
CONTINUOUS MONITORING OF SPATIAL QUERIES

Kyriakos Mouratidis

School of Information Systems

Singapore Management University

80 Stamford Road, 178902 Singapore

http://www.mysmu.edu/faculty/kyriakos/

SYNONYMS
Spatio-temporal stream processing

DEFINITION

A continuous spatial query runs over long periods of time and requests constant reporting of its result as

the data dynamically change. Typically, the query type is range or nearest neighbor (NN), and the

assumed distance metric is the Euclidean one. In general, there are multiple queries being processed

simultaneously. The query points and the data objects move frequently and arbitrarily, i.e., their velocity

vectors and motion patterns are unknown. They issue location updates to a central server, which processes

them and continuously reports the current (i.e., updated) query results. Consider, for example, that the

queries correspond to vacant cabs, and that the data objects are pedestrians that ask for a taxi. As cabs and

pedestrians move, each free taxi driver wishes to know his/her closest client. This is an instance of

continuous NN monitoring. Spatial monitoring systems aim at minimizing the processing time at the

server and/or the communication cost incurred by location updates. Due to the time-critical nature of the

problem, the data are usually stored in main memory to allow fast processing.

HISTORICAL BACKGROUND

The first algorithms in the spatial database literature process snapshot (i.e., one-time) queries over static

objects. They assume disk-resident data and utilize an index (e.g., an R-tree) to restrict the search space

and reduce the I/O cost. Subsequent research considered spatial queries in client-server architectures. The

general idea is to provide the user with extra information (along with the result at query-time) in order to

reduce the number of subsequent queries as he/she moves (see entry Nearest Neighbor Query). These

methods assume that the data objects are either static or moving linearly with known velocities. Due to

the wide availability of positioning devices and the need for improved location-based services, the

research focus has recently shifted to continuous spatial queries. In contrast with earlier assumed contexts,

in this setting (i) there are multiple queries being evaluated simultaneously, (ii) the query results are

continuously updated, and (iii) both the query points and the data objects move unpredictably.

SCIENTIFIC FUNDAMENTALS

The first spatial monitoring method is called Q-index [13] and processes static range queries. Based on

the observation that maintaining an index over frequently moving objects is very costly, Q-index indexes

the queries instead of the objects. In particular, the monitored ranges are organized by an R-tree, and

moving objects probe this tree to find the queries that they influence. Additionally, Q-index introduces the

concept of safe regions to reduce the number of location updates. Specifically, each object p is assigned a

circular or rectangular region, such that p needs to issue an update only if it exits this area (because,

otherwise, it does not influence the result of any query). Figure 1 shows an example, where the current

result of query q1 contains object p1, that of q2 contains p2, and the results of q3, q4, and q5 are empty. The

safe regions for p1 and p4 are circular, while for p2 and p3 they are rectangular. Note that no query result

can change unless some objects fall outside their assigned safe regions. Kalashnikov et al. [4] show that a

grid implementation of Q-index is more efficient (than R-trees) for main memory evaluation.

Figure 1 Circular and rectangular safe regions

Monitoring Query Management (MQM) [1] and MobiEyes [2] also monitor range queries. They further

exploit the computational capabilities of the objects to reduce the number of updates and the processing

load of the server. In both systems, the objects store locally the queries in their vicinity and issue updates

to the server only when they cross the boundary of any of these queries. To save their limited

computational capabilities, the objects store and monitor only the queries they may affect when they

move. MQM and MobiEyes employ different strategies to identify these queries. The former applies only

to static queries. The latter can also handle moving ones, making however the assumption that they move

linearly with fixed velocity.

Mokbel et al. [7] present Scalable INcremental hash-based Algorithm (SINA), a system that monitors

both static and moving ranges. In contrast with the aforementioned methods, in SINA the objects do not

perform any local processing. Instead, they simply report their locations whenever they move, and the

objective is to minimize the processing cost at the server. SINA is based on shared execution and

incremental evaluation. Shared execution is achieved by implementing query evaluation as a spatial join

between the objects and the queries. Incremental evaluation implies that the server computes only updates

(i.e., object inclusions/exclusions) over the previously reported answers, as opposed to re-evaluating the

queries from scratch.

The above algorithms focus on ranges, and their extension to NN queries is either impossible or non-

trivial. In the following we discuss algorithms that target NN monitoring. Hu et al. [3] extend the safe

region technique to NN queries; they describe a method that computes and maintains rectangular safe

regions subject to the current query locations and kNN results. Mouratidis et al. [11] propose Threshold-

Based algorithm (TB), also aiming at communication cost reduction. To suppress unnecessary location

updates, in TB the objects monitor their distance from the queries (instead of safe regions). Consider the

example in Figure 2, and assume that q is a continuous 3-NN query (i.e., k = 3). The initial result contains

p1, p2, p3. TB computes three thresholds (t1, t2, t3) which define a range for each object. If every object’s

distance from q lies within its respective range, the result of the query is guaranteed to remain unchanged.

Each threshold is set in the middle of the distances of two consecutive objects from the query. The

distance range for p1 is [0, t1), for p2 is [t1, t2), for p3 is [t2, t3), and for p4, p5 is [t3, ∞). Every object is

aware of its distance range, and when there is a boundary violation, it informs the server about this event.

For instance, assume that p1, p3, and p5 move to positions p'1, p'3 and p'5, respectively. Objects p3 and p5

compute their new distances from q, and avoid sending an update since they still lie in their permissible

ranges. Object p1, on the other hand, violates its threshold and updates its position to the server. Since the

order between the first two NNs may have changed, the server requests for the current location of p2, and

updates accordingly the result and threshold t1. In general, TB processes all updates issued since the last

result maintenance, and (if necessary) it decides which additional object positions to request for, updates

the k NNs of q, and sends new thresholds to the involved objects.

p4

q

p1

p2

p3

t1 t2 t3

p'1

p'3

p5

p'5

Figure 2 TB example (k = 3)

All the following methods aim at minimizing the processing time. Koudas et al. [6] describe aDaptive

Indexing on Streams by space-filling Curves (DISC), a technique for e-approximate kNN queries over

streams of multi-dimensional points. The returned (e-approximate) k
th
 NN lies at most e distance units

farther from q than the actual k
th
 NN of q. DISC partitions the space with a regular grid of granularity

such that the maximum distance between any pair of points in a cell is at most e. To avoid keeping all

arriving data in the system, for each cell c it maintains only K points and discards the rest. It is proven that

an exact kNN search in the retained points corresponds to a valid ekNN answer over the original dataset

provided that k ≤ K. DISC indexes the data points with a B-tree that uses a space filling curve mechanism

to facilitate fast updates and query processing. The authors show how to adjust the index to: (i) use the

minimum amount of memory in order to guarantee a given error bound e, or (ii) achieve the best possible

accuracy, given a fixed amount of memory. DISC can process both snapshot and continuous ekNN

queries.

Yu et al. [17] propose a method, hereafter referred to as YPK-CNN, for continuous monitoring of exact

kNN queries. Objects are stored in main memory and indexed with a regular grid of cells with size δ×δ.

YPK-CNN does not process updates as they arrive, but directly applies them to the grid. Each NN query

installed in the system is re-evaluated every T time units. When a query q is evaluated for the first time, a

two-step NN search technique retrieves its result. The first step visits the cells in an iteratively enlarged

square R around the cell cq of q until k objects are found. Figure 3a shows an example of a single NN

query where the first candidate NN is p1 with distance d from q; p1 is not necessarily the actual NN since

there may be objects (e.g., p2) in cells outside R with distance smaller than d. To retrieve such objects, the

second step searches in the cells intersecting the square SR centered at cq with side length 2⋅d+δ, and

determines the actual kNN set of q therein. In Figure 3a, YPK-CNN processes p1 up to p5 and returns p2

as the actual NN. The accessed cells appear shaded.

q

p1

p2

p5

p4

p3

R

SR

cqdmax

dmax

p6

p7

p'2

δ

p8

p10

p9

(a) NN computation (b) Update handling

Figure 3 YPK-CNN examples

When re-evaluating an existing query q, YPK-CNN makes use of its previous result in order to restrict the

search space. In particular, it computes the maximum distance dmax among the current locations of the

previous NNs (i.e., dmax is the distance of the previous neighbor that currently lies furthest from q). The

new SR is a square centered at cq with side length 2⋅dmax+δ. In Figure 3b, assume that the current NN p2 of

q moves to location p'2. Then, the rectangle defined by dmax = dist(p'2,q) is guaranteed to contain at least

one object (i.e., p2). YPK-CNN collects all objects (p1 up to p10) in the cells intersecting SR and identifies

p1 as the new NN. Finally, when a query q changes location, it is handled as a new one (i.e., its NN set is

computed from scratch).

Xiong et al. [16] propose Shared Execution Algorithm for Continuous NN queries (SEA-CNN). SEA-

CNN focuses exclusively on monitoring the NN changes, without including a module for the first-time

evaluation of an arriving query q (i.e., it assumes that the initial result is available). Objects are stored in

secondary memory, indexed with a regular grid. The answer region of a query q is defined as the circle

with center q and radius NN_dist (where NN_dist is the distance of the current k
th
 NN). Book-keeping

information is stored in the cells that intersect the answer region of q to indicate this fact. When updates

arrive at the system, depending on which cells they affect and whether these cells intersect the answer

region of the query, SEA-CNN determines a circular search region SR around q, and computes the new

kNN set of q therein. To determine the radius r of SR, the algorithm distinguishes the following cases: (i)

If some of the current NNs move within the answer region or some outer objects enter the answer region,

SEA-CNN sets r = NN_dist and processes all objects falling in the answer region in order to retrieve the

new NN set. (ii) If any of the current NNs moves out of the answer region, processing is similar to YPK-

CNN; i.e., r = dmax (where dmax is the distance of the previous NN that currently lies furthest from q), and

the NN set is computed among the objects inside SR. Assume that in Figure 4a the current NN p2 issues

an update reporting its new location p'2. SEA-CNN sets r = dmax = dist(p'2,q), determines the cells

intersecting SR (these cells appear shaded), collects the corresponding objects (p1 up to p7), and retrieves

p1 as the new NN. (iii) Finally, if the query q moves to a new location q', then SEA-CNN sets r =

NN_dist+dist(q,q'), and computes the new kNN set of q by processing all the objects that lie in the circle

centered at q' with radius r. For instance, in Figure 4b the algorithm considers the objects falling in the

shaded cells (i.e., objects from p1 up to p10 except for p6 and p9) in order to retrieve the new NN (p4).

(a) NN movement (b) Query movement

Figure 4 SEA-CNN update handling examples

Mouratidis et al. [9] propose another NN monitoring method, termed Conceptual Partitioning Monitoring

(CPM). CPM assumes the same system architecture and uses similar indexing and book-keeping

structures as YPK-CNN and SEA-CNN. When a query q arrives at the system, the server computes its

initial result by organizing the cells into conceptual rectangles based on their proximity to q. Each

rectangle rect is defined by a direction and a level number. The direction is U, D, L, or R (for up, down,

left and right), and the level number indicates how many rectangles are between rect and q. Figure 5a

illustrates the conceptual space partitioning around the cell cq of q. If mindist(c,q) is the minimum

possible distance between any object in cell c and q, the NN search considers the cells in ascending

mindist(c,q) order. In particular, CPM initializes an empty heap H and inserts (i) the cell of q with key

equal to 0, and (ii) the level zero rectangles for each direction DIR with key mindist(DIR0,q). Then, it

starts de-heaping entries iteratively. If the de-heaped entry is a cell, it examines the objects inside and

updates accordingly the NN set (i.e., the list of the k closest objects found so far). If the de-heaped entry is

a rectangle DIRlvl, it inserts into H (i) each cell c ∈ DIRlvl with key mindist(c,q) and (ii) the next level

rectangle DIRlvl+1 with key mindist(DIRlvl+1,q). The algorithm terminates when the next entry in H

(corresponding either to a cell or a rectangle) has key greater than the distance NN_dist of the k
th
 NN

found. It can be easily verified that the server processes only the cells that intersect the circle with center

at q and radius equal to NN_dist. This is the minimal set of cells to visit in order to guarantee correctness.

In Figure 5a, the search processes the shaded cells and returns p2 as the result.

D0

D1

D2

U2

U0

U1

U3

R2R1R0L0L1L2L3
q

p1

p2 NN_dist

cq

(a) NN computation (b) Update handling

Figure 5 CPM examples

The encountered cells constitute the influence region of q, and only updates therein can affect the current

result. When updates arrive for these cells, CPM monitors how many objects enter or leave the circle

centered at q with radius NN_dist. If the outgoing objects are more than the incoming ones, the result is

computed from scratch. Otherwise, the new NN set of q can be inferred by the previous result and the

update information, without accessing the grid at all. Consider the example of Figure 5b, where p2 and p3

move to positions p'2 and p'3, respectively. Object p3 moves closer to q than the previous NN_dist and,

therefore, CPM replaces the outgoing NN p2 with the incoming p3. The experimental evaluation in [9]

shows that CPM is significantly faster than YPK-CNN and SEA-CNN.

KEY APPLICATIONS

Location-based Services
The increasing trend of embedding positioning systems (e.g., GPS) in mobile phones and PDAs has given

rise to a growing number of location-based services. Many of these services involve monitoring spatial

relationships among mobile objects, facilities, landmarks, etc. Examples include location-aware

advertising, enhanced 911 services, and mixed-reality games.

Traffic Monitoring
Continuous spatial queries find application in traffic monitoring and control systems, such as on-the-fly

driver navigation, efficient congestion detection and avoidance, as well as dynamic traffic light

scheduling and toll fee adjustment.

Security Systems
Intrusion detection and other security systems rely on monitoring moving objects (pedestrians, vehicles,

etc.) around particular areas of interest or important people.

FUTURE DIRECTIONS

Future research directions include other types of spatial queries (e.g., reverse nearest neighbor monitoring

[15, 5]), different settings (e.g., NN monitoring over sliding windows [10]), and alternative distance

metrics (e.g., NN monitoring in road networks [12]). Similar techniques and geometric concepts to the

ones presented above also apply to problems of a non-spatial nature, such as continuous skyline [14] and

top-k queries [8].

EXPERIMENTAL RESULTS

The methods described above are experimentally evaluated and compared with alternative algorithms in

the corresponding reference.

CROSS REFERENCES

B+-tree

Nearest Neighbor Query

R-tree (and family)

Reverse Nearest Neighbor Query

Road Networks

Space Filling Curves for Query Processing

RECOMMENDED READING

[1] Cai, Y., Hua, K., Cao, G. Processing Range-Monitoring Queries on Heterogeneous Mobile

Objects. MDM, 2004.

[2] Gedik, B., Liu, L. MobiEyes: Distributed Processing of Continuously Moving Queries on

Moving Objects in a Mobile System. EDBT, 2004.

[3] Hu, H., Xu, J., Lee, D. A Generic Framework for Monitoring Continuous Spatial Queries

over Moving Objects. SIGMOD, 2005.

[4] Kalashnikov, D., Prabhakar, S., Hambrusch, S. Main Memory Evaluation of Monitoring

Queries Over Moving Objects. Distributed and Parallel Databases, (15)2: 117-135, 2004.

[5] Kang, J., Mokbel, M., Shekhar, S., Xia, T., Zhang, D. Continuous Evaluation of

Monochromatic and Bichromatic Reverse Nearest Neighbors. ICDE, 2007.

[6] Koudas, N., Ooi, B., Tan, K., Zhang, R. Approximate NN queries on Streams with

Guaranteed Error/performance Bounds. VLDB, 2004.

[7] Mokbel, M., Xiong, X., Aref, W. SINA: Scalable Incremental Processing of Continuous

Queries in Spatio-temporal Databases. SIGMOD, 2004.

[8] Mouratidis, K., Bakiras, S., Papadias, D. Continuous Monitoring of Top-k Queries over

Sliding Windows. SIGMOD, 2006.

[9] Mouratidis, K., Hadjieleftheriou, M., Papadias, D. Conceptual Partitioning: An Efficient

Method for Continuous Nearest Neighbor Monitoring. SIGMOD, 2005.

[10] Mouratidis, K., Papadias, D. Continuous Nearest Neighbor Queries over Sliding Windows.

IEEE TKDE, 19(6): 789-803, 2007.

[11] Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y. A Threshold-based Algorithm for

Continuous Monitoring of k Nearest Neighbors. IEEE TKDE, 17(11): 1451-1464, 2005.

[12] Mouratidis, K., Yiu, M., Papadias, D., Mamoulis, N. Continuous Nearest Neighbor

Monitoring in Road Networks. VLDB, 2006.

[13] Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S. Query Indexing and

Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving

Objects. IEEE Transactions on Computers, 51(10): 1124-1140, 2002.

[14] Tao, Y., Papadias, D. Maintaining Sliding Window Skylines on Data Streams. IEEE TKDE,

18(3): 377–391, 2006.

[15] Xia, T., Zhang, D. Continuous Reverse Nearest Neighbor Monitoring. ICDE, 2006.

[16] Xiong, X., Mokbel, M., Aref, W. SEA-CNN: Scalable Processing of Continuous K-Nearest

Neighbor Queries in Spatio-temporal Databases. ICDE, 2005.

[17] Yu, X., Pu, K., Koudas, N. Monitoring K-Nearest Neighbor Queries Over Moving Objects.

ICDE, 2005.

NOTICE:

The above entry is published in the Encyclopedia of Database Systems by Springer. The
Encyclopedia, under the editorial guidance of Ling Liu and M. Tamer Özsu, is a multiple
volume, comprehensive, and authoritative reference on databases, data management, and
database systems. Since it is available in both print and online formats, researchers,
students, and practitioners will benefit from advanced search functionality and
convenient interlinking possibilities with related online content. The Encyclopedia’s
online version is accessible on platform SpringerLink here.

Kyriakos Mouratidis, "Continuous Monitoring of Spatial Queries," Encyclopedia of
Database Systems, Editors-in-chief: Özsu, M. Tamer; Liu, Ling, Springer, 2009. (print
and online)

http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-0-387-49616-0
http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-0-387-49616-0
http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-0-387-49616-0

	EDS - Spatial Monitoring.pdf
	EDS Disclaimer.pdf

