School of Information Systems

Geometric Approaches for Top-k Queries

[Tutorial]

Kyriakos Mouratidis

Singapore Management University

VLDB 2017

Introduction

- <u>Top-k query</u>: shortlists top options from a set of alternatives
- E.g. tripadvisor.com
 - rate (and browse) hotels according to price, cleanliness, location, service, etc.
- A user's criteria: price, cleanliness and service, with different weights

Weights could be captured by slide-bars:

Introduction

- Slide-bar locations \rightarrow **numerical weights**
- We call q = <0.8, 0.3, 0.5> the *query vector* and its domain the *query domain* or *query space*
- Linear function ranks hotels (i.e. records)

 $-score = 0.8 \cdot price + 0.3 \cdot clean + 0.5 \cdot service$

– if record r is seen as vector, score = dot product r · q

- Top-k returned (e.g. the top-10)
- Top-k processing is well-studied
 - E.g. [Fagin01,Tao07] for processing w/o & w/ index
 - Excellent survey [llyas08]

Top-k as sweeping the data space [Tsaparas03]

- Assume all query weights are positive
- ...and each record attribute is in range [0,1]
- Example for d = 2 (showing: <u>data space</u>)
- Sweeping line normal to vector q
- Sweeps from top-corner (1,1) towards origin
- Order a rec. is met
 ↔ order in ranking!
 - E.g. top-2 = { r_1, r_2 }
- At current position:
 - → rec. above (below) the line higher (lower) score than r₂

Notes on dim/nality of query domain

- Ranking of recs. depends only on orientation of sweeping line (or hyper-plane, in higher dim.)
 – query vector <0.8,0.3,0.5> same effect as <8,3,5>
- ⇒ we can normalize q so that sum of weights is
 1 (without affecting at all the top-k semantics)
 - e.g. in 2-D we can rewrite scoring function as $S(r) = \alpha \cdot x_1 + (1-\alpha) \cdot x_2$
- This reduces dim/nality of query domain by 1
 - Geom. operations in query domain become faster
- We'll ignore this in the following for simplicity

Half-space range reporting

- Half-space range (HSR) <u>reporting</u>: preprocess a set of points s.t. all points that lie above a **query** hyperplane can be reported quickly
 - Equiv: given query vector
 q and focal rec. **p**, report
 all recs. that score higher
- HSR <u>counting</u>: report just no. of points
 - Equiv: given q and p, report the <u>rank</u> of p

Relationship to Convex Hull

- Convex Hull: The smallest convex polytope that includes a set of points (records)
- Fact: The top-1 record for any query vector is
 A no the hull!

- [Dantzig63]: LP text

[Chang00]: Onion Technique

- Onion: Materialization to speed up top-k search
- 1st layer = CH
 - contains top-1 rec. \forall **q**
- 2nd layer = CH of recs.
 except 1st layer
 - 1st and 2nd layer contain top-2 recs. ∀ **q**
- 3nd layer = CH of recs.
 except 1st and 2nd layer...
- Top-k records for any q are among k top layers!

[Börzsönyi01, Papadias03]: Skyline

- Dominance: rec. r₁ dominates r₂ iff it has higher values in all dimensions [ignore ties]
- \Rightarrow S(r₁) > S(r₂) \forall q
- Skyline: all recs. that aren't dominated
- Includes top-1 ∀ q
- k-skyband: all recs.
 not dominated by
 k or more others
- Includes top-k \forall q

- Overview: dual transformation used to process <u>ad-hoc</u> top-k queries on a dynamic buffer (e.g. sliding window)
- Insertions and deletions made to the buffer
- One-off (snapshot) top-k queries posed
- Objective: to maintain a subset of records in buffer, guaranteed to include the top-k result of any ad-hoc query

- Dual transformation: Points mapped to lines
 - rec. (x_1, x_2) mapped to line $y = (1 x_2)x + (1 x_1)$
 - Observe: all lines have positive slope

• Dual transformation: Queries to vertical rays $-q = (w_1, w_2)$ mapped to ray from point $(w_2/w_1, 0)$

<u>**Order</u>** ray q^* hits line $r^* \Leftrightarrow$ <u>**Rank</u>** of **r** in the result of **q**</u></u>

I.e. top-2 result =
$$\{r_3, r_2\}$$

- Idea 1: Maintain arrangement of lines induced by all records in the buffer
- Issue: arrangement costly to compute/update!
 Arrangement computation in 2-D: O(n²)
- Idea 2: keep only lines that could appear among the <u>k lowest lines</u> in the <u>arrangement</u>

- Consider 2 queries, and their top-k points
- They define two pruning lines

Their intersection = pruning point i

If a line r^* is above i then r cannot be in the result of any query between q_1 and q_2

- Use border queries (like q₁, q₂) to partition the arrangement into strips
- Maintain top-k points of border queries and a pruning point in each strip
- In each strip, maintain a local arrangement, excluding lines above the pruning point
- Ad-hoc query posed: identify its strip, look for k first lines its ray hits in the local arrangement

- Overview: dual transformation used to process <u>continuous</u> top-k queries on a dynamic buffer (e.g. sliding window)
- Insertions and deletions made to the buffer
- Continuous top-k queries posed
- Objective: refresh the top-k results as fast as possible

- k-level: set of edges (facets) in the arrangement w/ exactly k-1 others below them
- k-level captures the k-th result of any query!

- Consider record r insertion (deletion is similar)
 - Affected queries = those under new edges in k-level

- A by-product: preprocessing method for (bichromatic) reverse top-k queries (RTOP-k) [Vlachou10 & 11]
- Given a focal record p, a set of records, and a set of top-k queries, find the queries that have p in the result
- Prep: Find top-k points of all queries, i.e., intersections of query rays and the k-level
- Index these points
- Posed a RTOP-k query for p, report those queries whose top-k point is above p*
- Ex: RTOP-k includes only q₂

- Defines 4 problems:
- 1. MPO: Find the most probable top-k result (if query vector is randomly & uniformly chosen)
- 2. ORA: Find the top-k result with minimum summed distance from all others
- STB: Find maximum radius ard. q where top-k result remains the same
- 4. LIK: Find probability that a randomly & uniformly chosen query has same result as q
 MPO&ORA: Repr/tives; STB&LIK: Sensitivity!

- MPO & ORA key idea:
- For r₁, r₂: equality
 S(r₁) = S(r₂) maps
 into hyperplane in
 query domain!
- Every pair of records induces a hyperplane
- Producing an arrangement!

- Every cell corresponds to different full ordering ∧ of the records!
- Possible orderings: O(n^{2^(d-1)})
- Top-k result ↔
 k-prefix of ∧
- Enumerate, compute volume, report MPO
- Bottom-up or topdown processing

- Experiments for **MPO** only
- **ORA** solution utilizes specific characteristics of distance function (Kendall tau & Footrule)
- ...and approximation/sampling (in the case of Kendall tau)

- STB: Given q, find max. radius p that vector q can move without changing top-k result:
- Order within result retained
 - -i.e. $S(r_1) > S(r_2)$ and $S(r_2) > S(r_3) \dots S(r_{k-1}) > S(r_k)$

-k-1 conditions (O-conditions)

- Non-results cannot overtake r_k
 - $-i.e. S(r_k) > S(r)$ for every non-result r

– n-k conditions (NR-conditions)

• **Observation:** each condition \leftrightarrow a hyperplane!

- STB solution: Compute dist. from q to <u>each</u> of the n-1 hyperplanes
- p is the min. of these distances!
- Cost: O(nd)
- LIK: compute the cell including q (and then its volume)
- Cost: O(n^{2^(d-2)})

- [Zhang14]: Actually, with half-space intersection (n-1 O-conditions & NR-conditions):
- Cost: O(n^{d/2})
- Computes the **cell** enclosing $q \leftrightarrow GIR$!

Global Immutable Region (GIR)

 The maximal region around query vector *q* where the top-*k* result remains the same

• Hotels with attributes *location*, *service*

Option	Location	Service
1	0.8	0.9
2	0.2	0.7
3	0.9	0.4
4	0.7	0.2
5	0.4	0.3
6	0.5	0.5

- Query weights in [0,1]
- For *q* = <0.5, 0.5>
 top-3 result is:
 - p_1, p_3, p_6
- Which other possible queries would have the same top-3?

- Answer: Every query vector in shaded area (GIR)
- Applications:
 - Sensitivity analysis
 - E.g. volume of GIR equals to probability that a random query vector returns same result as q
 - Result caching
 - Weight readjustment

Observe difference from **STB**

- **Basic Alg.**: There are k-1 O-cond/s (e.g. $S(r_1) > S(r_2)$)
- ...and n-k NR-cond/s (S(r_k) > S(r) \forall non-result r)
- Each condition ↔ a half-space!
- Intersect all half-spaces
- Cost: O(n^{d/2})
- Problem: Too expensive
- Idea: limit no. of NR-conditions!
- ...i.e. prune non-results!

W₂

- Observation: pin sweeping line at r_k and consider all orientations that keep NRs below it!
- Tilting bound only by ' r₄ and r₈
- NR conditions only for r₄ and r₈ !
- Formalize??

- Facet pruning:
- Consider CH of r_k and NRs
- Only CH facets adjacent to r_k affect the GIR!
 - Consider only NRs on adj. facets
- Optimization: ONLY compute adj. facets (not entire CH)

- The same applies to any dimension!
- E.g. for d = 3

- MaxRank query: given a focal record p, find:
 - 1. The highest rank *p* may achieve under **any possible** user preference, and
 - 2. All the regions in the query vector's domain where that rank is attained

• Hotels with attributes *location*, *service*

Option	Location	Service
1	0.8	0.9
2	0.2	0.7
3	0.9	0.4
4	0.7	0.2
5	0.4	0.3
p (focal)	0.5	0.5

- Query weights in [0,1]
- If *q* = <0.7, 0.3>
 order of *p* is 4
- If *q* = <0.1, 0.9>
 order of *p* is 3

- Query domain
- Order of p
- MaxRank result:
 - Min. order $k^* = 3$
 - MaxRank regions:
 shaded wedges
- Applications:
 - Market impact analysis
 - Customer profiling
 - Targeted advertising

- Dominees

 ignore
- Dominators

 simply increment k*
- Incomparable
 - How to deal with them?

Data Space

- Consider a single incomparable rec. r
- Score of *r* higher than
 p iff query vector is
 inside a half-space
 - Inequality S(r) > S(p)
 maps into half-space
 in query space

- Idea: map each incomp. record to a h/s
- Recs. *r*₁ to *r*₇ map to h/s *h*₁ to *h*₇
- Consider a cell
- set of h/s including
 cell = set of recs.
 scoring higher than *p*
- At cell of q: h_1 and h_2 include it \Leftrightarrow r_1 and r_2 score higher Ha

^{1er} Half-space Arrangement

- Count in each cell = no. of h/s that include it
- Find the cell(s) with smallest count
 - These cell(s) =
 MaxRank regions
 - $-k^*$ = their count + no. of dominators + 1

Trouble:

Arrangement comp. takes *O*(*n*^d) !!!

- Assume r_1 dominates r_4 and r_5
- Subsume h_4 and h_5 under $h_1 \rightarrow$ augmented h/s

- Count is now a lower bound of the actual count if subsumed h/s were considered!
- c_1 not in any aug. h/s; but c_2 in $h_{3,6} \rightarrow$ expand it!

[Tang17]: k-Shortlist Preference Regions

- k-Shortlist Preference Regions (kSPR):
 - All regions in preference space where a given focal option *p* belongs to the top-k result
 - Previously defined as <u>monochromatic reverse top-k query</u> but only solved for the degenerate 2-D case [Vlachou10 & 11]

[Tang17]: kSPR Example

- Preference space
- Order of *p*
- kSPR result for k = 3:
 - The shaded wedges
 - Every query vector in shaded area ranks *p* among the top-3 options

[Tang17]: Fundamentals

- Again, we map each incomp. option to a h/s
- Set of h/s including cell = set of options scoring higher than p
- Count in each cell = no. of options that score higher than p
- kSPR result for k=4: cells with count ≤ 3

[Tang17]: Cell Tree (3 h/s, k = 2)

- Assume 3 h/s as shown below:
- Cell Tree looks like:

[Tang17]: Cell Representation (implicit)

- Cell computation takes
 O(n^{d/2})
- Implicit representation by defining halfspaces: {h₁⁻,h₂⁻,h₃⁻,h₄⁺,h₅⁻,h₆⁺}
- ...even better, just the bounding ones: {h₂⁻,h₆⁺}
- Trouble: how to detect infeasible cells?

[Tang17]: Case Study

kSPR (k=3) on real NBA data for *Dwight Howard*

Season: 2014-15

Season: 2015-16

[He14]: "Why-not" query

- Given a query **q** and its top-k result
- How should we modify <u>vector **q**</u> and/or <u>value k</u> so that a record **p** is included in the result
- Defines a penalty function combining:
 (i) norther tion on a (Euclidean dist) and

(i) perturbation on **q** (Euclidean dist.) and(ii) increase in k

- Technique relies on $\ensuremath{\textit{sampling}} \Rightarrow \ensuremath{\textit{approximate}}$ answer
- However, there is an interesting geometric observation...

[He14]: "Why-not" query

- ∀ incomp. rec. r defines a hyper-plane w/ eqn.
 S(p) = S(r) → Arrangement similar to MaxRank
- The optimal answer to the why-not query is proven to lie on the boundary of some cell!
- why-not reverse top-k query is defined in same spirit [Gao15]

[Peng15]: k-hit query

- Given: dataset + pdf of the query vector
- Select *m* recs. so that top-1 rec. for a random query has highest probability to be among them
- Result belongs to the convex hull
- Computing probabilities = computing areas of cones (or wedges, in 2d), which is expensive.
- Thus sampling → approx. solutions w/ bounds
- k-regret min. set e.g. [Chester15]: subset of m recs s.t. top-1 rec. in subset scores the closest to the top-kth rec. for any possible query

Top-k in High-D?

- Unless the data exhibit strong correlation, top-k is meaningless in more than 5-6 dimensions!
- As d grows, the **highest score** across the dataset approaches the **lowest score**!
- I.e. ranking by score no longer offers distinguishability ↔ looses its usefulness
- Behaviour very similar to nearest neighbor query, known to suffer from the dimensionality curse [Beyer99]

Top-k in High-D?

- IND data
- ...of fixed cardinality n = 100K
- ...we vary data dimensionality

Thank you!