
Spatial Queries in the Presence of Obstacles

Jun Zhang, Dimitris Papadias, Kyriakos Mouratidis, Manli Zhu

Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{zhangjun, dimitris, kyriakos, cszhuml}@cs.ust.hk

Abstract. Despite the existence of obstacles in many database applications,
traditional spatial query processing utilizes the Euclidean distance metric
assuming that points in space are directly reachable. In this paper, we study
spatial queries in the presence of obstacles, where the obstructed distance
between two points is defined as the length of the shortest path that con-
nects them without crossing any obstacles. We propose efficient algorithms
for the most important query types, namely, range search, nearest
neighbors, e-distance joins and closest pairs, considering that both data ob-
jects and obstacles are indexed by R-trees. The effectiveness of the pro-
posed solutions is verified through extensive experiments.

1. Introduction

This paper presents the first comprehensive approach for spatial query processing in
the presence of obstacles. As an example of an "obstacle nearest neighbor query" con-
sider Fig. 1 that asks for the closest point of q, where the definition of distance must
now take into account the existing obstacles (shaded areas). Although point a is closer
in terms of Euclidean distance, the actual nearest neighbor is point b (i.e., it is closer
in terms of the obstructed distance). Such a query is typical in several scenarios, e.g.,
q is a pedestrian looking for the closest restaurant and the obstacles correspond to
buildings, lakes, streets without crossings etc. The same concept applies to any spatial
query, e.g., range search, spatial join and closest pair.

Fig. 1. An obstacle nearest neighbor query example

Despite the lack of related work in the Spatial Database literature, there is a significant
amount of research in the context of Computational Geometry, where the problem is
to devise main-memory, shortest path algorithms that take obstacles into account (e.g.,
find the shortest path from point a to b that does not cross any obstacle). Most existing
approaches (reviewed in Section 2) construct a visibility graph, where each node cor-
responds to an obstacle vertex and each edge connects two vertices that are not ob-
structed by any obstacle. The algorithms pre-suppose the maintenance of the entire
visibility graph in main memory. However, in our case this is not feasible due to the
extreme space requirements for real spatial datasets. Instead we maintain local visibil-
ity graphs only for the obstacles that may influence the query result (e.g., for obstacles
around point q in Fig. 1).

In the data clustering literature, cod-clarans [THH01] clusters objects into the same
group with respect to the obstructed distance using the visibility graph, which is pre-
computed and materialized. In addition to the space overhead, materialization is un-
suitable for large spatial datasets due to potential updates in the obstacles or data (in
which case a large part or the entire graph has to be re-reconstructed). Estivill-Castro
and Lee [EL01] discuss several approaches for incorporating obstacles in spatial clus-
tering. Despite some similarities with the problem at hand (e.g., visibility graphs), the
techniques for clustering are clearly inapplicable to spatial query processing.

Another related topic regards query processing in spatial network databases
[PZMT03], since in both cases movement is restricted (to the underlying network or
by the obstacles). However, while obstacles represent areas where movement is pro-
hibited, edges in spatial networks explicitly denote the permitted paths. This fact ne-
cessitates different query processing methods for the two cases. Furthermore, the tar-
get applications are different. The typical user of a spatial network database is a driver
asking for the nearest gas station according to driving distance. On the other hand, the
proposed techniques are useful in cases where movement is allowed in the whole data
space except for the stored obstacles (vessels navigating in the sea, pedestrians walk-
ing in urban areas). Moreover, some applications may require the integration of both
spatial network and obstacle processing techniques (e.g., a user that needs to find the
best parking space near his destination, so that the sum of travel and walking distance
is minimized).

For the following discussion we assume that there is one or more datasets of enti-
ties, which constitute the points of interest (e.g., restaurants, hotels) and a single ob-
stacle dataset. The extension to multiple obstacle datasets or cases where the entities
also represent obstacles is straightforward. Similar to most previous work on spatial
databases, we assume that the entity and the obstacle datasets are indexed by R-trees
[G84, SRF87, BKSS90], but the methods can be applied with any data partition index.
Our goal is to provide a complete set of algorithms covering all common query types.
The rest of the paper is organized as follows: Section 2 surveys the previous work fo-
cusing on directly related topics. Sections 3, 4, 5 and 6 describe the algorithms for
range search, nearest neighbors, e-distance joins and closest pairs, respectively. Sec-
tion 7 provides a thorough experimental evaluation and Section 8 concludes the paper
with some future directions.

2. Related Work

Sections 2.1 and 2.2 discuss query processing in conventional spatial databases and
spatial networks, respectively. Section 2.3 reviews obstacle path problems in main
memory, and describes algorithms for maintaining visibility graphs. Section 2.4 sum-
marizes the existing work and identifies the links with the current problem.

2.1 Query Processing in the Euclidean Space

For the following examples we use the R-tree of Fig. 2, which indexes a set of points
{a,b,…,k}, assuming a capacity of three entries per node. Points that are close in
space (e.g., a and b) are clustered in the same leaf node (N3), represented as a mini-
mum bounding rectangle (MBR). Nodes are then recursively grouped together follow-
ing the same principle until the top level, which consists of a single root. R-trees (like
most spatial access methods) were motivated by the need to efficiently process range
queries, where the range usually corresponds to a rectangular window or a circular
area around a query point. The R-tree answers the range query q (shaded area) in Fig.
2 as follows. The root is first retrieved and the entries (e.g., E1, E2) that intersect the
range are recursively searched because they may contain qualifying points. Non-
intersecting entries (e.g., E4) are skipped. Notice that for non-point data (e.g., lines,
polygons), the R-tree provides just a filter step to prune non-qualifying objects. The
output of this phase has to pass through a refinement step that examines the actual ob-
ject representation to determine the actual result. The concept of filter and refinement
steps applies to all spatial queries on non-point objects.

a b c d e f g h i

E3 E4 E5 E6

E1 E2

N3
N4

N1

N5 N6

N2

RT

j k
N7

E7

Fig. 2. An R-tree example

A nearest neighbor (NN) query retrieves the k (k≥1) data point(s) closest to a query
point q. The R-tree NN algorithm proposed in [HS99] keeps a heap with the entries of
the nodes visited so far. Initially, the heap contains the entries of the root sorted ac-
cording to their minimum distance (mindist) from q. The entry with the minimum
mindist in the heap (E2 in Fig. 2) is expanded, i.e., it is removed from the heap and its
children (E5, E6, E7) are added together with their mindist. The next entry visited is E1
(its mindist is currently the minimum in the heap), followed by E3, where the actual
1NN result (a) is found. The algorithm terminates, because the mindist of all entries in
the heap is greater than the distance of a. The algorithm can be easily extended for the

retrieval of k nearest neighbors (kNN). Furthermore, it is optimal (it visits only the
nodes necessary for obtaining the nearest neighbors) and incremental, i.e., it reports
neighbors in ascending order of their distance to the query point, and can be applied
when the number k of nearest neighbors to be retrieved is not known in advance.

The e-distance join finds all pairs of objects (s,t) s ∈ S, t ∈ T within (Euclidean)
distance e from each other. If both datasets S and T are indexed by R-trees, the R-tree
join algorithm [BKS93] traverses synchronously the two trees, following entry pairs if
their distance is below (or equal to) e. The intersection join, applicable for region ob-
jects, retrieves all intersecting object pairs (s,t) from two datasets S and T. It can be
considered as a special case of the e-distance join, where e=0. Several spatial join al-
gorithms have been proposed for the case where only one of the inputs is indexed by
an R-tree or no input is indexed.

A closest-pairs query outputs the k (k≥1) pairs of points (s,t) s ∈ S, t ∈ T with the
smallest (Euclidean) distance. The algorithms for processing such queries [HS98,
CMTV00] combine spatial joins with nearest neighbor search. In particular, assuming
that both datasets are indexed by R-trees, the trees are traversed synchronously, fol-
lowing the entry pairs with the minimum distance. Pruning is based on the mindist
metric, but this time defined between entry MBRs. Finally, a distance semi-join re-
turns for each point s ∈ S its nearest neighbor t ∈ T. This type of query can be an-
swered either (i) by performing a NN query in T for each object in S, or (ii) by output-
ting closest pairs incrementally, until the NN for each entity in S is retrieved.

2.2 Query Processing in Spatial Networks

Papadias et al. [PZMT03] study the above query types for spatial network databases,
where the network is modeled as a graph and stored as adjacency lists. Spatial entities
are independently indexed by R-trees and are mapped to the nearest edge during query
processing. The network distance of two points is defined as the distance of the short-
est path connecting them in the graph. Two frameworks are proposed for pruning the
search space: Euclidean restriction and network expansion.

Euclidean restriction utilizes the Euclidean lower-bound property (i.e., the fact that
the Euclidean distance is always smaller or equal to the network distance). Consider,
for instance, a range query that asks for all objects within network distance e from
point q. The Euclidean restriction method first performs a conventional range query at
the entity dataset and returns the set of objects S' within (Euclidean) distance e from q.
Given the Euclidean lower bound property, S' is guaranteed to avoid false misses.
Then, the network distance of all points of S' is computed and false hits are elimi-
nated. Similar techniques are applied to the other query types, combined with several
optimizations to reduce the number of network distance computations.

The network expansion framework performs query processing directly on the net-
work without applying the Euclidean lower bound property. Consider again the exam-
ple network range query. The algorithm first expands the network around the query
point and finds all edges within range e from q. Then, an intersection join algorithm
retrieves the entities that fall on these edges. Nearest neighbors, joins and closest pairs
are processed using the same general concept.

2.3 Obstacle Path Problems in Main Memory

Path problems in the presence of obstacles have been extensively studied in Computa-
tional Geometry [BKOS97]. Given a set O of non-overlapping obstacles (polygons) in
2D space, a starting point pstart and a destination pend, the goal is to find the shortest
path from pstart to pend which does not cross the interior of any obstacle in O. Fig. 3a
shows an example where O contains 3 obstacles. The corresponding visibility graph G
is depicted in Fig. 3b. The vertices of all the obstacles in O, together with pstart and
pend constitute the nodes of G. Two nodes ni and nj in G are connected by an edge if
and only if they are mutually visible (i.e., the line segment connecting ni and nj does
not intersect any obstacle interior). Since obstacle edges (e.g., n1n2) do not cross ob-
stacle interiors, they are also included in G.

(a) Obstacle set and path (b) Visibility graph

Fig. 3. Obstacle path example

It can be shown [LW79] that the shortest path contains only edges of the visibility
graph. Therefore, the original problem can be solved by: (i) constructing G and (ii)
computing the shortest path between pstart and pend in G. For the second task any con-
ventional shortest path algorithm [D59, KHI+86] suffices. Therefore, the focus has
been on the first problem, i.e., the construction of the visibility graph. A naïve solution
is to consider every possible pair of nodes in G and check if the line segment connect-
ing them intersects the interior of any obstacle. This approach leads to O(n3) running
time, where n is the number of nodes in G. In order to reduce the cost, Sharir and
Schorr [SS84] perform a rotational plane-sweep for each graph node and find all the
other nodes that are visible to it with total cost O(n2logn).

Subsequent techniques for visibility graph construction involve sophisticated data
structures and algorithms, which are mostly of theoretical interest. The worst case op-
timal algorithm [W85, AGHI86] performs a rotational plane-sweep for all the vertices
simultaneously and runs in O(n2) time. The optimal output-sensitive approaches
[GM87, R95, PV96] have O(m+nlogn) running time, where m is the number of edges
in G. If all obstacles are convex, it is sufficient to consider the tangent visibility graph
[PV95], which contains only the edges that are tangent to two obstacles.

2.4 Discussion

In the rest of the paper we utilize several of these findings for efficient query process-
ing. First the Euclidean lower-bound property also holds in the presence of obstacles,

since the Euclidean distance is always smaller or equal to the obstructed distance.
Thus, the algorithms of Section 2.1 can be used to return a set of candidate entities,
which includes the actual output, as well as, a set of false hits. This is similar to the
Euclidean restriction framework for spatial networks, discussed in Section 2.2. The
difference is that now we have to compute the obstructed (as opposed to network) dis-
tances of the candidate entities. Although we take advantage of visibility graphs to fa-
cilitate obstructed distance computation, in our case it is not feasible to maintain in
memory the complete graph due to the extreme space requirements for real spatial
datasets. Furthermore, pre-materialization is unsuitable for updates in the obstacle or
entity datasets. Instead we construct visibility graphs on-line, taking into account only
the obstacles and the entities relevant to the query. In this way, updates in individual
datasets can be handled efficiently, new datasets can be incorporated in the system
easily (as new information becomes available), and the visibility graph is kept small
(so that distance computations are minimized).

3. Obstacle Range Query

Given a set of obstacles O, a set of entities P, a query point q and a range e, an obsta-
cle range (OR) query returns all the objects of P that are within obstructed distance e
from q. The OR algorithm processes such a query as follows: (i) it first retrieves the
set P' of candidate entities that are within Euclidean distance e (from q) using a con-
ventional range query on the R-tree of P; (ii) it finds the set O' of obstacles that are
relevant to the query; (iii) it builds a local visibility graph G' containing the elements
of P' and O'; (iv) it removes false hits from P' by evaluating the obstructed distance
for each candidate object using G'. Consider the example OR query q (with e = 6) in
Fig. 4a, where the shaded areas represent obstacles and points correspond to entities.

5 8 1+ +

2 5 1+

(a) Obstacle range query (b) Local visibility graph

Fig. 4. Example of obstacle range query

Clearly, the set P' of entities intersecting the disk C centered at q with radius e, consti-
tutes a superset of the query result. In order to remove the false hits we need to re-
trieve the relevant obstacles. A crucial observation is that only the obstacles intersect-
ing C may influence the result. By the Euclidean lower-bound property, any path that

starts from q and ends at any vertex of an obstacle that lies outside C (e.g., curve in
Fig. 4a), has length larger than the range e. Therefore, it is safe to exclude the obstacle
(o4) from the visibility graph. Thus, the set O' of relevant obstacles can be found using
a range query (centered at q with radius e) on the R-tree of O. The local visibility
graph G' for the example of Fig. 4a is shown in Fig. 4b. For constructing the graph, we
use the algorithm of [SS84], without tangent simplification.

The final step evaluates the obstructed distance between q and each candidate. In
order to minimize the computation cost, OR expands the graph around the query point
q only once for all candidate points using a traversal method similar to the one em-
ployed by Dijkstra's algorithm [D59]. Specifically, OR maintains a priority queue Q,
which initially contains the neighbors of q (i.e., n1 to n4 in Fig. 4b) sorted by their ob-
structed distance. Since these neighbors are directly connected to q, the obstructed dis-
tance dO(ni,q), 1≤i≤4, equals the Euclidean distance dE(ni,q). The first node (n1) is de-
queued and inserted into a set of visited nodes V. For each unvisited neighbor nx of n1
(i.e., nx ∉ V), dO(nx,q) is computed, using n1 as an intermediate node i.e., dO(nx,q) =
dO(n1,q) + dE(nx,n1). If dO(nx,q) ≤ e, nx is inserted in Q. Fig. 5 illustrates the OR algo-
rithm.

Algorithm OR(RTP, RTO, q, e)
/* RTP is the entity R-tree, RTO is the obstacle R-tree, q is the
query point, e is the query range */
P' = Euclidean_range(RTP,q,e) // get qualifying entities
O' = Euclidean_range(RTO,q,e) // get relevant obstacles
G' = build_visibility_graph(q, P',O') // algorithm of [SS84]
V = ∅ ; R = ∅ // V is the set of visited nodes, R is the result
insert <q, 0> into Q
while Q and P' are both non-empty
 de-queue <n, dO(n,q)> from Q // n has the min dO(n,q)
 if n∉ V // n is an unvisited node
 if n∈ P' // n is an unreported entity
 R = R ∪ {n}; P' = P' - {n}
 for each neighbor node nx of n
 if (nx∉ V)
 dO(nx,q) = dO(n,q) + dE(n,nx)
 if (dO(nx,q) ≤ e)
 insert <nx, dO(nx,q)> into Q
 V = V ∪ n
return R
End OR

Fig. 5. OR algorithm

Note that it is possible for a node to appear multiple times in Q, if it is found through
different paths. For instance, in Fig. 4b, n2 may be re-inserted after visiting n1. Dupli-
cate elimination is performed during the de-queuing process, i.e., a node is visited
only the first time that it is de-queued (with the smallest distance from q). Subsequent
visits are avoided by checking the contents of V (set of already visited nodes). When
the de-queued node is an entity, it is reported and removed from P'. The algorithm
terminates when the queue or P' is empty.

4. Obstacle Nearest Neighbor Query

Given a query point q, an obstacle set O and an entity set P, an obstacle nearest
neighbor (ONN) query returns the k objects of P that have the smallest obstructed dis-
tances from q. Assuming, for simplicity, the retrieval of a single neighbor (k=1) in Fig.
6, we illustrate the general idea of ONN algorithm before going into details. First the
Euclidean nearest neighbor of q (object a) is retrieved from P using an incremental al-
gorithm (e.g., [HS99] in Section 2.1) and dO(a,q) is computed. Due to the Euclidean
lower-bound property, objects with potentially smaller obstructed distance than a
should be within Euclidean distance dEmax= dO(a,q). Then, the next Euclidean neighbor
(f) within the dEmax range is retrieved and its obstructed distance is computed. Since
dO(f,q) < dO(a,q), f becomes the current NN and dEmax is updated to dO(f,q) (i.e., dEmax
continuously shrinks). The algorithm terminates when there is no Euclidean nearest
neighbor within the dEmax range.

Fig. 6. Example of obstacle nearest neighbor query

It remains to clarify the obstructed distance computation. Consider, for instance, Fig. 7
where the Euclidean NN of q is point p. In order to compute dO(p,q), we first retrieve
the obstacles o1, o2 within the range dE(p,q) and build an initial visibility graph that
contains o1, o2, p and q. A provisional distance dO1(p,q) is computed using a shortest
path algorithm (we apply Dijkstra's algorithm). The problem is that the graph is not
sufficient for the actual distance, since there may exist obstacles (o3, o4) outside the
range that obstruct the shortest path from q to p.

Fig. 7. Example of obstructed distance computation

In order to find such obstacles, we perform a second Euclidean range query on the ob-
stacle R-tree using dO1(p,q) (i.e., the large circle in Fig. 7). The new obstacles o3 and
o4 are added to the visibility graph, and the obstructed distance dO2(p,q) is computed
again. The process has to be repeated, since there may exist another obstacle (o5) out-
side the range dO2(p,q) that intersects the new shortest path from q to p. The termina-
tion condition is that there are no new obstacles in the last range, or equivalently, the
shortest path remains the same in two subsequent iterations, meaning that the last set
of added obstacles does not affect dO(p,q) (note that the obstructed distance can only
increase in two subsequent iterations as new obstacles are discovered). The pseudo-
code of the algorithm is shown in Fig. 8. The initial visibility graph G', passed as a pa-
rameter, contains p, q and the obstacles in the Euclidean range dE(p,q).

Algorithm compute_obstructed_distance(G, p, q, G’, RTo)
dO(p,q)= shortest_path_dist(G',p,q)
O' = set of obstacles in G'
repeat
 Onew= Euclidean_range(RTO, q, dO(p,q))
 if O' ⊂ Onew
 for each obstacle o in Onew - O'
 add_obstacle(o,G')
 dO(p,q)= shortest_path_dist(G',p,q)
 O' = Onew
 else // termination condition
 return dO(p,q)
End compute_obstructed_distance

Fig. 8. Obstructed distance computation

The final remark concerns the dynamic maintenance of the visibility graph in main
memory. The following basic operations are implemented, to avoid re-building the
graph from scratch for each new computation:
• Add_obstacle(o,G') is used by the algorithm of Fig. 8 for incorporating new obsta-

cles in the graph. It adds all the vertices of o to G' as nodes and creates new edges
accordingly. It removes existing edges that cross the interior of o.

• Add_entity(p,G') incorporates a new point in an existing graph. If, for instance, in
the example of Fig. 7 we want the two nearest neighbors, we re-use the graph that
we constructed for the 1st NN to compute the distance of the second one. The op-
eration adds p to G' and creates edges connecting it with the visible nodes in G'.

• Delete_entity(p,G') is used to remove entities for which the distance computations
have been completed.

Add obstacle performs a rotational plane-sweep for each vertex of o and adds the cor-
responding edges to G'. A list of all obstacles in G' is maintained to facilitate the
sweep process. Existing edges that cross the interior of o are removed by an intersec-
tion check. Add entity is supported by performing a rotational plane-sweep for the
newly added node to reveal all its edges. The delete entity operation just removes p
and its incident edges.

Fig. 9 illustrates the complete algorithm for retrieval of k (≥1) nearest neighbors.
The k Euclidean NNs are first obtained using the entity R-tree, sorted in ascending or-
der of their obstructed distance to q, and dEmax is set to the distance of the kth point.
Similar to the single NN case, the subsequent Euclidean neighbors are retrieved in-
crementally, while maintaining the k (obstructed) NNs and dEmax (except that dEmax

equals the obstructed distance of the k-th neighbor), until the next Euclidean NN has
larger Euclidean distance than dEmax.

Algorithm ONN(RTP, RTO, q, k)
/* RTP is the entity R-tree, RTO is the obstacle R-tree, q is the
query, k is number of NN requested */
R = ∅ // R is the result
P' = Euclidean_NN(RTP, q, k); // find the k Euclidean NNs of q
O' = Euclidean_range(RTO, q, d(pk ,q))
G' = build_visibility_graph(q, P',O')
for each entity pi in P'
 dO(pi,q)= compute_obstructed_distance(G',pi,q)
 delete_entity(pi,G')
sort P' in ascending order of dO(pi,q) and insert into R
dEmax= dO(pk ,q) // pk is the farthest NN
repeat
 (p,dE(p,q))=next_Euclidean_NN(RTP, q);
 add_entity(p,G')
 dO(p,q)=compute_obstructed_distance(G',p,q)
 delete_entity(p,G')
 if (dO(p,q)<dO(pk ,q)) // p is closer than the k

th NN
 R = R - {pk}
 insert p in R so that R remains sorted by dO
 dEmax = dO(pk ,q) // update the Euclidean threshold
until dE(p,q)>dEmax
return R
End ONN

Fig. 9. ONN algorithm

5. Obstacle e-Distance Join

Given an obstacle set O, two entity datasets S, T and a value e, an obstacle e-distance
join (ODJ) returns all entity pairs (s,t), s∈ S, t∈ T such that dO(s,t)≤e. Based on the
Euclidean lower-bound property, the ODJ algorithm processes an obstacle e-distance
join as follows: (i) it performs an Euclidean e-distance join on the R-trees of S and T
to retrieve entity pairs (s,t) with dE(s,t)≤e; (ii) it evaluates dO(s,t) for each candidate
pair (s,t) and removes false hits. The R-tree join algorithm [BKS93] (see Section 2.1)
is applied for step (i). For step (ii) we use the obstructed distance computation algo-
rithm of Fig. 8.

Observe that although the number of distance computations equals the cardinality
of the Euclidean join, the number of applications of the algorithm can be significantly
smaller. Consider, for instance, that the Euclidean join retrieves five pairs: (s1, t1), (s1,
t2), (s1, t3), (s2, t1), (s2, t4), requiring five obstructed distance computations. However,
there are only two objects s1, s2 ∈ S participating in the candidate pairs, implying that
all five distances can be computed by building only two visibility graphs around s1 and
s2. Based on this observation, ODJ counts the number of distinct objects from S and T
in the candidate pairs. The dataset with the smallest count is used to provide the 'seeds'
for visibility graphs. Let Q be the set of points of the 'seed' dataset that appear in the
Euclidean join result (i.e., in the above example Q = {s1,s2}). Similarly, P is the set of
points of the second dataset that appear in the result (i.e., P = {t1,t2,t3,t4}). The prob-
lem can then be converted to: for each q ∈ Q and a set P' ⊆ P of candidates (paired
with q in the Euclidean join), find the objects of P' that are within obstructed distance

e from q. This process corresponds to the false hit elimination part of the obstacle
range query and can be processed by an algorithm similar to OR (Fig. 5). To exploit
spatial locality between subsequent accesses to the obstacle R-tree (needed to retrieve
the obstacles for the visibility graph for each range), ODJ sorts and processes the
seeds by their Hilbert order. The pseudo code of the algorithm is shown in Fig. 10.

Algorithm ODJ(RTS, RTT, RTO, e)
/* RTS and RTT is the entity R-trees, RTO is the obstacle R-tree, e is
the query range */
R = ∅
Rjoin-res = Euclidean_distance_join(RTS, RTT, e)
compute Q and P;
sort Q according to Hilbert order // to maximize locality
for each object q ∈ Q
 P' = set of objects ∈ P that appear with q in Rjoin-res
 O' = Euclidean_range(RTO, q, e) // get relevant obstacles
 R' = OR(P', O', q, e) // eliminate false hits
 R = R ∪ {<q, r>/ r ∈ R'}
return R
End ODJ

Fig. 10. ODJ algorithm

6. Obstacle Closest-Pair Query

Given an obstacle set O, two entity datasets S, T and a value k ≥ 1, an obstacle closest-
pair (OCP) query retrieves the k entity pairs (s, t), s ∈ S, t ∈ T, that have the smallest
dO(s, t). The OCP algorithm employs an approach similar to ONN. Assuming for ex-
ample, that only the (single) closest pair is requested, OCP: (i) performs an incre-
mental closest pair query on the entity R-trees of S and T and retrieves the Euclidean
closest pair (s,t); (ii) it evaluates dO(s,t) and uses it as a bound dEmax for Euclidean
closest-pairs search; (iii) it obtains the next closest pair (within Euclidean distance dE-

max), evaluates its obstructed distance and updates the result and dEmax if necessary; (iv)
it repeats step (iii) until the incremental search for pairs exceeds dEmax. Fig. 11 shows
the OCP algorithm for retrieval of k closest-pairs.

Algorithm OCP(RTS, RTT, RTO, k)
/* RTS and RTT is the entity R-trees, RTO is the obstacle R-tree, k is
the number of pairs requested */
{(s1, t1), … , (sk, tk)} = Euclidean_CP(RTS, RTT, k)
sort (si, ti) in ascending order of their dO(si, ti)
dEmax= dO(sk, tk)
repeat
 (s', t') = next_Euclidean_CP(RTS, RTT)
 dO(s', t') = compute_obstructed_distance(G',s',t')
 if (dO(s', t') < dEmax)
 delete (sk, tk) from {(s1, t1), … , (sk, tk)} and insert (s',

t') in it, so that it remains sorted by dO
 dEmax= dO(sk, tk)
until dE(s', t') > dEmax
return {(s1, t1), … , (sk, tk)}
End OCP

Fig. 11. OCP algorithm

OCP first finds the k Euclidean pairs, it evaluates their obstructed distances and treats
the maximum distance as dEmax. Subsequent candidate pairs are retrieved incremen-
tally, continuously updating the result and dEmax until no pairs are found within the dE-

max bound. Note that the algorithm (and ONN presented in Section 4) is not suitable
for incremental processing, where the value of k is not set in advance. Such a situation
may occur if a user just browses through the results of a closest pair query (in increas-
ing order of the pair distances), without a pre-defined termination condition. Another
scenario where incremental processing is useful concerns complex queries: "find the
city with more than 1M residents, which is closest to a nuclear factory". The output of
the top-1 CP may not qualify the population constraint, in which case the algorithm
has to continue reporting results until the condition is satisfied.

In order to process incremental queries we propose a variation of the OCP algo-
rithm, called iOCP (for incremental), shown in Fig. 12 (note that now there is not a k
parameter). When a Euclidean CP (s, t) is obtained, its obstructed distance dO(s, t) is
computed and the entry < (s, t), dO(s, t)> is inserted into a queue Q. The observation is
that all the pairs (si, tj) in Q such that dO(si, tj)≤ dE(s, t), can be immediately reported,
since no subsequent Euclidean CP can lead to a lower obstructed distance. The same
methodology can be applied for deriving an incremental version of ONN.

Algorithm iOCP(RTS, RTT, RTO)
repeat
 (s, t) = next_Euclidean_CP(RTS, RTT)
 dO(s, t) = compute_obstructed_distance(s, t)
 insert < (s, t), dO(s, t)> into Q
 for each (si, tj) such that dO(si, tj)≤ dE(s, t)
 de-heap <(si, tj), dO(si, tj)> from Q
 report <(si, tj), dO(si, tj)>
until termination condition
return
End iOCP

Fig. 12. iOCP algorithm

7. Experiments

In this section, we experimentally evaluate the CPU time and I/O cost of the proposed
algorithms, using a Pentium III 733MHz PC. We employ R*-trees [BKSS90], assum-
ing a page size of 4K (resulting in a node capacity of 204 entries) and an LRU buffer
that accommodates 10% of each R-tree participating in the experiments. The obstacle
dataset contains |O| = 131,461 rectangles, representing the MBRs of streets in Los
Angeles [Web] (but as discussed in the previous sections, our methods support arbi-
trary polygons). To control the density of the entities, the entity datasets are synthetic,
with cardinalities ranging from 0.01⋅|O| to 10⋅|O|. The distribution of the entities fol-
lows the obstacle distribution; the entities are allowed to lie on the boundaries of the
obstacles but not in their interior. For the performance evaluation of the range and
nearest neighbor algorithms, we execute workloads of 200 queries, which also follow
the obstacle distribution.

7.1 Range Queries

First, we present our experimental results on obstacle range queries. Fig. 13a and Fig.
13b show the performance of the OR algorithm in terms of I/O cost and CPU time, as
functions of |P|/|O| (i.e., the ratio of entity to obstacle dataset cardinalities), fixing the
query range e to 0.1% of the data universe side length. The I/O cost for entity retrieval
increases with |P|/|O| because the nodes that lie within the (fixed) range e in the entity
R-tree grows with |P|. However, the page accesses for obstacle retrieval remain stable,
since the number of obstacles that participate in the distance computations (i.e., the
ones intersecting the range) is independent of the entity dataset cardinality. The CPU
time grows rapidly with |P|/|O|, because the visibility graph construction cost is
O(n2logn) and the value of n increases linearly with the number of entities in the range
(note the logarithmic scale for CPU cost).

0

2

4

6

8

10

12

0.1 0.5 1 2 10
cardinality ratio - |P|/|O|

page accesses obstacle R-tree

data R-tree

1

10

100

0.1 0.5 1 2 10
cardinality ratio - |P|/|O|

CPU time (msec)

(a) I/O accesses (b) CPU (msec)

Fig. 13. Cost vs. |P|/|O| (e=0.1%)

Fig. 14 depicts the performance of OR as a function of e, given |P|=|O|. The I/O cost
increases quadratically with e because the number of objects and nodes intersecting
the Euclidean range is proportional to its area (which is quadratic with e). The CPU
performance again deteriorates even faster because of the O(n2logn) graph construc-
tion cost.

0

5

10

15

20

25

0.01% 0.05% 0.1% 0.5% 1%
query range - e

page accesses obstacle R-tree

data R-tree

0.1

1

10

100

1000

0.01% 0.05% 0.1% 0.5% 1%
query range - e

CPU time (msec)

(a) I/O accesses (b) CPU (msec)

Fig. 14. Cost vs. e (|P|=|O|)

The next experiment evaluates the number of false hits, i.e., objects within the Euclid-
ean, but not in the obstructed range. Fig. 15a shows the false hit ratio (number of false
hits / number of objects in the obstructed range) for different cardinality ratios (fixing
e=0.1%), which remains almost constant (the absolute number of false hits increases

linearly with |P|). Fig. 15b shows the false hit ratio as a function of e (for |P| = |O|). For
small e values, the ratio is low because the numbers of candidate entities and obstacles
that obstruct their view is limited. As a result, the difference between Euclidean and
obstructed distance is insignificant. On the other hand, the number of obstacles grows
quadratically with e, increasing the number of false hits.

4.0%

4.5%

5.0%

5.5%

6.0%

0.1 0.5 1 2 10
cardinality ratio - |P|/|O|

false hit ratio

0%

4%

8%

12%

16%

0.01% 0.05% 0.1% 0.5% 1%
query range - e

false hit ratio

(a) FH ratio vs. |P|/|O| (e=0. 1%) (b) FH ratio vs. e (|P|=|O|)

Fig. 15. False hit ratio by OR

7.2 Nearest Neighbor Queries

This set of experiments focuses on obstacle nearest neighbor queries. Fig. 16 illus-
trates the costs of the ONN algorithm as function of the ratio |P|/|O|, fixing the number
k of neighbors to 16. The page accesses of the entity R-tree do not increase fast with
|P|/|O| because, as the density increases, the range around the query point where the
Euclidean neighbors are found decreases. As a result the obstacle search radius (and
the number of obstacles that participate in the obstructed distance computations) also
declines. Fig. 16b confirms this observation, showing that the CPU time drops signifi-
cantly with the data density.

0

2

4

6

8

10

12

0.1 0.5 1 2 10
cardinality ratio - |P|/|O|

page accesses obstacle R-tree

data R-tree

0.1

1

10

100

1000

0.1 0.5 1 2 10
cardinality ratio - |P|/|O|

CPU time (msec)

(a) I/O accesses (b) CPU (msec)

Fig. 16. Cost vs. |P|/|O| (k=16)

Fig. 17 shows the performance of ONN for various values of k when |P|=|O|. As ex-
pected, both the I/O cost and CPU time of the algorithm grow with k, because a high
value of k implies a larger range to be searched (for entities and obstacles) and more
distance computations. Fig. 18a shows the impact of |P|/|O| on the false hit ratio (k =
16). A relatively small cardinality |P| results in large deviation between Euclidean and
obstructed distances, therefore incurring high false hit ratio, which is gradually allevi-

ated as |P| increases. In Fig. 18b we vary k and monitor the false hit ratio. Interest-
ingly, the false hit ratio obtains its maximum value for k ≈ 4 and starts decreasing
when k > 4. This can be explained by the fact that, when k becomes high, the set of k
Euclidean NN contains a big portion of the k actual (obstructed) NN, despite their
probably different internal ordering (e.g., the 1st Euclidean NN is 3nd obstructed NN).

0

4

8

12

16

20

1 4 16 64 256
number of neighbors retrieved - k

page accesses obstacle R-tree

data R-tree

0.1

1

10

100

1000

1 4 16 64 256
number of neighbors retrieved - k

CPU time (msec)

(a) I/O accesses (b) CPU (msec)

Fig. 17. Cost vs. k (|P|=|O|)

0%

5%

10%

15%

20%

25%

0.1 0.5 1 2 10
cardinality ratio - |P|/|O|

false hit ratio

0%

4%

8%

12%

16%

20%

1 4 16 64 256
number of neighbors retrieved - k

false hit ratio

(a) FH ratio vs. |P|/|O| (k=16) (b) FH ratio vs. k (|P|=|O|)

Fig. 18. False hit ratio by ONN

7.3 e-Distance Joins

We proceed with the performance study of the e-distance join algorithm, using
|T|=0.1|O| and setting the join distance e to 0.01% of the universe length. Fig. 19a
plots the number of disk accesses as a function of |S|/|O|, ranging from 0.01 to 1. The
number of page accesses for the entity R-trees grows much slower than the obstacle R-
tree because the cost of the Euclidean join is not very sensitive to the data density. On
the other hand, the output size (of the Euclidean join) grows fast with the density, in-
creasing the number of obstructed distance evaluations and the accesses to the obsta-
cle R-tree (in the worst case each Euclidean pair initiates a new visibility graph). This
observation is verified in Fig. 19b which shows the CPU cost as a function of |S|/|O|.

0

400

800

1200

1600

0.01 0.05 0.1 0.5 1
cardinality ratio - |S|/|O|

page accesses obstacle R-tree

data R-trees

0.1

1

10

0.01 0.05 0.1 0.5 1
cardinality ratio - |S|/|O|

CPU time (sec)

(a) I/O accesses (b) CPU (sec)

Fig. 19. Cost vs. |S|/|O| (e=0.01%, |T|=0.1|O|)

In Fig. 20a, we set |S|=|T|=0.1|O| and measure the number of disk accesses for varying
e. The page accesses for the entity R-tree do not have large variance (they range be-
tween 230 for e = 0.001% and 271 for e = 0.1%) because the node extents are large
with respect to the range. However, as in the case of Fig. 20a, the output of the
Euclidean joins (and the number of obstructed distance computations) grows fast with
e, which is reflected in the page accesses for the obstacle R-tree and the CPU time
(Fig. 20b).

0

400

800

1200

1600

0.001%0.005% 0.01% 0.05% 0.1%
query range - e

page accesses
obstacle R-tree

data R-trees

0.1

1

10

100

0.001%0.005% 0.01% 0.05% 0.1%
query range - e

CPU time (sec)

(a) I/O accesses (b) CPU (sec)

Fig. 20. Cost vs. e (|S|=|T|=0.1|O|)

7.4 Closest Pairs

Next, we evaluate the performance of closest pairs in the presence of obstacles. Fig.
21 plots the cost of the OCP algorithm as a function of |S|/|O| for k=16 and |T|=0.1|O|.
The I/O cost of the entity R-trees grows with the cardinality ratio (i.e., density of S),
which is caused by the Euclidean closest-pair algorithm (similar observations were
made in [CMTV00]). On the other hand, the density of S does not affect significantly
the accesses to the obstacle R-tree because high density leads to closer distance be-
tween the Euclidean pairs. The CPU time of the algorithm (shown in Fig. 21b) grows
fast with |S|/|O|, because the dominant factor is the computation required for obtaining
the Euclidean closest pairs (as opposed to obstructed distances).

0

200

400

600

800

1000

1200

1400

0.01 0.05 0.1 0.5 1
cardinality ratio - |S|/|O|

page accesses obstacle R-tree

data R-trees

0.1

1

10

0.01 0.05 0.1 0.5 1
cardinality ratio - |S|/|O|

CPU time (sec)

(a) I/O accesses (b) CPU (sec)

Fig. 21. Cost vs. |S|/|O| (k=16, |T|=0.1|O|)

Fig. 22 shows the cost of the algorithm with |S|=|T|=0.1|O| for different values of k.
The page accesses for the entity R-trees (caused by the Euclidean CP algorithm) re-
main almost constant, since the major cost occurs before the first pair is output (i.e.,
the k closest pairs are likely to be in the heap after the first Euclidean NN is found,
and are returned without extra IOs). The accesses to the obstacle R-tree and the CPU
time, however, increase with k because more obstacles must be taken into account dur-
ing the construction of the visibility graphs.

0

200

400

600

800

1 4 16 64 256
number of closest pairs retrieved - k

page accesses obstacle R-tree

data R-trees

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 4 16 64 256

CPU time (sec)

number of closest pairs retrieved - k
(a) I/O accesses (b) CPU (sec)

Fig. 22. Cost vs. k (|S|=|T|=0.1|O|)

8. Conclusion

This paper tackles spatial query processing in the presence of obstacles. Given a set of
entities P and a set of polygonal obstacles O, our aim is to answer spatial queries with
respect to the obstructed distance metric, which corresponds to the length of the short-
est path that connects them without passing through obstacles. This problem has nu-
merous important applications in real life, and several main memory algorithms have
been proposed in Computational Geometry. Surprisingly, there is no previous work
for disk-resident datasets in the area of Spatial Databases.

Combining techniques and algorithms from both aforementioned fields, we propose
an integrated framework that efficiently answers most types of spatial queries (i.e.,
range search, nearest neighbors, e-distance joins and closest pairs), subject to obstacle

avoidance. Making use of local visibility graphs and effective R-tree algorithms, we
present and evaluate a number of solutions. Being the first thorough study of this
problem in the context of massive datasets, this paper opens a door to several interest-
ing directions for future work. For instance, as objects move in practice, it would be
interesting to study obstacle queries for moving entities and/or moving obstacles.

References

[AGHI86] Asano, T., Guibas, L., Hershberger, J., Imai, H. Visibility of Disjoint Polygons.
Algorithmica 1, 49-63, 1986.

[BKOS97] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O. Computational
Geometry. pp. 305-315, Springer, 1997.

[BKS93] Brinkhoff, T., Kriegel, H., Seeger, B. Efficient Processing of Spatial Joins Using
R-trees. SIGMOD, 1993.

[BKSS90] Becker, B., Kriegel, H., Schneider, R, Seeger, B. The R*-tree: An Efficient and
Robust Access Method. SIGMOD, 1990.

[CMTV00] Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M. Closest Pair
Queries in Spatial Databases. SIGMOD, 2000.

[D59] Dijkstra, E. A Note on Two Problems in Connection with Graphs. Numeriche
Mathematik, 1, 269-271, 1959.

[EL01] Estivill-Castro, V., Lee, I. Fast Spatial Clustering with Different Metrics in the
Presence of Obstacles. ACM GIS, 2001.

[G84] Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching. SIGMOD,
1984.

[GM87] Ghosh, S., Mount, D. An Output Sensitive Algorithm for Computing Visibility
Graphs. FOCS, 1987.

[HS98] Hjaltason, G., Samet, H. Incremental Distance Join Algorithms for Spatial Data-
bases. SIGMOD, 1998.

[HS99] Hjaltason, G., Samet, H. Distance Browsing in Spatial Databases. TODS, 24(2),
265-318, 1999.

[KHI+86] Kung, R., Hanson, E., Ioannidis, Y., Sellis, T., Shapiro, L. Stonebraker, M. Heu-
ristic Search in Data Base Systems. Expert Database Systems, 1986.

[LW79] Lozano-Pérez, T., Wesley, M. An Algorithm for Planning Collision-free Paths
among Polyhedral Obstacles. CACM, 22(10), 560-570, 1979.

[PV95] Pocchiola, M., Vegter, G. Minimal Tangent Visibility Graph. Computational Ge-
ometry: Theory and Applications, 1995.

[PV96] Pocchiola, M., Vegter, G. Topologically Sweeping Visibility Complexes via
Pseudo-triangulations. Discrete Computational Geometry, 1996.

[PZMT03] Papadias, D., Zhang, J., Mamoulis, N., Tao, Y. Query Processing in Spatial Net-
work Databases. VLDB, 2003.

[R95] Rivière, S. Topologically Sweeping the Visibility Complex of Polygonal Scenes.
Symposium on Computational Geometry, 1995.

[SRF87] Sellis, T., Roussopoulos, N. Faloutsos, C. The R+-tree: a Dynamic Index for
Multi-Dimensional Objects. VLDB, 1987.

[SS84] Sharir, M., Schorr, A. On Shortest Paths in Polyhedral Spaces. STOC, 1984.
[THH01] Tung, A., Hou, J., Han, J. Spatial Clustering in the Presence of Obstacles. ICDE,

2001.
[W85] Welzl, E. Constructing the Visibility Graph for n Line Segments in O(n2) Time,

Information Processing Letters 20, 167-171, 1985.
[Web] http://www.maproom.psu.edu/dcw.

