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Abstract 

This paper studies the pricing of collateral debt obligation (CDO) using Monte Carlo 
and analytic methods. Both methods are developed within the framework of the 
reduced form model. One-factor Gaussian Copula is used for treating default 
correlations amongst the collateral portfolio. Based on the two methods, the portfolio 
loss, the expected loss in each CDO tranche, tranche spread and the default delta 
sensitivity are analyzed with respect to different parameters such as maturity, default 
correlation, default intensity or hazard rate, and recovery rate. We provide a careful 
study of the effects of different parametric impact. Our results show that Monte Carlo 
method is slow and not robust in the calculation of default delta sensitivity. The 
analytic approach has comparative advantages for pricing CDO. We also employ 
empirical data to investigate the implied default correlation and base correlation of the 
CDO. The implication of extending the analytical approach to incorporating Levy 
processes is also discussed. 
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1. Introduction to Collateralized Debt Obligation 

In recent years, due to the burgeoning credit derivatives market, there has been 

much research work on the Collaterized Debt Obligation (CDO). A CDO is an asset-

backed security whose payment depends on the collateral portfolio. There are 

different types of CDOs. A CDO whose collateral is made up of cash assets such as 

corporate bonds or loans is called cash CDO, while a CDO whose collateral is made 

up of credit default swaps is called a synthetic CDO. The structure of a CDO consists 

of partitions of the collateral portfolio into different tranches of increasing seniority. 

The CDO in effect transfers credit risk from the portfolio holder to investors. 

Investors of CDO are called protection sellers, while the issuer of CDO is called 

protection buyer. A particular tranche of a CDO is defined by its lower and an upper 

attachment point. The tranche with a lower attachment point L  and a higher 

attachment point  will bear all the losses in the collateral portfolio in excess of L  

and up to  percent of the initial value of the portfolio. The portfolio loss is 

absorbed in ascending order of tranches, starting with the Equity tranche, then the 

Mezzanine tranche, and eventually the Senior tranche.  

H

H

As compensation for taking potential loss, the protection seller receives a periodic 

premium payment from the issuer of CDO until the maturity of the CDO or at the 

time when the tranche is expended through loss. The premium is paid from the 

interest income of the collateral portfolio. Interest is distributed to the tranches 

starting with the Senior tranche, then the Mezzanine tranche, and eventually the 

Equity tranche. As the Equity tranche absorbs the first layer of loss, the premium of 

this tranche is the largest among all the tranches. An example of CDO is illustrated in 

Figure 1, where the portfolio is composed of 100 loans. Each loan has $10 million 

notional amount. The Equity tranche absorbs the first losses within [0%, 3%] of the 
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initital portfolio notional amount. The Mezzanine tranche absorbs losses within [3%, 

14%]. The Senior tranche absorbs the remaining loss within [14%, 100%]. The 

premium of the tranches is paid as a percentage of the outstanding notional amounts 

of the corresponding tranches. For example, if there is a 1% loss in the portfolio, the 

3% portfolio value of the Equity tranche is then reduced to 2% due to the loss. This 

amounts to 1/3 or a tranche loss of 33.3% in value. Consequently, the Equity tranche 

pays only the pre-determined interest rate on a remaining 66.7% of tranche capital. 

For practical details of a CDO, see for example Elizalde (2004). Finger (2003), as 

well as Bluhm et.al. (2004), discusses the standard pricing model framework for 

synthetic CDO and some of the outstanding implementation and application issues. 

The major risk in a CDO is default risk of the entitites of the portfolio collateral. 

Such default risk can be modeled in two primary types of models that describe default 

processes in the credit risk literature: structural models and reduced form models. 

Structural models determine the time of default using the evolution of firms’ 

structural variables such as asset and debt values. Reduced form models determine the 

default process as a stochastic Poisson process with random default intensity. 

Empirically, the results in the literature show that the structural models under-predict 

the default probability while the reduced form models could predict the default 

process well.  

More specifically, the problem of pricing CDO is equivalent to determining the 

premium of each tranche. There are three important components in the pricing of 

CDO: modeling credit risk, handling default correlations among collateral portfolio, 

and calculating the portfolio loss. The last two components are not common to 

simpler credit derivatives such as single-name credit default swaps. For an 

understanding of the background of default correlation and portfolio loss in the 
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context of a CDO, we provide a brief summary of the literature in Table 1 where 

existing literature is surveyed in terms of the methodology for calculating default 

correlation and portfolio loss, and whether default delta sensitivity is studied or not. 

Most of  the existing studies used Copula to treat default correlation, except for Duffie 

and Garleanu (2001) where default correlation is treated by using dependent default 

intensity. Based on Copula, different analytic methods are proposed for calculating 

the portfolio loss. Most of the works demonstrated that the analytic methodologies 

constitute a powerful tool for evaluating CDO. 

In the framework of reduced form models, there are basically three methodologies 

for treating default correlation among multiple assets in the collateral portfolio: 

conditionally independent default model of Duffie and Garleanu (2001), contagion 

model of Jarrow and Yu (2001), and Copula method by Li (2000). Conditionally 

independent default model handles default correlation by simulating correlated default 

intensities based on a common set of state variables. The major disadvantage of the 

conditionally independent default model is that the correlation generated by the model 

is often too small in empirical data with high default correlation. In the contagion 

model, the default of one firm triggers the default of the other related firms, and the 

default times tend to be concentrated in certain time periods. The disadvantage of the 

contagion method is that it is difficult to calibrate the parameters of the model. The 

resulting model is thus hard to implement. The other method of treating default 

correlation is the Copula method. Using Copula in default correlation modeling is 

originally proposed by Li (2000). The Copula function is actually a correlated 

multivariate function defined by the marginal default probability distribution. A 

variety of functions can be used as Copula, such as −t student and Gaussian. The 

Copula method is simple and easy to implement.  
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Apart from its simplicity, another advantage of using Copula is that the portfolio 

loss in a CDO can be analytically computed without relying on Monte Carlo 

simulations that can be computationally intensive and time-consuming. Sidenius and 

Basu (2003) describe an analytic method of calculating the portfolio loss based on a 

one factor Gaussian Copula. Gibson (2004) describes the analytic method more 

explicitly. Besides the portfolio loss, Sidenius and Basu (2003) also propose an 

analytic method for calculating the default delta sensitivity.  

This paper studies the pricing and hedging of CDO by comparing the analytic 

method of Gibson (2004) with the Monte Carlo method. There has been few studies 

performing such comparisons, and it is important to be able to decide which models to 

use in practice. The CDO data employed in Peixoto (2004) are used in the empirical 

investigation in this paper. In addition, this paper provides a careful study of the 

effects of different parametric impact. The portfolio loss, the expected loss allocated 

to each tranche, the tranche spread, and the default delta sensitivity are analyzed with 

respect to different parameters such as maturity, default correlation, default intensity 

or hazard rate and recovery rate. In the current literature, the default delta sensitivity 

is discussed only in Sidenius and Basu (2003), Gibson (2004), Mina and Stern (2003), 

and Andersen and Sidenius (2004). By providing a more thorough study of the delta 

sensitivity with respect to some key parameters, this study will help in the hedging 

performance of CDO. Furthermore, the implied default correlation and base 

correlation are also empirically investigated. 

The remainder of the paper is organized as follows. Section 2 describes the 

methodology of pricing CDO using the analytic method and the Monte Carlo method. 

The methodology of calculating default hedge ratio is described in Section 3. Section 
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4 presents the empirical results. The implication of extending the analytical approach 

to incorporating Levy processes is also discussed. Section 5 contains the conclusions. 

 
 
2. Methodology of Pricing CDO 

The model is set up in a filtered probability space ),)(,,( )0( PFF tt ≥Ω , where P  is 

a pre-specified martingale measure. The filtration  satisfies the usual 

conditions and the initial filtration  is trivial. There is also a finite time horizon  

with . The remaining notations used in this paper are described as follows. 

)0()( ≥ttF

T0F

TFF =

Kk ,,2,1 L=Notional amount for asset , k  kI  

 Recovery rate for asset  kkR

Default intensity for asset  k kλ

Default time for asset  kkτ  

 ni ,,2,1 L=The payment date in CDO, . We assume that for a standard CDO, 
all tranches are paid interest at the same time points. 

iT

The total amount of loss in the portfolio at time Til  i

The total amount of loss allocated to the tranche at Tie  i

iB  The price of a default-free zero coupon bond with maturity  and face value 
of $1 at present time 

iT

 

 The pricing of a CDO consists of pricing the single tranches that make up the 

CDO structure. For a single tranche with attachment points , the cash flows can 

be described as follows. The seller of a CDO pays a periodic coupon to the investor of 

the CDO at each payment date , 

],[ HL

ni ,,2,1 L=iT . The coupon paid at  for a tranche 

is calculated based on the outstanding notional amount in that tranche. Obviously, the 

initial dollar value of notional amount for the tranche is equal to 

iT

LH − . When default 
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occurs in the portfolio and the portfolio loss exceeds L , the investor of this CDO 

tranche has to pay to the seller of CDO the amount of loss in excess of . The loss 

between  is assumed

L

1],[ 1 ii TT −  to be paid at . The maximal value of the total amount 

payable by the investor is equal to 

iT

LH − . Thus, the pricing of a tranche consists of 

calculating the premium leg corresponding to the payment by the seller and the 

default leg corresponding to the payment by the investor when there is default in 

excess of L. 

In the reduced form model of Li (2004), the risk-neural default probability of an 

asset at  is calculated by  iT

∫−=≤
−

iT
k duu

ik eTp 0
)(

1)(
λ

τ  .                                                                       (1) 

If the default time kτ  in each kth asset is known, the portfolio loss  at  can be 

calculated by  

il iT

}{
1

1)1(
ik T

K

k
kki RIl ≤

=
∑ −= τ ni ,,2,1 L=,                    (2) 

and . 
⎩
⎨
⎧

>
≤

=≤ T
T

k

ik
Tik τ

τ
τ 0

1
1 }{

Given , the total amount of dollar loss allocated to the single tranche of  at  

is equal to  

],[ HLil iT

)0,),(( LHlMinMaxe ii −= , i n,,2,1 L=  .        (3)   

DLThus the present value of the default leg (denoted as ) is equal to the sum of the 

present values of the expected values of the loss paid by the investor of tranche to the 

seller of tranche at the various ’s, that is calculated by iT

                                                 
1 This assumption effectively puts any loss at the beginning of the CDO as zero, since any loss within 
[T0, T1] is paid at T1. 
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∑
=

−−=
n

i
iii eEeEBDLE

0
1 ))()(()(                                    (4)           

where by definition . The expected loss between  is equal to 

, which is assumed to be paid at . Obviously  as well if 

the earliest first loss payment is at T

0)( 1 =−eE ],[ 1 ii TT −

))()(( 1−− ii eEeE iT 0)0( =eE

1. In this case, the summation indices in E(DL) 

could also be written without loss of generality to start at i equal to 1 instead of 0. 

Let  denote the tranche spread, which is the annualized interest charge or 

coupon rate on the tranche. The expected value of the premium leg (denoted as ) 

can be expressed as the sum of the present values of the expected values of the 

amount paid by the seller of the tranche to the investor, which is calculated by 

s

PL

∑
=

−−Δ=
n

i ieELHiBitsPLE
1

))(()(                                                            (5) 

where  is denoted as a fraction of a year. 1−−=Δ iii TTt )( ieELH −−  denotes the 

expected value of outstanding notional amount at . iT

The equilibrium pricing of the tranche under risk-neutrality implies that s  is 

found by setting . Thus, )()( PLEDLE =

∑
=

−−Δ

∑
= −−

= n

i ieELHiBit

n

i ieEieEiB
s

1
))((

0
))1()((

  .                                                      (6) 

From Equations (4)-(6), it can be observed that the crucial task of pricing is to 

calculate the expected value of the tranche loss  for each . The methodologies 

of calculating  thus obtaining  in the analytic method of Gibson (2004) and 

Monte Carlo method are described as below. 

)( ieE iT

)( ieE s
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Analytic Method 

The analytic method uses a continuous state variable Xk taking values in (-∞,∞) to 

represent the default status of an asset . When Xk k  approaches -∞ from the right, the 

probability of default approaches 0. When Xk approaches +∞ from the left, the 

probability of default approaches 1. The (cumulative) probability distribution function 

of Xk is the (unconditional) probability of default. A single (common) factor model of 

 consists of a common factor MkX  and an individual factor .  kZ

kkkk ZaMaX 21−+= Kk ,,2,1 L= ,                                                     (7) 

where  represents the fraction of the common factor relative to . The value of 

 is between  and the variances of the X

ka kZ

ka ]1,0[ k’s are ones. thus denotes the 

correlation of X

jk aa

j and  Xk . It represents the default correlation between asset  and . 

For simplicity, , 

k j

MkX , and  are assumed to follow standard normal distributions. kZ

M  and  are independent variables. Equation (7) is often termed the one-factor 

Gaussian Copula.  

kZ

The probability distribution of  is equal to the risk-neural probability of 

default in Equation (1). Thus, the conditional default probability 

kX

)|( MTp ik ≤τ  at  

for asset  can be calculated by   

iT

k

  )
21

))((1
()|(

ka

MkaiTkpN
NMiTkp

−

−≤−
=≤

τ
τ  .                                           (8) 

Let  denote the conditional probability of k  defaults up to  in a 

reference portfolio of size K . The analytic method calculates  using the 

following recursive algorithm: 

iT)|( Mkp K
i

)|( Mkp K
i

                                        (9) ))|(1)(|0()|0( 1
1 MTpMpMp ik

K
i

K
i ≤−= +

+ τ
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+≤−= +
+ ))|(1)(|()|( 1

1 MTpMkpMkp ik
K

i
K

i τ   

                                           (10) )|()|1( 1 MTpMkp ik
K

i ≤−+ +τ

and                (11) .,,1for)|()|()|1( 1
1 KkMTpMkpMkp ik

K
i

K
i L=≤=+ +

+ τ

For , . After computing , for k = 0,1,….K, the 

unconditional portfolio number of defaults distribution 

)|( Mkp K
i1)|0(0 =Mpi0=K

)(kK
ip  is calculated by  

∫
∞

∞−
= dMMgMkK

ipkK
ip )()|()(                                                           (12) 

where  is the probability density function of  ( ).g M . The integral can be computed 

using numerical integration. Note that in the above computation, conditional on M, 

the probabilities of default for the different assets in the portfolio are independent. 

The conditional probabilities of default for the different asset k, )|( 1 MTp ik ≤+τ , are  

different as the assets’ characteristics are different. 

Let  be the portfolio loss probability. Suppose this is a discrete distribution, 

then we can write the expected tranche loss as  

)( ilp

∑∑
≥

≤

≥

−+−=
Hl

i

Hl

Ll
iii

i

i

i

lpLHlpLleE )()()()()( .                                            (13)  

From , Equations (4)-(6) are then used to calculate the spread of each tranche. s)( ieE

Suppose the collateral portfolio is a large homogeneous portfolio made up of 

small similar assets. Homogeneity is with respect to the terms of Ik , Rk, and 
kλ

, 

resulting in the same I, R, and λ. Then, instead of the above algorithm,  can 

be calculated simply as a binomial function: 

)|( Mkp K
i

kK

i

k

iK
i

a

MaTpN
N

a

MaTpN
N

k
K

Mkp

−
−−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−≤
−×

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−≤
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )

1

))((
(1)

1

))((
()|(

2

1

2

1 ττ       (14) 
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where all ai’s equal a, and τ denotes the default time of any one of the assets. In this 

case, we treat each credit entity in the portfolio as identical. The unconditional 

portfolio number of defaults distribution )(kK
ip  is then similarly computed using 

Equation (12). Under homogeneity, the portfolio loss li can be simplified from 

Equation (2) to I (1-R) times the number of defaults. Hence in this case, the 

probability distribution of portfolio loss  is represented by the distribution of the 

number of defaults. The expected portfolio loss is then I (1-R) times the expected 

number of default by a certain time. 

)( ilp

 

Monte Carlo Method 

The Monte Carlo method takes into account the default correlation using the Copula 

function. The following Gaussian Copula is most commonly used.   

))(,),(),((),,,( 1
2

1
1

1
21 KK uNuNuNNuuuC −−−= LLL                        (15) 

where   is equal to ku )( ik Tp ≤τ  in Equation (1), and N(v1 , v ,…, v2 K) on the right-

side of Equation (15) denotes a multivariate normal probability distribution function 

with mean zero and correlation matrix (ρi,j), where i,j = 1,2,…,K. As in typical 

applications, we employ a constant correlation matrix with a single parameter ρ ∈ 

[0,1]  for all ρ .i,j  If (15) is specialized to the single-factor analytical model, the value 

of ρ  in (15) would be related to  in (7) by the following formulae: ka jkjk aa=,ρ  , 

 and jk ≠ , . 1, =jkρ jk =

Based on Equation (15) with a constant correlation matrix, the Monte Carlo 

method calculates  using the following algorithm. Perform N number of simulations 

each of which takes the following steps. 

ie
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(1)    Employ the multivariate normal distribution N(v  , v ,…, v1 2 K) to generate for a 

given ρ, the random variables. Calculate the default time of each asset by  K

k

k
k

v
λ

τ ))(1ln( Φ−
−= ,                                                            (16) Kk ,,2,1 L=  

 where Φ(.) denotes the univariate standard normal probability distribution 

function. 

(2)    From the computed τk for k = 1,2,….,K, we can determine if for asset k, default 

has occurred by time Ti, whether takes value 1 in the event of default by 

time T

}{1
ik T≤τ

i, or 0 otherwise in the event of no-default. Then we can calculate the 

portfolio loss  at each payment date , ni ,,2,1 L=il iT  according to 

}{
1

1)1(
ik T

K

k
kki RIl ≤

=
∑ −= τ  in Equation (2).  

(3)   Next calculate the tranche loss  at each payment date ,  

according to Equation (3). 

ni ,,2,1 L=ie iT

∑
=

−−Δ=≡
n

i ieLHiBits
PLQ

1
)((4) Then calculate and ∑

=
−−=

n

i
iii eeBDL

0
1)( . 

Finally, the N number of simulations each involving terms DL and Q in step (4) are 

averaged to obtain the spread s by the following 

( )

( )∑

∑

=

== N

q

N

q

qQ

qDL
s

1

1                                                                   (17) 

where q denotes the qth simulation. The expected portfolio loss at each time Ti can 

also be computed by averaging across the portfolio loss values at each step (2). The 

number of simulations N may be 50,000 or less depending on the complication of the 

model and the allocated computing time. 
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3. Methodology of Calculating Default Delta Sensitivity 

In Monte Carlo, the brute force method is used for calculating the sensitivity of 

the price of the [L,H] CDO tranche to default intensity kλ  . The approach is described 

as follows. Firstly, kλ  for the -th asset is increased by a small amount k kλΔ  to re-

calculate price of the tranche. Secondly, the ratio of the price difference to kλΔ  is  

calculated as the default delta sensitivity. The mathematical formula is written as  

k

kkk

k

VVV
λ

λλλ
λ Δ

−Δ+
=

∂
∂ )()(

                                                                   (18) 

and                                   (19) ∑∑
==

− −−Δ−−=
n

i
iii

n

i
iii eELHBtseEeEBV

10
1 ))(())()((

where V is the market value of the tranche to the CDO issuer or the protection buyer. 

In the analytic method, the analytic methodology proposed in Andersen and 

Sidenius (2004) is used for calculating the default delta sensitivity. The methodology 

is described below. 

k

V
λ∂
∂  is equal to  From (19), it can be observed that 

∑∑
==

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−−Δ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

=
∂
∂ n

i k

i
ii

n

i k

i

k

i
i

k

eELHBtseEeEBV
10

1 )()()(
λλλλ

.                (20) 

k

ieE
λ∂

∂ )(
 is equal to According to (13), 

∑∑
≥

≤

≥ ∂
∂

−+
∂
∂

−=
∂

∂

Hl k

i
Hl

Ll k

i
i

k

i

i

i

i

lp
LH

lp
Ll

eE
λλλ

)(
)(

)(
)(

)(                                       (21) 

k

ilp
λ∂

∂ )(Mkλ  and  are independent,  is calculated by From (12), by assuming 

∫
∞

∞− ∂
∂

=
∂
∂

dMMg
Mkplp

k

K
i

k

i )(
)|()(

λλ
                                                               (22) 
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where we have used the result that the probability distribution of portfolio loss  is 

equivalent to the unconditional probability distribution of the number of defaults. 

According to Equations (9)-(11), 

)( ilp

k

K
i Mkp
λ∂

∂ )|(  is calculated by  

k

ikK
i

k

K
i MTpMpMp

λ
τ

λ ∂
≤∂

−=
∂

∂ − )|()|0()|0( 1                                                   (23) 

))|1()|(()|()|( 11 MkpMkpMTpMkp K
i

K
i

k

ik

k

K
i −+−

∂
≤∂

=
∂

∂ −−

λ
τ

λ
                        (24) 

.,,1for)|1(1)|()|(
KkMkK

ip
k

MiTkp

k

MkK
ip

L=−−
∂

≤∂
=

∂

∂

λ

τ

λ
and                          (25) 

From Equations (1) and (8), we can derive 

ikikk

kik

T
i

TpN

k

a

MaTpN

k

ik eTe
a

eMTp λτ

τ

λ
τ −≤−

−≤
−

−

−

−
=

∂
≤∂ 21

2
2

1

)))(((5.0

2

)
1

))(((5.0

1
1)|(                                 (26) 

From Equations (21)-(26), the default delta sensitivity in Equation (20) can be 

calculated.  

 

4. Empirical Results 

The CDO data studied in Peixoto (2004) are employed in our study. The collateral 

portfolio of CDO is composed of 100 loans each with equal face value. The maturity 

of the CDO is 5 years. The default intensity or the hazard rate of each loan is 0.03. 

The recovery rate of each asset is 0.4.  The premium and default loss is paid quarterly. 

The risk-free interest rate is 5% with continuous compounding. As illustrated in Table 

2, the attachment points of Equity tranche are . Those of Mezzanine tranche 

are . Those of Senior tranche are . The expected loss, the 

spread and default delta sensitivity in each tranche are analyzed. 

%]3,0[

%]14%,3[ %]100%,14[
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4.1        Expected loss (EL)  

In the first set of empirical results, the portfolio loss and the loss distributed in 

each tranche are analyzed with respect to different parameters. Figures 2(a) and 2(b) 

show the portfolio EL with different maturity T  and default correlation ρ  in the 

analytic and the Monte Carlo method. It can be observed that both methods give close 

results, while Monte Carlo method generates the EL surface that is smoother than that 

of the analytic method. For a fixed value of ρ , the portfolio EL increases with 

maturity T  as more defaults are likely to happen at larger T . When T  is fixed, the 

portfolio EL increases is less sensitive to increase in ρ . The difference between the 

maximum and minimum values of the portfolio EL for different values of ρ   is 

within 20 basis points or 0.2% of portfolio value.  

Figures 3(a) and 3(b) show that the EL’s allocated to the Equity tranche in the 

analytic and the Monte Carlo methods agree closely. Equity EL increases with T  for 

fixed ρ  due to the larger default probability at larger T . When T  is fixed, Equity EL 

decreases with the increase of ρ . The result can be explained as follows. As ρ  

increases, there is a higher probability that either many obligors default together, 

resulting in larger losses, or many do not default together resulting in smaller overall 

losses. The latter obviously has a more weighted impact on the Equity tranche that 

takes the first loss, resulting in an overall lower expected loss. 

Figures 4(a) and 4(b) are produced from the analytical method and show the 

portfolio loss distribution of 5=T0=ρ 9.0=ρ and  with . For large losses in the 

range 0.19 to 0.58, it can be observed from Figure 4(b) that the probability of 

occurrence in the case 9.0=ρ 0=ρ is much higher than that in the case  . For small 

losses in the range 0.08 to 0.11, it can be observed from Figure 4(a) that the 

9.0=ρprobability of occurrence in the case  is much smaller than that in the 
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case 0=ρ  . Thus, higher default corre ρ leads to higher chances of large 

portf ss and lower chances of small portfolio loss. Contagion effect or high 

default correlation is therefore risky from the point of view of the tranche buyers. The 

larger losses make the tranche with higher seniority suffer from more loss. For higher 

ρ, the lower probability of the smaller portfolio losses hitting mainly the Equity 

ranche means also that expected loss on the latter is lower. This concurs with the 

result expressed in Figures 3(a) and 3(b). 

Figures 5(a) and 5(b) illustrate the l

lation 

t

oss distributions of the Equity and Senior 

tran

olio lo

ches respectively for cases 0=ρ  and 9.0=ρ . These are computed from the 

analytical method. Figure 5 (a) s that i  tranche the probability of losing 

the tranche notional amount for case 9.0

hows n Equity

=ρ  is less than that for case 0=ρ once the 

loss amount gets into the non-trivial bove 0.01. This results in sm r Equity 

EL for large 

range a alle

ρ  as discussed in the last two sets of figures. Figure 5(b) shows that in 

the Senior tranche the probability of large loss is much higher in the case 9.0=ρ  

compared to the case 0=ρ .  

Figures 6(a) and 6 ow(b) sh  EL allocated to the Mezzanine tranche in the analytic 

and the Monte Carlo methods. Mezzanine EL increases as T  increases. For long 

maturity ]5,4[=T , Mezzanine EL decreases with the increase of ρ , having the same 

characteri hat of Equity. However, for short maturity ]4,1[=stics as t T , Mezzanine 

EL firstly increases and then decreases with the increase of ρ . The latter decrease is 

due to the rapid increase in the probability of loss for Senior tranche at high levels of 

ρ , in which the loss impact on the Mezzanine tranche would be reduced. In effect, 

ger values of ρ  reduce the chance of absorbing loss in the Mezzanine tranche.   lar
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Figures 7(a) and (b) show EL allocated to the Senior tranche in the analytic and 

the Monte Carlo methods. The largest EL occurs for higher T and ρ values, for 

example when 5=T 9.0=ρ and .  Senior tranche does not absorb loss at smaller 

values of T  and ρ . This is consistent with the characteristic of Senior tranche that it 

is the last tranche to take losses in the portfolio. When either ρ  or  increases, 

Senior EL increases.  

T

Table 3 summarizes the expected losses of the analytic and the Monte Carlo 

methods for the case of 5. It can be observed that the difference in expected losses 

between the two methods is within 20 basis points.  

=T

 

4.2        Tranche Spread and Default Delta Sensitivity 

Tranche spread and default delta sensitivity in each tranche are analyzed in the 

second set of empirical results. Figures 8(a) and 8(b) show the spread of Equity 

tranche with different T  and ρ   in the analytic and Monte Carlo methods. For a fixed 

value of T  Equity spread decreases with the increase of ρ , due to the decreased 

expected loss. When ρ  is fixed Equity spread increase is not sensitive to increase in 

.  T

Figures 9(a) and 9(b) show the default delta sensitivity in Equity tranche for the 

analytic and the Monte Carlo methods respectively. For calculating sensitivity, the 

spreads of Equity, Mezzanine and Senior tranches are arbitrarily set as 1000 bp, 500 

bp and 1 bp respectively. In the Monte Carlo method, kλΔ  is set as 10 bp. The Monte 

Carlo results do not converge as fast as the analytical ones in calculating sensitivity. 

Thus Monte Carlo method is not robust in the calculation of default delta sensitivity. 

Figure 9(a) shows that the sensitivity is highest at 1=T 0=ρ and  in the Equity 
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tranche. This is consistent with the fact that Equity is mostly sensitive to small losses 

occurring at an early time. The results show that when T  or ρ  is small, the value of 

delta sensitivity decreases with increases of ρ  or T . When T  or ρ  is large the value 

of delta sensitivity increases initially and then later decreases with increases of ρ  or 

. T

Figures 10(a) and 10(b) show the Mezzanine tranche spread at different T  and ρ . 

It can be observed that there the largest spread occurs at  and 5=T 0=ρ , 

corresponding to the maximum values of Mezzanine EL in Figures 6(a) and 6(b). 

When maturity is large where ]5,4[=T , the Mezzanine spread decreases with the 

increase of ρ , having the same characteristic of the Equity tranche. When maturity is 

small where , the Mezzanine spread increases initially and then decreases 

with the increase of 

]4,1[=T

ρ , showing the same characteristic as the Mezzanine EL in 

Figures 6(a) and 6(b). For a fixed value of ρ , Mezzanine spread increases with T . 

Figures 11(a) and 11(b) show the default delta sensitivity in the Mezzanine 

tranche for the analytic and the Monte Carlo methods. The largest value of sensitivity 

occurs at  and 5=T 0=ρ . The same relationship between the Mezzanine spread (EL) 

and T [= ]5,4ρ  can be applied here. That is, where , the Mezzanine sensitivity 

decreases with the increases of ρ . When T  is small where , the Mezzanine 

sensitivity increases initially and then decreases with the increase of ρ .  For a fixed 

value of ρ , Mezzanine default delta sensitivity increases with . T

Figures 12(a), 12(b), 13(a), and 13(b) respectively illustrates the spread and the 

default delta sensitivity of the Senior tranche in the analytic and the Monte Carlo 

methods. The largest values of spread and default delta sensitivity for the Senior 

tranche occur at  and 5=T 9.0=ρ , corresponding to the maximum values of the 
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Senior EL. When T  or ρ  is fixed, both the spread and sensitivity increase with the 

increase of ρ  or T .  

Table 4 compares the spread difference between the analytic and the Monte Carlo 

methods for the case of  and across various values of ρ. It can be observed that 

the spread difference between the two methods falls within 30 bp.  

5=T

Table 5 compares the difference of the default delta sensitivity values between the 

analytic and the Monte Carlo methods for the case of 5=T  and across various values 

of ρ. It can be observed that the difference between the analytic and the Monte Carlo 

results is generally small at approximately less than 10 bp. However, but for a few 

cases, the difference is larger as the Monte Carlo result is sensitive to the choice of 

λΔ .   

The spread and default delta sensitivity are further examined by using different 

values of recovery rates R  and default intensity or hazard rate λ , with maturity and 

default correlation set at  and 5=T 4.0=ρ . Figures 14(a), 14(b), and 14(c) 

respectively illustrate the spreads of the Equity, Mezzanine and Senior tranches with 

respect to different values of R  and λ . All the figures show that spread increases 

with increase of λ   when   is fixed, and decreases with  when R R λ   is fixed . 

Figures 15(a), 15(b), and 15(c) respectively illustrate the default delta sensitivities 

of the Equity, Mezzanine and Senior tranches with respect to different values of R  

and λ . Figure 15(a) shows that the delta sensitivity decreases with the increase of λ   

and slightly increases with the increase of R  in the Equity tranche. Figure 15(b) 

shows that the delta sensitivity for the Mezzanine tranche is non-monotone. For small 

values of R  and λ , the delta sensitivity decreases with increase in λ  and increases 

with increase in R , having the same characteristic of the Equity tranche. For large 

values of R  and λ , the delta sensitivity decreases with the increases of R  and λ . 
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Figure 15(c) shows that in the Senior tranche, the delta sensitivity increases with λ  

and decreases with increase in . R

 

4.3        Implied Correlation and Base Correlation 

The implied correlation for each tranche is calculated as the correlation which 

makes the spread of the tranche equal to its market price. It is sometimes referred as 

“compound correlation” in the CDO literature. The implied correlation is usually 

calculated based on trial and error. One major disadvantage of the implied correlation 

is that it exhibits a “smile”. For overcoming this problem, the base correlation is 

proposed by JP Morgan – see McGinty and Ahluwalia (2004). The base correlation is 

calculated by defining a series of hypothetical equity tranches.  

The first Equity tranche remains unchanged at detachment points [0%, 3%]. The 

Mezzanine tranche is now replaced conceptually by a hypothetical equity tranche at 

detachment points [0%, 14%] that combines the original Equity tranche [0%, 3%] and 

Mezzanine tranche [3%, 14%]. The base correlation for the new tranche at 

“Mezzanine” level is calculated as the correlation which makes the spread of this 

hypothetical tranche equal to its market price that would be the sum of the market 

prices of the original Equity [0%, 3%] tranche and the original Mezzanine [3%, 14%] 

tranche. For computing the model price, the expected losses of the new hypothetical 

tranche is the sum of the expected losses in the original Equity [0%, 3%] tranche and 

the original Mezzanine [3%, 14%] tranche.  

In the same way, the Senior tranche is now replaced conceptually by a 

hypothetical equity tranche at detachment points [0%, 100%] that combines the 

original Equity tranche [0%, 3%], Mezzanine tranche [3%, 14%], and Senior tranche 

[14%, 100%]. The base correlation for the new tranche at “Senior” level is calculated 
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as the correlation which makes the spread of this hypothetical tranche equal to its 

market price that would be the sum of the market prices of the original Equity [0%, 

3%] tranche, the original Mezzanine [3%, 14%] tranche, and the Senior tranche [14%, 

100%]. For computing the model price, the expected losses of the new hypothetical 

tranche is the sum of the expected losses in the original Equity [0%, 3%] tranche, the 

original Mezzanine [3%, 14%] tranche, and the original Senior tranche [14%, 100%]. 

Figure 16 shows the implied correlation and the base correlation calculated in the 

Equity, Mezzanine and Senior tranches. It can be observed that the implied correlation 

is larger for Equity and Senior tranches and smaller for Mezzanine tranche, exhibiting 

a “smile” characteristic. In contrast, the base correlation does not display the smile 

though it increases slightly with the seniority of tranches.  

 

4.4 Extending to Lévy Processes 

From the empirical results it is clear that the spreads in the various tranches are 

sensitive to the default probabilities. In particular, in the analytic model, the default 

probabilities are represented by Xk which follows a distribution, for example, in the 

single factor Gaussian copula model. With a single factor approach, one can extend 

the default modeling to encompass more complicated situations with modeling 

correlated defaults or introducing fat-tailed distribution to Xk. Examples of the latter 

include the Variance Gamma, the Normal Inverse Gaussian (NIG), the Meixner, and 

other distributions. These generically belong to the class of Lévy processes described 

in Sato (2000). NIG processes are also discussed in detail in Rydberg (1996). Using 

the NIG process for example could lead to a more accurate pricing of all the tranches 

within a CDO structure. This is because by more accurately modeling the default 
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probabilities at different loss levels, the spread in each tranche is more accurately 

priced. An NIG process could be used as follows. 

Following Equation (7), suppose there is a single (common) factor model of  

comprising a common factor 

kX

M  and an individual factor where kZ

kkkk ZaMaX 21−+= Kk ,,2,1 L= ,                                                     

but where M and Zk now follow independent NIG-processes. In particular, the density 

of the NIG(Xk; α, β, δ, μ) is given by  

( ) ( )( )
( )
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2
1

2
1

1 exp θθθωω dKwhere , and 022 >> βα is modified Bessel 

function of the third kind. Then the probability distribution of default can be modeled 

by the distribution of the NIG process as described. Simulations can be performed 

according to the density function. 

An immediate outcome of Lévy process modeling of the default processes would 

be the more accurate pricing of individual tranches within a CDO. Fatter tails 

allocated to the probabilities of default modeling would provide for higher default 

intensities at the Equity tranche and also at the Senior tranche. This would imply that 

compared to the Gaussian copula method, an NIG method is likely to produce higher 

theoretical spreads for Equity and Senior tranches, and lower spread for the 

Mezzanine tranche. By matching to the market price, this would in turn imply that the 

implied correlations for the Equity and the Senior tranche under Lévy processes 

would be lower than those in the Gaussian process. In the latter, the implied 

correlation has to work harder and be pumped up in order to reflect a higher market 

price due to the higher default probabilities. Since the latter are captured by the Lévy 
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process, the implied correlation becomes flatter. Indeed, many research undertaken at 

this time all attempt to bring about a flat implied correlation curve using fat-tailed 

processes. In this sense, the correlation bias or smile can be explained away. 

 

5. Conclusions 

This paper studies the pricing of CDO using Monte Carlo and analytic methods. 

The portfolio loss, the expected loss in each CDO tranche, the tranche spread, and the 

default delta sensitivity are analyzed with respect to maturity, default correlation, 

default intensity and recovery rate. The results are summarized as follows. 

 

Maturity 

The portfolio loss and the loss distributed in each tranche increases with the increase 

in time to maturity T , due to the higher probability of default for larger T . The 

spread of Equity tranche is not sensitive to T . However, in the Mezzanine and Senior 

tranches, the spreads increase with a larger T . As for default delta sensitivity, the 

Equity tranche showed mixed characteristics with respect to . Both these 

sensitivities of the Mezzanine and Senior tranches increase with increase in T . 

T

 

Default correlation 

ρThe portfolio expected loss EL is not sensitive to the default correlation  once the 

intensity λ  is fixed. Equity tranche EL appears to decrease with increase of ρ . In 

contrast, Senior tranche EL increases with increase of ρ . Mezzanine EL displays both 

possibilities. Similar to EL, the spread as well as default correlation sensitivity of 

Equity tranche decreases and that of Senior tranche increases with the increase of ρ . 

Mezzanine tranches show mixed results. For sensitivity, both Equity and Mezzanine 
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ρtranches have mixed results with respect to , while Senior tranche sensitivity 

increases with increase of ρ . 

 

Intensity 

The spreads in all tranches increase with increase of λ  . Regarding default delta 

sensitivity, Equity tranche’s decreases and Senior tranche’s increases with increase of 

λ . Mezzanine tranche shows mixed results.  

 

Recovery 

Contrary to the case of intensity, recovery rate has an reverse relationship with the 

spreads of all tranches. The spreads in all tranches decrease with increase of recovery 

rate R. The sensitivity of Equity increases and that of Senior tranche decreases with 

increase of . Mezzanine tranche shows mixed results.  R

The analysis of default correlation shows that the implied default correlation has a 

“smile” characteristic, while the base correlation increases slightly with the seniority 

of tranches. 

Our results also show that the Monte Carlo method is slower in terms of 

computational time than the analytic method. Monte Carlo does not appear to be a 

satisfactory approach for calculating default delta sensitivity as the sensitivity values 

computed under Monte Carlo vary widely.  

Considering the disadvantages of the current Monte Carlo methods, future work 

should explore improved Monte Carlo methods. The performance of the analytic 

approach can also be further improved in future work. The Likelihood and Pathwise 

methods used in Joshi and Kainth (2004) can be explored for calculating the default 

delta sensitivity of CDO.  
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 Figure 1:  Illustration of a CDO structure  
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Figure 2: The portfolio expected loss (EL) with different maturity and default 
correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 3:  The Equity tranche expected loss (EL) with different maturity and default 
correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 4: Portfolio loss distribution in the entire loss range (a) and large losses 
(b). Large loss is defined as loss over 0.186. Two cases of default correlation ρ = 0 
and ρ = 0.9 are considered. Time horizon is T = 5 years. 
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Figure 5: The portfolio loss distribution of Equity tranche (a) and Senior tranche 
(b). Two cases of default correlation ρ = 0 and ρ = 0.9 are considered. 
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Figure 6: The Mezzanine tranche expected loss (EL) with different maturity and 
default correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 7: The Senior tranche expected loss (EL) with different maturity and 
default correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 8:  The Equity tranche spread with different maturity and default 
correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 9: The delta sensitivity of Equity tranche with different maturity and 
default correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 10: The Mezzanine tranche spread with different maturity and default 
correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 11:  The delta sensitivity of Mezzanine tranche with different maturity 
and default correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 12: The Senior tranche spread with different maturity and default 
correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 13: The delta sensitivity of Senior tranche with different maturity and 
default correlation in the analytic method (a) and Monte Carlo method (b) 
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Figure 14: Tranche spread with respect to different default intensities and 
recovery rates in the Equity tranche (a), Mezzanine tranche (b), and Senior 
tranche (c) 
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Figure 15:  Default Delta sensitivity with respect to different default intensities 
and recovery rates in the Equity tranche (a), Mezzanine tranche (b), and Senior 
tranche (c) 
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Figure 16:   The implied correlation and base correlation 
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Table 1: A summary of literature review in CDO 
 
Publications* Default correlation 

methods 
Portfolio loss methods Default delta 

sensitivity  
Conclusions 

Sidenius and 
Basu (2003) 

One-factor Copula Analytical approach by a 
recursion-based 
probability calculation 

Uses Brute-force 
method and an 
analytical method   

Proposed a number of techniques to improve the efficiency with which prices and hedge parameters 
can be calculated for credit basket derivatives.  

Gibson (2004) Same as above Same as above Brute-force 
method 

The value of the senior tranche decreases as correlation increases. In contrast, the equity tranche 
value increases as default correlation increases. CDO tranches are sensitive to the business cycle.  

Laurent and 
Gregory (2003) 

One-factor Copula Analytic approach based 
on Fourier method  

N.A. Proposed an analytic approach based on Fourier method to calculate the conditional loss distribution 
on a portfolio as a convolution of the conditional loss distributions of each entity in the portfolio.  
Compare some popular Copula functions such as Gaussian Copula model, stochastic correlation 
extension to Gaussian Copula, Student t  Copula model, double t  factor model, clayton and 
Marshall-Olkin Copula. 

Burtschell etc. 
(2005) 

Copulas Laurent and Gregory’s 
analytical approach 

N.A. 

 
Peixoto (2004) Copula Monte Carlo and 

analytical methods 
N.A. Compare Monte Carlo and analytical method in the pricing of CDO. Both prices are within one 

standard deviation.  
Analytic method Mina and Stern 

(2003) 
One-factor Copula Analytical approach based 

on Fourier transform 
method 

Senior Tranche price depends on the best while Equity Tranche on the worst names in a portfolio. 
Mezzanine behavior varies over time. Loan-equivalent hedges depend on the entire portfolio. Equity 
Tranche value rises while Senior Tranche value drops when correlation increases.  

Chen and Zhang 
(2003) 

One-factor Copula Analytical approach based 
on Fourier transform 
method 

N.A. FFT/FI generates loss distributions more accurate than those by the Monte Carlo simulations. 

Duffie and 
Garleanu (2001) 

Dependent default 
intensity 

Monte Carlo  N.A. Illustrated the effects of correlation and prioritization for the market valuation, diversity score and 
risk of CDO in a simple jump-diffusion setting for correlated default intensities. 

 
Hull and White 
(2004) 

One-factor Copula Two analytic methods: 
recursive approach and 
iterative numerical 
procedure 

N.A. The procedures are attractive alternatives to Monte Carlo simulation and have advantages over the 
fast Fourier transform approach. Implied correlations are typically not the same for all tranches.  

 

Andersen and 
Sidenius (2004) 

One-factor Copula Analytical recursive 
method 

Analytic method This paper extends the standard Gaussian Copula model by using random recovery rates and random 
systematic factor loadings. It is capable of producing correlation skews similar to those observed in 
the market. 

Kalemanova, 
etc. (2005) 

Copula with Normal 
inverse Gaussian 
distribution 

Analytic approach based 
on Large Homogenous 
portfolio (LHP) approach  

N.A. Proposed a modification of the LHP model replacing the Student t distribution with the Normal 
inverse Gaussian (NIG). The employment of the NIG distribution does not only speed up the 
computation time significantly but also brings more flexibility into the dependence structure.  

Blum and 
Overbeck (2004) 

One-factor Copula Analytic approach  N.A. Analytic techniques constitute a powerful tool for the evaluation of CDO. 

Morokoff (2003) Copula Monte Carlo N.A. This paper describes a multiple-time step simulation approach that tracks cash flows over the life of a 
CDO deal to determine the risk characteristics of CDO tranches.  

Hurd and 
Kuznetsov 
(2005) 

N.A.  Affine Markov Chain 
model 

N.A.  Combined a continuous time Markov Chain with an independent set of affine processes that yield a 
flexible framework for which computations are very efficient. 

 

* Note: The publication name can be found in the Reference section of this paper.
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Table 2: The characteristics of CDO used in this study 
 
 

Maturity 5 years 

Hazard rate 0.03 

Recovery rate 0.4 

Risk-free rate 5% with continuous compounding 

Payment frequency  quarterly payment 

 Equity tranche %]3,0[

%]14%,3[Mezzanine tranche  

 %]100%,14[Senior tranche 
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5=Tρ  for  Table 3: Portfolio expected loss (EL), Equity EL, Mezzanine EL and Senior EL with different values of 

 
 

Portfolio EL Equity EL Mezzanine EL Senior EL Default 
correlation 
ρ  

Analytic Monte 
Carlo 

Difference Analytic Monte 
Carlo 

Difference Analytic Monte Difference Analytic Monte 
Carlo 

Difference 
Carlo 

0 0.0837  0.0836  0.0001 0.0300  0.0300  0.0000 0.0537  0.0535  0.0001 0.0000  0.0000  0.0000  
0.1 0.0838  0.0831  0.0008 0.0290  0.0290  0.0000 0.0504  0.0500  0.0004 0.0045  0.0041  -0.0003  
0.2 0.0839  0.0829  0.0010 0.0270  0.0270  0.0000 0.0467  0.0463  0.0004 0.0102  0.0096  -0.0006  
0.3 0.0830  0.0811  0.0019 0.0248  0.0246  0.0002 0.0435  0.0426  0.0009 0.0157  0.0140  -0.0017  
0.4 0.0835  0.0839  -0.0003 0.0225  0.0226  -0.0001 0.0402  0.0407  -0.0004 0.0208  0.0206  -0.0002  
0.5 0.0857  0.0876  -0.0019 0.0201  0.0204  -0.0004 0.0370  0.0387  -0.0017 0.0257  0.0275  0.0018  
0.6 0.0829  0.0812  0.0016 0.0178  0.0175  0.0003 0.0346  0.0336  0.0009 0.0315  0.0301  -0.0014  
0.7 0.0851  0.0859  -0.0009 0.0153  0.0153  0.0000 0.0316  0.0321  -0.0005 0.0372  0.0385  0.0013  
0.8 0.0833  0.0828  0.0005 0.0127  0.0128  -0.0001 0.0286  0.0286  0.0000 0.0429  0.0414  -0.0016  
0.9 0.0836  0.0831  0.0005 0.0300  0.0300  0.0000 0.0242  0.0247  -0.0005 0.0498  0.0505  0.0007  
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Table 4: Spreads of Equity, Mezzanine and Senior tranches with different values of ρ  for  5=T

 
 

Equity Mezzanine Senior Default 
correlation 
ρ  

Analytic Monte 
Carlo 

Difference Analytic Monte 
Carlo 

Difference Analytic Monte Difference 
Carlo 

0 1.1065  1.1036  0.0029  0.1133  0.1107  0.0026  0.0000  0.0000  0.0000  
0.1 0.7372  0.7375  -0.0003  0.1099  0.1077  0.0021  0.0009  0.0010  0.0000  
0.2 0.5347  0.5327  0.0020  0.1012  0.1015  -0.0003  0.0021  0.0023  -0.0002  
0.3 0.4033  0.4009  0.0024  0.0964  0.0953  0.0010  0.0035  0.0035  0.0000  
0.4 0.3210  0.3185  0.0025  0.0885  0.0880  0.0004  0.0047  0.0047  -0.0001  
0.5 0.2493  0.2470  0.0023  0.0818  0.0803  0.0015  0.0060  0.0059  0.0002  
0.6 0.1973  0.1944  0.0028  0.0739  0.0749  -0.0011  0.0068  0.0073  -0.0005  
0.7 0.1557  0.1537  0.0019  0.0692  0.0678  0.0014  0.0088  0.0087  0.0001  
0.8 0.1152  0.1156  -0.0003  0.0606  0.0604  0.0001  0.0103  0.0101  0.0002  
0.9 0.0808  0.0794  0.0015  0.0505  0.0500  0.0005  0.0116  0.0119  -0.0002  



 
 
 

 
 

5=Tρ  for  Table 5: Default delta sensitivity of Equity, Mezzanine and Senior tranches with different values of 
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Equity Mezzanine Senior Default 
correlation 
ρ  

Analytic Monte 
Carlo 

Difference Analytic Monte 
Carlo 

Difference Analytic Monte Difference 
Carlo 

0 0.0014  0.0014  0.0000  0.0248  0.0239  0.0009  0.0001  0.0002  0.0000  
0.1 0.0025  0.0028  -0.0003  0.0195  0.0167  0.0028  0.0042  0.0034  0.0008  
0.2 0.0033  0.0035  -0.0002  0.0161  0.0165  -0.0004  0.0063  0.0067  -0.0004  
0.3 0.0036  0.0033  0.0003  0.0135  0.0133  0.0002  0.0085  0.0078  0.0007  
0.4 0.0038  0.0037  0.0001  0.0124  0.0115  0.0009  0.0092  0.0084  0.0008  
0.5 0.0037  0.0040  -0.0003  0.0108  0.0100  0.0008  0.0105  0.0109  -0.0004  
0.6 0.0036  0.0034  0.0002  0.0099  0.0074  0.0025  0.0113  0.0116  -0.0003  
0.7 0.0033  0.0031  0.0002  0.0089  0.0090  -0.0001  0.0128  0.0121  0.0027  
0.8 0.0030  0.0030  0.0000  0.0076  0.0082  -0.0006  0.0140  0.0115  0.0025  
0.9 0.0026  0.0027  -0.0001  0.0068  0.0077  -0.0008  0.0150  0.0144  0.0026  
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