Geometric Approaches for Top-k Queries

[Tutorial]

Kyriakos Mouratidis
Singapore Management University
Introduction

- **Top-k query**: shortlists top options from a set of alternatives.
 - E.g. tripadvisor.com
 - rate (and browse) hotels according to price, cleanliness, location, service, etc.

- A user’s criteria: *price*, *cleanliness* and *service*, with different weights.

Weights could be captured by slide-bars:
Introduction

• Slide-bar locations → numerical weights
• We call \(q = <0.8, 0.3, 0.5> \) the \(\text{query vector} \)
 – and its domain the \(\text{query domain or query space} \)
• Linear function ranks hotels (i.e. \(\text{records} \))
 – \(\text{score} = 0.8 \cdot \text{price} + 0.3 \cdot \text{clean} + 0.5 \cdot \text{service} \)
 – if record \(r \) is seen as vector, \(\text{score} = \text{dot product } r \cdot q \)
• Top-k returned (e.g. the top-10)
• Top-k processing is well-studied
 – E.g. [Fagin01,Tao07] for processing w/o & w/ index
 – Excellent survey [Ilyas08]
Top-k as sweeping the data space
[Tsaparas03]

• Assume all **query weights** are **positive**
• …and each **record attribute** is in range \([0,1]\)
• Example for \(d = 2\) (showing: **data space**)
• **Sweeping line** normal to vector \(q\)
• Sweeps from top-corner \((1,1)\) towards origin
• Order a rec. is met \(\leftrightarrow\) order in ranking!
 – E.g. top-2 = \{ \(r_1, r_2\) \}
• At current position:
 – \(\forall\) rec. above (below) the line higher (lower) score than \(r_2\)
Notes on dim/nality of query domain

• Ranking of recs. depends only on orientation of sweeping line (or hyper-plane, in higher dim.)
 – query vector \(<0.8, 0.3, 0.5> \) same effect as \(<8, 3, 5> \)

• \(\Rightarrow \) we can normalize \(q \) so that sum of weights is 1 (without affecting at all the top-k semantics)
 – e.g. in 2-D we can rewrite scoring function as
 \[S(r) = \alpha \cdot x_1 + (1-\alpha) \cdot x_2 \]

• This reduces dim/nality of query domain by 1
 – Geom. operations in query domain become faster

• We’ll ignore this in the following for simplicity
Half-space range reporting

• Half-space range (HSR) reporting: preprocess a set of points s.t. all points that lie above a query hyperplane can be reported quickly
 – Equiv: given query vector q and focal rec. p, report all recs. that score higher

• HSR counting: report just no. of points
 – Equiv: given q and p, report the rank of p
Relationship to Convex Hull

• **Convex Hull**: The smallest convex polytope that includes a set of points (records)

• Fact: The top-1 record for **any** query vector is on the hull!
 – [Dantzig63]: LP text
[Chang00]: Onion Technique

- **Onion**: Materialization to speed up top-k search
 - 1st layer = CH
 - contains top-1 rec. \(\forall q \)
 - 2nd layer = CH of recs. except 1st layer
 - 1st and 2nd layer contain top-2 recs. \(\forall q \)
 - 3rd layer = CH of recs. except 1st and 2nd layer...
 - Top-k records for any \(q \) are among k top layers!
[Börzsönyi01, Papadias03]: Skyline

- **Dominance**: rec. \(r_1 \) dominates \(r_2 \) iff it has higher values in all dimensions [ignore ties]
 \[\Rightarrow S(r_1) > S(r_2) \quad \forall \quad q \]

- **Skyline**: all recs. that aren't dominated
 - Includes top-1 \(\forall \quad q \)

- **k-skyband**: all recs. not dominated by \(k \) or more others
 - Includes top-\(k \) \(\forall \quad q \)
Overview: dual transformation used to process ad-hoc top-k queries on a dynamic buffer (e.g. sliding window)

- Insertions and deletions made to the buffer
- One-off (snapshot) top-k queries posed
- Objective: to maintain a subset of records in buffer, guaranteed to include the top-k result of any ad-hoc query
• **Dual transformation**: Points mapped to lines
 – rec. (x_1, x_2) mapped to line $y = (1 - x_2)x + (1 - x_1)$
 – Observe: all lines have positive slope
[Das07]: Duality, 2D

- **Dual transformation**: Queries to **vertical rays**
 - \(q = (w_1, w_2) \) mapped to ray from point \((w_2/w_1, 0) \)

Order ray \(q^* \) hits line \(r^* \) \(\iff \) **Rank** of \(r \) in the result of \(q \)

i.e. top-2 result = \(\{r_3, r_2\} \)
[Das07]: Duality, 2D

• Idea 1: Maintain arrangement of lines induced by all records in the buffer

• Issue: arrangement costly to compute/update!
 – Arrangement computation in 2-D: $O(n^2)$

• Idea 2: keep only lines that could appear among the k lowest lines in the arrangement
[Das07]: Duality, 2D

• Consider 2 queries, and their top-k points
• They define two pruning lines

Their intersection = pruning point \(i \)

If a line \(r^* \) is above \(i \) then \(r \) cannot be in the result of any query between \(q_1 \) and \(q_2 \)
[Das07]: Duality, 2D

- Use **border queries** (like q_1, q_2) to partition the arrangement into **strips**
- Maintain **top-k points** of border queries and a pruning point in each strip
- In each strip, maintain a **local arrangement**, excluding lines above the pruning point
- Ad-hoc query posed: identify its strip, look for k first lines its ray hits in the local arrangement
[Yu12]: Duality, higher-D

- Overview: **dual transformation** used to process **continuous** top-k queries on a dynamic buffer (e.g. sliding window)
 - Insertions and deletions made to the buffer
 - **Continuous** top-k queries posed
 - Objective: refresh the top-k results as fast as possible
[Yu12]: Duality, higher-D

- **k-level**: set of edges (facets) in the arrangement w/ exactly k-1 others below them
- **k-level captures the k-th result of any query!**

![Diagram](https://via.placeholder.com/150)

2-level

2nd top record of q is r\textsubscript{2}
Consider record r insertion (deletion is similar)
- Affected queries = those under new edges in k-level
[Yu12]: Duality, higher-D

- A by-product: preprocessing method for (bichromatic) reverse top-k queries (RTOP-k) [Vlachou10 & 11]
- Given a **focal record** \(p \), a set of records, and a set of top-k queries, find the queries that have \(p \) in the result
- Prep: Find top-k points of all queries, i.e., intersections of query rays and the \(k \)-level
- Index these points
- Posed a RTOP-k query for \(p \), report those queries whose top-k point is above \(p^* \)
- Ex: RTOP-k includes only \(q_2 \)
• Defines 4 problems:

1. **MPO**: Find the most probable top-k result (if query vector is randomly & uniformly chosen)

2. **ORA**: Find the top-k result with minimum summed distance from all others

3. **STB**: Find maximum radius ard. \(q \) where top-k result remains the same

4. **LIK**: Find probability that a randomly & uniformly chosen query has same result as \(q \)

MPO&ORA: Repr/tives; **STB&LIK**: Sensitivity!
• MPO & ORA key idea:
• For \(r_1, r_2 \): equality \(S(r_1) = S(r_2) \) maps into hyperplane in query domain!
• Every pair of records induces a hyperplane
• Producing an arrangement!
[Soliman11]: Repr/tives & measures

- Every **cell** corresponds to different **full ordering** Λ of the records!
- Possible orderings: $O(n^{2^\Lambda(d-1)})$
- Top-k result \leftrightarrow k-prefix of Λ
- Enumerate, compute **volume**, report **MPO**
- Bottom-up or top-down processing
Experiments for **MPO** only

ORA solution utilizes specific characteristics of distance function (Kendall tau & Footrule)

...and approximation/sampling (in the case of Kendall tau)
[Soliman11]: Repr/tives & measures

- **STB**: Given \(q \), find max. radius \(\rho \) that vector \(q \) can move without changing top-k result:
 - **Order** within result retained
 - i.e. \(S(r_1) > S(r_2) \) and \(S(r_2) > S(r_3) \) ... \(S(r_{k-1}) > S(r_k) \)
 - \(k-1 \) conditions (**O-conditions**)
 - **Non-results** cannot overtake \(r_k \)
 - i.e. \(S(r_k) > S(r) \) for every non-result \(r \)
 - \(n-k \) conditions (**NR-conditions**)
- **Observation**: each condition \(\leftrightarrow \) a hyperplane!
[Soliman11]: Repr/tives & measures

- **STB** solution: Compute dist. from \(q \) to **each** of the \(n-1 \) hyperplanes
 - \(\rho \) is the min. of these distances!
 - Cost: \(O(nd) \)

- **LIK**: compute the **cell** including \(q \) (and then its volume)
 - Cost: \(O(n^{2^d(d-2)}) \)
[Zhang14]: Global Immutable Region

• [Zhang14]: Actually, with half-space intersection (n-1 O-conditions & NR-conditions):
• Cost: $O(n^{d/2})$
• Computes the cell enclosing $q \leftrightarrow \text{GIR}$!

• **Global Immutable Region (GIR)**
 – The *maximal* region around query vector q where the top-k result remains the same
• Hotels with attributes *location, service*

<table>
<thead>
<tr>
<th>Option</th>
<th>Location</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

• Query weights in [0,1]

• For $\mathbf{q} = \langle 0.5, 0.5 \rangle$

 top-3 result is:

 p_1, p_3, p_6

• Which other possible queries would have the same top-3?
[Zhang14]: Global Immutable Region

• Answer: Every query vector in shaded area (GIR)

• Applications:
 – Sensitivity analysis
 – E.g. volume of GIR equals to probability that a random query vector returns same result as \(q \)
 – Result caching
 – Weight readjustment

Observe difference from STB
[Zhang14]: Global Immutable Region

- **Basic Alg.**: There are \(k-1\) \textbf{O-cond/s} (e.g. \(S(r_1) > S(r_2)\))
- …and \(n-k\) \textbf{NR-cond/s} (\(S(r_k) > S(r)\) \(\forall\) non-result \(r\))
- Each condition \(\leftrightarrow\) a \textbf{half-space}!
- Intersect all half-spaces
- Cost: \(O(n^{d/2})\)
- **Problem**: Too expensive
- **Idea**: limit no. of NR-conditions!
- …i.e. prune non-results!
[Zhang14]: Global Immutable Region

- Observation: **pin** sweeping line at r_k and consider all orientations that keep NRs below it!
- Tilting bound **only by** r_4 and r_8
- NR conditions only for r_4 and r_8!
- Formalize??
Facet pruning:
- Consider CH of r_k and NRs
- Only CH facets adjacent to r_k affect the GIR!
 - Consider only NRs on adj. facets

Optimization:
- ONLY compute adj. facets (not entire CH)
The same applies to any dimension!
E.g. for $d = 3$
MaxRank query: given a focal record \(p \), find:

1. The highest rank \(p \) may achieve under any possible user preference, and

2. All the regions in the query vector's domain where that rank is attained
[Mouratidis15]: MaxRank

- Hotels with attributes *location, service*

<table>
<thead>
<tr>
<th>Option</th>
<th>Location</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>(p) (focal)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Query weights in \([0,1]\)
- If \(q = \langle 0.7, 0.3 \rangle\), order of \(p\) is 4
- If \(q = \langle 0.1, 0.9 \rangle\), order of \(p\) is 3
[Mouratidis15]: MaxRank

- Query domain
- Order of p
- $MaxRank$ result:
 - Min. order $k^* = 3$
 - $MaxRank$ regions: shaded wedges
- Applications:
 - Market impact analysis
 - Customer profiling
 - Targeted advertising
[Mouratidis15]: MaxRank

- **Dominees**
 - ignore
- **Dominator**
 - simply increment k^*
- **Incomparable**
 - How to deal with them?
[Mouratidis15]: MaxRank

- Consider a single incomparable rec. r
- Score of r higher than p iff query vector is inside a half-space
 - Inequality $S(r) > S(p)$ maps into half-space in query space
[Mouratidis15]: MaxRank

• Idea: map each incomp. record to a h/s
• Recs. \(r_1 \) to \(r_7 \) map to h/s \(h_1 \) to \(h_7 \)
• Consider a cell
• set of h/s including cell = set of recs. scoring higher than \(p \)
• At cell of \(q \):
 \(h_1 \) and \(h_2 \) include it ⇔ \(r_1 \) and \(r_2 \) score higher

Half-space Arrangement
[Mouratidis15]: MaxRank

- **Count** in each cell = no. of h/s that include it

- Find the cell(s) with smallest count
 - These cell(s) = *MaxRank* regions
 - k^* = their count + no. of dominators + 1

- **Trouble:**
 Arrangement comp. takes $O(n^d)$!!!

Half-space Arrangement
[Mouratidis15]: MaxRank

- Assume r_1 dominates r_4 and r_5
- Subsume h_4 and h_5 under $h_1 \rightarrow$ augmented h/s
In our example

- \(r_1 \) dominates \(r_4 \) and \(r_5 \)
- \(r_3 \) dominates \(r_6 \)

Mixed Arrangement
[Mouratidis15]: MaxRank

• Count is now a **lower bound** of the actual count if subsumed h/s were considered!

• **c_1 not in any** aug. h/s; but **c_2 in $h_{3,6} \rightarrow$ expand it!**
• **k-Shortlist Preference Regions (kSPR):**
 – All regions in preference space where a given focal option p belongs to the top-k result
 – Previously defined as monochromatic reverse top-k query but only solved for the degenerate 2-D case [Vlachou10 & 11]
[Tang17]: kSPR Example

- Preference space
- Order of p
- kSPR result for $k = 3$:
 - The shaded wedges
 - Every query vector in shaded area ranks p among the top-3 options
Again, we map each incomp. option to a h/s

Set of h/s including cell = set of options scoring higher than p

Count in each cell = no. of options that score higher than p

kSPR result for $k=4$: cells with count ≤ 3

Half-space Arrangement
[Tang17]: Cell Tree (3 h/s, k = 2)

- Assume 3 h/s as shown below:
- Cell Tree looks like:
[Tang17]: Cell Representation (implicit)

- Cell computation takes $O(n^{d/2})$
- Implicit representation by defining halfspaces: $\{h_1^-, h_2^-, h_3^-, h_4^+, h_5^-, h_6^+\}$
- ...even better, just the bounding ones: $\{h_2^-, h_6^+\}$
- Trouble: how to detect infeasible cells?
kSPR (k=3) on real NBA data for Dwight Howard

Season: 2014-15

Season: 2015-16
[He14]: “Why-not” query

• Given a query \(q \) and its top-k result
• How should we modify vector \(q \) and/or value \(k \) so that a record \(p \) is included in the result
• Defines a penalty function combining:
 (i) perturbation on \(q \) (Euclidean dist.) and
 (ii) increase in \(k \)
• Technique relies on sampling \(\Rightarrow \) approximate answer
• However, there is an interesting geometric observation…
[He14]: “Why-not” query

• ∀ incomp. rec. r defines a hyper-plane w/ eqn. $S(p) = S(r) \Rightarrow$ Arrangement similar to MaxRank

• The optimal answer to the why-not query is proven to lie on the boundary of some cell!

• why-not reverse top-k query is defined in same spirit [Gao15]
[Peng15]: k-hit query

- Given: dataset + pdf of the query vector
- Select m recs. so that top-1 rec. for a random query has highest probability to be among them
- Result belongs to the *convex hull*
- Computing probabilities = computing areas of cones (or wedges, in 2d), which is expensive.
- Thus *sampling* \Rightarrow approx. solutions w/ bounds
- k-regret min. set e.g. [Chester15]: subset of m recs s.t. top-1 rec. in subset scores the closest to the top-kth rec. for any possible query
Top-k in High-D?

• Unless the data exhibit strong correlation, top-k is meaningless in more than 5-6 dimensions!
• As d grows, the highest score across the dataset approaches the lowest score!
• I.e. ranking by score no longer offers distinguishability ↔ looses its usefulness
• Behaviour very similar to nearest neighbor query, known to suffer from the dimensionality curse [Beyer99]
Top-k in High-D?

- IND data
- ...of fixed cardinality n = 100K
- ...we vary data dimensionality
Thank you!