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Abstract. Despite the existence of obstacles in many database applications, 
traditional spatial query processing utilizes the Euclidean distance metric 
assuming that points in space are directly reachable. In this paper, we study 
spatial queries in the presence of obstacles, where the obstructed distance 
between two points is defined as the length of the shortest path that con-
nects them without crossing any obstacles. We propose efficient algorithms 
for the most important query types, namely, range search, nearest 
neighbors, e-distance joins and closest pairs, considering that both data ob-
jects and obstacles are indexed by R-trees. The effectiveness of the pro-
posed solutions is verified through extensive experiments. 

1. Introduction 

This paper presents the first comprehensive approach for spatial query processing in 
the presence of obstacles. As an example of an "obstacle nearest neighbor query" con-
sider Fig. 1 that asks for the closest point of q, where the definition of distance must 
now take into account the existing obstacles (shaded areas). Although point a is closer 
in terms of Euclidean distance, the actual nearest neighbor is point b (i.e., it is closer 
in terms of the obstructed distance). Such a query is typical in several scenarios, e.g., 
q is a pedestrian looking for the closest restaurant and the obstacles correspond to 
buildings, lakes, streets without crossings etc. The same concept applies to any spatial 
query, e.g., range search, spatial join and closest pair. 

 
Fig. 1. An obstacle nearest neighbor query example 



Despite the lack of related work in the Spatial Database literature, there is a significant 
amount of research in the context of Computational Geometry, where the problem is 
to devise main-memory, shortest path algorithms that take obstacles into account (e.g., 
find the shortest path from point a to b that does not cross any obstacle). Most existing 
approaches (reviewed in Section 2) construct a visibility graph, where each node cor-
responds to an obstacle vertex and each edge connects two vertices that are not ob-
structed by any obstacle. The algorithms pre-suppose the maintenance of the entire 
visibility graph in main memory. However, in our case this is not feasible due to the 
extreme space requirements for real spatial datasets. Instead we maintain local visibil-
ity graphs only for the obstacles that may influence the query result (e.g., for obstacles 
around point q in Fig. 1). 

In the data clustering literature, cod-clarans [THH01] clusters objects into the same 
group with respect to the obstructed distance using the visibility graph, which is pre-
computed and materialized. In addition to the space overhead, materialization is un-
suitable for large spatial datasets due to potential updates in the obstacles or data (in 
which case a large part or the entire graph has to be re-reconstructed). Estivill-Castro 
and Lee [EL01] discuss several approaches for incorporating obstacles in spatial clus-
tering. Despite some similarities with the problem at hand (e.g., visibility graphs), the 
techniques for clustering are clearly inapplicable to spatial query processing.   

Another related topic regards query processing in spatial network databases 
[PZMT03], since in both cases movement is restricted (to the underlying network or 
by the obstacles). However, while obstacles represent areas where movement is pro-
hibited, edges in spatial networks explicitly denote the permitted paths. This fact ne-
cessitates different query processing methods for the two cases. Furthermore, the tar-
get applications are different. The typical user of a spatial network database is a driver 
asking for the nearest gas station according to driving distance. On the other hand, the 
proposed techniques are useful in cases where movement is allowed in the whole data 
space except for the stored obstacles (vessels navigating in the sea, pedestrians walk-
ing in urban areas). Moreover, some applications may require the integration of both 
spatial network and obstacle processing techniques (e.g., a user that needs to find the 
best parking space near his destination, so that the sum of travel and walking distance 
is minimized). 

For the following discussion we assume that there is one or more datasets of enti-
ties, which constitute the points of interest (e.g., restaurants, hotels) and a single ob-
stacle dataset. The extension to multiple obstacle datasets or cases where the entities 
also represent obstacles is straightforward. Similar to most previous work on spatial 
databases, we assume that the entity and the obstacle datasets are indexed by R-trees 
[G84, SRF87, BKSS90], but the methods can be applied with any data partition index. 
Our goal is to provide a complete set of algorithms covering all common query types. 
The rest of the paper is organized as follows: Section 2 surveys the previous work fo-
cusing on directly related topics. Sections 3, 4, 5 and 6 describe the algorithms for 
range search, nearest neighbors, e-distance joins and closest pairs, respectively. Sec-
tion 7 provides a thorough experimental evaluation and Section 8 concludes the paper 
with some future directions. 



2. Related Work 

Sections 2.1 and 2.2 discuss query processing in conventional spatial databases and 
spatial networks, respectively. Section 2.3 reviews obstacle path problems in main 
memory, and describes algorithms for maintaining visibility graphs. Section 2.4 sum-
marizes the existing work and identifies the links with the current problem.  

2.1 Query Processing in the Euclidean Space 

For the following examples we use the R-tree of Fig. 2, which indexes a set of points 
{a,b,…,k}, assuming a capacity of three entries per node. Points that are close in 
space (e.g., a and b) are clustered in the same leaf node (N3), represented as a mini-
mum bounding rectangle (MBR). Nodes are then recursively grouped together follow-
ing the same principle until the top level, which consists of a single root. R-trees (like 
most spatial access methods) were motivated by the need to efficiently process range 
queries, where the range usually corresponds to a rectangular window or a circular 
area around a query point. The R-tree answers the range query q (shaded area) in Fig. 
2 as follows. The root is first retrieved and the entries (e.g., E1, E2) that intersect the 
range are recursively searched because they may contain qualifying points. Non-
intersecting entries (e.g., E4) are skipped. Notice that for non-point data (e.g., lines, 
polygons), the R-tree provides just a filter step to prune non-qualifying objects. The 
output of this phase has to pass through a refinement step that examines the actual ob-
ject representation to determine the actual result. The concept of filter and refinement 
steps applies to all spatial queries on non-point objects. 
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Fig. 2. An R-tree example 

A nearest neighbor (NN) query retrieves the k (k≥1) data point(s) closest to a query 
point q. The R-tree NN algorithm proposed in [HS99] keeps a heap with the entries of 
the nodes visited so far. Initially, the heap contains the entries of the root sorted ac-
cording to their minimum distance (mindist) from q. The entry with the minimum 
mindist in the heap (E2 in Fig. 2) is expanded, i.e., it is removed from the heap and its 
children (E5, E6, E7) are added together with their mindist. The next entry visited is E1 
(its mindist is currently the minimum in the heap), followed by E3, where the actual 
1NN result (a) is found. The algorithm terminates, because the mindist of all entries in 
the heap is greater than the distance of a. The algorithm can be easily extended for the 



retrieval of k nearest neighbors (kNN). Furthermore, it is optimal (it visits only the 
nodes necessary for obtaining the nearest neighbors) and incremental, i.e., it reports 
neighbors in ascending order of their distance to the query point, and can be applied 
when the number k of nearest neighbors to be retrieved is not known in advance. 

The e-distance join finds all pairs of objects (s,t) s ∈  S, t ∈  T within (Euclidean) 
distance e from each other. If both datasets S and T are indexed by R-trees, the R-tree 
join algorithm [BKS93] traverses synchronously the two trees, following entry pairs if 
their distance is below (or equal to) e. The intersection join, applicable for region ob-
jects, retrieves all intersecting object pairs (s,t) from two datasets S and T. It can be 
considered as a special case of the e-distance join, where e=0. Several spatial join al-
gorithms have been proposed for the case where only one of the inputs is indexed by 
an R-tree or no input is indexed. 

A closest-pairs query outputs the k (k≥1) pairs of points (s,t) s ∈  S, t ∈  T with the 
smallest (Euclidean) distance. The algorithms for processing such queries [HS98, 
CMTV00] combine spatial joins with nearest neighbor search. In particular, assuming 
that both datasets are indexed by R-trees, the trees are traversed synchronously, fol-
lowing the entry pairs with the minimum distance. Pruning is based on the mindist 
metric, but this time defined between entry MBRs. Finally, a distance semi-join re-
turns for each point s ∈  S its nearest neighbor t ∈  T. This type of query can be an-
swered either (i) by performing a NN query in T for each object in S, or (ii) by output-
ting closest pairs incrementally, until the NN for each entity in S is retrieved. 

2.2 Query Processing in Spatial Networks 

Papadias et al. [PZMT03] study the above query types for spatial network databases, 
where the network is modeled as a graph and stored as adjacency lists. Spatial entities 
are independently indexed by R-trees and are mapped to the nearest edge during query 
processing. The network distance of two points is defined as the distance of the short-
est path connecting them in the graph. Two frameworks are proposed for pruning the 
search space: Euclidean restriction and network expansion.  

Euclidean restriction utilizes the Euclidean lower-bound property (i.e., the fact that 
the Euclidean distance is always smaller or equal to the network distance). Consider, 
for instance, a range query that asks for all objects within network distance e from 
point q. The Euclidean restriction method first performs a conventional range query at 
the entity dataset and returns the set of objects S' within (Euclidean) distance e from q. 
Given the Euclidean lower bound property, S' is guaranteed to avoid false misses. 
Then, the network distance of all points of S' is computed and false hits are elimi-
nated. Similar techniques are applied to the other query types, combined with several 
optimizations to reduce the number of network distance computations.  

The network expansion framework performs query processing directly on the net-
work without applying the Euclidean lower bound property. Consider again the exam-
ple network range query. The algorithm first expands the network around the query 
point and finds all edges within range e from q. Then, an intersection join algorithm 
retrieves the entities that fall on these edges. Nearest neighbors, joins and closest pairs 
are processed using the same general concept.  



2.3 Obstacle Path Problems in Main Memory 

Path problems in the presence of obstacles have been extensively studied in Computa-
tional Geometry [BKOS97]. Given a set O of non-overlapping obstacles (polygons) in 
2D space, a starting point pstart and a destination pend, the goal is to find the shortest 
path from pstart to pend which does not cross the interior of any obstacle in O. Fig. 3a 
shows an example where O contains 3 obstacles. The corresponding visibility graph G 
is depicted in Fig. 3b. The vertices of all the obstacles in O, together with pstart and 
pend constitute the nodes of G. Two nodes ni and nj in G are connected by an edge if 
and only if they are mutually visible (i.e., the line segment connecting ni and nj does 
not intersect any obstacle interior). Since obstacle edges (e.g., n1n2) do not cross ob-
stacle interiors, they are also included in G. 

  
(a) Obstacle set and path (b) Visibility graph 

Fig. 3. Obstacle path example 

It can be shown [LW79] that the shortest path contains only edges of the visibility 
graph. Therefore, the original problem can be solved by: (i) constructing G and (ii) 
computing the shortest path between pstart and pend in G. For the second task any con-
ventional shortest path algorithm [D59, KHI+86] suffices. Therefore, the focus has 
been on the first problem, i.e., the construction of the visibility graph. A naïve solution 
is to consider every possible pair of nodes in G and check if the line segment connect-
ing them intersects the interior of any obstacle. This approach leads to O(n3) running 
time, where n is the number of nodes in G. In order to reduce the cost, Sharir and 
Schorr [SS84] perform a rotational plane-sweep for each graph node and find all the 
other nodes that are visible to it with total cost O(n2logn). 

Subsequent techniques for visibility graph construction involve sophisticated data 
structures and algorithms, which are mostly of theoretical interest. The worst case op-
timal algorithm [W85, AGHI86] performs a rotational plane-sweep for all the vertices 
simultaneously and runs in O(n2) time. The optimal output-sensitive approaches 
[GM87, R95, PV96] have O(m+nlogn) running time, where m is the number of edges 
in G. If all obstacles are convex, it is sufficient to consider the tangent visibility graph 
[PV95], which contains only the edges that are tangent to two obstacles.  

2.4 Discussion 

In the rest of the paper we utilize several of these findings for efficient query process-
ing. First the Euclidean lower-bound property also holds in the presence of obstacles, 



since the Euclidean distance is always smaller or equal to the obstructed distance. 
Thus, the algorithms of Section 2.1 can be used to return a set of candidate entities, 
which includes the actual output, as well as, a set of false hits. This is similar to the 
Euclidean restriction framework for spatial networks, discussed in Section 2.2. The 
difference is that now we have to compute the obstructed (as opposed to network) dis-
tances of the candidate entities. Although we take advantage of visibility graphs to fa-
cilitate obstructed distance computation, in our case it is not feasible to maintain in 
memory the complete graph due to the extreme space requirements for real spatial 
datasets. Furthermore, pre-materialization is unsuitable for updates in the obstacle or 
entity datasets. Instead we construct visibility graphs on-line, taking into account only 
the obstacles and the entities relevant to the query. In this way, updates in individual 
datasets can be handled efficiently, new datasets can be incorporated in the system 
easily (as new information becomes available), and the visibility graph is kept small 
(so that distance computations are minimized). 

3. Obstacle Range Query 

Given a set of obstacles O, a set of entities P, a query point q and a range e, an obsta-
cle range (OR) query returns all the objects of P that are within obstructed distance e 
from q. The OR algorithm processes such a query as follows: (i) it first retrieves the 
set P' of candidate entities that are within Euclidean distance e (from q) using a con-
ventional range query on the R-tree of P; (ii) it finds the set O' of obstacles that are 
relevant to the query; (iii) it builds a local visibility graph G' containing the elements 
of P' and O'; (iv) it removes false hits from P' by evaluating the obstructed distance 
for each candidate object using G'. Consider the example OR query q (with e = 6) in 
Fig. 4a, where the shaded areas represent obstacles and points correspond to entities. 
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(a) Obstacle range query (b) Local visibility graph 

Fig. 4. Example of obstacle range query 

Clearly, the set P' of entities intersecting the disk C centered at q with radius e, consti-
tutes a superset of the query result. In order to remove the false hits we need to re-
trieve the relevant obstacles. A crucial observation is that only the obstacles intersect-
ing C may influence the result. By the Euclidean lower-bound property, any path that 



starts from q and ends at any vertex of an obstacle that lies outside C (e.g., curve in 
Fig. 4a), has length larger than the range e. Therefore, it is safe to exclude the obstacle 
(o4) from the visibility graph. Thus, the set O' of relevant obstacles can be found using 
a range query (centered at q with radius e) on the R-tree of O. The local visibility 
graph G' for the example of Fig. 4a is shown in Fig. 4b. For constructing the graph, we 
use the algorithm of [SS84], without tangent simplification. 

The final step evaluates the obstructed distance between q and each candidate. In 
order to minimize the computation cost, OR expands the graph around the query point 
q only once for all candidate points using a traversal method similar to the one em-
ployed by Dijkstra's algorithm [D59]. Specifically, OR maintains a priority queue Q, 
which initially contains the neighbors of q (i.e., n1 to n4 in Fig. 4b) sorted by their ob-
structed distance. Since these neighbors are directly connected to q, the obstructed dis-
tance dO(ni,q), 1≤i≤4, equals the Euclidean distance dE(ni,q). The first node (n1) is de-
queued and inserted into a set of visited nodes V. For each unvisited neighbor nx of n1 
(i.e., nx ∉  V), dO(nx,q) is computed, using n1 as an intermediate node i.e., dO(nx,q) = 
dO(n1,q) + dE(nx,n1). If dO(nx,q) ≤ e, nx is inserted in Q. Fig. 5 illustrates the OR algo-
rithm. 
 
 
Algorithm OR(RTP, RTO, q, e) 
/* RTP is the entity R-tree, RTO is the obstacle R-tree, q is the 
query point, e is the query range */ 
P' = Euclidean_range(RTP,q,e) // get qualifying entities 
O' = Euclidean_range(RTO,q,e) // get relevant obstacles 
G' = build_visibility_graph(q, P',O') // algorithm of [SS84] 
V = ∅ ; R = ∅   // V is the set of visited nodes, R is the result 
insert <q, 0> into Q 
while Q and P' are both non-empty  
    de-queue <n, dO(n,q)> from Q // n has the min dO(n,q) 
    if n∉ V // n is an unvisited node 
        if n∈ P' // n is an unreported entity 
            R = R ∪  {n}; P' = P' - {n} 
        for each neighbor node nx of n 
            if (nx∉ V) 
                dO(nx,q) = dO(n,q) + dE(n,nx) 
                if (dO(nx,q) ≤ e) 
                    insert <nx, dO(nx,q)> into Q 
        V = V ∪  n 
return R 
End OR 

Fig. 5. OR algorithm 

Note that it is possible for a node to appear multiple times in Q, if it is found through 
different paths. For instance, in Fig. 4b, n2 may be re-inserted after visiting n1. Dupli-
cate elimination is performed during the de-queuing process, i.e., a node is visited 
only the first time that it is de-queued (with the smallest distance from q). Subsequent 
visits are avoided by checking the contents of V (set of already visited nodes).  When 
the de-queued node is an entity, it is reported and removed from P'. The algorithm 
terminates when the queue or P' is empty. 



4. Obstacle Nearest Neighbor Query 

Given a query point q, an obstacle set O and an entity set P, an obstacle nearest 
neighbor (ONN) query returns the k objects of P that have the smallest obstructed dis-
tances from q. Assuming, for simplicity, the retrieval of a single neighbor (k=1) in Fig. 
6, we illustrate the general idea of ONN algorithm before going into details. First the 
Euclidean nearest neighbor of q (object a) is retrieved from P using an incremental al-
gorithm (e.g., [HS99] in Section 2.1) and dO(a,q) is computed. Due to the Euclidean 
lower-bound property, objects with potentially smaller obstructed distance than a 
should be within Euclidean distance dEmax= dO(a,q). Then, the next Euclidean neighbor 
(f) within the dEmax range is retrieved and its obstructed distance is computed. Since 
dO(f,q) < dO(a,q), f becomes the current NN and dEmax is updated to dO(f,q) (i.e., dEmax 
continuously shrinks). The algorithm terminates when there is no Euclidean nearest 
neighbor within the dEmax range. 

 
Fig. 6. Example of obstacle nearest neighbor query 

It remains to clarify the obstructed distance computation. Consider, for instance, Fig. 7 
where the Euclidean NN of q is point p. In order to compute dO(p,q), we first retrieve 
the obstacles o1, o2 within the range dE(p,q) and build an initial visibility graph that 
contains o1, o2, p and q. A provisional distance dO1(p,q) is computed using a shortest 
path algorithm (we apply Dijkstra's algorithm). The problem is that the graph is not 
sufficient for the actual distance, since there may exist obstacles (o3, o4) outside the 
range that obstruct the shortest path from q to p. 

 
Fig. 7. Example of obstructed distance computation 



In order to find such obstacles, we perform a second Euclidean range query on the ob-
stacle R-tree using dO1(p,q) (i.e., the large circle in Fig. 7). The new obstacles o3 and 
o4 are added to the visibility graph, and the obstructed distance dO2(p,q) is computed 
again. The process has to be repeated, since there may exist another obstacle (o5) out-
side the range dO2(p,q) that intersects the new shortest path from q to p. The termina-
tion condition is that there are no new obstacles in the last range, or equivalently, the 
shortest path remains the same in two subsequent iterations, meaning that the last set 
of added obstacles does not affect dO(p,q) (note that the obstructed distance can only 
increase in two subsequent iterations as new obstacles are discovered). The pseudo-
code of the algorithm is shown in Fig. 8. The initial visibility graph G', passed as a pa-
rameter, contains p, q and the obstacles in the Euclidean range dE(p,q). 
 
Algorithm compute_obstructed_distance(G, p, q, G’, RTo) 
dO(p,q)= shortest_path_dist(G',p,q) 
O' = set of obstacles in G' 
repeat 
    Onew= Euclidean_range(RTO, q, dO(p,q)) 
    if O' ⊂  Onew   
        for each obstacle o in Onew - O' 
            add_obstacle(o,G') 
        dO(p,q)= shortest_path_dist(G',p,q) 
        O' = Onew 
    else // termination condition 
        return dO(p,q) 
End compute_obstructed_distance 

Fig. 8. Obstructed distance computation 

The final remark concerns the dynamic maintenance of the visibility graph in main 
memory. The following basic operations are implemented, to avoid re-building the 
graph from scratch for each new computation: 
•  Add_obstacle(o,G') is used by the algorithm of Fig. 8 for incorporating new obsta-

cles in the graph. It adds all the vertices of o to G' as nodes and creates new edges 
accordingly. It removes existing edges that cross the interior of o. 

•  Add_entity(p,G') incorporates a new point in an existing graph. If, for instance, in 
the example of Fig. 7 we want the two nearest neighbors, we re-use the graph that 
we constructed for the 1st NN to compute the distance of the second one. The op-
eration adds p to G' and creates edges connecting it with the visible nodes in G'. 

•  Delete_entity(p,G') is used to remove entities for which the distance computations 
have been completed.  

Add obstacle performs a rotational plane-sweep for each vertex of o and adds the cor-
responding edges to G'. A list of all obstacles in G' is maintained to facilitate the 
sweep process. Existing edges that cross the interior of o are removed by an intersec-
tion check. Add entity is supported by performing a rotational plane-sweep for the 
newly added node to reveal all its edges. The delete entity operation just removes p 
and its incident edges. 

Fig. 9 illustrates the complete algorithm for retrieval of k (≥1) nearest neighbors. 
The k Euclidean NNs are first obtained using the entity R-tree, sorted in ascending or-
der of their obstructed distance to q, and dEmax is set to the distance of the kth point. 
Similar to the single NN case, the subsequent Euclidean neighbors are retrieved in-
crementally, while maintaining the k (obstructed) NNs and dEmax (except that dEmax 



equals the obstructed distance of the k-th neighbor), until the next Euclidean NN has 
larger Euclidean distance than dEmax. 
 
Algorithm ONN(RTP, RTO, q, k) 
/* RTP is the entity R-tree, RTO is the obstacle R-tree, q is the 
query, k is number of NN requested */ 
R = ∅   // R is the result 
P' = Euclidean_NN(RTP, q, k); // find the k Euclidean NNs of q 
O' = Euclidean_range(RTO, q, d(pk ,q)) 
G' = build_visibility_graph(q, P',O') 
for each entity pi in P' 
    dO(pi,q)= compute_obstructed_distance(G',pi,q) 
    delete_entity(pi,G') 
sort P' in ascending order of dO(pi,q) and insert into R 
dEmax= dO(pk ,q) // pk is the farthest NN 
repeat 
    (p,dE(p,q))=next_Euclidean_NN(RTP, q);  
    add_entity(p,G') 
    dO(p,q)=compute_obstructed_distance(G',p,q) 
    delete_entity(p,G') 
    if (dO(p,q)<dO(pk ,q)) // p is closer than the k

th NN    
        R = R - {pk} 
        insert p in R so that R remains sorted by dO 
        dEmax = dO(pk ,q) // update the Euclidean threshold         
until dE(p,q)>dEmax 
return R 
End ONN 

Fig. 9. ONN algorithm 

5. Obstacle e-Distance Join 

Given an obstacle set O, two entity datasets S, T and a value e, an obstacle e-distance 
join (ODJ) returns all entity pairs (s,t), s∈ S, t∈ T such that dO(s,t)≤e. Based on the 
Euclidean lower-bound property, the ODJ algorithm processes an obstacle e-distance 
join as follows: (i) it performs an Euclidean e-distance join on the R-trees of S and T 
to retrieve entity pairs (s,t) with dE(s,t)≤e; (ii) it evaluates dO(s,t) for each candidate 
pair (s,t) and removes false hits. The R-tree join algorithm [BKS93] (see Section 2.1) 
is applied for step (i). For step (ii) we use the obstructed distance computation algo-
rithm of Fig. 8.  

Observe that although the number of distance computations equals the cardinality 
of the Euclidean join, the number of applications of the algorithm can be significantly 
smaller. Consider, for instance, that the Euclidean join retrieves five pairs: (s1, t1), (s1, 
t2), (s1, t3), (s2, t1), (s2, t4), requiring five obstructed distance computations. However, 
there are only two objects s1, s2 ∈  S participating in the candidate pairs, implying that 
all five distances can be computed by building only two visibility graphs around s1 and 
s2. Based on this observation, ODJ counts the number of distinct objects from S and T 
in the candidate pairs. The dataset with the smallest count is used to provide the 'seeds' 
for visibility graphs. Let Q be the set of points of the 'seed' dataset that appear in the 
Euclidean join result (i.e., in the above example Q = {s1,s2}). Similarly, P is the set of 
points of the second dataset that appear in the result (i.e., P = {t1,t2,t3,t4}). The prob-
lem can then be converted to: for each q ∈  Q and a set P' ⊆  P of candidates (paired 
with q in the Euclidean join), find the objects of P' that are within obstructed distance 



e from q. This process corresponds to the false hit elimination part of the obstacle 
range query and can be processed by an algorithm similar to OR (Fig. 5). To exploit 
spatial locality between subsequent accesses to the obstacle R-tree (needed to retrieve 
the obstacles for the visibility graph for each range), ODJ sorts and processes the 
seeds by their Hilbert order. The pseudo code of the algorithm is shown in Fig. 10.  
 
Algorithm ODJ(RTS, RTT, RTO, e) 
/* RTS and RTT is the entity R-trees, RTO is the obstacle R-tree, e is 
the query range */ 
R = ∅  
Rjoin-res = Euclidean_distance_join(RTS, RTT, e) 
compute Q and P; 
sort Q according to Hilbert order // to maximize locality 
for each object q ∈  Q 
    P' = set of objects ∈  P that appear with q in Rjoin-res 
    O' = Euclidean_range(RTO, q, e) // get relevant obstacles 
    R' = OR(P', O', q, e) // eliminate false hits 
    R  = R ∪  {<q, r>/ r ∈  R'} 
return R 
End ODJ 

Fig. 10. ODJ algorithm 

6. Obstacle Closest-Pair Query 

Given an obstacle set O, two entity datasets S, T and a value k ≥ 1, an obstacle closest-
pair (OCP) query retrieves the k entity pairs (s, t), s ∈  S, t ∈  T, that have the smallest 
dO(s, t). The OCP algorithm employs an approach similar to ONN. Assuming for ex-
ample, that only the (single) closest pair is requested, OCP: (i) performs an incre-
mental closest pair query on the entity R-trees of S and T and retrieves the Euclidean 
closest pair (s,t); (ii) it evaluates dO(s,t) and uses it as a bound dEmax for Euclidean 
closest-pairs search; (iii) it obtains the next closest pair (within Euclidean distance dE-

max), evaluates its obstructed distance and updates the result and dEmax if necessary; (iv) 
it repeats step (iii) until the incremental search for pairs exceeds dEmax. Fig. 11 shows 
the OCP algorithm for retrieval of k closest-pairs.  

 
Algorithm OCP(RTS, RTT, RTO, k) 
/* RTS and RTT is the entity R-trees, RTO is the obstacle R-tree, k is 
the number of pairs requested */ 
{(s1, t1), … , (sk, tk)} = Euclidean_CP(RTS, RTT, k) 
sort (si, ti) in ascending order of their dO(si, ti) 
dEmax= dO(sk, tk) 
repeat  
    (s', t') = next_Euclidean_CP(RTS, RTT) 
    dO(s', t') = compute_obstructed_distance(G',s',t') 
    if (dO(s', t') < dEmax)  
        delete (sk, tk) from {(s1, t1), … , (sk, tk)} and insert (s', 

t') in it, so that it remains sorted by dO 
    dEmax= dO(sk, tk) 
until dE(s', t') > dEmax 
return {(s1, t1), … , (sk, tk)} 
End OCP 

Fig. 11. OCP algorithm 



OCP first finds the k Euclidean pairs, it evaluates their obstructed distances and treats 
the maximum distance as dEmax. Subsequent candidate pairs are retrieved incremen-
tally, continuously updating the result and dEmax until no pairs are found within the dE-

max bound. Note that the algorithm (and ONN presented in Section 4) is not suitable 
for incremental processing, where the value of k is not set in advance. Such a situation 
may occur if a user just browses through the results of a closest pair query (in increas-
ing order of the pair distances), without a pre-defined termination condition. Another 
scenario where incremental processing is useful concerns complex queries: "find the 
city with more than 1M residents, which is closest to a nuclear factory". The output of 
the top-1 CP may not qualify the population constraint, in which case the algorithm 
has to continue reporting results until the condition is satisfied.  

In order to process incremental queries we propose a variation of the OCP algo-
rithm, called iOCP (for incremental), shown in Fig. 12 (note that now there is not a k 
parameter). When a Euclidean CP (s, t) is obtained, its obstructed distance dO(s, t) is 
computed and the entry < (s, t), dO(s, t)> is inserted into a queue Q. The observation is 
that all the pairs (si, tj) in Q such that dO(si, tj)≤ dE(s, t), can be immediately reported, 
since no subsequent Euclidean CP can lead to a lower obstructed distance. The same 
methodology can be applied for deriving an incremental version of ONN. 
 
Algorithm iOCP(RTS, RTT, RTO) 
repeat  
    (s, t) = next_Euclidean_CP(RTS, RTT) 
    dO(s, t) = compute_obstructed_distance(s, t) 
    insert < (s, t), dO(s, t)> into Q 
    for each (si, tj) such that dO(si, tj)≤ dE(s, t) 
        de-heap <(si, tj), dO(si, tj)> from Q 
        report <(si, tj), dO(si, tj)> 
until termination condition 
return  
End iOCP 

Fig. 12. iOCP algorithm 

7. Experiments 

In this section, we experimentally evaluate the CPU time and I/O cost of the proposed 
algorithms, using a Pentium III 733MHz PC. We employ R*-trees [BKSS90], assum-
ing a page size of 4K (resulting in a node capacity of 204 entries) and an LRU buffer 
that accommodates 10% of each R-tree participating in the experiments. The obstacle 
dataset contains |O| = 131,461 rectangles, representing the MBRs of streets in Los 
Angeles [Web] (but as discussed in the previous sections, our methods support arbi-
trary polygons). To control the density of the entities, the entity datasets are synthetic, 
with cardinalities ranging from 0.01⋅|O| to 10⋅|O|. The distribution of the entities fol-
lows the obstacle distribution; the entities are allowed to lie on the boundaries of the 
obstacles but not in their interior. For the performance evaluation of the range and 
nearest neighbor algorithms, we execute workloads of 200 queries, which also follow 
the obstacle distribution. 



7.1 Range Queries 

First, we present our experimental results on obstacle range queries. Fig. 13a and Fig. 
13b show the performance of the OR algorithm in terms of I/O cost and CPU time, as 
functions of |P|/|O| (i.e., the ratio of entity to obstacle dataset cardinalities), fixing the 
query range e to 0.1% of the data universe side length. The I/O cost for entity retrieval 
increases with |P|/|O| because the nodes that lie within the (fixed) range e in the entity 
R-tree grows with |P|. However, the page accesses for obstacle retrieval remain stable, 
since the number of obstacles that participate in the distance computations (i.e., the 
ones intersecting the range) is independent of the entity dataset cardinality. The CPU 
time grows rapidly with |P|/|O|, because the visibility graph construction cost is 
O(n2logn) and the value of n increases linearly with the number of entities in the range 
(note the logarithmic scale for CPU cost).  

0

2

4

6

8

10

12

0.1 0.5 1 2 10
cardinality ratio - |P|/|O|

page accesses obstacle R-tree

data R-tree

 

1

10

100

0.1 0.5 1 2 10
cardinality ratio - |P|/|O|

CPU time (msec)

 
(a) I/O accesses (b) CPU (msec) 

Fig. 13. Cost vs. |P|/|O| (e=0.1%) 

Fig. 14 depicts the performance of OR as a function of e, given |P|=|O|. The I/O cost 
increases quadratically with e because the number of objects and nodes intersecting 
the Euclidean range is proportional to its area (which is quadratic with e). The CPU 
performance again deteriorates even faster because of the O(n2logn) graph construc-
tion cost. 
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Fig. 14. Cost vs. e (|P|=|O|) 

The next experiment evaluates the number of false hits, i.e., objects within the Euclid-
ean, but not in the obstructed range. Fig. 15a shows the false hit ratio (number of false 
hits / number of objects in the obstructed range) for different cardinality ratios (fixing 
e=0.1%), which remains almost constant (the absolute number of false hits increases 



linearly with |P|). Fig. 15b shows the false hit ratio as a function of e (for |P| = |O|). For 
small e values, the ratio is low because the numbers of candidate entities and obstacles 
that obstruct their view is limited. As a result, the difference between Euclidean and 
obstructed distance is insignificant. On the other hand, the number of obstacles grows 
quadratically with e, increasing the number of false hits.  
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Fig. 15. False hit ratio by OR 

7.2 Nearest Neighbor Queries 

This set of experiments focuses on obstacle nearest neighbor queries. Fig. 16 illus-
trates the costs of the ONN algorithm as function of the ratio |P|/|O|, fixing the number 
k of neighbors to 16. The page accesses of the entity R-tree do not increase fast with 
|P|/|O| because, as the density increases, the range around the query point where the 
Euclidean neighbors are found decreases. As a result the obstacle search radius (and 
the number of obstacles that participate in the obstructed distance computations) also 
declines. Fig. 16b confirms this observation, showing that the CPU time drops signifi-
cantly with the data density. 
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Fig. 16. Cost vs. |P|/|O| (k=16) 

Fig. 17 shows the performance of ONN for various values of k when |P|=|O|. As ex-
pected, both the I/O cost and CPU time of the algorithm grow with k, because a high 
value of k implies a larger range to be searched (for entities and obstacles) and more 
distance computations. Fig. 18a shows the impact of |P|/|O| on the false hit ratio (k = 
16). A relatively small cardinality |P| results in large deviation between Euclidean and 
obstructed distances, therefore incurring high false hit ratio, which is gradually allevi-



ated as |P| increases. In Fig. 18b we vary k and monitor the false hit ratio. Interest-
ingly, the false hit ratio obtains its maximum value for k ≈ 4 and starts decreasing 
when k > 4. This can be explained by the fact that, when k becomes high, the set of k 
Euclidean NN contains a big portion of the k actual (obstructed) NN, despite their 
probably different internal ordering (e.g., the 1st Euclidean NN is 3nd obstructed NN). 
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Fig. 17. Cost vs. k (|P|=|O|) 
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Fig. 18. False hit ratio by ONN 

7.3 e-Distance Joins  

We proceed with the performance study of the e-distance join algorithm, using 
|T|=0.1|O| and setting the join distance e to 0.01% of the universe length. Fig. 19a 
plots the number of disk accesses as a function of |S|/|O|, ranging from 0.01 to 1. The 
number of page accesses for the entity R-trees grows much slower than the obstacle R-
tree because the cost of the Euclidean join is not very sensitive to the data density. On 
the other hand, the output size (of the Euclidean join) grows fast with the density, in-
creasing the number of obstructed distance evaluations and the accesses to the obsta-
cle R-tree (in the worst case each Euclidean pair initiates a new visibility graph). This 
observation is verified in Fig. 19b which shows the CPU cost as a function of |S|/|O|.  
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Fig. 19. Cost vs. |S|/|O| (e=0.01%, |T|=0.1|O|) 

In Fig. 20a, we set |S|=|T|=0.1|O| and measure the number of disk accesses for varying 
e. The page accesses for the entity R-tree do not have large variance (they range be-
tween 230 for e = 0.001% and 271 for e = 0.1%) because the node extents are large 
with respect to the range. However, as in the case of Fig. 20a, the output of the 
Euclidean joins (and the number of obstructed distance computations) grows fast with 
e, which is reflected in the page accesses for the obstacle R-tree and the CPU time 
(Fig. 20b).   
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Fig. 20. Cost vs. e (|S|=|T|=0.1|O|) 

7.4 Closest Pairs  

Next, we evaluate the performance of closest pairs in the presence of obstacles. Fig. 
21 plots the cost of the OCP algorithm as a function of |S|/|O| for k=16 and |T|=0.1|O|. 
The I/O cost of the entity R-trees grows with the cardinality ratio (i.e., density of S), 
which is caused by the Euclidean closest-pair algorithm (similar observations were 
made in [CMTV00]). On the other hand, the density of S does not affect significantly 
the accesses to the obstacle R-tree because high density leads to closer distance be-
tween the Euclidean pairs. The CPU time of the algorithm (shown in Fig. 21b) grows 
fast with |S|/|O|, because the dominant factor is the computation required for obtaining 
the Euclidean closest pairs (as opposed to obstructed distances). 
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Fig. 21. Cost vs. |S|/|O| (k=16, |T|=0.1|O|) 

Fig. 22 shows the cost of the algorithm with |S|=|T|=0.1|O| for different values of k. 
The page accesses for the entity R-trees (caused by the Euclidean CP algorithm) re-
main almost constant, since the major cost occurs before the first pair is output (i.e., 
the k closest pairs are likely to be in the heap after the first Euclidean NN is found, 
and are returned without extra IOs). The accesses to the obstacle R-tree and the CPU 
time, however, increase with k because more obstacles must be taken into account dur-
ing the construction of the visibility graphs. 
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8. Conclusion 

This paper tackles spatial query processing in the presence of obstacles. Given a set of 
entities P and a set of polygonal obstacles O, our aim is to answer spatial queries with 
respect to the obstructed distance metric, which corresponds to the length of the short-
est path that connects them without passing through obstacles. This problem has nu-
merous important applications in real life, and several main memory algorithms have 
been proposed in Computational Geometry. Surprisingly, there is no previous work 
for disk-resident datasets in the area of Spatial Databases. 

Combining techniques and algorithms from both aforementioned fields, we propose 
an integrated framework that efficiently answers most types of spatial queries (i.e., 
range search, nearest neighbors, e-distance joins and closest pairs), subject to obstacle 



avoidance. Making use of local visibility graphs and effective R-tree algorithms, we 
present and evaluate a number of solutions. Being the first thorough study of this 
problem in the context of massive datasets, this paper opens a door to several interest-
ing directions for future work. For instance, as objects move in practice, it would be 
interesting to study obstacle queries for moving entities and/or moving obstacles.  
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