
Noname manuscript No.
(will be inserted by the editor)

Best Upgrade Plans for Single and Multiple
Source-Destination Pairs

Yimin Lin · Kyriakos Mouratidis

Received: date / Accepted: date

Abstract In this paper, we study Resource Constrained Best Upgrade Plan (BUP) com-
putation in road network databases. Consider a transportation network (weighted graph)
G where a subset of the edges are upgradable, i.e., for each such edge there is a cost,
which if spent, the weight of the edge can be reduced to a specific new value. In the
single-pair version of BUP, the input includes a source and a destination in G, and a
budget B (resource constraint). The goal is to identify which upgradable edges should
be upgraded so that the shortest path distance between source and destination (in the
updated network) is minimized, without exceeding the available budget for the upgrade.
In the multiple-pair version of BUP, a set Q of source-destination pairs is given, and the
problem is to choose for upgrade those edges that lead to the smallest sum of shortest
path distances across all pairs in Q, subject to budget constraint B. In addition to trans-
portation networks, the BUP query arises in other domains too, such as telecommunica-
tions. We propose a framework for BUP processing and evaluate it with experiments on
large, real road networks.

Keywords Road network · Resource constraint · Network upgrade

Yimin Lin
80 Stamford Road
Singapore 178902
Tel.: +65-68280903
Fax: +65-68280919
E-mail: yimin.lin.2007@smu.edu.sg

Kyriakos Mouratidis
80 Stamford Road
Singapore 178902
Tel.: +65-68280649
Fax: +65-68280919
E-mail: kyriakos@smu.edu.sg

2 Yimin Lin, Kyriakos Mouratidis

1 Introduction

Graph processing finds application in a multitude of domains. Problems in transporta-
tions, telecommunications, bioinformatics and social networks are often modeled by
graphs. A large body of research considers queries related to reachability, shortest path
computation, path matching, etc. One of the less studied topics, which however is of
large practical significance, is the distribution of available resources in a graph in order
to achieve certain objectives. Here we consider road networks in particular, and the goal
is to minimize the total traveling time (shortest path distance) for a group of source-
destination pairs by amending the weights of selected edges.

As an example, consider the transportation authority of a city, where a new hos-
pital (or an important facility of another type) is opened, and the authority wishes to
upgrade the road network to ease access to this facility from other key locations (e.g.,
from the airport or from CBD area). While several road segments (network edges) may
be amenable to physical upgrade, this comes at a monetary cost. The Resource Con-
strained Best Upgrade Plan problem (BUP) is to select some among the upgradable
edges so that the traveling time between source(s) and destination(s) is minimized and
at the same time the summed upgrade cost does not exceed a specific budget B (resource
constraint). In the given example, there are two source-destination pairs that are of inter-
est, i.e., airport-hospital and CBD-hospital. These two pairs form set Q and the objective
is to minimize the sum of shortest path distances for these pairs, subject to budget B.
In the general case, there could be any number of pairs. Also, although in our example
there is a common destination (the hospital), the source and destination of each pair in
Q could be arbitrarily and independently chosen.

Another, more time-critical application example is an intelligent transportation sys-
tem that monitors the traffic in the road network of a city, and schedules accordingly the
traffic lights in road junctions in real-time. Assume that a major event is taking place
in the city and heavy traffic is expected from a specific source (e.g., a sports stadium)
to a specific destination (e.g., the marina). With appropriate traffic light reconfigura-
tion, the driving time across some edges in the network can be reduced, at the cost of
longer waits for walkers at affected pedestrian crosses. Assuming that along with each
upgradable edge there is a cost associated to capture the burden imposed to pedestrians,
BUP could indicate which road segments to favor in the traffic light schedule so that
(i) the traveling time from the stadium to the marina is minimized and (ii) the summed
cost against pedestrian priority does not exceed a certain value. Since there is only one
source-destination pair that is of interest, we refer to this version of the problem as the
single-pair BUP (as opposed to the multiple-pair case in our first example).

Although we focus on transportation networks, BUP finds application in other do-
mains too. Consider for instance a communication network, where on-demand dynamic
allocation of bandwidth and QoS parameters (e.g., latency) is possible for some links
between nodes (routers). In the usual case of leased network infrastructure in the Inter-
net Protocol (IP) layer, upgrading a link in terms of capacity or QoS access parameters
would incur a monetary cost. When a large volume of time-sensitive traffic (e.g., VoIP)
is expected between several pairs of nodes, (multiple-pair) BUP would indicate to the
network operators which links to upgrade in order to minimize the total network latency
between the pairs of nodes, subject to the available monetary budget.

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 3

a0
a1

a2 a3
a4

a5

a6

b1

b2

b3 b4

b5

b6

source/destination

upgradable edge

 edge

node

10 9|10|16

12|5|19
5

6
6

5|9|12

6

8

7

7

9|10|16

15

6

upgraded weight |cost |original weight 9|10|16

5

15

9 7

10
16

16
7

6
15

19

6

8
5

12

5

4

1

5
10

14|22|16

4|10|12

c1

c2

c3 c4 c5

c6

c7

a7

(s1)

(t1)

(s2)

(t2)

≅ s2 a2

≅ s1 a0

≅ t1 a7

≅ t2 b6

Fig. 1 Example of BUP query

Figure 1 shows an example of BUP (with |Q| = 2 query pairs) in a road network.
The edges drawn as dashed lines are upgradable. Each upgradable edge is associated
with a triplet of numbers (e.g., 〈9|10|16〉), indicating respectively the new weight (if the
edge is chosen for upgrade), the cost for the upgrade, and the original weight of the edge.
For normal, non-upgradable edges, the number associated with them indicates their (un-
changeable) weight; weights are only illustrated for edges that affect our example (all
the rest are assumed to have a weight of 15).

The input of the query is a set Q of source-destination pairs in the network, plus a
resource constraint B. Let U be the set of upgradable edges. The objective in BUP is
to select a subset of edges from U which, if upgraded, will lead to the minimum pos-
sible sum of shortest path distances across all pairs < si, ti > in Q, while the sum
of their upgrade costs does not exceed B. Assuming a resource constraint B = 20
and Q = {< s1, t1 >,< s2, t2 >} in Figure 1, the output of BUP includes edges
(a2, a3), (a6, a7) and leads to a summed shortest path distance of 108 (=59+49) via
paths {s1, b1, b2, b3, b4, c7, t1} and {s2, a3, a4, a5, a6, a7, t2}. The resource consump-
tion in this case is 14 (=5+9), i.e., smaller than B, and thus permissible. Note that if B
were larger, an even shorter summed distance could be achieved (namely, 102 (=53+49))
by upgrading edges (a1, a2), (a2, a3) and (a6, a7). This however would incur a cost of
24 that exceeds our budget B.

There are several bodies of research that are related to BUP, such as methods to
construct from scratch or modify the topology of a network to serve a specific objective
[16,36,28]. However, the only work on BUP is [23], which considers only the single-
pair version of the problem. The current paper subsumes [23] and addresses the general,
multiple-pair BUP, which entails significant new challenges and calls for novel solutions.

4 Yimin Lin, Kyriakos Mouratidis

In this paper, we formalize the general BUP and propose a suite of algorithms for its
efficient processing. As will become clear in Section 3, the main performance challenge
in BUP is the intractability of the search space and the need for numerous shortest path
computations. We develop techniques that limit both these factors. To demonstrate the
practicality of our framework, we conduct an extensive empirical evaluation using large,
real road networks.

2 Related Work

There are several streams of work related to BUP query. In this section, we give a brief
overview of these streams and indicate their differences from our problem.

2.1 Road Network Databases

There has been considerable research in the area of road network databases, including
methods for network storage and querying (e.g., ranges and nearest neighbors) [29,34,
17], the processing of queries that involve a notion of dominance based on proximity [9],
continuous versions of proximity queries [35], etc. There have also been several studies
on materialization with the purpose of accelerating shortest distance/path queries [21,
19]. All these techniques focus on data organization and querying mechanisms on a
network that is used as-is, i.e., they do not consider the selective amendment of edge
weights. The closest related piece in this area is [10], which considers shortest path
computation over time-dependent networks, i.e., where the weight of each edge is given
by a function of time. Again, there is no option to select edges for upgrade nor any
control over edge weights.

2.2 Network Topology Modification

Another related body of work includes methods to modify the network topology in order
to meet specific optimization objectives.

Algorithms on network topology optimization and network design compute/derive a
topology for nodes and edges in a network (e.g., number of nodes, placement of nodes
and edges, etc) to meet certain goals. Literature on this topic falls under wireless net-
works [15,2], wired backbone networks [5,31,20,27] and service overlay networks [22,
7,12,33]. These methods design the topology of the network, affecting its very structure.
In BUP, instead, the topology is preserved and the question is which edges to upgrade
within a specific budget (the budget not being a consideration among methods in this
category).

In the network hub allocation problem the purpose is to locate hubs and allocate
demand nodes to hubs in order to route the traffic between origin-destination pairs
[1]. There are different lines of work: p−hub median techniques, p−hub center algo-
rithms, hub covering, and hub allocation methods with fixed costs. These are essentially
location-allocation problems, and far from the BUP setting.

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 5

2.3 Resource Allocation and Network Improvement

In this section, we review work which does not seek to modify the network topology,
but is intended to allocate resources or select certain nodes/edges from the network to
meet specific optimization objectives.

The resource allocation problem in networks is to efficiently distribute resources to
users, such as bandwidth and energy, in order to achieve certain goals, like upholding
QoS contracts. Most of the work in this field focuses on pricing and auction mechanisms
[16,18,25]. Game theory is the main vehicle to address these problems, whose objectives
differ from BUP.

Probably the closest related topic to BUP is the network improvement problem. The
setting is similar to BUP, with an option to lower the weights of edges, but the ob-
jective is to reduce the diameter of the network, i.e., the maximum distance between
any pair of nodes. In [36], the authors discuss the complexity of the problem with bud-
get constraints. Budget constraints are also considered in [4], which proposes methods
to minimize the diameter of a tree-structured network. [6] addresses the q−upgrading
arc problem, where q edges are selected for upgrading to minimize the diameter of the
graph. In [28] the problem is to identify the non-dominated paths in a space where each
is represented by its upgrade cost and the overall improvement achieved in traveling time
across a set of source-destination pairs if the path is upgraded. The problem definitions
in this body of work are fundamentally different from BUP, and the proposed algorithms
are inapplicable to it.

In a resource constrained shortest path problem, there are different types of re-
sources required to cross each edge and the goal is to identify the shortest path that does
not exceed the available budget in each resource type [13,3,26,32]. Restricted shortest
path is another example where each edge is associated with a cost and a delay. The ob-
jective is to identify the path which incurs the minimum cost while the delay along the
path does not exceed a specific time limit. Both exact and approximate methods have
been proposed [14,24,11]. In both aforementioned problems, the choice is whether to
pass through a certain edge or not, as opposed to choosing whether to upgrade it.

3 Problem Formalization

We first formalize the problem and identify the key challenges in its processing.
Let G = 〈V,E〉 be a road network (weighted graph), where V is the set of nodes

(vertices) and E is the set of edges (arcs). Every edge e = (vi, vj) in E is associated
with a weight e.w that models the traveling time from vi to vj via e. For simplicity,
we assume an undirected network (but our methods can be easily extended to directed
ones too). A subset U of the network’s edges are upgradable. That is, every e ∈ U is
also associated with an upgrade cost e.c (where e.c > 0), and a new weight value e.w′

(where e.w′ < e.w), indicating that if e.c is spent, the weight of e can drop to e.w′. In
this graph G, the BUP problem is defined as follows.

Given a budget (resource constraint) B, a set of source-destination node pairs Q
(i.e., each pair in Q has the form < si, ti > where si, ti ∈ V), the BUP problem is to
select a subset R of the edges in U for upgrade so that (i) the summed upgrade cost in

6 Yimin Lin, Kyriakos Mouratidis

Symbol Meaning
G = 〈V,E〉 Road network with node set V and edge set E

U Set of upgradable edges (U ⊆ E)
B Resource constraint (budget)
Q Query set (of source-destination pairs)
R Edges chosen for upgrade (R ⊆ U)

|U | and |Q| The cardinality of U and Q, respectively
e.w Original weight of edge e

e.c, e.w′ Upgrade cost and upgraded weight of e ∈ U
C(R) Sum of upgrade costs (across all edges) in R

SP (vi, vj , R) Shortest path (length) from vi to vj after upgrades in R
Gc Concise graph, BUP-equivalent to G (Section 4)

Rtemp A permissible, heuristic BUP solution (Section 4)
A(Gc) Augmented version of Gc (Section 5.1)
Uc Set of upgradable edges in Gc (Section 5.2)

length(p,R) Length of path p after upgrade R (Section 5.2)
Rmax Maximum improvement set (Section 5.3)

I(Rmax) Total weight improvement in Rmax (Section 5.3)

Table 1 Notation

R does not exceed budget B and (ii) the summed shortest path distances across source-
destination pairs in Q in the updated network is minimized. Formally, the output R of
BUP is the result of the following optimization problem:

argmin
R⊆U

|Q|∑
i=1

SP (si, ti, R)

subject to
∑
e∈R

e.c ≤ B

where SP (si, ti, R) is the (traveling time along the) new shortest path between si and ti
when edges in R are upgraded. If there are multiple subsets R that abide by the resource
constraint and lead to the same summed traveling time for pairs in Q, BUP reports the
one with the smallest total cost (i.e., the smallest

∑
e∈R e.c ≤ B). Note that the above

definition refers to the general (multiple-pair) BUP. The degenerate case where |Q| = 1
corresponds to the single-pair variant. We make the distinction because the single-pair
case allows for specific processing techniques.

We now define some terms and establish conventions. Any subset R ⊆ U is called
a plan. The total cost of R is denoted by C(R), i.e., C(R) =

∑
e∈R e.c. If C(R) is

no greater than B, we say that R is a permissible plan. For brevity, we call length of a
path the traveling time along it. For ease of presentation, we use SP (si, ti, R) to refer
both to the shortest path (between si and ti in the updated network) and to its length,
depending on the context. Table 1 summarizes frequently used notation.

To provide an idea about the difficulty of the problem, and to identify directions to
tackle it, we consider a straightforward BUP processing method. A naı̈ve approach is to
consider all possible subsets of U . For each subset R, we check whether it is permissible,
and if so, we evaluate it. That is, we compute all shortest paths SP (si, ti, R) (for 1 ≤
i ≤ |Q|) when the edges in R (and only those) are upgraded. After considering all
possible subsets, we report the permissible plan R that leads to the smallest summed
shortest path distance.

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 7

The number of all possible subsets of U is 2|U| (technically, the set of all subsets of
U is called power-set). The problem of the naı̈ve approach is that it needs to examine
an excessive number of alternative plans, and for each (permissible) of them, to perform
|Q| shortest path computations. To give an example, if |U | = 20, the number of possible
plans is 1,048,576, which are too many to even enumerate, let alone to evaluate.

In the following, we center our efforts on a twofold objective, i.e., we aim to reduce
(i) the number of evaluated plans and (ii) the cost to evaluate each of them. We refer
to item (i) as the search space of the problem. Item (ii) is bound to the cost of shortest
path search and is directly dependent on the size of the graph (which we aim to reduce).
Towards this dual goal, we propose graph reduction techniques in Section 4 and elabo-
rate algorithms in Sections 5 and 6 (for single-pair and multiple-pair BUP, respectively).
Graph reduction techniques assist towards both our design goals, while our BUP algo-
rithms are targeted at search space reduction in particular (i.e., limiting the number of
evaluated plans).

4 Graph-size Reduction Techniques

In this section, we propose two orthogonal methods to reduce G into a concise graph
Gc, which is BUP-equivalent to G, i.e., the BUP solution R on (the much smaller) Gc

is guaranteed to be the solution of BUP on the original network G. The first method is
graph shrinking by edge pruning. The second is a resource constraint preserver technique
that abstracts the remaining part of G (after pruning) into a concise graph which is
BUP-equivalent to the original G. We present the general (multiple-pair) version of the
methods, which apply directly to single-pair BUP.

4.1 Graph Shrinking via Edge Pruning

Our intuition is that any edge (upgradable or not) that lies too far from sources and
destinations in Q cannot affect BUP processing and, thus, is safe to prune, i.e., to remove
from G. We start with two important lemmas.

Lemma 1 Let R be the BUP result and set {SP (si, ti, R)|1 ≤ i ≤ |Q|} be the
achieved shortest paths in the updated network. R includes only upgradable edges along
the paths in {SP (si, ti, R)}.

Proof The lemma is based on our problem definition, and specifically on the fact that
among permissible plans that lead to the same (minimal) summed distance for pairs
in Q, BUP reports the lowest-cost one. We prove it by contradiction. Suppose that the
BUP result R includes an upgradable edge e which is not along any SP (si, ti, R) for
1 ≤ i ≤ |Q|. If we apply upgrade set R−{e}, the shortest paths for Q will pass through
exactly the same edges as with R, and we will have achieved the same summed shortest
path distance at a cost reduced by e.c, which contradicts the hypothesis that R is the
BUP result.

Lemma 2 Let R be the BUP result in G. Any subgraph of G that includes all the edges
along any SP (si, ti, R) is BUP-equivalent to G.

8 Yimin Lin, Kyriakos Mouratidis

Proof Consider the subgraph Gsp of G that comprises only the union of (upgradable
and non-upgradable) edges along all paths SP (si, ti, R) for 1 ≤ i ≤ |Q|. A direct
implication of Lemma 1 is that if we solved BUP on Gsp, we would derive the same
result R. In turn, this means that any subgraph of G that is a supergraph of Gsp is
BUP-equivalent to G.

Lemma 2 asserts that we can safely prune any edge, upgradable or not, that does not
belong to any SP (si, ti, R) (where R is the BUP solution). We show how edges can be
pruned safely, without knowing R in advance.

Consider the fully upgraded network G, i.e., where all edges in U are upgraded.
SP (vi, vj , U) denotes the distance between a pair of nodes vi, vj in this graph. By
definition, SP (vi, vj , U) is the lower bound of the distance between vi and vj after any
possible upgrade plan R ⊆ U .

Let T be the summed lengths of SP (si, ti, R) for 1 ≤ i ≤ |Q|, where R is the
BUP solution, and assume that we somehow know T in advance. We will show that
certain edges (be them upgradable or not) lie too far from sources and destinations in Q
to belong to any of the final shortest paths SP (si, ti, R), and are therefore safe to prune.

Lemma 3 It is safe to prune every edge e = (vx, vy) if for each < si, ti > in Q:
(i) SP (si, vx, U) + w + SP (vy, ti, U) + Si > T and
(ii) SP (si, vy, U) + w + SP (vx, ti, U) + Si > T
where w equals e.w′ if e is upgradable, or simply e.w if e is not upgradable, and Si =∑|Q|

k=1,k 6=i SP (sk, tk, U).

Proof The shortest possible path between si and ti that passes through edge e is the one
that corresponds to a fully upgraded G. The length of that path is either SP (si, vx, U)+
w + SP (vy, ti, U) or SP (si, vy, U) + w + SP (vx, ti, U), whichever is smaller; let
the smaller of them be Ti. Si, on the other hand, is the lower bound (under any upgrade
plan) of summed lengths for all paths < sk, tk >∈ Q for k 6= i. Thus, the sum of
Ti and Si is a lower bound of the total summed distance if SP (si, ti, R) were to pass
through e (where R is the final BUP result). If the sum (i.e., Ti + Si) is greater than T
for every source-destination pair in Q, edge e cannot belong to any final shortest path
SP (si, ti, R) and can be safely pruned.

Value T is not known in advance. However, Lemma 3 can be applied if T is replaced
by any number that is greater than or equal to T . The closer that number to T , the more
effective the lemma. We use

∑|Q|
i=1 SP (si, ti, Rtemp) instead of T , where Rtemp is a

permissible (suboptimal) plan that leads to sufficiently short distances for the source-
destination pairs in Q.

Effective Rtemp selection: To derive Rtemp quickly and effectively, we first com-
pute the shortest paths SP (si, ti, U) in the fully upgraded graph. Next, we form Rtemp

using only the upgradable edges included in those paths. If Rtemp exceeds the resource
constraint, we execute a knapsack algorithm [8] to derive the subset of Rtemp that
achieves the minimum sum of weights along paths SP (si, ti, Rtemp) without violating
B. Note that this is different from a BUP problem, because we essentially fix the paths
to SP (si, ti, Rtemp) for 1 ≤ i ≤ |Q| and consider upgradable edges along the specific
paths only. The result of the knapsack algorithm is used as the Rtemp for pruning.

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 9

a1

a3
a4

a5

a6

b1

b2

b3 b4

b5

10 9|10|16

12|5|19
5

6
6

5|9|12

6

8

7

7

15

6

5

15

9 7

10
16

16
7

6
15

19

6

8
5

12

5

4

1

5
10

14|22|16

4|10|12

remaining

nodes and

edges after

graph shrinking

c1

c2

c3 c4 c5

c6

c7

a0

a2

b6

9|10|16

a7

(s1)

(t1)

(s2)

(t2)

≅ s2 a2

≅ s1 a0

≅ t1 a7

≅ t2 b6

Fig. 2 Example of edge pruning

Figure 2 continues the running example of Figure 1. Assuming a weight of 15 units
for every edge whose weight is not explicitly illustrated, and an Rtemp that achieves a
summed path length of 109, Lemma 3 prunes every edge out of the inner (green-border)
closed curve.

Implementation: To implement pruning, for each query pair < si, ti > we perform
two Dijkstra expansions [8] from si and ti on the original graph. Each expansion reaches
up to distance SP (si, ti, ∅) from its start node (si and ti, respectively). All edges that
are encountered by both expansions for some pair < si, ti >∈ Q, are kept in a tem-
porary set and the rest discarded right away. Each of the edges in the temporary set is
subsequently checked against Lemma 3 and pruned (or not) accordingly.

4.2 Resource Constraint Preserver

In this section, we propose the resource constraint preserver technique, which trans-
forms the remaining part of G (after pruning) into a concise graph Gc that is BUP-
equivalent to G, i.e., a much smaller graph whose BUP solution (for the same Q,B
input) is guaranteed to be identical to the original road network. The concepts of key
nodes and plain paths are central to this technique.

Definition 1 Key node. A node v ∈ V is a key node iff it is a source or destination
node in Q, or end-node of an upgradable edge.

Definition 2 Plain path. A path is plain if it does not include any key nodes (except for
its very first and very last nodes).

We construct the network abstraction Gc as follows. First, we compute the shortest
plain path for any pair of key nodes. The shortest plain path between key nodes vi and vj

10 Yimin Lin, Kyriakos Mouratidis

is the shortest among the plain paths that connect them. Computing this path can be done
using any standard shortest path algorithm, by treating key nodes other than vi and vj
as non-existent (thus preventing the reported path from including any intermediate key
node). The second step to produce Gc is to replace each shortest plain path by a virtual
edge, whose weight is equal to the length of the path. The edge set of Gc comprises
only virtual and upgradable edges; the non-upgradable edges of the original graph are
discarded. The node set of Gc includes only key nodes.

Lemma 4 Gc is BUP-equivalent to the original network G.

Proof Let R be the BUP solution in G. Consider the sequence of key nodes in path
SP (si, ti, R) for some source-destination pair in Q, in order of appearance (from si to
ti). For every pair of consecutive key nodes vx, vy in this sequence, either vx, vy are the
end-nodes of the same upgradable edge, or they are connected by a plain path. In the lat-
ter case, that plain path between vx, vy is also the shortest (by definition, every sub-path
of a shortest path, is the shortest path between the intermediate nodes it connects). Thus,
SP (si, ti, R) is a sequence of upgradable edges and shortest plain paths. Since Gc pre-
serves the upgradable edges and includes all shortest plain paths between key nodes (in
the form of equivalent virtual edges), it contains all edges comprising SP (si, ti, R).
Hence, by Lemma 2, Gc is BUP-equivalent to G.

Further shrinking: If the majority of edges are not upgradable, the preserver
method will reduce the graph size. However, creating a fully connected graph among
key nodes introduces many virtual edges, most of which are unnecessary. To cure the
problem, we apply Lemma 3 to each virtual edge before inclusion into Gc and prune it
if the lemma permits.

Implementation: To accelerate the construction of Gc, we incorporate Lemma 3
into the computation of shortest plain paths. Specifically, for each key node vx we per-
form a Dijkstra search (with source at vx). When another key node vy is encountered
(i.e., popped by the Dijkstra heap), we add a virtual edge between vx and vy to Gc.
However, we do not expand vy (i.e., we do not push into the heap the adjacent nodes of
vy) so as to ensure plain paths. For a specific pair < si, ti >∈ Q, let Mi be the small-
est of SP (si, vx, U) and SP (vx, ti, U) (both these values are known since the pruning
stage). For what < si, ti > is concerned, the Dijkstra search can safely terminate if it
has reached up to distance SP (si, ti, ∅)−Mi from vx (any virtual edge longer than that
threshold is useless according to Lemma 3). Therefore, taking into consideration all pairs
in Q, the Dijkstra search only needs to reach up to max1≤i≤|Q|{SP (si, ti, ∅) −Mi}
units away from vx. The single-pair BUP allows for an even tighter bound than directly
applying the above technique (specifically, if < s, t > is the query pair, the search only
needs to reach up to SP (s, t, Rtemp)−M units from vx) – we refer the reader to [23]
for the details.

Figure 3 shows the Gc abstraction derived in our running example by the resource
constraint preserver technique.

5 BUP Processing for Single Query Pair

In this section, we consider the basic version of BUP problem where there is just one
query pair (single-pair BUP); let it be pair < s, t >. We present algorithms to compute

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 11

22

37

28

12

21

17

 virtual edge

c3 c4
c6

c7

a1

b4

b5

a6

a3
a0

a2

b6 a7

(s1)

(t1)

(s2)

(t2)

≅ s2 a2

≅ s1 a0

≅ t1 a7

≅ t2 b6

Fig. 3 The resulting graph Gc

the BUP solution on Gc, i.e., the graph resulting after the application of the edge pruning
and resource preserver techniques from Section 4. Gc includes upgradable and virtual
edges. For brevity, in the following we refer to virtual edges simply as edges. We denote
by Uc the set of upgradable edges in Gc (since some edges in U have been pruned,
Uc ⊆ U).

Even with a smaller set of candidate edges for upgrade, the approach of evaluating
arbitrary subsets of Uc is not only impractical, but not very meaningful either. That is,
Lemma 1 suggests that the BUP solution R includes only upgradable edges along the
shortest path from s to t (in the updated network). If candidate plans (subsets of Uc)
were arbitrarily chosen for evaluation, in the majority of cases, their upgradable edges
would fall at random and irrelevant locations, rather than on the shortest path from s to
t. This observation motivates our processing methodology, which is path-centered.

Our approach is to iteratively compute alternative paths (from s to t) in increasing
order of length, and evaluate them in this order. We distinguish three variants of this
general approach, depending on which version of Gc is used for the incremental path
exploration; it could be the original Gc, the fully upgraded Gc, or another version of
Gc that we call augmented. Regardless of the underlying graph, we use the path ranking
method of [30] to incrementally produce paths from s to t in increasing length order.

5.1 Augmented Graph Algorithm

Our first technique relies on the augmented version of Gc, denoted as A(Gc), to which
it also owes its name, i.e., Augmented Graph algorithm (AG). The augmented graph has
the same node set as Gc, but its edge set is a superset of Gc. Specifically, every edge e
in Gc becomes an edge in A(Gc), retaining its original weight e.w (be it upgradable or
not). Additionally, for every e ∈ Uc, the augmented graph also includes a second edge
e′ between the same end-nodes as e, but with weight equal to e.w′ (i.e., the new weight
if e is upgraded).

12 Yimin Lin, Kyriakos Mouratidis

s t

c1
c2

d1

d2
source/destination

upgradable edge

edge
node

upgraded weight |cost |original weight9|10|16

f1

(a) Original Gc

s

c1
c2

d1

d2

source/destination

edge
node

tf1

(b) Augmented Gc

Fig. 4 Augmented graph example

Figure 4 gives an example, showing the original Gc on the left and its aug-
mented version A(Gc) on the right. For the sake of the example, assume that non-
upgradable edges have a unit weight. All edges of Gc appear in A(Gc) with their
original weights. Since edges e1, e2, e3 are upgradable in Gc, graph A(Gc) addition-
ally includes e′1, e

′
2, e
′
3 with the respective upgraded weights (shown next to the edge

labels).
AG calls the path ranking algorithm of [30] in A(Gc), and iteratively examines

paths in increasing length order. In our example, assume that the budget is B = 20. The
shortest path in A(Gc) is p1 = {s, d1, d2, f1, t} via e′2 and e′3 (both are upgraded links).
The length of p1 is 21. It passes via upgraded edges e′2 and e′3, thus requiring a total cost
of e2.c + e3.c = 26. That cost exceeds B and the path is ignored. The path ranking
algorithm is probed again to produce the next best path, that is p2 = {s, c1, c2, f1, t}
via e′1 and e′3. Its length is 22, but its cost e1.c + e3.c = 21 exceeds B. Hence, this
path is ignored too, and the path ranking algorithm is probed to produce the next best
path, which is p3 = {s, d1, d2, f1, t} via e′2 and e3 (upgraded and non-upgraded link,
respectively). Its length is 24. The path passes via one upgraded edge, e′2, which means
that the total path cost is e2.c = 10. That is within our budget, and AG terminates here
with result R = {e2}, achieving SP (s, t, R) = 24.

Observe that every path p output by path ranking in A(Gc) corresponds to a specific
upgrade plan, namely, to the plan that includes all upgraded links e′ that p passes from.
Consider a pair of paths p and p′ in A(Gc) that are identical, except that p passes via
edge e, while p′ passes from that edge’s upgraded counterpart e′. For what path ranking
in A(Gc) is concerned, these are two different paths (since e and e′ are modeled as
different edges) corresponding to different upgrade plans.

Correctness: Path ranking, if probed enough times, will output all possible paths
between s and t in A(Gc). Hence, SP (s, t, R) is guaranteed to be among them (where
R is the BUP result), as long as AG does not terminate prematurely. AG stops probing
the path ranking process when the latter outputs the first path p that abides by resource
constraint B. Since path ranking outputs paths in increasing length order, p is guaranteed
to be the shortest permissible path, i.e., to coincide with SP (s, t, R).

Note that, in the worst case, path ranking will need to output all possible paths
between s and t in A(Gc). This is still preferable to evaluating all subsets of Uc, because
AG essentially considers only combinations of upgradable edges along acyclic paths

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 13

from s to t. For example, in Figure 4(b), path ranking would never output a path that
includes both e′1 and e′2, while a blind evaluation of Uc subsets would consider (and
waste computations for the evaluation of) plan {e′1, e′2}.

Discussion: In Section 2.3 we described the restricted shortest path problem (RSP)
where edges are associated with a cost and a delay, and the goal is to compute (for a
single source-destination pair) the smallest-cost path that does not exceed a certain time
limit. This means that, if we first apply our pruning/shrinking techniques from Section 4
(in order to ensure scalability) and use the augmented version of the remainder graph,
i.e., A(Gc), we may apply RSP methods on A(Gc) by treating the upgrade cost of each
upgradable edge as its “delay” and the budget as the “time limit”. That would be very
similar to AG (since RSP methods also rely on path ranking), albeit the majority of RSP
algorithms target at approximate solutions. A note is that this discussion applies only to
single-pair BUP, because RSP approaches consider a single source-destination pair.

AG is conceptually simple. The drawback, however, is that the augmented graph
A(Gc) is larger than Gc, due to containing two versions of every edge in Uc. In turn,
this implies larger processing cost for the path ranking component. This motivates our
next two BUP methods, which do not increase the number of edges in Gc.

5.2 Fully Upgraded Graph Algorithm

In this section, we present the Fully Upgraded Graph algorithm (FG). FG runs path
ranking on the fully upgraded Gc, where all edges e ∈ Uc have their upgraded (reduced)
weight e.w′. On this graph, each path p from s to t has the minimum possible length
under any upgrade plan (permissible or not); we denote this length as length(p, Uc) and
use it as a lower bound for the length of p under any plan.

For every path p output by the path ranking algorithm, if the summed cost along its
upgradable edges exceeds B, we perform a process similar to the computation of Rtemp

in Section 4.1. That is, we execute a knapsack algorithm among the upgradable edges
along the specific path, and report their subset that minimizes the length of p under
budget constraint B. Let Rp be the result of the knapsack algorithm, and length(p,Rp)
be the length of p under plan Rp. The knapsack process asserts that Rp is permissible,
and therefore length(p,Rp) is an achievable traveling time from s to t. In a nutshell,
FG treats each path p output by path ranking as an umbrella construct representing all
possible upgrade plans among the upgradable edges in p, and from these plans it keeps
the best permissible plan, Rp.

While the path ranking algorithm iteratively reports new paths, we keep track of
the one, say, p∗ (and the respective Rp∗ set) that achieves the smallest length(p,Rp)
among all paths considered so far.1 Once path ranking reports a path p whose length (on
the fully upgraded graph) is greater than length(p∗, Rp∗), FG terminates with Rp∗ as
the BUP result (achieving length SP (s, t, Rp∗) = length(p∗, Rp∗)).

Referring to our example in Figure 4, the fully upgraded Gc would look like Fig-
ure 4(a) with weights 12, 11, and 8 for edges e1, e2, and e3, respectively. Path rank-
ing would first report path p1 = {s, d1, d2, f1, t} with length 21. A knapsack algo-
rithm on its set of upgradable edges (i.e., on set {e2, e3}) with resource constraint

1 In case of tie between two alternative paths, we keep as p∗ the one with the smallest C(Rp∗).

14 Yimin Lin, Kyriakos Mouratidis

B = 20 reports Rp1 = {e2} and length(p1, Rp1) = 24. The next path output by
path ranking is p2 = {s, c1, c2, f1, t} with length 22. If that length were larger than
length(p1, Rp1) = 24, FG would terminate. This is not the case, so a knapsack process
on the upgradable edges along p2 reports that Rp2 = {e1} with length(p2, Rp2) = 25.
Path ranking is probed again, but reports NULL (i.e., all paths from s to t have been
output) and FG terminates with result R = Rp1 = {e2}.

Correctness: If probed enough times, path ranking in the fully upgraded Gc will
report all possible paths from s to t on this graph. The paths are reported in increasing
length(p, Uc) order. Our termination condition guarantees that all paths not yet output
by path ranking have length(p, Uc) greater than length(p∗, Rp∗), and therefore could
not lead to a shorter traveling time between s and t under any plan (permissible or not).

A note here is that every path output by path ranking in the augmented graph A(Gc)
(in Section 5.1) corresponds to an upgrade plan. In FG, instead, each path p output by
path ranking in the fully upgraded Gc leads to the consideration of all possible upgrade
plans along p (this is essentially what the knapsack-modeled derivation of Rp does).

5.3 Original Graph Algorithm

The Original Graph algorithm (OG) executes path ranking in the original Gc, i.e., as-
suming that no edge is upgraded. For every path p output by path ranking, it solves a
knapsack problem to derive the subset Rp of the upgradable edges along p that achieves
the minimum path length length(p,Rp) without violating the resource constraint B.
While new paths are being output by path ranking, OG maintains the path p∗ (and the
respective Rp∗ set) that achieves the smallest length(p,Rp) so far.

Regarding the termination condition of OG, we introduce the maximum improvement
set Rmax. Among all permissible subsets of Uc, Rmax is the one that achieves the
maximum total weight reduction (regardless of where the contained edges are located
or whether they contribute to shorten the traveling time from s to t). We denote the total
weight reduction achieved by Rmax as I(Rmax). The latter serves as an upper bound
for the length reduction in any path under any permissible plan.

In the example of Figure 4(a), to derive Rmax (and I(Rmax)), we solve a knapsack
problem on Uc = {e1, e2, e3}. Their individual weight reductions (i.e., values e.w′ −
e.w) are 7, 5, 3 and their costs (e.c) are 5, 10, 16. The knapsack problem uses limit B =
20 for the total cost. The result is Rmax = {e1, e2}with total reduction I(Rmax) = 12.

Returning to OG execution, let p be the next best path output by path ranking in
the original (un-updated) Gc. Under any permissible upgrade plan, the length of p can
be reduced at maximum by I(Rmax), i.e., under any upgrade plan the new length of
p cannot be lower than length(p, ∅) − I(Rmax). If the latter value is greater than
length(p∗, Rp∗), OG can safely terminate with BUP result R = Rp∗ .

In the original Gc in Figure 4(a), edges e1, e2, and e3 have weights 19, 16, and 11,
respectively. Path ranking would first report path p1 = {s, d1, d2, f1, t} with length 29.
For p1 we derive (via a knapsack execution on its upgradable edges) Rp1 = {e2} and
length(p1, Rp1) = 24. The next path output by path ranking is p2 = {s, c1, c2, f1, t}
with length 32. Before we even solve a knapsack problem for p2, we know that un-
der any permissible plan its length cannot drop below length(p2, ∅) − I(Rmax) =
32 − 12 = 20. If that last value were greater than length(p1, Rp1) = 24, OG would

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 15

terminate. This is not the case, so a knapsack process on p2 reports Rp2 = {e1} with
length(p2, Rp2) = 25. Path ranking is probed again, reports NULL (since all paths
from s to t have been output), and OG terminates with BUP result R = Rp1 = {e2}.

Correctness: The correctness of OG relies on similar principles to FG. First, path
ranking, if probed enough times, will output all paths from s to t. For each of these
paths p, OG computes the best permissible plan along its edges, i.e., Rp. Therefore, it
will discover the optimal plan R at some point, unless terminated prematurely. Since
path ranking in the original Gc outputs paths p in increasing length(p, ∅) order, the
termination condition of OG guarantees that all paths not yet output, even if improved
to the maximum possible degree (i.e., I(Rmax)), cannot become shorter than p∗.

6 BUP Processing for Multiple Query Pairs

In this section, we present BUP algorithms for the multiple-pair version of the problem.
The challenge and main difference from the single-pair case is that we have to evaluate
path combinations instead of paths. We propose three algorithms, which, similar to the
single-pair solutions, work on Gc, i.e., the graph resulting after the edge pruning and
resource preserver techniques from Section 4.

6.1 Augmented Graph Algorithm

The first algorithm works on the augmented version of Gc (i.e., A(Gc)), constructed
exactly like in Section 5.1. In the multiple-pair case, for each source-destination pair,
paths are ranked as well, but instead of considering paths from a single query pair we
need to consider path combinations formed by paths from multiple query pairs.

For better demonstration, we introduce an important structure, the path ranking list.
Continuing our running example in Figure 3, suppose that for each query pair < s1, t1 >
and < s2, t2 > we have already produced and ranked all possible paths from their
source to their destination (on A(Gc)) as shown in Table 2. Paths for pair < s1, t1 >
are denoted as p1−1, p1−2, ..., ordered in increasing length. Similarly, paths for pair
< s2, t2 > are denoted as p2−1, p2−2, For each path p, we maintain its length, the
upgrade cost, and the corresponding upgraded edge set Up.2 We map the path informa-
tion onto two lists, one for each pair. In Figure 5, the left list corresponds to query pair
< s1, t1 > with 11 paths, illustrated as black dots with their lengths shown at the center,
and ranked by length. The right list corresponds to query pair < s2, t2 > with 3 paths.
For brevity, only the first few paths in each lists are illustrated. We call the two lists path
ranking lists.

A key concept in multiple-pair BUP processing is the path combination.

Definition 3 Path combination. A path combination is a set of paths which includes
|Q| elements. Each element is a path (not necessarily the shortest) from si to ti for some
query pair. There is exactly one element (path) for each query pair < si, ti >∈ Q.

2 Note that in A(Gc) it is unambiguous whether the path passes via an upgraded or un-upgraded link
between two nodes – similarly, it is clear how to measure the upgrade cost.

16 Yimin Lin, Kyriakos Mouratidis

No. Dis. Path Cost Up

p1−1 53 {s1, a1, a2, a3, a6, t1} 24 (a1, a2), (a2, a3), (a6, a7)
p1−2 58 {s1, b4, b5, b6, t1} 10 (b4, b5)
p1−3 58 {s1, c3, c4, c6, a6, t1} 31 (c3, c4), (a6, a7)
p1−4 59 {s1, c4, c6, a6, t1} 9 (a6, a7)
p1−5 59 {s1, b4, c7, t1} 0 ∅
p1−6 59 {s1, b4, c6, a6, t1} 9 (a6, a7)
p1−7 60 {s1, c3, a3, a6, t1} 9 (a6, a7)
p1−8 60 {s1, c3, c4, c6, t1} 9 (a6, a7)
p1−9 60 {s1, a1, a2, a3, a6, t1} 14 (a2, a3), (a6, a7)
p1−10 60 {s1, a1, a2, a3, a6, t1} 19 (a1, a2), (a6, a7)
p1−11 60 {s1, a1, a2, a3, a6, t1} 15 (a1, a2), (a2, a3)
p2−1 49 {s2, a3, a6, a7, t2} 14 (a2, a3), (a6, a7)
p2−2 56 {s2, a3, a6, a7, t2} 5 (a2, a3)
p2−3 56 {s2, a3, a6, a7, t2} 9 (a6, a7)

Table 2 Ranked paths for the two source-destination pairs in running example

<s1, t1> <s2, t2>

49 p2-1

p2-2 , p2-3

p1-1

p1-2, p1-3

p1-4, p1-5, p1-6

p1-7, p1-8, p1-9,

p1-10, p1-11

56

53

58

59

60

Fig. 5 Path ranking lists in running example

For example, path set {p1−1, p2−2} is a path combination, but {p1−9, p1−11} is
not. Note that a path combination essentially indicates one position (path) in each of
the |Q| path ranking lists. Every path combination is associated with three pieces of
information: summed path length, upgraded edge set and upgrade cost. The first is the
sum of lengths across its included paths, the second is the union of their upgradable
edges, and the third is the sum of costs in the combination’s upgraded edge set.

The BUP result is a path combination. In particular, it is the path combination that
has the smallest summed length with an upgrade cost that does not exceed budget B.
The crux of our processing method is to explore the path ranking lists in such a way that
will produce path combinations in increasing summed length order. The first of these
combinations that has upgrade cost no larger than B is the BUP result.

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 17

In the hypothetical scenario where the entire path ranking lists are available, their ex-
ploration (i.e., iterative identification of path combinations in increasing summed length
order) can be done by the best neighbor method (BN) in [23]. We treat this algorithm as
a black box, but give the intuition behind it. The smallest-cost combination corresponds
to the first element in every path ranking list. The second smallest-cost combination
can be found among the “descendants” of that first combination – each descendant re-
places exactly one path in the original combination by the immediately next path in
the corresponding path ranking list. In our example, the smallest-cost combination is
{p1−1, p2−1}. Its descendants are combinations {p1−2, p2−1} and {p1−1, p2−2}. The
second smallest-cost combination is one of the two descendants (which can be deter-
mined by comparing their upgrade costs). The third smallest-cost combination is among
the descendants of the first and second smallest-cost combinations, and so on. For large
|Q|, organizing and managing the descendants is non-trivial. The BN approach in [23]
performs that effectively and efficiently.

We could use the method of [30] to generate the entire path ranking lists and feed
them to BN, but it is simply impractical to populate each list to the last path. Instead, we
determine for each list a ranking height Hi. That is the maximum path length in that list
that could participate in the BUP result. Essentially, Hi is used to truncate the i-th path
ranking list (i.e., the list corresponding to pair < si, ti >) by keeping only paths up to
length Hi. The following lemma shows how to determine Hi.

Lemma 5 Hi is the smallest of the following two values:
(i) The length of the first path in the i-th list where the upgraded edge set is ∅;
(ii) The summed path length under plan Rtemp minus the sum of the first path lengths
in all other ranking lists, i.e.,

∑|Q|
k=1 SP (sk, tk, Rtemp)−

∑|Q|
k=1,k 6=i SP (sk, tk, Uc).

To see the validity of the lemma, value (i) corresponds to the first path in the i-th
list that does not utilize any upgrade, and therefore searching the list any more (i.e.,
considering any longer paths between si and ti) is unnecessary. Regarding value (ii),
the first sum of the expression is the achieved summed length under (suboptimal) plan
Rtemp. The second sum is the smallest possible summed length for all other source-
destination pairs (except < si, ti >) under any plan – the smallest possible length for
each pair < sk, tk > is SP (sk, tk, Uc) that corresponds to the fully upgraded Gc or,
equivalently, to the first element in the k-th path ranking list. Essentially, any path in the
i-th list with length greater than value (ii) is guaranteed to lead to a path combination
with summed length greater than that achieved by Rtemp and can hence not belong to
the BUP solution.

In the running example, the summed path length under plan Rtemp is 109. The
lengths of p1−1 and p2−1 are 53 and 49, respectively. Thus value (ii) for the first list
is 109-49=60 and for the second list it is 109-53=56. Focusing on the first list, value (i)
corresponds to p1−5 (the smallest-length path with an empty upgraded edge set) with
length 59, which prunes every path with a greater length (actually, that value is smaller
than value (ii) and therefore it determines H1). A point we must stress here is that,
although p1−4 and p1−6 have the same length as value (i) they are both pruned because
they have non-empty upgraded edge sets. The convention we establish is that in case
a path’s length is equal to value (i) and its upgraded edge set is non-empty, the path
is pruned. Hence, in our example p1−5 is kept in the first list, while p1−4 and p1−6

are discarded. This leaves four paths in the first list (p1−1, p1−2, p1−3, p1−5). For the

18 Yimin Lin, Kyriakos Mouratidis

second list, value (ii) is smaller than value (i) and determines H2 = 56, keeping in it 3
paths (p2−1,p2−2,p2−3).

To enhance performance, we may further prune the path ranking lists by eliminating
paths whose upgrade cost already exceeds B. In our example, paths p1−1 and p1−3

can be discarded from the first list because their costs are larger than B = 20. The
remaining 2 paths in the first list and the 3 paths in the second list are input to BN.
The latter outputs {p1−5, p2−1} as the smallest-length path combination that abides by
B = 20 (with summed length 108 and upgrade cost 14). The BUP result is the upgraded
edge set of that combination, i.e., R = {(a2, a3), (a6, a7)}.

6.2 Fully Upgraded Graph Algorithm

Our second algorithm for multiple-pair BUP executes on the fully upgraded graph Gc.
Specifically, for each source-destination pair in Q it produces a path ranking list by
invoking the path ranking method in [30]. Let P be a path combination in the produced
|Q| lists, and UP be the set of its upgradable edges. The summed path length in P
corresponds to a lower bound of the summed length achieved by any possible upgrade
plan along its edges (because P is computed on the fully upgraded graph). In this aspect,
path combination P serves as an umbrella construct that represents all possible upgrade
plans along its paths, i.e., it represents all possible upgrade plans that are subsets of UP .

Again, it is impractical to produce entire path ranking lists. Instead, we truncate
them using Lemma 5 as is. The validity of the lemma can be shown following the same
lines as in Section 6.1, by taking into account that in the context of a fully upgraded Gc

the summed length of a path combination is the lower bound of what is achievable via
subsets of its upgradable edges.

We invoke BN on the truncated path ranking lists, but (unlike Section 6.1) we do not
wait until a permissible path combination is output. Instead, for each path combination
P encountered by BN (i.e., popped from its search heap) we run a knapsack algorithm
on its upgradable edge set UP in order to derive the permissible subset RP ⊆ UP

that achieves the smallest summed path length. Among all different path combinations
encountered by BN, we maintain the permissible subset RP ∗ that leads to the smallest
summed length. The process terminates when the next path combination encountered by
BN has summed length (in the fully upgraded Gc) greater than that achieved by RP ∗ .
Set RP ∗ is output as the BUP result. Note that BN encounters path combinations in
increasing summed path length order.

The rationale behind the termination condition is that all non-encountered path com-
binations have a summed length (in the fully upgraded Gc) greater than the one achieved
by RP ∗ . Because the summed path length of these combinations is already a lower
bound of the sum achievable under any subset of their upgradable edge set, the termina-
tion condition guarantees that no better permissible plan (than RP ∗) can be found.

Returning to our running example, Table 3 shows the first few paths (sorted in as-
cending length order) in the fully upgraded Gc for each source-destination pair in Q.
Figure 6 illustrates the corresponding path ranking lists.

Similar to Section 6.1, from Lemma 5 we get ranking heights H1 = 59 and
H2 = 56. Thus, the pruned lists include p1−1, p1−2, p1−3, p1−5 and p2−1, respec-
tively. BN first encounters path combination P1 = {p1−1, p2−1} with upgradable

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 19

No. Dis. Path Cost Up

p1−1 53 {s1, a1, a2, a3, a6, t1} 24 (a1, a2), (a2, a3), (a6, a7)
p1−2 58 {s1, b4, b5, b6, t1} 10 (b4, b5)
p1−3 58 {s1, c3, c4, c6, a6, t1} 31 (c3, c4), (a6, a7)
p1−4 59 {s1, c4, c6, a6, t1} 9 (a6, a7)
p1−5 59 {s1, b4, c7, t1} 0 ∅
p1−6 59 {s1, b4, c6, a6, t1} 9 (a6, a7)
p1−7 60 {s1, c3, a3, a6, t1} 9 (a6, a7)
p2−1 49 {s2, a3, a6, a7, t2} 14 (a2, a3), (a6, a7)
p2−2 62 {s2, a1, a0, b4, b5, t2} 20 (a2, a1), (b4, b5)

Table 3 Ranked paths for the two source-destination pairs in running example

<s1, t1> <s2, t2>

49 p2-1

p2-2

p1-1

p1-2, p1-3

p1-4, p1-5, p1-6

 p1-7

62

53

58

59

60

Fig. 6 Path ranking lists in running example

edge set UP1
= {(a1, a2), (a2, a3), (a6, a7)} and upgrade cost 24. A knapsack pro-

cessing is performed to identify the best permissible subset of UP1
, which is RP1

=
{(a2, a3), (a6, a7)} with upgrade cost 14 and summed path length 109. The interim re-
sult RP ∗ is initialized to RP1

. The second path combination P2 = {p1−2, p2−1} and
the third path combination P3 = {p1−3, p2−1} (after a knapsack execution for each)
lead to permissible plans RP2

and RP3
that achieve no improvement of RP ∗ . When the

fourth path combination P4 = {p1−5, p2−1} is encountered by BN, its upgradable edge
set UP4

= {(a2, a3), (a6, a7)} is already permissible (i.e., RP4
= UP4

) and, further-
more, it achieves a summed length of 108, which is smaller than the best so far (109).
Thus, RP ∗ is updated to RP4

, i.e., to {(a2, a3), (a6, a7)}. At that point both path rank-
ing lists are exhausted and BN terminates unable to produce more path combinations.
The reported result is R = RP ∗ = {(a2, a3), (a6, a7)}. Termination would also occur
if BN encountered a path combination whose summed path length (in the fully upgraded
Gc) was greater than that achieved by RP ∗ .

20 Yimin Lin, Kyriakos Mouratidis

6.3 Original Graph Algorithm

The third multiple-pair BUP method executes on the original graph Gc. Like in the other
two methods, we form path ranking lists for each source-destination pair in Q, the dif-
ference being that the lists contain paths in the original graph. Let I(Rmax) be the max-
imum possible reduction in summed path length achievable for any path combination in
Gc (we describe how to compute an upper bound of I(Rmax) later in this section). We
use the following lemma to determine the ranking heights Hi (for 1 ≤ i ≤ |Q|) and
truncate the path ranking lists accordingly.

Lemma 6 In the original Gc the ranking height Hi for the i-th path ranking list is equal
to the summed path length under plan Rtemp plus I(Rmax) minus the sum of the first
path lengths in all other ranking lists, i.e.,

∑|Q|
k=1 SP (sk, tk, Rtemp) + I(Rmax) −∑|Q|

k=1,k 6=i SP (sk, tk, ∅).

Proof Let SP be (the length of) a path in the i-th path ranking list. The summed path
length (in the original graph) of every path combination that includes SP is at least
SP +

∑|Q|
k=1,k 6=i SP (sk, tk, ∅). Since the summed length of any path combination

can be reduced by a maximum of I(Rmax) units, the previous statement implies that
the summed length achievable along any path combination that includes SP is lower
bounded by SP+

∑|Q|
k=1,k 6=i SP (sk, tk, ∅)−I(Rmax). If the former quantity is greater

than the summed path length under plan Rtemp then SP cannot belong to the BUP re-
sult3 – that is, SP can be pruned if SP +

∑|Q|
k=1,k 6=i SP (sk, tk, ∅) − I(Rmax) >∑|Q|

k=1 SP (sk, tk, Rtemp) or equivalently if SP >
∑|Q|

k=1 SP (sk, tk, Rtemp) +

I(Rmax)−
∑|Q|

k=1,k 6=i SP (sk, tk, ∅). The expression on the right side of the inequality
is Hi.

We feed the truncated path ranking lists to BN. For every encountered path com-
bination P , we compute (via a knapsack execution) the permissible subset RP of its
upgradable edges that leads to the smallest summed path length. As BN encounters new
path combinations P and computes subset RP for each of them, we maintain as RP ∗ the
best among these subsets. The algorithm terminates with RP ∗ as the BUP result when
BN encounters a path combination whose summed path length (in the original graph)
minus I(Rmax) is greater than the summed length achieved under RP ∗ .

Recall that BN encounters path combinations in increasing summed path length or-
der. The rationale behind the termination condition is that any non-encountered path
combination will have summed length (in the original graph) even greater than the one
encountered at the time of termination, and therefore even if the maximum improvement
I(Rmax) is possible, it can still not lead to a smaller summed length than RP ∗ .

Effective I(Rmax) computation: First, we clarify that we do not compute the exact
I(Rmax) but an upper bound of it. It can be easily seen that using any upper bound of
I(Rmax) instead of its exact value upholds the correctness of the above BUP algorithm.
For simplicity, in the following we will still refer to the upper bound as I(Rmax).

Unlike the single-pair case, we cannot directly solve a knapsack problem on Uc to
derive I(Rmax), because now an upgradable edge may be shared by multiple paths in a

3 Note that here SP is an umbrella concept covering any path that passes via the same nodes as SP ,
regardless of which edges are chosen for upgrade.

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 21

path combination. Unless we know how many paths in the combination are passing via
an upgradable edge e, the reduction (in summed path length) lent if we upgrade the edge
cannot be determined (i.e., it may be a multiple of e.w − e.w′).

The basic idea is to determine for every upgradable edge e ∈ Uc the maximum
number e.max no of query paths (in the updated network) that could potentially pass
via e. In knapsack execution, we use the product of e.max no and e.w − e.w′ as the
improvement e could lend us, at the expense of cost e.c. Let Rmax be the result of
knapsack processing on this “modified” input. I(Rmax) is set to the summed path length
achieved under Rmax.

The last question regards the computation of e.max no for each upgradable edge
e ∈ Uc. The following lemma shows how to derive it.

Lemma 7 Consider a source-destination pair < si, ti > in Q. An upgradable edge
e = (vx, vy) could appear in the shortest path from si to ti (in the updated network)
only if:
(i) SP (si, vx, Uc) + e.w′ + SP (vy, ti, Uc) + Si ≤ T or
(ii) SP (si, vy, Uc) + e.w′ + SP (vx, ti, Uc) + Si ≤ T

where Si =
∑|Q|

k=1,k 6=i SP (sk, tk, Uc) and T =
∑|Q|

k=1 SP (sk, tk, Rtemp).

The proof of Lemma 7 follows the same reasoning as Lemma 3 and is omitted4.
Given an upgradable edge e ∈ Uc, we determine e.max no by applying Lemma 7 for
every pair < si, ti > in Q and counting how many of these pairs it could affect.

Table 4 and Figure 7 show the ranked paths and (truncated) path ranking lists, re-
spectively, in the original Gc for our running example, assuming that I(Rmax) = 28.

No. Dis. Path Cost Up

p1−1 59 {s1, b4, c7, t1} 0 ∅
p1−2 65 {s1, b4, b5, b6, t1} 10 (b4, b5)
p1−3 66 {s1, c4, c6, a6, t1} 9 (a6, a7)
p1−4 66 {s1, b4, c6, a6, t1} 9 (a6, a7)
p1−5 67 {s1, c3, c4, c6, a6, t1} 31 (c3, c4), (a6, a7)
p1−6 67 {s1, c3, a3, a6, t1} 9 (a6, a7)
p1−7 74 {s1, a1, a2, a3, a6, t1} 24 (a1, a2), (a2, a3), (a6, a7)
p2−1 63 {s2, a3, a6, a7, t2} 14 (a2, a3), (a6, a7)

Table 4 Ranked paths for the two source-destination pairs in running example

The first path combination encountered by BN is P1 = {p1−1,p2−1}. A knapsack
execution on its upgradable edges outputs RP1

= {(a2, a3),(a6, a7)} with summed
path length 108. The interim result RP ∗ is initialized to RP1

. Subsequent path com-
binations P2 up to P6 do not improve RP ∗ . When P7 = {p1−7,p2−1} is encoun-
tered, the algorithm terminates because the summed path length in P7 (in the origi-
nal graph) is 74+63 = 137, which even if reduced by I(Rmax) = 28, would lead to
summed length 109 that is worse (greater) than that achieved by the current RP ∗ (i.e.,
{(a2, a3),(a6, a7)}). The latter is reported as the BUP result.

4 Note that Lemma 7 uses Uc instead of U because it is applied on Gc (not on G).

22 Yimin Lin, Kyriakos Mouratidis

<s1, t1> <s2, t2>

p2-1

p1-1

p1-2

p1-3, p1-4

 p1-7

63

59

65

66

67

74

 p1-5 , p1-6

Fig. 7 Path ranking lists in running example

7 Experiments

In this section, we first experimentally evaluate the effectiveness of our graph-size re-
duction techniques (from Section 4). Then proceed to compare the efficiency of our
processing algorithms (from Sections 5 and 6) – for each group of experiments, we first
evaluate single-pair BUP processing and then multiple-pair BUP.

As default network G we use the road network of Germany (from
www.maproom.psu.edu/dcw/), which has 28,867 nodes and 30,429 edges. We normal-
ize the node coordinates into a [0, 10, 000]2 space, and set the (original) weight of each
edge to the Euclidean distance between its end-nodes. The diameter of the network (i.e.,
the maximum distance between any pair of nodes) is 14,383.

We study the impact of four parameters: (original) path length between source and
destination; upgrade ratio; resource ratio; and number of query pairs (for multiple-
pair BUP experiments). The upgrade ratio indicates the ratio of upgradable edges over
their total number (i.e., |U |/|E|). By default, upgradable edges are selected randomly
from E (although we also explore cases where edges along entire paths are chosen as
upgradable). Their new weight is set to e.w′ = x · e.w, where x is a random number
between 0.5 and 1. The upgrade cost is set to e.c = y ·e.w, where y is a random number
from 0 to 1. The resource ratio indicates how strict the budget B is. Specifically, for
each query we compute the sum of upgrade costs of all upgradable edges in the shortest
path(s) from source(s) to destination(s) in the original network; let this sum be C. We
set B to a fraction of this cost. The resource ratio equals B/C. In multiple-pair BUP,
the |Q| query pairs are chosen randomly among source-destination pairs of the desired
path length. Table 5 shows the parameter values tested and their default (in bold). In
every experiment, we vary one parameter and set the other three to their default. Each
measurement is the average over 20 queries. We use an Intel Core 2 Duo CPU 2.40GHz
with 2GB RAM and keep the networks in memory.

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 23

Parameter Value Range
Path length 1000, 2000, 4000, 6000, 8000

Upgrade ratio 0.04, 0.06, 0.08, 0.1
Resource ratio 0.2, 0.4, 0.6, 0.8

Number of query pairs 5, 10, 15, 20, 25

Table 5 Experiment parameters

 0

 200

 400

 600

 800

 1000

1000 2000 4000 6000 8000

of

 r
em

ai
ni

ng
 n

od
es

Path length

Pruning
Pruning+Preserver

 0

 200

 400

 600

 800

 1000

 1200

 1400

1000 2000 4000 6000 8000

of

 r
em

ai
ni

ng
 e

dg
es

Path length

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

 500

1000 2000 4000 6000 8000

T
im

e
[m

s]

Path length

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 8 Effect of path length (single pair)

 0

 4000

 8000

 12000

1000 2000 4000 6000 8000

of

 r
em

ai
ni

ng
 n

od
es

Path length

Pruning
Pruning+Preserver

 0

 5000

 10000

 15000

 20000

1000 2000 4000 6000 8000

of

 r
em

ai
ni

ng
 e

dg
es

Path length

Pruning
Pruning+Preserver

 0

 1000

 2000

 3000

 4000

 5000

 6000

1000 2000 4000 6000 8000

T
im

e
[m

s]

Path length

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 9 Effect of path length (multiple pairs)

7.1 Evaluation of Graph-size Reduction Methods

In this section, we leave BUP processing aside, and evaluate our graph-size reduction
methods in three aspects: number of remaining nodes, number of remaining edges, and
running time (for graph-size reduction alone). We report results for pruning (from Sec-
tion 4.1) when applied alone, and when applied in tandem with the preserver method
(from Section 4.2).

Effect of path length: In Figure 8 (single pair), we vary the path length and plot
the number of remaining nodes/edges with each approach. We also present their running
times; for each method (“Pruning” and “Pruning+Preserver”) we include its full-fledged
version (with all optimizations described in Section 4) and its version without the im-
plementation optimization in the last paragraph of Section 4.1.

The original network has 28,867 nodes and 30,429 edges, out of which fewer than
500 nodes and 800 edges remain after pruning, achieving a vast reduction. The latter are
further reduced by the preserver technique to fewer than 60 and 100, respectively, low-
ering down the problem size dramatically, even for the most distant source-destination
pairs we tried. The number of remaining nodes/edges grows with the path length, be-
cause SP (s, t, Rtemp) increases and, hence, Lemma 3 prunes fewer edges (recall that
Rtemp is a permissible heuristic BUP solution, and SP (s, t, Rtemp) is the length of the

24 Yimin Lin, Kyriakos Mouratidis

 0

 100

 200

 300

0.04 0.06 0.08 0.1

of

 r
em

ai
ni

ng
 n

od
es

Upgrade ratio

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

0.04 0.06 0.08 0.1

of

 r
em

ai
ni

ng
 e

dg
es

Upgrade ratio

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

 500

0.04 0.06 0.08 0.1

T
im

e
[m

s]

Upgrade ratio

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 10 Effect of upgrade ratio (single pair)

 0

 1000

 2000

 3000

0.04 0.06 0.08 0.1

of

 r
em

ai
ni

ng
 n

od
es

Upgrade ratio

Pruning
Pruning+Preserver

 0

 1000

 2000

 3000

 4000

 5000

0.04 0.06 0.08 0.1

of

 r
em

ai
ni

ng
 e

dg
es

Upgrade ratio

Pruning
Pruning+Preserver

 0

 1000

 2000

 3000

 4000

 5000

0.04 0.06 0.08 0.1

T
im

e
[m

s]

Upgrade ratio

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 11 Effect of upgrade ratio (multiple pairs)

shortest path from s to t under plan Rtemp). In terms of running time, both approaches
take longer for larger path lengths, because the reduced graph is larger. The optimized
versions of the algorithms are very efficient, requiring fewer than 250msec in all cases.

In Figure 9 (multiple pairs), we observe similar trends as in single-pair BUP, except
that the number of remaining nodes/edges and the processing time are about 11 to 12
times higher than those for single-pair BUP. Recall that in the default setting, there are
|Q| = 10 source-destination pairs which explains why the relevant (i.e., remaining) part
of G, and the cost to produce it, are proportionately larger.

Effect of upgrade ratio: In Figure 10 (single pair), we vary the upgrade ratio from
0.04 to 0.1, i.e., 4% to 10% of the network edges are upgradable. Lemma 3 is applied
on the fully upgraded G, considering for each edge e its shortest possible distance from
s and t, in order to guarantee correctness. Hence, a higher upgrade ratio implies looser
pruning (equivalently, more remaining nodes and edges). In Figure 11 (multiple pairs),
as in previous results in Figure 9, multiple pairs imply more remaining nodes/edges and
a longer running time, but the measurements still follow a similar trend to the single-pair
case.

Effect of resource ratio: In Figure 12 (single pair) and Figure 13 (multiple pairs),
we vary the resource ratio from 0.2 to 0.8 – that is, B ranges from 20% to 80% of C
(described in the beginning of the experiment section). A greater ratio implies a larger
budget B and, therefore, a smaller SP (s, t, Rtemp). In turn, this means more extensive
pruning by Lemma 3.

Effect of number of query pairs: In Figure 14, we vary the number of query pairs
(in multiple-pair BUP) and keep the remaining parameters at their defaults. With the
increasing number of query pairs, the numbers of remaining nodes and edges naturally
increase in a roughly linear fashion. As explained previously, a growing |Q| implies that

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 25

 0

 100

 200

 300

0.2 0.4 0.6 0.8

of

 r
em

ai
ni

ng
 n

od
es

Resource ratio

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

0.2 0.4 0.6 0.8

of

 r
em

ai
ni

ng
 e

dg
es

Resource ratio

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

 500

0.2 0.4 0.6 0.8

T
im

e
[m

s]

Resource ratio

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 12 Effect of resource ratio (single pair)

 0

 1000

 2000

 3000

 4000

 5000

0.2 0.4 0.6 0.8

of

 r
em

ai
ni

ng
 n

od
es

Resource ratio

Pruning
Pruning+Preserver

 0

 1000

 2000

 3000

 4000

0.2 0.4 0.6 0.8

of

 r
em

ai
ni

ng
 e

dg
es

Resource ratio

Pruning
Pruning+Preserver

 0

 1000

 2000

 3000

 4000

 5000

0.2 0.4 0.6 0.8

T
im

e
[m

s]

Resource ratio

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 13 Effect of resource ratio (multiple pairs)

 0

 2000

 4000

 6000

 8000

5 10 15 20 25

of

 r
em

ai
ni

ng
 n

od
es

Number of query pairs

Pruning
Pruning+Preserver

 0

 2000

 4000

 6000

 8000

 10000

5 10 15 20 25

of

 r
em

ai
ni

ng
 e

dg
es

Number of query pairs

Pruning
Pruning+Preserver

 0

 2000

 4000

 6000

 8000

5 10 15 20 25

T
im

e
[m

s]

Number of query pairs

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 14 Effect of number of query pairs

 0

 1000

 2000

 3000

1 2 4 8 16

of

 r
em

ai
ni

ng
 n

od
es

Length of upgradable paths

Pruning
Pruning+Preserver

 0

 1000

 2000

 3000

 4000

1 2 4 8 16

of

 r
em

ai
ni

ng
 e

dg
es

Length of upgradable paths

Pruning
Pruning+Preserver

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8 16

T
im

e
[m

s]

Length of upgradable paths

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 15 Effect of length of upgradable path (multiple pairs)

a larger part of G becomes relevant to processing. Expanding more nodes and consider-
ing more edges also increases the processing time.

Effect of upgradable path length: Next, we experiment with upgradable edges
that are clustered in the form of upgradable paths, resembling a situation where entire
highway sections are amenable to improvement. For this, we use parameter lup which

26 Yimin Lin, Kyriakos Mouratidis

represents the number of edges per upgradable path. Each upgradable path is generated
by randomly picking a start node, and performing a random walk around it that spans lup
edges. These edges are added to U , i.e., are considered upgradable. We generate |U |/lup
upgradable paths to keep the total number of upgradable edges fixed. In Figure 15, we
vary lup from 1 to 16. Note that the case for lup = 1 corresponds to our default setting
of randomly distributed (and not necessarily connected) upgradable edges. For brevity,
we present results for the multiple-pair BUP only. With the increase of lup, the size of
the reduced graph tends to be smaller. The reason is that the upgradeable clusters grow
larger, thus making it more probable to prune a large bunch of edges if their containing
cluster happens to lie far from all query pairs.

7.2 Evaluation of BUP Processing Algorithms

Given a reduced graph Gc (produced either by “Pruning” or “Pruning+Preserver”), in
this section we evaluate BUP algorithms from Sections 5 and 6.5 In the plots we label
AG as “Augmented”, FG as “Full”, and OG as “Original”.

In Figure 16 (single pair) and Figure 17 (multiple pairs), in addition to Germany, we
use three other real road networks; one smaller (San Joaquin County, with 18,263 nodes
and 23,874 edges, from www.cs.utah.edu/∼lifeifei/SpatialDataset.htm), and two larger
ones (India, with 149,566 nodes and 155,483 edges, from www.maproom.psu.edu/dcw/,
and San Francisco Bay Area, with 321,170 nodes and 800,172 edges, from
www.dis.uniroma1.it/challenge9/download.shtml). For each road network, we present
the processing time of all three BUP algorithms, assuming reduction by “Pruning” or
“Pruning+Preserver”, for the default parameter values in Table 5.

We observe that OG consistently outperforms alternatives, with FG being the runner-
up. An interesting fact is that the running time of all algorithms in India/San Francisco
Bay Area is longer. This is irrelevant to the size of the network. A path length of 4,000
(default) in India/San Francisco Bay Area corresponds to paths with much more edges
than paths of the same length in the other two networks . To see this, in single-pair BUP
for example, after “Pruning” in Germany the remaining nodes/edges are 238 and 331,
while for India the corresponding numbers are 711 and 1,087.

In Figure 17 (for multiple-pair BUP), the performance trends of all three methods
are similar to the single-pair case, but the running times are several times longer. The
reason is that in multiple-pair BUP, we need to rank paths for multiple query pairs, but
importantly, we also need to rank path combinations from |Q| lists using the best neigh-
bor method (BN) from [23]. The latter performs a significant number of heap operations
that add up to the processing time.

Having established the general superiority of OG, in Figures 18 and 19 we examine
the effect of path length, upgrade ratio and resource ratio on the running time of OG,
plotting also measurements for the runner-up (FG) for the sake of comparison. In the
multiple-pair case (Figure 19) we also study the effect of |Q| and lup (described in
the context of Figure 15). The experiments use our default network (Germany) after
reduction by “Pruning+Preserver”. We observe a direct correlation between the running

5 For completeness, we mention that a brute force evaluation of subsets of Uc (after “Prun-
ing+Preserver” reduction) in our default setting for single-pair BUP takes longer than 20sec, which is
orders of magnitude slower than our methods, evaluated shortly.

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 27

 0

 100

 200

 300

 400

 500

T
im

e
[m

s]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 100

 200

 300

 400

 500

T
im

e
[m

s]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 100

 200

 300

 400

 500

T
im

e
[m

s]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 100

 200

 300

 400

 500

T
im

e
[m

s]

 Pruning Pruning+Preserver

Original
Full

Augmented

(a) San Joaquin County (b) Germany

 0

 2

 4

 6

 8

 10

T
im

e
[s

ec
]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 2

 4

 6

 8

 10

T
im

e
[s

ec
]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 10

 20

 30

 40

T
im

e
[s

ec
]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 10

 20

 30

 40

T
im

e
[s

ec
]

 Pruning Pruning+Preserver

Original
Full

Augmented

(c) India (d) San Francisco Bay Area

Fig. 16 Running time of BUP algorithms on different networks (single pair)

 0

 10

 20

 30

 40

 50

T
im

e
[s

]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 10

 20

 30

 40

 50

T
im

e
[s

]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 10

 20

 30

 40

 50

T
im

e
[s

]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 10

 20

 30

 40

 50

T
im

e
[s

]

 Pruning Pruning+Preserver

Original
Full

Augmented

(a) San Joaquin County (b) Germany

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

T
im

e
[s

ec
]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

T
im

e
[s

ec
]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 1000

 2000

 3000

 4000

T
im

e
[s

ec
]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 1000

 2000

 3000

 4000

T
im

e
[s

ec
]

 Pruning Pruning+Preserver

Original
Full

Augmented

(c) India (d) San Francisco Bay Area

Fig. 17 Running time of BUP algorithms on different networks (multiple pairs)

 1

 10

 100

 1000

1000 2000 4000 6000 8000

T
im

e
[m

s]

Path length

Original
Full

 0

 10

 20

 30

0.04 0.06 0.08 0.1

T
im

e
[m

s]

Upgrade ratio

Original
Full

 0

 10

 20

 30

 40

0.2 0.4 0.6 0.8

T
im

e
[m

s]

Resource ratio

Original
Full

(a) Effect of path length (b) Effect of upgrade ratio (c) Effect of resource ratio

Fig. 18 Performance of OG and FG in Germany network (single pair)

28 Yimin Lin, Kyriakos Mouratidis

 0.1

 1

 10

 100

1000 2000 4000 6000 8000

T
im

e
[s

ec
]

Path length

Original
Full

 0

 2

 4

 6

 8

 10

0.04 0.06 0.08 0.1

T
im

e
[s

ec
]

Upgrade ratio

Original
Full

 0

 2

 4

 6

 8

 10

0.2 0.4 0.6 0.8

T
im

e
[s

ec
]

Resource ratio

Original
Full

(a) Effect of path length (b) Effect of upgrade ratio (c) Effect of resource ratio

 0

 2

 4

 6

 8

 10

 12

 14

5 10 15 20 25

T
im

e
[s

ec
]

Number of query pairs

Original
Full

 0

 0.5

 1

 1.5

 2

1 2 4 8 16

T
im

e
[s

ec
]

Length of upgradable paths

Original
Full

(d) Effect of number of query pairs(e) Effect of length of upgradable paths

Fig. 19 Performance of OG and FG in Germany network (multiple pairs)

 0

 0.5

 1

 1.5

 2

1000 2000 4000 6000 8000

P
er

ce
nt

ag
e

(%
)

Path length

 0

 0.5

 1

 1.5

 2

0.04 0.06 0.08 0.1

P
er

ce
nt

ag
e

(%
)

Upgrade ratio

 0

 0.5

 1

 1.5

 2

 2.5

0.2 0.4 0.6 0.8

P
er

ce
nt

ag
e

(%
)

Resource ratio

(a) Effect of path length (b) Effect of upgrade ratio (c) Effect of resource ratio

Fig. 20 Percentage of path length improvement (multiple pairs)

time of the BUP algorithms and the size of the reduced graph (investigated in Section
7.1) – for example, performance in Figure 18(a) follows the trends in Figures 8(a) and
8(b). This verifies that indeed the size of graph Gc is a major performance determinant
and justifies our design effort in Section 4 to reduce it.

In Figure 20 we plot the (percentage of) path length reduction when varying the
(original) path length, the upgrade ratio, and the resource ratio, in multiple-pair BUP.
The reduction increases with all three parameters. In the first case, that is because as the
path length increases, more upgradable edges remain in Gc (see Figure 9) and, therefore,
more options become available to shorten the paths. Similarly, an increased upgrade ratio
implies more permissible plans and, thus, allows for a larger reduction in path lengths.
Finally, a higher resource ratio implies that more edges can be chosen for upgrade, and
leads to shorter paths (in the updated network).

8 Conclusion

In this paper, we study the Resource Constrained Best Upgrade Plan query (BUP). In
a road network where a fraction of the edges are upgradable at some cost, the BUP

Best Upgrade Plans for Single and Multiple Source-Destination Pairs 29

query computes the subset of these edges to be upgraded so that the shortest path dis-
tance for a source-destination pair (or the sum of shortest path distances for a set of
source-destination pairs) is minimized and the total upgrade cost does not exceed a user-
specified budget. Our methodology centers on two axes: the effective reduction of the
network size and the efficient BUP processing in the resulting graph. Experiments on
real road networks verify the effectiveness of our techniques and the efficiency of our
framework overall. A direction for future work is the consideration of multiple concur-
rent constraints (on different resource types).

References

1. Alumur, S.A., Kara, B.Y.: Network hub location problems: The state of the art. European Journal of
Operational Research 190(1), 1–21 (2008)

2. Amaldi, E., Capone, A., Cesana, M., Malucelli, F.: Optimization models for the radio planning of
wireless mesh networks. In: Networking, pp. 287–298 (2007)

3. Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest path problem.
Networks 19, 379–394 (1989)

4. Ben-Moshe, B., Omri, E., Elkin, M.: Optimizing budget allocation in graphs. In: CCCG (2011)
5. Boorstyn R.and Frank, H.: Large-scale network topological optimization. IEEE Transactions on

Communications 25(1), 29 – 47 (1977)
6. Campbell, A.M., Lowe, T.J., Zhang, L.: Upgrading arcs to minimize the maximum travel time in a

network. Networks 47(2), 72–80 (2006)
7. Capone, A., Elias, J., Martignon, F.: Models and algorithms for the design of service overlay net-

works. IEEE Transactions on Network and Service Management 5(3), 143–156 (2008)
8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Second Edition.

The MIT Press and McGraw-Hill Book Company (2001)
9. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In: ICDE,

pp. 796–805 (2007)
10. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT, pp.

205–216 (2008)
11. Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-

constrained shortest path problem. Networks 42, 135–153 (2003)
12. Fan, J., Ammar, M.H.: Dynamic topology configuration in service overlay networks: A study of

reconfiguration policies. In: INFOCOM (2006)
13. Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks 10,

293–309 (1980)
14. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper. Res. 17(1),

36–42 (1992)
15. Hills, A.: Mentor: an algorithm for mesh network topological optimization and routing. IEEE Trans-

actions on Communications 39(11), 98–107 (2001)
16. Jain, R., Walrand, J.: An efficient nash-implementation mechanism for network resource allocation.

Automatica 46(8), 1276–1283 (2010)
17. Jensen, C.S., Kolárvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks. In:

GIS, pp. 1–8 (2003)
18. Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation game. Math. Oper. Res.

29(3), 407–435 (2004)
19. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topograph-

ical road maps. IEEE Trans. Knowl. Data Eng. 14(5) (2002)
20. Kershenbaum, A., Kermani, P., Grover, G.A.: Mentor: an algorithm for mesh network topological

optimization and routing. IEEE Transactions on Communications 39(4), 503–513 (1991)
21. Kriegel, H.P., Kröger, P., Renz, M., Schmidt, T.: Hierarchical graph embedding for efficient query

processing in very large traffic networks. In: SSDBM, pp. 150–167 (2008)
22. Li, Z., Mohapatra, P.: On investigating overlay service topologies. Computer Networks 51(1), 54–68

(2007)
23. Lin, Y., Mouratidis, K.: Best upgrade plans for large road networks. In: SSTD, pp. 223–240 (2013)

30 Yimin Lin, Kyriakos Mouratidis

24. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path
problem. Operations Research Letters 28(5), 213 – 219 (2001)

25. Maillé, P., Tuffin, B.: Multi-bid auctions for bandwidth allocation in communication networks. In:
INFOCOM (2004)

26. Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Algorithms - ESA 2000,
vol. 1879, pp. 326–337 (2000)

27. Minoux, M.: Networks synthesis and optimum network design problems: Models, solution methods
and applications. Networks 19, 313–360 (1989)

28. Nepal, K.P., Park, D., Choi, C.H.: Upgrading arc median shortest path problem for an urban trans-
portation network. Journal of Transportation Engineering 135(10), 783–790 (2009)

29. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In:
VLDB, pp. 802–813 (2003)

30. de Queirós Vieira Martins, E., Pascoal, M.M.B.: A new implementation of yen’s ranking loopless
paths algorithm. 4OR 1(2) (2003)

31. Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Topologically-aware overlay construction and
server selection. In: INFOCOM (2002)

32. Ribeiro, C.C., Minoux, M.: A heuristic approach to hard constrained shortest path problems. Dis-
crete Applied Mathematics 10(2), 125 – 137 (1985)

33. Roy, S., Pucha, H., Zhang, Z., Hu, Y.C., Qiu, L.: Overlay node placement: Analysis, algorithms and
impact on applications. In: ICDCS, p. 53 (2007)

34. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for k-
nearest neighbor search in moving object databases. GeoInformatica 7(3), 255–273 (2003)

35. Stojanovic, D., Papadopoulos, A.N., Predic, B., Djordjevic-Kajan, S., Nanopoulos, A.: Continuous
range monitoring of mobile objects in road networks. Data Knowl. Eng. 64(1), 77–100 (2008)

36. Zhang, L.: Upgrading arc problem with budget constraint. In: 43rd annual Southeast regional con-
ference - Volume 1, pp. 150–152 (2005)

