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Abstract
Humans possess a strong capability for reason-
ing beyond common sense. For example, given
an unconventional image of a goldfish laying
on the table next to an empty fishbowl, a human
would effortlessly determine that the fish is not
inside the fishbowl. The case, however, may be
different for a vision-language model, whose
reasoning could gravitate towards the common
scenario that the fish is inside the bowl, de-
spite the visual input. In this paper, we intro-
duce a novel probing dataset named ROME
(reasoning beyond commonsense knowledge)
to evaluate whether the state-of-the-art pre-
trained vision-language models have the rea-
soning capability to correctly interpret counter-
intuitive content. ROME contains images that
defy commonsense knowledge with regards to
color, shape, material, size and positional rela-
tion. Experiments on the state-of-the-art pre-
trained vision-language models reveal that most
of these models are still largely incapable of in-
terpreting counter-intuitive scenarios. We hope
that ROME will spur further investigations on
reasoning beyond commonsense knowledge in
vision-language research.

1 Introduction

Humans possess not only commonsense knowledge
such as fish are usually found inside (rather than
outside) a fishbowl, but also the ability to handle
counter-intuitive scenarios and reason beyond com-
mon sense. For example, when presented with the
image on the left in Figure 1 and asked “Is the
fish inside the fishbowl?” humans would have no
problem answering “no.” However, it is not clear
whether recent pre-trained vision-language mod-
els (VLMs) such as LLaVA (Liu et al., 2023) and
InstructBLIP (Dai et al., 2023a), which exhibit im-
pressive vision-language understanding abilities,
have the capacity to reason beyond visual common
sense.

In this paper, we aim to empirically answer
this research question by evaluating recent VLMs

Figure 1: Sample counter-intuitive images from our
ROME dataset. Left: an image showing an uncommon
positional relation between a fish and a fishbowl. Right:
an image showing a chair with an uncommon relative
size with respect to a pizza.

on a new probing dataset we introduce, called
ROME (reasoning beyond commonsense knowl-
edge). Such empirical evaluation is important be-
cause humans’ ability to “think outside the box”
is a critical source of creativity and, thus, also
a desirable ability for AI models. Unfortunately,
most existing benchmarks to evaluate VLMs do
not challenge them with unconventional or counter-
intuitive situations.

Our ROME dataset consists of 1,563 images gen-
erated by DALL-E-2 depicting counter-intuitive
scenarios. Instead of relying on a small group
of people’s notion of counter-intuitive scenarios,
we largely leverage a recent visual common sense
dataset, ViComTe, that was systematically derived
from Visual Genome (Zhang et al., 2022). We
automatically convert commonsense assertions re-
lated to objects’ color, shape, material and size
in ViComTe into descriptions of counter-intuitive
scenarios, and use DALL-E-2 to generate images
accordingly. In addition, we manually use Bing
Image Creator to generate counter-intuitive images
related to objects’ positional relations to supple-
ment the data above.

To assess both a VLM’s commonsense knowl-
edge and its abilities to reason beyond common
sense, we design two groups of probing tasks in
the form of binary (yes/no) visual questions: (1)



Commonsense questions, which are related to the
common attribute values of various objects, or the
typical relative size or positional relationship be-
tween two objects. (2) Counter-intuitive questions,
which ask about the objects, their attributes, and
their relative size or positional relation in counter-
intuitive images.We then define four evaluation
metrics based on these probing questions.

We use the ROME dataset and the probing ques-
tions to evaluate six pre-trained vision-language
models: ALBEF (Li et al., 2021), BLIP-2 (Li et al.,
2023a), LLaVA (Liu et al., 2023), MiniGPT-4 (Zhu
et al., 2023), mPLUG-Owl (Ye et al., 2023), and
InstructBLIP (Dai et al., 2023a). Among these
models, BLIP-2, LLaVA, MiniGPT-4, mPLUG-
Owl, and InstructBLIP are the latest models that are
built on top of pre-trained large language models
(LLMs), e.g., LLaMA. They can be directly used by
end-users through natural language conversations
such as to perform zero-shot visual question an-
swering (VQA) , making them readily available for
wide adoption in end-user applications. Therefore,
we focus on the evaluation of these state-of-the-art
models. In contrast, although earlier VLMs such
as CLIP (Radford et al., 2021) and ALBEF also
demonstrated strong zero-shot capabilities on tasks
including object detection (Radford et al., 2021)
and VQA (Song et al., 2022), they usually require
careful prompt engineering to work properly, and
thus we do not focus on these earlier models. Nev-
ertheless, we still include one of them, namely,
ALBEF pre-trained with VQAv21, in order to have
a comprehensive representation of VLMs.

Our experiments demonstrate that, although
these state-of-the-art VLMs are generally effec-
tive at counter-intuitive object recognition, most of
them perform poorly in terms of counter-intuitive
attribute and relation recognition. Meanwhile, in-
terestingly, the models perform poorly on our com-
monsense questions, often giving inconsistent an-
swers to a pair of questions asking about the same
commonsense knowledge. This suggests that many
of the latest pre-trained VLMs still lack strong com-
monsense reasoning capabilities and capabilities
to reason beyond common sense, which, in turn,
indicates that further improvements are needed in
both directions.

1https://github.com/salesforce/LAVIS

2 Related Work

Visual common sense. With the rapid develop-
ment of foundation models, increasing attention is
paid to their commonsense reasoning capabilities.
Recent studies have investigated the existence of
commonsense knowledge in pre-trained language
models (e.g., Bouraoui et al., 2020; Lin et al., 2020).
Others have focused on visual common sense (e.g.,
Vedantam et al. (2015); Zellers et al. (2021); Liu
et al. (2022)). In particular, Zhang et al. (2022)
studied commonsense knowledge pertaining to typ-
ical visual attributes of different objects. We follow
their notion of visual common sense and use their
dataset as our main source of commonsense knowl-
edge. Note that this notion of visual common sense
is different from the notion of visual commonsense
reasoning in the well-known VCR dataset (Zellers
et al., 2019).

While most previous work has focused on com-
monsense reasoning, we focus on evaluating rea-
soning capabilities beyond common sense. Bitton-
Guetta et al. (2023) introduced WHOOPS, a dataset
of weird/unconventional images, where the selec-
tion of “weird” scenarios is based on a (relatively)
small group of 30 designers’ impression of com-
mon sense and weirdness. In contrast, our selection
of counter-intuitive scenarios is based on the visual
commonsense dataset by Zhang et al. (2022) that
was systematically constructed. WHOOPS covers
a wide range of weird scenarios, many of which
involve non-visual common sense, such as social
norms, cultural knowledge, and celebrities. On
the other hand, our dataset is centered on five cat-
egories of common sense that are purely visual.
These types of common sense are also more primi-
tive (compared to WHOOPS, where the reasons for
weirdness are often complex, involving multiple
steps of reasoning). Also, WHOOPS focuses on
explanation, while our dataset is framed around the
models’ ability to overcome common sense and
correctly recognitze objects, attributes and spatial
relations in counter-intuitive scenarios. Another
dataset that contains some counter-intuitive images
is the Winoground dataset (Thrush et al., 2022), but
their focus is compositional reasoning and not all
images in Winoground are counter-intuitive.

Pre-trained vision-language models. After the
success of BERT (Kenton and Toutanova, 2019),
the community started developing pre-trained
vision-language models, such as ALBEF (Li

https://github.com/salesforce/LAVIS


et al., 2021), X2-VLM (Zeng et al., 2023b) and
CLIP (Radford et al., 2021), which are trained
on web-scale image-text pairs and exhibit power-
ful zero-shot and few-shot transfer capabilities for
downstream tasks. Recently, given the impressive
power of LLMs (such as ChatGPT) to perform var-
ious tasks through natural language conversations,
a new line of work leverages LLMs to build VLMs
with parameter-efficient fine-tuning (e.g., BLIP-
2 (Li et al., 2023a), LLaVA (Liu et al., 2023) and
InstructBLIP (Dai et al., 2023a)). These models
usually train an alignment module to convert visual
inputs into embeddings acceptable by a pre-trained
LLM.

Evaluation of VLMs. Recently, there have been
various attempts to evaluate VLMs on different
aspects. Thrush et al. (2022) constructed the
Winoground dataset to assess the ability of VLMs
to conduct visio-linguistic compositional reasoning.
Zhou et al. (2022) studied the existence of social
bias in VLMs. Li et al. (2023b) considered the
hallucination problem, i.e., the inclusion of objects
that are inconsistent with the given images in the
generated text descriptions. Zeng et al. (2023a)
compared different LLM backbones and model de-
signs of VLMs to explore the influence of diversi-
fied prompts on the instruction-following ability of
these models. In contrast, we evaluate state-of-the-
art VLMs for reasoning beyond common sense.

3 Creation of Counter-intuitive Images

In this section, we explain how we create counter-
intuitive images.

3.1 Counter-intuitive Descriptions

Counter-intuitive scenarios are rare in real life pic-
tures. Therefore, similar to Bitton-Guetta et al.
(2023), we opt to generate images using recent text-
to-image models. To use these models, we need
to come up with textual descriptions of counter-
intuitive scenarios, such as a fish outside a fishbowl,
which needs to be derived from commonsense as-
sertions such as a fish inside a fishbowl. Therefore,
our first step is to identify a large set of visual
commonsense assertions.

We use ViComTe (Zhang et al., 2022) as our
main source of visual commonsense knowledge,
because it is systematically derived from Visual
Genome (Krishna et al., 2017), which contains
∼10K images from MSCOCO and therefore has

a diverse coverage. We use commonsense knowl-
edge related to color, shape, material, and size from
ViComTe. We supplement it with a dataset by Liu
et al. (2022) (which we call ThingsNotWritten) that
contains positional commonsense knowledge.

Color, shape, and material are attributes of phys-
ical objects. The commonsense knowledge con-
tained in ViComTe on these attributes is repre-
sented as frequencies of each possible attribute
value, given an object and an attribute. For ex-
ample, given the object knob and the attribute
shape, ViComTe provides the frequencies of differ-
ent shapes such as round, square, and triangle that
are associated with knobs. We use only the sub-
set of ViComTe where the most frequent attribute
value has at least 80% frequency, i.e., cases where
it is common sense for the object to have a domi-
nating attribute value. To create counter-intuitive
descriptions, given an object and an attribute (color,
shape or material), we choose the attribute value
that has the lowest frequency (including 0). For ex-
ample, given the object tire and the attribute color,
the value with the lowest frequency in ViComTe is
blue. Based on this, we form the counter-intuitive
description a tire in the color of blue.

ViComTe represents size-related commonsense
knowledge as a pair of objects and their relative
size, e.g., a deer is larger than a plate. We sim-
ply reverse the relation to form counter-intuitive
descriptions, e.g., a deer that is smaller than a plate.

Another important type of visual common sense
is the positional relation between two objects,
which however is not covered in ViComTe. The
ThingsNotWritten dataset by Liu et al. (2022)
provides commonsense assertions of this type,
e.g., a fish inside a fishbowl. Because the size
of ThingsNotWritten is relatively small, we in-
clude additional positional commonsense asser-
tions based on our own judgment. To convert these
positional commonsense assertions into counter-
intuitive descriptions, we replace their positional
preposition with a random choice from a pre-
defined list in ThingsNotWritten.

For all counter-intuitive descriptions, we experi-
ment with different sentence templates and choose
those that work the best with DALL-E-2. More
details can be found in Appendix A.

3.2 Image Generation

Our preliminary experiments show that for color,
shape, and material, automatically generating the



images using DALL-E-2 followed by two rounds
of filtering works well (details in §3.3), but for
size and positional relation, automatic generation
produces too many low-quality images that do not
match the given object or attribute descriptions.
Hence, for size and positional relation we adopt a
manual method.

For automatic generation of counter-intuitive im-
ages on color, shape, and material, we feed the
counter-intuitive descriptions to DALL-E-2 and
generate 20 images per description. We then em-
ploy CLIP (Radford et al., 2021) for a first round
of filtering to remove low-quality images. Specif-
ically, for each generated image, we use CLIP to
calculate the image’s cosine similarity with the
counter-intuitive description used to generate it,
and its cosine similarity with the corresponding
commonsense assertion. We then normalize the
two similarity scores into probabilities. A thresh-
old of 0.8 is used to discard images whose proba-
bility of being counter-intuitive is low. This step
reduces the number of images from more than 21K
to around 3.5K.

For manual creation of counter-intuitive images
on size and positional relation, two researchers ex-
periment with different description templates using
Bing Image Creator (which is powered by DALL-
E-2) until they achieve the desired high-quality
counter-intuitive images.

3.3 Human Annotation

For automatically generated images, even after the
filtering by CLIP, we find that there are still images
where the objects are not recognizable by humans.
We therefore conduct a second round of filtering
based on human annotations. We split this sec-
ond round into two steps: object recognition, and
attribute confirmation.

In the object recognition step, given an image,
we ask three human annotators to identify the de-
picted object by picking one of three options. The
purpose is to make sure that humans can recog-
nize the object, despite its uncommon or weird
attributes. For those images where the human an-
notator is able to recognize the objects, we proceed
to the attribute confirmation step, where three hu-
man annotators judge whether the object indeed
matches the counter-intuitive description used to
generate the image. Only images where all three an-
notators agree on the objects and the attributes are
kept. After human filtering, the number of images

Color Shape Material Size Positional

Count 562 310 391 200 100

Table 1: Dataset statistics

is further reduced from about 3.5K to 1,263.
To prevent any bias from the human annotators,

during the recognition step of filtering, we inten-
tionally introduce data samples where the images
do not match the given object descriptions, as a
sanity check of the annotators. We calculate Fleiss’
kappa for both the object recognition and the at-
tribute confirmation steps. The Fleiss’ kappa for
the object recognition step is 0.67, indicating sub-
stantial agreement. For the attribute confirmation
step, the Fleiss’ kappa is 0.41, suggesting a moder-
ate level of agreement.

3.4 Statistics of ROME
In total, we obtain 1,563 counter-intuitive im-
ages. Table 1 provides the breakdown of our
dataset into different categories. Some exam-
ples of our generated images can be found in Ap-
pendix B. ROME will be made publicly available
at https://github.com/K-Square-00/ROME.

4 Probing Questions and Evaluation
Metrics

Our main research question is whether state-of-the-
art pre-trained VLMs can handle counter-intuitive
images well, i.e., whether they are able to reason
beyond common sense. However, we should first
address a more fundamental question, which is
whether these pre-trained VLMs possess visual
common sense in the first place. We therefore cre-
ate two groups of probing questions: (1) questions
testing pre-trained VLMs’ visual common sense,
and (2) questions testing pre-trained VLMs’ rea-
soning abilities beyond visual common sense.

Our preliminary investigations showed that the
latest pre-trained VLMs, such as LLaVA, tend to
generate verbose answers to open-ended questions.
(See Appendix C for examples.) This makes it
hard to automatically process the generated an-
swers. We hence design only binary questions,
whose answers can be automatically processed by
checking whether they start with “yes” or “no.”

4.1 Probing Questions
Commonsense questions. This set of questions
is to test whether a VLM is equipped with common-

https://github.com/K-Square-00/ROME


Figure 2: Probing question templates and examples of instantiated questions

sense knowledge. We design two pairs of yes/no
question templates, as shown in the upper section
of Figure 2. The first pair of questions each asks a
VLM to judge the truthfulness of an assertion that
is either commonsense or counter-intuitive. If the
model answers “yes” to Q1a and “no” to Q1b, we
deem it to have the corresponding commonsense
knowledge. The reason we introduce Q1b is to
ensure that models do not score high just by an-
swering “yes” to all questions. The second pair of
questions each asks a VLM to compare the likeli-
hood of the commonsense attribute value versus an
uncommon attribute value. If the model answers
“yes” to Q2a and “no” to Q2b, we deem it to have
the respective commonsense knowledge.

Counter-intuitive questions. This set of ques-
tions are based on the generated counter-intuitive
images. Given an image showing a counter-
intuitive scenario, we test whether a VLM can
overcome visual common sense and answer the
questions correctly. Specifically, we design two
subgroups of questions: (1) object recognition, and
(2) attribute/relation recognition. These question
templates are shown in the lower section of Fig-
ure 2. Q3 asks about the existence of an object. If
a VLM answers “yes” to Q3, the VLM can recog-
nize the object despite its unusual color, shape, or
material, or its co-occurrence with another object
of unusual relative size or position. This object
recognition ability can be regarded as an ability

to reason beyond visual common sense. Q4a and
Q4b ask about either the color, shape, or material
of the object in the image, or the relative size or
positional relation between two depicted objects.
Similar to previous probing questions, if the VLM
answers “no” to Q4a and “yes” to Q4b, it can cor-
rectly identify the counter-intuitive attribute value
of the object (or the counter-intuitive relation be-
tween two depicted objects), thus demonstrating
reasoning abilities beyond visual common sense.

The question templates used are slightly differ-
ent for different commonsense types. E.g., for
material, the template Q1b is “In general, is a/an
[object] normally made of [uncommon attribute]?”
The full list of question templates can be found in
Appendix D.

4.2 Evaluation Metrics
To facilitate the formal definition of the metrics
below, we use R to denote the set of images in the
ROME dataset. For an image I ∈ R and a question
template Q, we use Q(I) to denote the question
instantiated from template Q with the objects, at-
tributes and/or relations found in image I as well
as the underlying visual commonsense knowledge
associated with this image. For example, given an
image I showing a blue banana and the knowledge
that the commonsense color of bananas is yellow,
Q1a(I) would be “In general, is the color of a ba-
nana normally yellow?” and Q1b(I) would be “In
general, is the color of a banana normally blue?”



Let M denote a VLM. We use M(I1, Q(I2)) to
denote the answer given by M for image I1 and
question Q(I2), which is instantiated from template
Q with information from image I2. We expect
M(I1, Q(I2)) to be either “yes” or “no”.

4.2.1 Metrics for Commonsense Knowledge
We introduce two metrics for testing VLMs’ com-
monsense knowledge.
Commonsense score based on language (CS-L):
When asking a VLM the commonsense probing
questions instantiated from templates Q1a, Q1b,
Q2a, and Q2b, the model does not have to refer to
any image, because the questions are asking about
general cases rather than a specific case depicted by
any image. Therefore, it is natural to give the VLM
a non-informative image, such as a blank image in
white or arguably a random image. Let Inull denote
this non-informative image. Given model M , we
define the first metric as follows:

CS-L1(M) =
1

|R|
∑
I∈R

CS-L1(M, I), (1)

where CS-L1(M, I) is 1 if M(Inull,Q1a(I)) is
“yes” and M(Inull,Q1b(I)) is “no”. In other
words, CS-L1(M, I) is 1 if and only if model
M answers both Q1a(I) and Q1b(I) correctly
according to commonsense knowledge, given a
non-informative image. CS-L1(M) is the aver-
age of CS-L1(M, I) over all I ∈ R, i.e., the fre-
quency in which the model demonstrates common-
sense knowledge. We calculate CS-L2(M) sim-
ilarly, based on the model’s answers to Q2a(I)
and Q2b(I). The final CS-L(M) is set to be
max(CS-L1(M),CS-L2(M)).
Commonsense score based on vision and lan-
guage (CS-VL): To test whether a VLM might
be “distracted” by a counter-intuitive image when
given a commonsense question, we define CS-VL
just like CS-L but, instead of a non-informative
image, we use a counter-intuitive image.

4.2.2 Metrics for Reasoning beyond Common
Sense

We define two metrics for reasoning beyond visual
common sense. One corresponds to object recogni-
tion and the other to attribute/relation recognition.
Counter-intuitive score based on object recogni-
tion (CI-Obj): This metric is designed based on
the motivation that if a VLM cannot recognize a
counter-intuitive object, then it has limited ability
to reason beyond common sense. Given an image

I that contains k objects (where k is 1 for images
related to color, shape, and material, and k is 2
for images related to size and positional relation),
Q3(I) is a set of k questions, each corresponding
to an object in I . We define CI-Obj(M, I) to be 1 if
and only if model M can recognize all objects in I .
In turn, CI-Obj(M) is the average of CI-Obj(M, I)
over all images.
Counter-intuitive score based on at-
tribute/relation recognition (CI-AttrRel):
If a VLM cannot recognize counter-intuitive at-
tributes or relations, its reasoning beyond common
sense is deemed poor. Given a counter-intuitive
image I , we define CI-AttrRel(M, I) to be 1 if
and only if model M answers both Q4a(I) and
Q4b(I) correctly, according to the actual content
of image I . CI-AttrRel(M) is the average of
CI-AttrRel(M, I) over all I ∈ R.

5 Experiments

5.1 VLMs for Evaluation

We focus on six of the latest VLMs, summarized
in Table 2. The first five leverage LLMs with
parameter-efficient fine-tuning and demonstrate
zero-shot capabilities on downstream tasks. For
completeness, we also consider ALBEF fine-tuned
on VQAv2. Some of these models tend to give
verbose answers, even to binary questions. We
hence treat an answer as “yes” (or “no”) if it starts
with “yes” (or “no”). In the penultimate column of
Table 2, we show the percentage of such answers.
Except for LLaVA, the percentage is high.

5.2 Main Results

Table 3 presents the performance of the models
over the entire ROME dataset, according to the
four metrics in §4.2. We use blank images as non-
informative images to obtain CS-L. We can answer
the following research questions based on the re-
sults.
(1) When given a non-informative image, do
state-of-the-art VLMs demonstrate visual com-
monsense knowledge?
The relevant metric for this question is CS-L. We
can see that the CS-L scores of all models are rela-
tively low, ranging from 10.89% to 32.31%. This
indicates that they do not exhibit strong visual com-
monsense knowledge. This is to some extent unex-
pected, because previous work reported that CLIP
and Oscar, two earlier pre-trained VLMs, achieved
between 60% and 80% of accuracy when predict-



Model Visual Encoder Alignment Network LLM Yes/No Rate (%) Hallucination Rate (%)

BLIP-2 ViT-L/14 Q-Former OPT2.7B 99.81 30
InstructBLIP ViT-L/14 Q-Former Vicuna7B 95.91 5

LLaVA ViT-L/14 Linear LLaMA7B 39.22 100
MiniGPT-4 ViT-G/14 Linear Vicuna7B 99.81 40

mPLUG-Owl ViT-G/14 Attention LLaMA7B 98.78 65
ALBEF ViT-B/16 Attention BERTbase 100.00 5

Table 2: The VLMs included in the evaluation

Commonsense Counter-intuitive
Model CS-L CS-VL CI-Obj CI-AttrRel

BLIP-2 5.82 2.48 91.88 27.80
InstructBLIP 32.31 9.66 94.75 63.72

LLaVA 31.41 28.09 98.34 0.13
MiniGPT-4 10.89 4.41 94.56 5.31

mPLUG-Owl 28.53 18.11 97.38 35.83
ALBEF 14.01 0.51 90.79 44.53

Table 3: Overall evaluation results (scores in %)

ing the commonsense color, shape, and material of
objects (Zhang et al., 2022). We therefore further
inspect the results and find that the mistakes made
by the VLMs we are evaluating are usually due to
inconsistent responses. For example, in Figure 3,
when asked to compare the relative size of a car and
a towel, mPLUG-Owl gives contradictory answers
to the two probing questions. Similar inconsisten-
cies are commonly found with all models.

Although blank images are non-informative, one
may argue that blank images are out-of-distribution
data considering that these pre-trained VLMs have
rarely encountered blank images in their training
data. Therefore, choosing blank images might af-
fect these models’ performance. To address this
concern, we also conduct additional experiments
with randomly selected non-blank images. Specifi-
cally, for each instance in our dataset, we repeat the
probing experiments for the CS-L scores, but in-
stead of a blank image, we use a randomly selected
image from the Visual Genome dataset. We repeat
the process three times on all models. The results
are shown in Table 5. The results indicate that
using randomly selected images produces similar
CS-L scores to using blank images.

Overall, we find that InstructBLIP and LLaVA
answer commonsense questions correctly about
30% and 35% of the time, regardless of whether a
blank image or a random image is given. For AL-
BEF, BLIP-2, MiniGPT-4 and mPLUG-Owl, using
randomly selected images produces slightly lower
CS-L scores than using blank images (around 5%

difference), implying that these models are prone
to visual distractions caused by the random images
not related to the questions.

Figure 3: An example of inconsistent answers to two
questions asking about the same commonsense knowl-
edge. A blank image is input to mPLUG-Owl.

Figure 4: An example of how a counter-intuitive image
weakens commonsense reasoning

(2) When presented with counter-intuitive im-
ages and asked about commonsense knowledge,
do the models behave differently?
Comparing CS-L with CS-VL, it is clear that once
the counter-intuitive images are presented, the com-
monsense reasoning of all models is further im-
paired; the CS-VL scores are lower, ranging be-
tween 0.51% and 28.09%. That is not surprising
because the counter-intuitive images may confuse
VLMs during commonsense reasoning. For ex-
ample, in Figure 4, when mPLUG-Owl is given a
counter-intuitive image, it answers incorrectly even
the first commonsense question (although it did get
it right in Figure 3 with a blank image input). This
problem is widely observed with all models.



Model Color Shape Material Size Position

BLIP-2 46.26 2.00 32.23 3.00 8.00
InstructBLIP 84.34 28.39 57.03 88.00 35.00

LLaVA 0.18 0.00 0.00 0.00 1.00
MiniGPT-4 8.01 0.00 7.93 3.50 0.00

mPLUG-Owl 50.89 30.00 33.76 17.50 14.00
ALBEF 50.00 1.94 60.36 70.00 33.00

Table 4: CI-AttrRel (in %) for different commonsense types

Commonsense CS-L
Model (Blank Image) (Random Image)

BLIP-2 5.82 0.30
InstructBLIP 32.31 35.03

LLaVA 31.41 31.01
MiniGPT-4 10.89 6.07

mPLUG-Owl 28.53 25.39
ALBEF 14.01 8.79

Table 5: Blank image vs random image (scores in %)

Figure 5: Examples of models’ responses to counter-
intuitive questions

(3) When given counter-intuitive images, can
the models correctly recognize the depicted ob-
jects, even though these objects are shown with
counter-intuitive attributes or have a counter-
intuitive relative size or counter-intuitive spatial
position with respect to other objects?
Surprisingly, all models perform very well in
counter-intuitive object recognition. They achieve
CI-Obj scores from 90.79% to 98.34%, which sug-
gests a positive answer to this research question.

That said, recent work has shown that some
VLMs may suffer from the hallucination prob-
lem (Li et al., 2023b; Dai et al., 2023b), i.e., they
may determine that an object exists in an image
while in reality it does not. This may affect the in-
terpretation of our results, because if a VLM tends
to answer “yes” when asked about the existence
of any object, even when that object is not in the

image, our conjecture above may not hold. To get
a sense of how common the hallucination problem
is, we first randomly retrieve 20 images containing
different objects from ROME. Next, for each image
we pick a non-exist-object label at random from
the exist-object labels of the other 19 images. Once
all images are assigned a non-exist-object label,
we ask “Does the image contain a/an [non-exist-
object]?” The hallucination rate is presented in Ta-
ble 2. All models suffer from object hallucination
to some extent, but LLaVA and mPLUG-Owl suf-
fer the most. On the other hand, the hallucination
rate of InstructBLIP and ALBEF is only 5%. The
results suggest that for InstructBLIP and ALBEF,
we can safely claim that they can recognize counter-
intuitive objects well, for BLIP-2 and MiniGPT-4,
they probably can recognize counter-intuitive ob-
jects well, but for LLaVA and mPLUG-Owl, we
cannot draw conclusions.

(4) Can the models recognize counter-intuitive
attributes and spatial relations?
The relevant metric here is CI-AttrRel. The mod-
els’ scores are low, except maybe for IntructBLIP,
which achieves the highest CI-AttrRel of 63.72%.
We infer that, despite recognizing the objects suc-
cessfully, VLMs struggle with recognizing counter-
intuitive attributes and spatial relations. Figure 5
presents all models’ responses when the image de-
picts a pizza that is larger than a chair. BLIP-2
answers both questions wrongly. MiniGPT-4 and
mPLUG-Owl answer “yes” to both questions and
are thus inconsistent. LLaVA’s answers do not start
with “yes” or “no” but judging from the complete
responses, it contradicts itself. This behaviour sug-
gests that the models have room for improvement
in terms of both visual language understanding
and logical consistency. On the other hand, in this
example InstructBLIP answers both questions cor-
rectly.

In Table 4, we break down the models’ CI-
AttrRel scores for each commonsense type. Al-
though the models perform very differently, recog-



Model CI-AttrRel CM-AttrRel

InstructBLIP 63.72 77.00
LLaVA 0.13 4.00

Table 6: CI-AttrRel vs CM-AttrRel (in %)

nizing counter-intuitive colors turns out to be the
easiest for most of them. For BLIP-2, MiniGPT-4
and mPLUG-Owl, recognizing counter-intuitive
material is the second easiest. Interestingly, for In-
structBLIP and ALBEF, size is the easiest, whereas
for the other models it tends to be very hard.

5.3 Further Investigation on Common Sense

The finding that the VLMs do not demonstrate
strong visual commonsense knowledge appears
contradictory to previous reports with CLIP and
Oscar (Zhang et al., 2022). We have pointed out in
§5.2 that a main reason we find is that the VLMs
we evaluate often give inconsistent answers. We
therefore suspect that the low CS-L scores may not
be due to VLMs lacking commonsense knowledge
per se, but maybe the phrasing of our questions
does not “activate” that knowledge. To investi-
gate this, we pick one of the VLMs, LLaVA, and
further test it with the following open-ended ques-
tion: “In general, what is the common [attribute]
of a/an [object]?” where [attribute] is set to color,
shape or material. We experiment with 20 ques-
tions. Overall, LLaVA is able to give meaningful
commonsense answers 75% of the time. This ob-
servation confirms our suspicion that some VLMs’
commonsense reasoning ability may be sensitive
to the way the question is phrased.We believe that
this may be a general weakness of the latest VLMs.

Our experiments earlier on CI-AttrRel focus on
attribute recognition in counter-intuitive images. It
would be helpful to check how well the VLMs per-
form attribute recognition in commonsense images.
We therefore also conduct another set of additional
experiments to test whether attribute recognition
is easier for these VLMs in commonsense images.
In this set of experiments, we randomly sample
100 images from ROME from the color, shape, and
material categories and create 100 corresponding
commonsense images (e.g., yellow bananas) via
Bing Image Creator. We choose LLaVA and In-
structBLIP and perform the same experiments as
for CI-AttrRel, albeit with commonsense images
as visual input. We report the respective score, de-
noted as CM-AttrRel, in Table 6. We observe that

when the models are presented with commonsense
images and asked about commonsense attributes
(e.g., “In this image, is the color of the banana yel-
low?”), they clearly perform better (i.e., give consis-
tent commonsense answers) than when presented
with counter-intuitive images. This is not surpris-
ing, because the commonsense images present vi-
sual commonsense knowledge, which presumably
aligns with the commonsense knowledge implicitly
containd in the VLMs.

6 Conclusion

In this work, we construct the ROME dataset and
propose a probing framework for evaluating the
capability of pre-trained vision-language models
(VLMs) to reason beyond common sense. Using
ROME and a set of metrics we define, we show that
state-of-the-art VLMs are lacking in this aspect.
We hope ROME will spur further research in the
important direction of reasoning beyond common
sense in the NLP and vision communities.

7 Limitations

Generation of counter-intuitive images requires sig-
nificant human involvement, as current state-of-
the-art text-to-image generation models, such as
DALL-E-2, have a strong bias towards common-
sense images. Such human involvement may in-
evitably introduce human bias to our dataset, in-
cluding possible cultural bias because all our an-
notators come from Asia. Additionally, common
sense may not be binary. There are degrees to
which one might consider something to be of com-
mon sense, hence, selecting an unequivocally non-
commonsense characteristic for an object is also a
challenge.

We designed only binary questions to probe
VLMs, which may not “activate” the full knowl-
edge and capabilities of VLMs. For example, as
discussed earlier, some VLMs may show com-
monsense knowledge when prompted in a differ-
ent way. We leave the investigation of how to
more effectively prompt VLMs to understand their
commonsense-related capabilities, and why VLMs
behave in inconsistent ways when they are given
the same questions phrased differently, as our fu-
ture work.
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A Examples of Templates

In Figure 6, we lists some examples of templates
that we use to instruct DALL-E-2 to generate im-
ages.

Figure 6: Examples of templates

B Sample Images in ROME

In Figure 7, we show examples of the generated im-
ages that have been validated by human annotators
and included in the final ROME dataset.

C Open-ended Questions

In Figure 8, we show the responses from LLaVA
to some open-ended questions. These responses
suggest that if we were to raise open-ended ques-
tions instead of binary (i.e., yes/no) questions, it
would be very difficult to automatically extract the
answer to these questions. Therefore, in our design
of probing questions, we opt for binary questions.

D Probing Questions

Figure 9 shows the full list of probing questions
we have designed based on the different types of
commonsense knowledge we intend to probe. For
some pre-trained VLMs (specifically, InstructBLIP,
LLaVA, and mPLUG-Owl), we find that adding
the following extra instruction helps: “Please an-
swer yes or no.” Therefore, in our experiments, we
include this extra instruction for these models.

Figure 7: ROME Sample Images



Figure 8: Sample responses from LLaVA for open-ended questions.

Figure 9: The full list of probing questions by the types of commonsense knowledge.


