
Geometric Approaches for
Top-k Queries

[Tutorial]

VLDB 2017

Singapore Management University

Kyriakos Mouratidis

Introduction

• Top-k query: shortlists
top options from a set
of alternatives

• E.g. tripadvisor.com
– rate (and browse) hotels

according to price,
cleanliness, location,
service, etc.

• A user’s criteria: price,
cleanliness and
service, with different
weights

Weights could be captured

by slide-bars:

Introduction

• Slide-bar locations → numerical weights

• We call q = <0.8, 0.3, 0.5> the query vector
– and its domain the query domain or query space

• Linear function ranks hotels (i.e. records)
– score = 0.8·price + 0.3·clean + 0.5·service

– if record r is seen as vector, score = dot product r·q

• Top-k returned (e.g. the top-10)

• Top-k processing is well-studied
– E.g. [Fagin01,Tao07] for processing w/o & w/ index

– Excellent survey [Ilyas08]

Top-k as sweeping the data space
[Tsaparas03]

• Assume all query weights are positive

• …and each record attribute is in range [0,1]

• Example for d = 2 (showing: data space)

• Sweeping line normal
to vector q

• Sweeps from top-corner
(1,1) towards origin

• Order a rec. is met
↔ order in ranking!
– E.g. top-2 = { r1, r2 }

• At current position:
– ∀ rec. above (below) the line

higher (lower) score than r2

x1

r3

r2
r1

r4

r5
r6

r7

r8

r9

r10

r11

r12

r13 r14

x2

r15

q

1

1

(1,1)

Notes on dim/nality of query domain

• Ranking of recs. depends only on orientation
of sweeping line (or hyper-plane, in higher dim.)

– query vector <0.8,0.3,0.5> same effect as <8,3,5>

• ⇒ we can normalize q so that sum of weights is
1 (without affecting at all the top-k semantics)

– e.g. in 2-D we can rewrite scoring function as

S(r) = α·x1 + (1-α)·x2

• This reduces dim/nality of query domain by 1

– Geom. operations in query domain become faster

• We’ll ignore this in the following for simplicity

Half-space range reporting

• Half-space range (HSR) reporting: preprocess a set

of points s.t. all points that lie above a query
hyperplane can be reported quickly

– Equiv: given query vector

q and focal rec. p, report

all recs. that score higher

• HSR counting: report

just no. of points

– Equiv: given q and p,

report the rank of p

��

��

��
��

��

��
��

��

��

��

���

���

���
��� ���

��

���

Relationship to Convex Hull

• Convex Hull: The smallest convex polytope
that includes a set of points (records)

• Fact: The top-1 record for
any query vector is
on the hull!

– [Dantzig63]: LP text

��

��

��
��

��

��
��

��

��

��

���

���

���
��� ���

��

���

�
��
�����

����

��

��

��

���

���

���

��

��

�
��
�����

��

�����

��

��

�
��
�����

[Chang00]: Onion Technique

• Onion: Materialization to speed up top-k search

• 1st layer = CH

– contains top-1 rec. ∀ q

• 2nd layer = CH of recs.

except 1st layer

– 1st and 2nd layer contain

top-2 recs. ∀ q

• 3nd layer = CH of recs.

except 1st and 2nd layer...

• Top-k records for any q
are among k top layers!

��

��

��
��

��

��
��

��

��

��

���

���

���
��� ���

��

���
��

��

��
��

��

��
��

��

��

��

���

���

���
��� ���

��

���
��

��
��

��

[Börzsönyi01, Papadias03]: Skyline

• Dominance: rec. r1 dominates r2 iff it has
higher values in all dimensions [ignore ties]

• ⇒ S(r1) > S(r2) ∀ q

• Skyline: all recs. that
aren’t dominated

• Includes top-1 ∀ q

• k-skyband: all recs.
not dominated by
k or more others

• Includes top-k ∀ q

[Das07]: Duality, 2D

• Overview: dual transformation used to
process ad-hoc top-k queries on a dynamic
buffer (e.g. sliding window)

• Insertions and deletions made to the buffer

• One-off (snapshot) top-k queries posed

• Objective: to maintain a subset of records in
buffer, guaranteed to include the top-k result of
any ad-hoc query

[Das07]: Duality, 2D

• Dual transformation: Points mapped to lines

– rec. (x1,x2) mapped to line y = (1 − x2)x + (1 − x1)

– Observe: all lines have positive slope

��

��

��

��

��

�

���

���

�

���

[Das07]: Duality, 2D

• Dual transformation: Queries to vertical rays

– q = (w1,w2) mapped to ray from point (w2/w1,0)

�

���

���

�

���
��

��
��

Order ray q* hits line r* ⇔

Rank of r in the result of q

I.e. top-2 result = {r3,r2}

[Das07]: Duality, 2D

• Idea 1: Maintain arrangement of lines induced
by all records in the buffer

• Issue: arrangement costly to compute/update!

– Arrangement computation in 2-D: O(n2)

• Idea 2: keep only lines that could appear
among the k lowest lines in the arrangement

�

���

���

�

���
������

[Das07]: Duality, 2D

• Consider 2 queries, and their top-k points

• They define two pruning lines

Their intersection =

pruning point i

If a line r* is above i
then r cannot be in the

result of any query

between q1 and q2

[Das07]: Duality, 2D

• Use border queries (like q1, q2) to partition the

arrangement into strips

• Maintain top-k points of border queries and a pruning

point in each strip

• In each strip, maintain a

local arrangement,
excluding lines above the

pruning point

• Ad-hoc query posed:

identify its strip, look for k

first lines its ray hits in the

local arrangement

���

���

��
���

���

�� �� ��

[Yu12]: Duality, higher-D

• Overview: dual transformation used to
process continuous top-k queries on a
dynamic buffer (e.g. sliding window)

• Insertions and deletions made to the buffer

• Continuous top-k queries posed

• Objective: refresh the top-k results as fast as
possible

[Yu12]: Duality, higher-D

• k-level: set of edges (facets) in the
arrangement w/ exactly k-1 others below them

• k-level captures the k-th result of any query!

�

���

����

���

���

���

��

2nd top record

of q is r2

2-level

[Yu12]: Duality, higher-D

• Consider record r insertion (deletion is similar)

– Affected queries = those under new edges in k-level

��

����������������

��

����������������

���������������

�

� ��� ��� ���

[Yu12]: Duality, higher-D

• A by-product: preprocessing method for (bichromatic)
reverse top-k queries (RTOP-k) [Vlachou10 & 11]

• Given a focal record p, a set of records, and a set of

top-k queries, find the queries that have p in the result

• Prep: Find top-k points of all

queries, i.e., intersections

of query rays and the k-level

• Index these points

• Posed a RTOP-k query for p,

report those queries whose

top-k point is above p*

• Ex: RTOP-k includes only q2

[Soliman11]: Repr/tives & measures

• Defines 4 problems:

1. MPO: Find the most probable top-k result (if
query vector is randomly & uniformly chosen)

2. ORA: Find the top-k result with minimum
summed distance from all others

3. STB: Find maximum radius ard. q where top-k
result remains the same

4. LIK: Find probability that a randomly &
uniformly chosen query has same result as q

MPO&ORA: Repr/tives; STB&LIK: Sensitivity!

[Soliman11]: Repr/tives & measures

• MPO & ORA key idea:

��

��

�
�
��

�������������

�������������

• For r1, r2: equality
S(r1) = S(r2) maps
into hyperplane in
query domain!

• Every pair of
records induces a
hyperplane

• Producing an
arrangement!

[Soliman11]: Repr/tives & measures

• Every cell corresponds to different full
ordering Λ of the records!

�
�
��

�
�
��

• Possible orderings:
O(n2^(d-1))

• Top-k result ↔
k-prefix of Λ

• Enumerate, compute
volume, report MPO

• Bottom-up or top-
down processing

[Soliman11]: Repr/tives & measures

• Experiments for MPO only

• ORA solution utilizes specific characteristics of
distance function (Kendall tau & Footrule)

• …and approximation/sampling (in the case of
Kendall tau)

[Soliman11]: Repr/tives & measures

• STB: Given q, find max. radius ρ that vector q
can move without changing top-k result:

• Order within result retained

– i.e. S(r1) > S(r2) and S(r2) > S(r3) … S(rk-1) > S(rk)

– k-1 conditions (O-conditions)

• Non-results cannot overtake rk

– i.e. S(rk) > S(r) for every non-result r

– n-k conditions (NR-conditions)

• Observation: each condition ↔ a hyperplane!

[Soliman11]: Repr/tives & measures

• STB solution: Compute dist. from q to each of
the n-1 hyperplanes

• ρ is the min. of these
distances!

• Cost: O(nd)

• LIK: compute the
cell including q (and
then its volume)

• Cost: O(n2^(d-2))

[Zhang14]: Global Immutable Region

• [Zhang14]: Actually, with half-space intersection
(n-1 O-conditions & NR-conditions):

• Cost: O(nd/2)

• Computes the cell enclosing q ↔ GIR!

• Global Immutable Region (GIR)

– The maximal region around query vector q where

the top-k result remains the same

[Zhang14]: Global Immutable Region

27

Option Location Service

1 0.8 0.9

2 0.2 0.7

3 0.9 0.4

4 0.7 0.2

5 0.4 0.3

6 0.5 0.5

• Query weights in [0,1]

• For q = <0.5, 0.5>

top-3 result is:

p1, p3, p6

• Which other possible
queries would have
the same top-3?

• Hotels with attributes location, service

[Zhang14]: Global Immutable Region

28

• Answer:
Every query vector in
shaded area (GIR)

• Applications:

– Sensitivity analysis
– E.g. volume of GIR equals to

probability that a random query

vector returns same result as q

– Result caching

– Weight readjustment

Observe difference

from STB

[Zhang14]: Global Immutable Region

• Basic Alg.: There are k-1 O-cond/s (e.g. S(r1) > S(r2))

• …and n-k NR-cond/s (S(rk) > S(r) ∀ non-result r)

• Each condition ↔

a half-space!

• Intersect all half-spaces

• Cost: O(nd/2)

• Problem: Too expensive

• Idea: limit no. of

NR-conditions!

• …i.e. prune non-results!

�
�
��

[Zhang14]: Global Immutable Region

• Observation: pin sweeping line at rk and
consider all orientations that keep NRs below it!

• Tilting bound only by
r4 and r8

• NR conditions only
for r4 and r8 !

• Formalize??

�����������

��

��

��
��

��

��
��

��

��

��

���

���

���
��� ���

��

���

�

[Zhang14]: Global Immutable Region

• Facet pruning:

• Consider CH of rk and NRs

• Only CH facets
adjacent to rk

affect the GIR!

– Consider only NRs

on adj. facets

• Optimization:
ONLY compute adj.
facets (not entire CH)

�����������

��

��

��
��

��

��
��

��

��

��

���

���

���
��� ���

��

���

�

[Zhang14]: Global Immutable Region

• The same applies to any dimension!

• E.g. for d = 3

��

��

��

��

�

[Mouratidis15]: MaxRank

• MaxRank query: given a focal record p, find:

1. The highest rank p may achieve under any
possible user preference, and

2. All the regions in the query vector's domain where
that rank is attained

[Mouratidis15]: MaxRank

34

Option Location Service

1 0.8 0.9

2 0.2 0.7

3 0.9 0.4

4 0.7 0.2

5 0.4 0.3

p (focal) 0.5 0.5

• Query weights in [0,1]

• If q = <0.7, 0.3>

order of p is 4

• If q = <0.1, 0.9>

order of p is 3

• Hotels with attributes location, service

��

��
�

� �

�
�

�

�

��

��
�

� �

[Mouratidis15]: MaxRank

35

• Query domain

• Order of p

• MaxRank result:

– Min. order k* = 3

– MaxRank regions:

shaded wedges

• Applications:

– Market impact analysis

– Customer profiling

– Targeted advertising

[Mouratidis15]: MaxRank

36

• Dominees

– ignore

• Dominators

– simply increment k*

• Incomparable

– How to deal with them?

Data Space

����������

��������

��

��

��

��

��

��

�
��

��
��

��

[Mouratidis15]: MaxRank

• Consider a single
incomparable rec. r

• Score of r higher than
p iff query vector is
inside a half-space

– Inequality S(r) > S(p)

maps into half-space

in query space

Query Space

[Mouratidis15]: MaxRank

• Idea: map each incomp. record to a h/s

38

• Recs. r1 to r7 map to
h/s h1 to h7

• Consider a cell

• set of h/s including
cell = set of recs.
scoring higher than p

• At cell of q:

h1 and h2 include it ⇔
r1 and r2 score higher Half-space Arrangement

�

[Mouratidis15]: MaxRank

• Count in each cell = no. of h/s that include it

39

• Find the cell(s) with
smallest count

– These cell(s) =

MaxRank regions

– k* = their count + no.

of dominators + 1

• Trouble:
Arrangement comp.
takes O(nd) !!! Half-space Arrangement

[Mouratidis15]: MaxRank

• Assume r1 dominates r4 and r5

• Subsume h4 and h5 under h1 → augmented h/s

40

[Mouratidis15]: MaxRank

41

• In our example

– r1 dominates r4 and r5

– r3 dominates r6
Mixed Arrangement

��

��������

��

����

�

�

�

�

��

��

��

• Count is now a lower bound of the actual count
if subsumed h/s were considered!

• c1 not in any aug. h/s; but c2 in h3,6 → expand it!

[Mouratidis15]: MaxRank

42

[Tang17]: k-Shortlist Preference Regions

• k-Shortlist Preference Regions (kSPR):
– All regions in preference space where a given focal

option p belongs to the top-k result

– Previously defined as monochromatic reverse top-
k query but only solved for the degenerate 2-D
case [Vlachou10 & 11]

43

��

��

0

0

�

1

1

� �

�

��

��

0

0

�

1

1

� �

�

[Tang17]: kSPR Example

44

• Preference space

• Order of p

• kSPR result for k = 3:

– The shaded wedges

– Every query vector in

shaded area ranks p

among the top-3

options

����

��

��

��
��

��

��
��

h1q2 3

4

4

5

3

2

1
3

4

2

3
4

3

4

h2

h3

h7

h6

h4

h5

q1

[Tang17]: Fundamentals

• Again, we map each incomp. option to a h/s

45

• Set of h/s including
cell = set of options
scoring higher than p

• Count in each cell =
no. of options that
score higher than p

• kSPR result for k=4:
cells with count ≤ 3

Half-space Arrangement

h1q2 3

4

4

5

3

2

1
3

4

2

3
4

3

4

h2

h3

h7

h6

h4

h5

q1

[Tang17]: Cell Tree (3 h/s, k = 2)

• Assume 3 h/s as shown below:

• Cell Tree looks like:

ℎ�

ℎ�ℎ	

�

�

��

��

�

��

����

�

�	��

ℎ�
�

ℎ�
�

ℎ�
� ℎ�

�

{ℎ	
�}

{ℎ�
�}

��

ℎ	
�

�

ℎ	
�

ℎ�

ℎ�

ℎ�

ℎ	

ℎ

ℎ�

�

�

�

0 1

0

1

��

��

�	��

[Tang17]: Cell Representation (implicit)

47

• Cell computation takes
O(nd/2)

• Implicit representation
by defining halfspaces:

{h1
−,h2

−,h3
−,h4

+,h5
−,h6

+}

• …even better, just the
bounding ones:
{h2

−,h6
+}

• Trouble: how to detect
infeasible cells?

[Tang17]: Case Study

kSPR (k=3) on real NBA data for Dwight Howard

�: points

�: rebounds

�: points

�: rebounds

Season: 2014-15 Season: 2015-16

[He14]: “Why-not” query

• Given a query q and its top-k result

• How should we modify vector q and/or value k
so that a record p is included in the result

• Defines a penalty function combining:

(i) perturbation on q (Euclidean dist.) and

(ii) increase in k

• Technique relies on sampling ⇒ approximate
answer

• However, there is an interesting geometric
observation…

49

[He14]: “Why-not” query

• ∀ incomp. rec. r defines a hyper-plane w/ eqn.
S(p) = S(r) � Arrangement similar to MaxRank

• The optimal answer
to the why-not query
is proven to lie on
the boundary of
some cell!

• why-not reverse top-k
query is defined in
same spirit [Gao15]

50

�

[Peng15]: k-hit query

• Given: dataset + pdf of the query vector

• Select m recs. so that top-1 rec. for a random
query has highest probability to be among them

• Result belongs to the convex hull

• Computing probabilities = computing areas of
cones (or wedges, in 2d), which is expensive.

• Thus sampling � approx. solutions w/ bounds

• k-regret min. set e.g. [Chester15]: subset of m
recs s.t. top-1 rec. in subset scores the closest
to the top-kth rec. for any possible query

51

Top-k in High-D?

• Unless the data exhibit strong correlation, top-k
is meaningless in more than 5-6 dimensions!

• As d grows, the highest score across the
dataset approaches the lowest score!

• I.e. ranking by score no longer offers

distinguishability ↔ looses its usefulness

• Behaviour very similar to nearest neighbor
query, known to suffer from the dimensionality
curse [Beyer99]

52

Top-k in High-D?

• IND data

• …of fixed cardinality n = 100K

• …we vary data dimensionality

53

Thank you!

54

