

1 m
in

5 km

1 m
in

1 km

Fig. 6. CEA example (d = 2)

Other than the above, CEA proceeds like LSA, using a

growing and a shrinking stage. Moreover, it encounters and

pins facilities in exactly the same order as LSA (due to its

round-robin NN probing), which implies that it has the same

candidate set and skyline reporting order, and that it is also

progressive. The correctness of CEA is derived following a

similar reasoning to Section IV-A. Algorithm 2 is the pseudo-

code of CEA.

Algorithm 2 Combined Expansion Algorithm (CEA)

algorithm CEA(Query Location q)
1: sky(q) := ∅; CS := ∅; stage := Growing
2: Initialize d network expansions at q (one for each cost type)
3: for i = 1 to d do ⊲ Round-robin disk access right
4: repeat
5: Pop the head of i-th expansion heap
6: if the popped element is a node v then
7: Fetch v’s adj. nodes and facilities on incident edges
8: En-heap fetched nodes/facilities in all d exp. heaps
9: else ⊲ The next NN p was popped

10: if p /∈ CS then
11: if stage == Growing then
12: Insert 〈p, Null, ..., ci(p), Null, ...〉 in CS

13: else
14: Update p’s entry in CS, setting its i-th cost to ci(p)
15: if p is pinned then
16: if stage == Growing then
17: stage := Shrinking ⊲ Growing stage ends

18: sky(q) := sky(q) ∪ {p}
19: Eliminate CS entries dominated by p
20: if CS == ∅ then
21: Report sky(q) and terminate

22: until the next NN for ci has been found
23: if i == d then
24: Go to line 3 (reiterate)

V. MCN TOP-k PROCESSING

Top-k processing is largely based on our skyline compu-

tation techniques, with pinned facilities and expanded nodes

playing similar roles as in Section IV. Both LSA and CEA

apply to top-k retrieval; here we focus on the greater picture

of processing, regardless of which of the two techniques is

used to achieve the round-robin retrieval of NNs.

Processing again comprises a growing and a shrinking stage.

The growing stage is identical to Section IV, the difference

being that growing stops when k facilities are pinned (instead

of only one). Every encountered facility in this stage is a

candidate and is placed into CS. Every pinned candidate is

placed into top(q). To see why the union of CS and top(q)
contains all possible top-k candidates, recall that when a

facility is pinned, it is guaranteed to dominate all facilities

that will be encountered after its pinning. When k facilities

are pinned, they all dominate any non-encountered facility.

By definition, this means that each of the k pinned facilities

has smaller aggregate cost than any non-encountered facility,

for any increasingly monotone function f . In Figure 7, for

example, a top-3 query is considered. The first facility pinned

is p1, the second is p3, and the third is p4. Upon pinning p4,

any facility in its dominance region (the darkest shaded area

in the figure) is guaranteed to be dominated also by p1 and p3.

Thus, any non-encountered facility (such as p5) cannot belong

to the top-3 result of any increasingly monotone cost function.

In this example, growing ends with one candidate (p2) and a

tentative top-k set comprising the k = 3 pinned facilities.

c
2

c
10

p
1

p
2

End of growing stage:
CS = {p

2
}

top(q) = {p
1
, p

3
, p

4
}

p
1

p
2

p
3

p
4

p
1

p
3

p
4

c
2

c
1

p
3

p
5

Dom. reg. of p
3

p
4

Dom. reg. of p
4

Dom. reg. of p
1

Fig. 7. Top-k processing example (d = 2, k = 3)

The top(q) set formed by the growing stage is tentative

because some of the candidates may have lower aggregate

cost. In Figure 7, for example, if f favors a smaller c1

considerably more than a small c2, candidate p2 may have

a smaller aggregate cost than, say, p4, and may thus replace

p4 in the final top(q) result. The task of determining the final

top-k facilities is performed in the shrinking phase.

Shrinking continues probing the expansion heaps, without

however en-heaping (or inserting into CS) any additional

facilities. If at some point a candidate p is pinned, then its

aggregate cost f(p) is computed. If f(p) is smaller than

the largest (k-th) score in top(q), then p replaces the k-th

best facility in top(q) and the evicted facility is eliminated.

Otherwise (i.e., f(p) is no smaller than the k-th score in

top(q)), p is eliminated. Note that similar optimizations to the

skyline algorithms apply to top-k processing; the shrinking

stage does not access any facility information from the disk,

and if no candidate has a missing value for a specific cost type

ci, the expansion for ci stops permanently and is ignored by

round-robin probing.

The algorithm terminates (and reports the current top(q)
as result) when all candidates have been either eliminated or

included in top(q). A straightforward way to do this is to

continue expanding until all the candidates are pinned and

their aggregate costs computed. This, however, would incur

unnecessary I/O overhead, because some candidates can be

eliminated without being pinned. Let t1, t2, ..., td be the keys

at the heads of the d expansion heaps. Assume that for a

candidate p we have computed all costs except for c1(p)
and c2(p). Due to the incremental nature of NN search,

we know that c1(p) ≥ t1 and c2(p) ≥ t2. This provides

a lower bound for p’s aggregate cost. Specifically, it holds

that f(p) ≥ f(t1, t2, c3(p), ..., cd(p)), i.e., the lower bound

is derived by applying f on p, after replacing its Null costs

with the corresponding ti values. If the derived lower bound

is no smaller than the k-th largest aggregate cost in top(q),
candidate p can be safely eliminated (without waiting for

its pinning). We perform this lower bound check for each

candidate after every complete pass of expansion probing; in

the shrinking stage, each expansion is suspended after popping

one node from its heap (recall that in this stage there are few

facilities in the heaps, i.e., only candidates, and probing until

the next NN is found would be costly).

The above technique applies to cases where k is known

in advance. Its incremental version (where k is not given)

requires several modifications. First, there is no shrinking

phase, i.e., no candidate or pinned facility can ever be elim-

inated; even the facility p with the largest aggregate cost in

P will need to be reported if the incremental algorithm is

invoked |P | times. Second, we need to know when a facility

p is safe to report as the next result. For a facility p to be

the next result it must (i) have been pinned, (ii) have the

smallest aggregate cost among all pinned facilities that have

not yet been reported, and (iii) the lower bound aggregate

cost of every candidate that was encountered before pinning

p must be no smaller than f(p). While the second condition

is obvious, the first and third are not. The first condition is

necessary because no matter how small the known costs of

a facility are, the remaining ones can be arbitrarily large,

leading to an arbitrarily large aggregate cost. Regarding the

third condition, p dominates any facility (candidate or pinned)

encountered after its pinning. Therefore, the only candidates

that may potentially have smaller aggregate score are those

encountered before its pinning. An additional remark about

the third condition is that the aggregate cost lower bounds

for candidate facilities still apply, derived exactly as described

previously for the known k case.

VI. EXPERIMENTS

We evaluate the performance of LSA and CEA using the

road network of San Francisco (obtained from [29]), which

 0.01

 0.1

 1

 10

 100

25 50 100 150 200

T
im

e
 (

s
e
c
)

Number of facilities |P|(x1000)

LSA
CEA

(a) Effect of |P |

 0.1

 1

 10

 2 3 4 5

T
im

e
 (

s
e
c
)

Number of cost types

LSA
CEA

(b) Effect of d

Fig. 8. Processing time versus P and d (skyline)

contains 174,956 nodes and 223,001 edges. We generated

facility set P to form 10 Gaussian clusters centered around

10 random nodes in the network. This simulates a real

scenario, where most of the facilities are located around

specific locations in a city (e.g., the business district, the port

area, etc). The number of facilities |P | varies between 25K

and 200K, with default value 100K. We assigned d costs

to each edge (d ∈ [2...5], with default d = 4). The costs

of an edge follow independent, anti-correlated or correlated

distribution (with anti-correlated being the default); these are

standard distributions in preference query evaluation [3]. In

anti-correlated, when one cost is low, the rest tend to be high.

In correlated, when one cost is low, the others tend to be low

too. We use an LRU buffer with size from 0% to 2% of the

total number of pages occupied by the MCN information (1%

by default). For top-k queries, k is between 1 and 16, with

k = 4 being the default. The aggregate cost function f has

the form f(p) =
∑

i=1..d αi · ci(p), where coefficients αi are

randomly and independently generated with values between

0 and 1. In each experiment we vary one parameter while

setting the remaining ones to their defaults. We measure the

total processing time (inclusive of I/O and CPU cost).7 The

reported results are average values over 100 different query

locations randomly and uniformly chosen in the network.

A. Skyline Experiments

We first consider skyline queries. Figure 8(a) investigates

the effect of the number of facilities |P |, varying it from

25K to 200K, and setting the remaining parameters to their

defaults. Time measurements are plotted in logarithmic scale.

Interestingly, the processing time for both LSA and CEA is

longer for small |P |. The reason for this is that when the

network is very sparse (with facilities), then the expansions of

both algorithms need to consider many edges before the next

NNs are found, and thus incur many I/Os on the adjacency

tree and the adjacency file (see Figure 2). CEA is more than

2.3 times faster than LSA in all cases.

Figure 8(b) plots the processing time as a function of the

number of the cost types d in the MCN, for d = 2...5. The

performance of both methods deteriorates with d, because (i)

more (i.e., d) expansions are executed, and (ii) as d increases,

7The processing time is vastly dominated by the I/O cost, with the CPU
time accounting for only 5% of the total time of LSA and 16% of CEA in
our default setting. Thus, we plot only the total time for brevity.

 0

 1

 2

 3

 4

 5

 6

Anti-Correlated IND Correlated

T
im

e
 (

s
e
c
)

LSA
CEA

 0

 1

 2

 3

 4

 5

 6

Anti-Correlated IND Correlated

T
im

e
 (

s
e
c
)

LSA
CEA

 0

 1

 2

 3

 4

 5

 6

Anti-Correlated IND Correlated

T
im

e
 (

s
e
c
)

LSA
CEA

(a) Effect of cost distribution

 0.1

 1

 10

 100

0.0 0.5 1 1.5 2

T
im

e
 (

s
e

c
)

Cache size (%)

LSA
CEA

(b) Effect of buffer size

Fig. 9. Processing time versus cost distribution and buffer size (skyline)

it is harder (i.e., it takes longer) to pin the first facility, which

leads to a larger candidate set. CEA is between 1.7 to 4 times

faster than LSA (note the logarithmic scale in the processing

time axis). The performance gap increases with d. For a given

d, LSA may access the same node’s adjacency information

(or the same edge’s facilities) up to d times. Therefore, CEA’s

advantage of accessing such information no more than once

is more pronounced for larger d.

Figure 9(a) experiments with the cost distributions within

the edges. As expected, the running time of both methods is

the longest for anti-correlated costs, because facilities that are

close to the query location according to a cost type, tend to

be further according to others. This reduces the probability

that a facility dominates another, and therefore leads to more

candidates and more skyline facilities. On the other hand, the

shortest processing time is for correlated costs, because the

first pinned facility tends to be close according to all cost

types, and is thus pinned early. This means that the search

considers fewer candidates and a smaller part of the network,

and it outputs fewer skyline facilities. The largest difference

between CEA and LSA is observed for independent costs (3.15

times improvement), and the smallest for correlated costs (2.7

times).

Figure 9(b) studies the effect of the buffer size, varying it

from 0% to 2% of the MCN size, and setting the remaining

parameters to their defaults. The processing cost is plotted

in logarithmic scale. Both methods benefit from the buffer,

but more so LSA; this is expected, because its multiple-read

problem is smoothened, as more of its multiple requests to the

same disk page find it already in the buffer. CEA is between 2

and 3.4 times faster (for buffer size 2% and 0% respectively).

Note that the cost of both methods is much higher in the

0% case (no buffer), because adjacency information requests

for different nodes that reside on the same disk page lead to

reading the page multiple times.

B. Top-k Experiments

Having empirically explored skyline queries, we now eval-

uate our top-k algorithms using the same road network (San

Francisco). In Figure 10(a) we vary the number of facilities,

using d = 4 anti-correlated cost types, aggregate cost function

f with independent coefficients αi, and number of requested

facilities k = 4. Like in Figure 8(a) in the skyline case,

both CEA and LSA benefit from a large facility population,

 0.01

 0.1

 1

 10

 100

25 50 100 150 200

T
im

e
 (

s
e
c
)

Number of facilities |P|(x1000)

LSA
CEA

(a) Effect of |P |

 0.1

 1

 10

 2 3 4 5

T
im

e
 (

s
e
c
)

Number of cost types

LSA
CEA

(b) Effect of d

Fig. 10. Processing time versus P and d (top-k)

because the search discovers the top-k results close to the

query location, thus saving accesses on the MCN connectivity

information (adjacency tree and adjacency file). CEA is 2.1

to 3.4 times faster than LSA. The difference between them

increases for a sparse network, because more nodes/edges

are accessed, which in turn implies more multiple-reads for

LSA. Juxtaposing the results in this experiment with Figure

8(a), an interesting observation is that top-4 processing is

slightly less expensive than skyline computation. Although

top-4 processing requires pinning four facilities (instead of one

in the skyline case), most of the “extra” facilities are located

inside the dominance region of the first pinned facility, they

are pinned soon after the first pinned facility, and they have

comparably low aggregate costs to the first pinned facility;

thus, the growing stage is not significantly longer than in the

skyline case, while the low costs of the pinned facilities allow

for more effective pruning in the shrinking stage, leading to

an earlier termination overall.

In Figure 10(b) we use the default parameters for top-k
processing, and measure the effect of the number of costs

d on the processing time. As in the skyline case (Figure

8(b)), more costs imply a longer running time for both our

methods, as more expansions are executed and pinning a

facility becomes harder. CEA is faster than LSA in all cases,

and their difference increases with d, due to the same reasons

explained for the skyline case.

Figure 11(a) examines the effect of the cost distribution

within the edges on top-k processing time. Similarly to the

skyline query (Figure 9(a)), correlated edge costs lead to

the shortest processing time, while anti-correlated costs to

the longest one. CEA is 3, 3.2, and 2.7 times faster than

LSA for anti-correlated, independent and correlated edge costs

respectively.

Figure 11(b) varies the buffer size, while keeping the

remaining parameters to their defaults. The trends are similar

to Figure 9(b) for skyline processing; i.e., the performance of

both methods improves as the buffer size grows. In this case

(top-k processing), CEA is up to 3.4 times faster than LSA for

0% buffer size (no buffer). The smallest relative difference is

in the 2% case, with CEA however still being 1.8 times more

efficient than LSA.

Figure 12 varies the number k of required facilities between

1 and 16, while the other parameters are set to their defaults.

As k increases, more facilities need to be pinned in the

 0

 1

 2

 3

 4

 5

Anti-Correlated IND Correlated

T
im

e
 (

s
e
c
)

LSA
CEA

 0

 1

 2

 3

 4

 5

Anti-Correlated IND Correlated

T
im

e
 (

s
e
c
)

LSA
CEA

 0

 1

 2

 3

 4

 5

Anti-Correlated IND Correlated

T
im

e
 (

s
e
c
)

LSA
CEA

(a) Effect of cost distribution

 0.1

 1

 10

 100

0 0.5 1 1.5 2

T
im

e
 (

s
e

c
)

Cache size (%)

LSA
CEA

(b) Effect of buffer size

Fig. 11. Processing time versus cost distribution and buffer size (top-k)

 0.1

 1

 10

1 2 4 8 16

T
im

e
 (

s
e
c
)

k

LSA
CEA

Fig. 12. Processing time versus k (top-k)

growing stage and more candidates need to be considered

in the shrinking stage. Since a larger k implies a broader

expansion, the multiple-read issue of LSA is exacerbated,

leading to 3.4 times longer execution time than CEA (note

the exponential scale in the plot).

To summarize the experiments, the search for both skyline

and top-k queries is more expensive for sparser networks (in

terms of facilities). The processing time also raises with the

number of cost types involved. CEA consistently outperforms

LSA by a wide margin for both query types. Finally, we

must mention that we also experimented with other real road

networks, with results similar to the ones presented above.

We also tried varying the number of facility clusters; CEA

was the clear winner in all cases. The corresponding figures

are omitted due to lack of space.

VII. CONCLUSIONS

In this paper we introduce the skyline and top-k queries

in multi-cost road networks (MCN). Such queries arise in a

variety of decision making applications that involve multiple

types of coexisting transportation costs. We formalize these

queries and design algorithms for their processing. Extensive

experiments on real road networks verify the efficiency of our

methods.

An interesting direction for future work is to extend our

techniques to incrementally updating the skyline or top-k set

in the presence of facility/query location updates. Another

challenging topic is preference queries in MCNs where the

costs of the edges are functions of time (e.g., [30], [31]).

Such queries would retrieve preferred (i.e., skyline or top-k)

facilities for every time instance within a given period.

REFERENCES

[1] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in
spatial network databases,” in VLDB, 2003, pp. 802–813.

[2] M. L. Yiu and N. Mamoulis, “Clustering objects on a spatial network,”
in SIGMOD, 2004, pp. 443–454.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
ICDE, 2001, pp. 421–430.

[4] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” J. Comput. Syst. Sci., vol. 66, no. 4, pp. 614–656, 2003.

[5] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in VLDB, 2001, pp. 301–310.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting:
Theory and optimizations,” in IIS, 2005, pp. 595–604.

[7] P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector computation in
large data sets,” in VLDB, 2005, pp. 229–240.

[8] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline
evaluation,” ACM Trans. Database Syst., vol. 33, no. 4, pp. 1–49, 2008.

[9] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An
online algorithm for skyline queries,” in VLDB, 2002, pp. 275–286.

[10] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” ACM Trans. Database Syst., vol. 30,
no. 1, pp. 41–82, 2005.

[11] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD, 1984, pp. 47–57.

[12] W.-T. Balke, U. Güntzer, and J. X. Zheng, “Efficient distributed skylining
for web information systems,” in EDBT, 2004, pp. 256–273.

[13] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou, “Branch-
and-bound processing of ranked queries,” Information Systems, vol. 32,
no. 3, pp. 424–445, 2007.

[14] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[15] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[16] H.-P. Kriegel, P. Kröger, M. Renz, and T. Schmidt, “Hierarchical

Graph Embedding for Efficient Query Processing in Very Large Traffic
Networks,” in SSDBM, 2008, pp. 150–167.

[17] S. Jung and S. Pramanik, “An Efficient Path Computation Model for
Hierarchically Structured Topographical Road Maps,” IEEE TKDE,
vol. 14, no. 5, pp. 1029–1046, 2002.

[18] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable Network
Distance Browsing in Spatial Databases,” in SIGMOD, 2008, pp. 43–54.

[19] H. Hu, D. L. Lee, and V. C. S. Lee, “Distance Indexing on Road
Networks,” in VLDB, 2006, pp. 894–905.

[20] K. Deng, X. Zhou, and H. T. Shen, “Multi-source skyline query
processing in road networks,” in ICDE, 2007, pp. 796–805.

[21] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in VLDB,
2006, pp. 751–762.

[22] P. Hansen, “Bicriterion path problems,” in Multiple criteria decision

making: theory and applications. Lecture notes in Economics and

Mathematical Systems, 1980, pp. 109–127.
[23] E. Q. V. Martins, “On a multicriteria shortest path problem,” European

Journal of Operational Research, vol. 16, no. 2, pp. 236–245, 1984.
[24] A. J. V. Skriver and K. A. Andersen, “A label correcting approach for

solving bicriterion shortest-path problems,” Computers & OR, vol. 27,
no. 6, pp. 507–524, 2000.

[25] M. I. Henig, “The shortest path problem with two objective functions,”
European Journal of Operational Research, vol. 25, no. 2, pp. 281–291,
1986.

[26] J. Brumbaugh-Smith and D. Shier, “An empirical investigation of some
bicriterion shortest path algorithms,” European Journal of Operational

Research, vol. 43, no. 2, pp. 216–224, 1989.
[27] B. S. Stewart and C. C. White, III, “Multiobjective a*,” J. ACM, vol. 38,

no. 4, pp. 775–814, 1991.
[28] L. Mandow and J.-L. P. de-la Cruz, “A new approach to multiobjective

a* search,” in IJCAI, 2005, pp. 218–223.
[29] T. Brinkhoff, “A framework for generating network-based moving ob-

jects,” GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.
[30] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding fastest paths on a

road network with speed patterns,” in ICDE, 2006, p. 10.
[31] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths

over large graphs,” in EDBT, 2008, pp. 205–216.

