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Corporate/Securities Fraud



A company is underperforming,
motivated to inflate earnings or
reduce expenses

Worldcom (1999-2002)
Capitalizing costs
(should be expensed)

Olympus (late 1980s-2011):
Hide losses in a separate
entity

"Tobashi scheme"
Wells Fargo (2011-2018?)

Fake/duplicate
customers and
transactions
"improperly
encouraging" to actively
trade

A company is overperforming,
motivated to save for future rainy
days (smoothing of earning)

Dell (2002-2007)
Cookie jar reserves

Brystol-Myers Squibb (2000-
2001)

Cookie jar reserves

Typical accounting fraud
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https://www.sec.gov/Archives/edgar/data/723527/000093176303001862/dex991.htm
https://en.wikipedia.org/wiki/Olympus_scandal
https://en.wikipedia.org/wiki/Wells_Fargo_account_fraud_scandal
https://www.economist.com/newsbook/2010/07/23/taking-away-dells-cookie-jar
https://www.sec.gov/news/press/2004-105.htm


Other accounting fraud types
Apple (2001)

Options backdating
Commerce Group Corp (2003)

Using an auditor that isn't registered
Cardiff International (2017)

Releasing 10Q fin. statements that were not reviewed by an auditor
China North East Petroleum

Related party transactions (transferring funds to family members)
Insufficient internal controls

Citigroup (2008-2014) via Banamex
Asia Pacific Breweries

Bribery
Keppel O&M (2001-2014): US$55M to Brazilian officials
Baker Hughes (2001, 2007: Payments to officials in Indonesia, and
possibly to Brazil/India (2001),
Angola/Indonesia/Nigeria/Russia/Uzbekistan (2007)

ZZZZ Best (1982-1987): Fake the whole company
Also faked a real project to get a clean audit to take the company public
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https://www.sec.gov/news/press/2007/2007-70.htm
https://www.sec.gov/litigation/admin/2007/34-56403.pdf
https://www.sec.gov/news/press/2007/2007-183.htm
https://www.sec.gov/litigation/admin/2018/34-84258.pdf
https://www.sec.gov/litigation/litreleases/2012/lr22552.htm
https://www.sec.gov/litigation/admin/2018/34-83858.pdf
http://eresources.nlb.gov.sg/infopedia/articles/SIP_422_2005-01-25.html
https://mothership.sg/2018/01/what-is-the-keppel-corruption-scandal-all-about/
https://www.sec.gov/litigation/admin/34-44784.htm
https://www.nytimes.com/2007/04/27/business/worldbusiness/27settle.html
https://www.nytimes.com/1990/02/25/books/nothing-but-zzzz-best.html


More interesting fraud types
Bernard Madoff: Ponzi scheme

1. Get money from individuals for "investments"
2. Pretend as though the money was invested
3. Use new investors' money to pay back anyone withdrawing

Applied Wellness Corporation (2008)
Failed to file annual and quarterly reports

Tesla (2018): Misleading statements on Twitter
Settled the charge in one week

Am-Pac International (1997)
Auditors lacked independence: maintain books, generate FS, then audit
their own work

Keppel Club (2014)
Employees created 1,280 fake memberships, sold them, and retained all
profits (SG$37.5M)
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https://www.nytimes.com/2009/01/25/business/25bernie.html
https://www.sec.gov/litigation/admin/2010/34-61344a.pdf
https://www.sec.gov/news/press-release/2018-219
https://www.sec.gov/news/press-release/2018-226
https://www.sec.gov/litigation/litreleases/lr17024.htm
https://www.straitstimes.com/singapore/courts-crime/keppel-club-duo-convicted-for-37m-membership-scam


What will we look at today?
Misstatements: non-conmpliance with accounting standards, maybe an
unintentional error but in many cases seemingly intentionally done by
management or other employees at the firm (ie, fraud).

How do misstatements come to light?

1. The company/management admits to it publicly
2. A government entity forces the company to disclose

In more egregious cases, government agencies may disclose the fraud
publicly as well

3. Investors sue the firm, forcing disclosure
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Where are these disclosed? (US)
By the company:

1. 10-K/A filings (10-K: annual report, /A: amendment)
Big R: material corrections to previously issued financial statements
Note: not all 10-K/A filings are caused by fraud!

Audit Analytic's write-up on this
2. In a note inside a 10-K filing

Little r: immaterial corrections
3. In a press release, which is later filed with the US SEC as an 8-K

8-Ks are filed for many other reasons too though

By the regulator:

1. By the SEC through the Section 13(b)
Section 13(b) of the Securities Exchange Act, commonly called the
“books and records” provision, requires issuers to “make and keep books,
records, and accounts, which, in reasonable detail, accurately and fairly
reflect the transactions and dispositions of the assets of the issuer."

2. SEC AAERs: Accounting and Auditing Enforcement Releases
Generally highlight larger or more important cases
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https://www.sec.gov/forms
https://assets.ey.com/content/dam/ey-sites/ey-com/en_us/topics/assurance/accountinglink/ey-frdbb2752-05-11-2020-v2.pdf
https://www.auditanalytics.com/blog/reasons-for-an-amended-10-k-2017/
https://assets.ey.com/content/dam/ey-sites/ey-com/en_us/topics/assurance/accountinglink/ey-frdbb2752-05-11-2020-v2.pdf
https://www.sec.gov/spotlight/fcpa/fcpa-recordkeeping.pdf
https://www.sec.gov/divisions/enforce/friactions.shtml


AAERs
Today we will examine these AAERs

Using a proprietary data set of > 1,000 such releases
The data is available here

To get a sense of the data we're working with, read the Summary
section (starting on page 2) of this AAER against Sanofi SEC against
Sanofi
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https://sites.google.com/usc.edu/aaerdataset/home
https://www.sec.gov/litigation/admin/2018/34-84017.pdf


Predicting Fraud



Main question
How can we detect if a firm is involved in a major instance of
missreporting?

This is a pure forensic analytics question
"Major instance of misreporting" will be implemented using AAERs

Unfortunately we don't have an "Altman Z" type of measure from the
academia yet, partly due to the complexity of fraudulent activities.
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Approaches
In these slides, we'll walk through the primary detection methods since the
1990s, up to currently used methods
1990s: Financials and financial ratios

Follow up in 2011
Late 2000s/early 2010s: Characteristics of firm's disclosures
mid 2010s: More holistic text-based measures of disclosures

This will tie to a future topic where we will explore how to work with
text

All of these are discussed in Section 2.1 of Brown, Crowley and
Elliott (2020) -- we'll refer to the research paper as BCE for short
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https://doi.org/10.1111/1475-679X.12294


The data
Preprocessed data from BCE(2020)
It contains 401 variables from Compustat, CRSP, and SEC

Many precalculated measures including:
Firm characteristics, such as auditor type (bigNaudit)
Financial measures, such as total accruals (rsst_acc)
Financial ratios, such as ROA (ni_at)
AR characteristics, such as mean sentence length (sentlen_u)
ML based content analysis (everything with Topic_ prepended)

Testing data (2004) and training data (1999-2003) by variable Test
Testing == 1: testing data
Testing == 0: training data

Reminder: data provided in the course are mainly through the WRDS
subscription. You are prohibited by law from sharing the data with
people outside of SMU community.
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Event frequency
Very low event frequencies (<10%) can make things tricky

year total_AAERS total_observations percent

1999 46 2195 2.10%

2000 50 2041 2.45%

2001 43 2021 2.13%

2002 50 2391 2.09%

2003 57 2936 1.94%

2004 49 2843 1.72%

df %>%
  group_by(year) %>%
  mutate(total_AAERS = sum(AAER), total_observations = n(),
         percent = scales::percent(total_AAERS/total_observations,
                                   accuracy = 0.01)) %>%
  slice(1) %>%  ungroup() %>%
  select(year, total_AAERS, total_observations, percent) %>% html_df
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Dealing with imbalanced data
imbalanced dataset: the number of obs belonging to one class is significantly
lower than those belonging to the other classes.
A few ways to handling imblanced dataset:

(1). Resampling to a balanced dataset (packages incl.
package:imbalance, package:ROSE, package:DMwR, etc)
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Oversampling by SMOTE
Not good to use undersampling alone as it reduces data points.
SMOTE: Synthetic Minority Over-sampling Technique

Combine oversampling minority and undersampling majority
Introducing synthetic examples along the line joining all of the k nearest
neighbors of minority class.
package:DMwR and package:smotefamily have the SMOTE()
function
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https://arxiv.org/abs/1106.1813


Dealing with imbalanced data
imbalanced dataset: the number of obs belonging to one class is significantly
lower than those belonging to the other classes.
A few ways to handling imblanced dataset:

(2). Algorithmic ensemble techniques such as bagging (eg, Random
Forest) and boosting (eg, XGBoost)

we will try the ensembling techniques
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1990s approach



EBIT
Earnings / revenue
ROA
Log of liabilities
liabilities / equity
liabilities / assets
quick ratio
Working capital / assets
Inventory / revenue
inventory / assets
earnings / PP&E
A/R / revenue

Change in revenue
Change in A/R + 1

 change in A/R
Change in gross profit + 1

 change in gross profit
Gross profit / assets
Revenue minus gross profit
Cash / assets
Log of assets
PP&E / assets
Working capital

The 1990s model
Many financial measures and ratios can help to predict fraud

Misreporting firms' financials should be different from expected
odd financials

> 10%

> 10%
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Approach
fit_1990s <- glm(AAER ~ ebit + ni_revt + ni_at + log_lt + ltl_at + lt_seq +
                   lt_at + act_lct + aq_lct + wcap_at + invt_revt + invt_at +
                   ni_ppent + rect_revt + revt_at + d_revt + b_rect + b_rect +
                   r_gp + b_gp + gp_at + revt_m_gp + ch_at + log_at +
                   ppent_at + wcap,
                 data = df[df$Test == 0, ], #Test=0 is the training data
                 family = binomial)
tidy(fit_1990s)

## # A tibble: 26 x 5
##    term          estimate std.error statistic      p.value
##    <chr>            <dbl>     <dbl>     <dbl>        <dbl>
##  1 (Intercept) -4.66       0.834      -5.59   0.0000000226
##  2 ebit        -0.000356   0.000109   -3.26   0.00112     
##  3 ni_revt      0.0366     0.0306      1.20   0.231       
##  4 ni_at       -0.320      0.233      -1.37   0.169       
##  5 log_lt       0.149      0.341       0.438  0.661       
##  6 ltl_at      -0.231      0.707      -0.326  0.744       
##  7 lt_seq      -0.0000283  0.000457   -0.0619 0.951       
##  8 lt_at       -0.856      0.927      -0.923  0.356       
##  9 act_lct      0.140      0.0701      2.00   0.0455      
## 10 aq_lct      -0.175      0.0916     -1.91   0.0559      
## # ... with 16 more rows
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ROC

##     In sample AUC Out of sample AUC 
##         0.7483132         0.7292981
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Code for last slide's curve
library(ROCR)
# Have to remove all NA in prediction() with ROCR 1.0-11 version
# You may install the older version which does not require so
# https://cran.r-project.org/src/contrib/Archive/ROCR/ROCR_1.0-7.tar.gz
pred <- predict(fit_1990s, df, type="response")
ROCpred <- prediction(as.numeric(pred[df$Test == 0 & !is.na(pred)]),
                      as.numeric(df[df$Test == 0 & !is.na(pred), ]$AAER))
ROCpred_out <- prediction(as.numeric(pred[df$Test == 1 & !is.na(pred)]),
                          as.numeric(df[df$Test==1 & !is.na(pred), ]$AAER))
ROCperf <- performance(ROCpred, 'tpr', 'fpr')
ROCperf_out <- performance(ROCpred_out, 'tpr', 'fpr')
df_ROC_1990s <- data.frame(FalsePositive = c(ROCperf@x.values[[1]]),
                           TruePositive = c(ROCperf@y.values[[1]]))
df_ROC_out_1990s <- data.frame(FalsePositive = c(ROCperf_out@x.values[[1]]),
                               TruePositive = c(ROCperf_out@y.values[[1]]))

ggplot() +
  geom_line(data = df_ROC_1990s, aes(x = FalsePositive, y = TruePositive,
                                     color = "In Sample")) +
  geom_line(data = df_ROC_out_1990s, aes(x = FalsePositive, y = TruePositive,
                                         color = "Out of Sample")) + 
  geom_abline(slope = 1)

auc <- performance(ROCpred, measure = "auc")
auc_out <- performance(ROCpred_out, measure = "auc")
aucs_1990s <- c(auc@y.values[[1]], auc_out@y.values[[1]])
names(aucs_1990s) <- c("In sample AUC", "Out of sample AUC")
aucs_1990s
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The 2011 follow up



Log of assets
Total accruals
% change in A/R
% change in inventory
% soft assets
% change in sales from cash
% change in ROA
Indicator for stock/bond issuance
Indicator for operating leases
BV equity / MV equity

Lag of stock return minus value
weighted market return
Below are BCE's additions
Indicator for mergers
Indicator for Big N auditor
Indicator for medium size auditor
Total financing raised
Net amount of new capital raised
Indicator for restructuring

The 2011 model

Based on Dechow, Ge, Larson and Sloan (2011)
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https://doi.org/10.1111/j.1911-3846.2010.01041.x


The model
fit_2011 <- glm(AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +
                  soft_assets + pct_chg_cashsales + chg_roa + issuance +
                  oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit +
                  midNaudit + cffin + exfin + restruct,
                data = df[df$Test == 0, ],  family = binomial)
tidy(fit_2011)

## # A tibble: 18 x 5
##    term               estimate std.error statistic  p.value
##    <chr>                 <dbl>     <dbl>     <dbl>    <dbl>
##  1 (Intercept)       -7.15        0.534   -13.4    6.82e-41
##  2 logtotasset        0.321       0.0355    9.04   1.53e-19
##  3 rsst_acc          -0.219       0.301    -0.728  4.67e- 1
##  4 chg_recv           1.10        1.06      1.04   2.98e- 1
##  5 chg_inv            0.0390      1.25      0.0311 9.75e- 1
##  6 soft_assets        2.31        0.333     6.94   3.81e-12
##  7 pct_chg_cashsales -0.000691    0.0109   -0.0635 9.49e- 1
##  8 chg_roa           -0.270       0.255    -1.06   2.91e- 1
##  9 issuance           0.144       0.319     0.453  6.51e- 1
## 10 oplease_dum       -0.203       0.197    -1.03   3.03e- 1
## 11 book_mkt           0.0150      0.0111    1.36   1.75e- 1
## 12 lag_sdvol          0.0517      0.0555    0.932  3.52e- 1
## 13 merger             0.353       0.151     2.33   1.96e- 2
## 14 bigNaudit         -0.200       0.360    -0.555  5.79e- 1
## 15 midNaudit         -0.489       0.512    -0.956  3.39e- 1
## 16 cffin              0.456       0.344     1.33   1.85e- 1
## 17 exfin             -0.00536     0.0393   -0.136  8.92e- 1
## 18 restruct           0.383       0.147     2.60   9.30e- 3
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ROC

##     In sample AUC Out of sample AUC 
##         0.7445378         0.6849225
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Code for last slide's curve
library(ROCR)
pred <- predict(fit_2011, df, type = "response")
ROCpred <- prediction(as.numeric(pred[df$Test == 0 & !is.na(pred)]),
                      as.numeric(df[df$Test==0 & !is.na(pred), ]$AAER))
ROCpred_out <- prediction(as.numeric(pred[df$Test == 1 & !is.na(pred)]),
                          as.numeric(df[df$Test == 1 & !is.na(pred), ]$AAER))
ROCperf <- performance(ROCpred, 'tpr', 'fpr')
ROCperf_out <- performance(ROCpred_out, 'tpr', 'fpr')
df_ROC_2011 <- data.frame(FalsePositive = c(ROCperf@x.values[[1]]),
                          TruePositive=c(ROCperf@y.values[[1]]))
df_ROC_out_2011 <- data.frame(FalsePositive = c(ROCperf_out@x.values[[1]]),
                              TruePositive = c(ROCperf_out@y.values[[1]]))

ggplot() +
  geom_line(data = df_ROC_2011, aes(x = FalsePositive, y = TruePositive,
                                    color = "In Sample")) +
  geom_line(data = df_ROC_out_2011, aes(x = FalsePositive, y = TruePositive,
                                        color = "Out of Sample")) + 
  geom_abline(slope = 1)

auc <- performance(ROCpred, measure = "auc")
auc_out <- performance(ROCpred_out, measure = "auc")
aucs_2011 <- c(auc@y.values[[1]], auc_out@y.values[[1]])
names(aucs_2011) <- c("In sample AUC", "Out of sample AUC")
aucs_2011
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Late 2000s/early 2010s
approach



Log of # of bullet points + 1
# of characters in file header
# of excess newlines
Amount of html tags
Length of cleaned file, characters
Mean sentence length, words
S.D. of word length
S.D. of paragraph length
(sentences)

Word choice variation
Readability

Coleman Liau Index
Fog Index

% active voice sentences
% passive voice sentences
# of all cap words
# of exclamation mark !
# of question mark ?

The late 2000s/early 2010s model

From a variety of papers

Generally pulled from the communications literature
Sometimes ad hoc

The main idea:
Companies that are misreporting probably write their annual report
differently
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The late 2000s/early 2010s model
fit_2000s <- glm(AAER ~ bullets + headerlen + newlines + alltags +
                   processedsize + sentlen_u + wordlen_s + paralen_s +
                   repetitious_p + sentlen_s + typetoken + clindex + fog +
                   active_p + passive_p + lm_negative_p + lm_positive_p +
                   allcaps + exclamationpoints + questionmarks,
                 data=df[df$Test == 0, ], family = binomial)
tidy(fit_2000s)

## # A tibble: 21 x 5
##    term               estimate   std.error statistic    p.value
##    <chr>                 <dbl>       <dbl>     <dbl>      <dbl>
##  1 (Intercept)   -5.66         3.14           -1.80  0.0716    
##  2 bullets       -0.0000263    0.0000263      -1.00  0.316     
##  3 headerlen     -0.000294     0.000348       -0.846 0.397     
##  4 newlines      -0.0000482    0.000122       -0.395 0.693     
##  5 alltags        0.0000000506 0.000000257     0.197 0.844     
##  6 processedsize  0.00000571   0.00000129      4.44  0.00000919
##  7 sentlen_u     -0.0379       0.0690         -0.550 0.583     
##  8 wordlen_s      0.128        1.20            0.107 0.915     
##  9 paralen_s     -0.0481       0.0305         -1.58  0.115     
## 10 repetitious_p -1.67         1.67           -1.00  0.315     
## # ... with 11 more rows
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ROC

##     In sample AUC Out of sample AUC 
##         0.6377783         0.6295414
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Code for last slide's curve
library(ROCR)
pred <- predict(fit_2000s, df, type = "response")
ROCpred <- prediction(as.numeric(pred[df$Test == 0 & !is.na(pred)]),
                      as.numeric(df[df$Test == 0 & !is.na(pred), ]$AAER))
ROCpred_out <- prediction(as.numeric(pred[df$Test == 1 & !is.na(pred)]),
                          as.numeric(df[df$Test == 1 & !is.na(pred), ]$AAER))
ROCperf <- performance(ROCpred, 'tpr', 'fpr')
ROCperf_out <- performance(ROCpred_out, 'tpr', 'fpr')
df_ROC_2000s <- data.frame(FalsePositive = c(ROCperf@x.values[[1]]),
                           TruePositive = c(ROCperf@y.values[[1]]))
df_ROC_out_2000s <- data.frame(FalsePositive = c(ROCperf_out@x.values[[1]]),
                               TruePositive = c(ROCperf_out@y.values[[1]]))

ggplot() +
  geom_line(data = df_ROC_2000s, aes(x = FalsePositive, y = TruePositive,
                                     color = "In Sample")) +
  geom_line(data = df_ROC_out_2000s, aes(x = FalsePositive, y = TruePositive,
                                         color = "Out of Sample")) + 
  geom_abline(slope = 1)

auc <- performance(ROCpred, measure = "auc")
auc_out <- performance(ROCpred_out, measure = "auc")
aucs_2000s <- c(auc@y.values[[1]], auc_out@y.values[[1]])
names(aucs_2000s) <- c("In sample AUC", "Out of sample AUC")
aucs_2000s
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Combining the 2000s and 2011
models

Why is it appropriate to combine the 2011 model with the 2000s
model?

2011 model: Parsimonious financial model
2000s model: Textual characteristics

Little theoretical overlap

Limited multicollinearity across measures
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The model
fit_2000f <- glm(AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +
                   soft_assets + pct_chg_cashsales + chg_roa + issuance +
                   oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit +
                   midNaudit + cffin + exfin + restruct + bullets + headerlen +
                   newlines + alltags + processedsize + sentlen_u + wordlen_s +
                   paralen_s + repetitious_p + sentlen_s + typetoken +
                   clindex + fog + active_p + passive_p + lm_negative_p +
                   lm_positive_p + allcaps + exclamationpoints + questionmarks,
                 data = df[df$Test == 0, ], family = binomial)
tidy(fit_2000f)

## # A tibble: 38 x 5
##    term              estimate std.error statistic  p.value
##    <chr>                <dbl>     <dbl>     <dbl>    <dbl>
##  1 (Intercept)       -1.63       3.41     -0.479  6.32e- 1
##  2 logtotasset        0.344      0.0392    8.77   1.86e-18
##  3 rsst_acc          -0.212      0.299    -0.709  4.78e- 1
##  4 chg_recv           1.02       1.05      0.969  3.33e- 1
##  5 chg_inv           -0.0946     1.23     -0.0772 9.38e- 1
##  6 soft_assets        2.57       0.339     7.60   3.01e-14
##  7 pct_chg_cashsales -0.00113    0.0110   -0.103  9.18e- 1
##  8 chg_roa           -0.270      0.247    -1.09   2.75e- 1
##  9 issuance           0.147      0.322     0.457  6.48e- 1
## 10 oplease_dum       -0.286      0.202    -1.42   1.57e- 1
## # ... with 28 more rows
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ROC

##     In sample AUC Out of sample AUC 
##         0.7664115         0.7147021
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The BCE model



The BCE approach
Retain the variables from the other regressions
Add in a machine-learning based measure of topics

Every document is a mixture of topics. It may contain words from several
topics in particular proportions. Eg, we could say "Document 1 is 90%
topic A and 10% topic B, while Document 2 is 30% topic A and 70%
topic B."
Every topic is a mixture of words. Eg, we imagine a two-topic model of
annual reports, "decrease in income" and "bad debt." The most common
words in the income decreasing topic might be "income decreased" and
"company expects", while the bad debt topic may be made up of words
such as "accounts receivable" and "allowance for doubtful". Importantly,
words can be shared between topics.

Don't worry, we will cover this in a future topic
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What the topics look like
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Theory behind the BCE model
Why use document content?

From communications and psychology:
When people are trying to deceive others, what they say is carefully
picked

Topics chosen are intentional
Putting this in a business context:

If you are manipulating inventory, you don't talk about it
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The model
BCE_eq = as.formula(paste("AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +
                          soft_assets + pct_chg_cashsales + chg_roa + issuance +
                          oplease_dum + book_mkt + lag_sdvol + merger +
                          bigNaudit + midNaudit + cffin + exfin + restruct +
                          bullets + headerlen + newlines + alltags +
                          processedsize + sentlen_u + wordlen_s + paralen_s +
                          repetitious_p + sentlen_s + typetoken + clindex + fog +
                          active_p + passive_p + lm_negative_p + lm_positive_p +
                          allcaps + exclamationpoints + questionmarks +",
                          paste(paste0("Topic_", 1:30, "_n_oI"), collapse=" + "),
                          collapse = "")) # Topic_1_n_oI is the topic variable

fit_BCE <- glm(BCE_eq, data = df[df$Test == 0, ], family = binomial)
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BCE model output
tidy(fit_BCE) # Topic_1_n_oI is the topic variable

## # A tibble: 68 x 5
##    term              estimate std.error statistic  p.value
##    <chr>                <dbl>     <dbl>     <dbl>    <dbl>
##  1 (Intercept)       -8.03      3.87       -2.07  3.81e- 2
##  2 logtotasset        0.388     0.0455      8.52  1.62e-17
##  3 rsst_acc          -0.194     0.306      -0.634 5.26e- 1
##  4 chg_recv           0.858     1.07        0.801 4.23e- 1
##  5 chg_inv           -0.261     1.22       -0.213 8.31e- 1
##  6 soft_assets        2.55      0.380       6.73  1.70e-11
##  7 pct_chg_cashsales -0.00198   0.00700    -0.282 7.78e- 1
##  8 chg_roa           -0.253     0.279      -0.909 3.64e- 1
##  9 issuance           0.0969    0.327       0.296 7.67e- 1
## 10 oplease_dum       -0.345     0.210      -1.65  9.99e- 2
## # ... with 58 more rows
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ROC

##     In sample AUC Out of sample AUC 
##         0.7941841         0.7599594
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Comparison across all models

##        1990s         2011        2000s 2000s + 2011          BCE 
##    0.7292981    0.6849225    0.6295414    0.7147021    0.7599594
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Simplifying models with
LASSO



What is lasso?
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What is LASSO?
Least Absolute Shrinkage and Selection Operator

Least absolute: uses an error term like 
Shrinkage: it will make coefficients smaller

Less sensitive and less overfitting issues
Selection: it will completely remove some variables

Less variables and less overfitting issues
Sometimes called  regularization

 means 1 dimensional distance, i.e., 

Great if you have way too many inputs in your model

This is how we can, in theory, put more variables in our model than data
points

|ε|

L1

L1 |ε|

45 / 90



where 
to minimize training loss and
regularization term
Add an additional penalty term
that is increasing in the absolute
value of each 

Incentivizes lower s,
shrinking them

How does it work?
min
β∈Rp

{ ∥y − Xβ∥2
2 + λ∥β∥1}

1

N

∥β∥p = (∑N
i=1 |βi|

p)
1/p

β

β
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Why we use it?
A better balance of bias (low) and variance (low)

bias: the inability for a ML method to capture the true relationship
(intuitively, the prediction error in the training dataset)
variance: the difference in fits between datasets (intuitively, the
prediction error in the testing dataset)
mitigate the overfitting (high variance) and underfiting (high bias)
problems
regularization, bagging and boosting are used to achieve the balance

Model selection by the machine
 could be 0, ie, selection of features to best fit the model

discourages learning a more complex model
Automate the feature selection process

β
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https://towardsdatascience.com/the-5-feature-selection-algorithms-every-data-scientist-need-to-know-3a6b566efd2


Package for LASSO
package:glmnet, pronounced glimnet

1. For all regression commands, they expect a y vector and an x matrix instead
of our usual y ~ x formula

R has a helper function to convert a formula to a matrix:
model.matrix()

Supply it the right hand side of the equation, starting with ~, and
your data
It outputs the matrix x

Alternatively, use as.matrix() on a data frame of your input variables
2. Its family argument should be specified in quotes, i.e., "binomial" instead

of binomial
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https://glmnet.stanford.edu/


Ridge regression

Similar to LASSO, but with an 
penalty (Euclidean norm)

Elastic net regression

Hybrid of LASSO and Ridge
Below image by Jared Lander

What else can the package do?

L2
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https://jaredlander.com/content/2015/11/LassoForEveryone.html


How to run a LASSO
To run a simple LASSO model, use glmnet()

Note: the x and y can be more elegantly done using the package:useful,
see here for an example

useful::build.x(formula, data) and
useful::build.y(formual, data)

minβ0,β ∑N
i=1 wil(yi,β0 + βTxi) + λ [(1 − α)||β||22/2 + α||β||1]

1

N

library(glmnet)
x <- model.matrix(BCE_eq, data = df[df$Test == 0, ])[ , -1] # remove intercept
y <- model.frame(BCE_eq, data = df[df$Test == 0, ])[ , "AAER"]
fit_LASSO <- glmnet(x = x, y = y,
                    family = "binomial", # "gaussian" for least squares (default)
                    alpha = 1  # LASSO, the default.  alpha = 0 is ridge
                               # alpha between 0 and 1: elastic net
                    )
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https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://github.com/jaredlander/useful
https://www.jaredlander.com/2018/02/using-coefplot-with-glmnet/


Visualizing Lasso

the top x-axis is the number of degrees of freedom of the model, i.e., the
number of variables minus 1.

plot(fit_LASSO, xvar = 'lambda', label = TRUE)
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Interactive visualizing Lasso
coefpath(fit_LASSO)

Log
Lambda

C
oe

ffi
ci

en
ts
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What's under the hood?
# It shows from left to right the number of nonzero coefficients (Df),
# the percent of deviance explained (%dev) and the value of Lambda.
# Deviance is the stat for maximum likelihood estimation
# Although by default glmnet calls for 100 values of lambda the program stops
# early if %dev doesn't change sufficiently from one lambda to the next.
print(fit_LASSO)

## 
## Call:  glmnet(x = x, y = y, family = "binomial", alpha = 1) 
## 
##    Df  %Dev    Lambda
## 1   0  0.00 0.0143300
## 2   1  0.81 0.0130500
## 3   1  1.46 0.0118900
## 4   1  2.00 0.0108400
## 5   2  2.47 0.0098740
## 6   2  3.22 0.0089970
## 7   2  3.85 0.0081970
## 8   2  4.37 0.0074690
## 9   2  4.81 0.0068060
## 10  3  5.22 0.0062010
## 11  3  5.59 0.0056500
## 12  4  5.91 0.0051480
## 13  4  6.25 0.0046910
## 14  5  6.57 0.0042740
## 15  7  6.89 0.0038940
## 16  8  7.22 0.0035480
## 17 10  7.52 0.0032330
## 18 12  7.83 0.0029460 53 / 90



One of the 100 models
# I randomly pick a lambda and show the features
# You may try a different lambda from the previous slide
coefplot(fit_LASSO, lambda = 0.002031, sort = 'magnitude')

# coef(fit_LASSO, s=0.002031) #to check the magnitude of coefficients
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How does this perform?
# na.pass has model.matrix retain NA values (so the # of rows is constant)
xp <- model.matrix(BCE_eq, data = df, na.action = 'na.pass')[ , -1]
# s= specifies the version of the model to use
pred <- predict(fit_LASSO, xp, type = "response", s = 0.002031)

##     In sample AUC Out of sample AUC 
##         0.7593828         0.7239785
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Automating model selection
LASSO seems nice, but picking between the 100 models is tough!
It also contains a method of k-fold cross validation (default, )

1. Randomly split the data into  groups
2. Hold out one group and run model on the rest data
3. Determine the best model using the hold out group
4. Repeat steps 2 and 3  more times
5. Uses the best overall model across all  hold out samples

It gives 2 model options:
"lambda.min": The best performing model that gives minimum mean
cross-validated error.
"lambda.1se": the most regularized model such that error is within one
standard error of the "lambda.min"

This is the better choice if you are concerned about overfitting

k = 10
k

k − 1
k

56 / 90



The left figure also shows the
upper and lower standard
deviation of AUC

Running a cross validated model
# Cross validation
set.seed(2021)  #for reproducibility
cvfit = cv.glmnet(x = x, y = y,family = "binomial", alpha = 1,
                  type.measure = "auc")

plot(cvfit) cvfit$lambda.min

## [1] 0.001685798

cvfit$lambda.1se

## [1] 0.004690834
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lambda.min lambda.1se

Models
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CV LASSO performance
# s= specifies the version of the model to use
pred <- predict(cvfit, xp, type = "response", s = "lambda.min")
pred2 <- predict(cvfit, xp, type = "response", s = "lambda.1se")

##     In sample AUC, lambda.min Out of sample AUC, lambda.min 
##                     0.7631710                     0.7290185 
##     In sample AUC, lambda.1se Out of sample AUC, lambda.1se 
##                     0.7337026                     0.6906418
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Drawbacks of LASSO
1. No p-values on coefficients

Simple solution -- run the resulting model with glm()
Solution only if using family = "gaussian":

Run the lasso use the package:lars package
m <- lars(x = x, y = y, type = "lasso")

Then test coefficients using the package:covTest package
covTest(m, x, y)

2. Generally worse in sample performance
3. Sometimes worse out of sample performance (short run)

BUT: predictions will be more stable
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https://rdrr.io/r/stats/glm.html


Logistic with lambda.min variables
fit_glm_lambda.min <- glm(AAER ~ logtotasset + soft_assets + merger + restruct +
                 processedsize + paralen_s + sentlen_s + passive_p +
                 lm_negative_p + Topic_2_n_oI + Topic_6_n_oI +
                 Topic_8_n_oI + Topic_9_n_oI + Topic_12_n_oI + Topic_18_n_oI +
                 Topic_19_n_oI + Topic_23_n_oI + Topic_26_n_oI +
                 Topic_29_n_oI + Topic_30_n_oI,
               data = df[df$Test == 0, ], family = binomial)
tidy(fit_glm_lambda.min)

## # A tibble: 21 x 5
##    term              estimate    std.error statistic  p.value
##    <chr>                <dbl>        <dbl>     <dbl>    <dbl>
##  1 (Intercept)   -7.51         0.455         -16.5   2.49e-61
##  2 logtotasset    0.379        0.0376         10.1   5.61e-24
##  3 soft_assets    2.43         0.359           6.77  1.26e-11
##  4 merger         0.391        0.144           2.72  6.53e- 3
##  5 restruct       0.175        0.151           1.16  2.46e- 1
##  6 processedsize  0.000000957  0.000000854     1.12  2.62e- 1
##  7 paralen_s     -0.0369       0.0244         -1.51  1.31e- 1
##  8 sentlen_s     -0.0139       0.0155         -0.897 3.70e- 1
##  9 passive_p     -7.17         3.95           -1.81  6.96e- 2
## 10 lm_negative_p  8.48        11.8             0.716 4.74e- 1
## # ... with 11 more rows
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Logistic with lambda.1se variables
fit_glm_lambda.1se <- glm(AAER ~ logtotasset + soft_assets + merger
                          + Topic_2_n_oI,
                          data = df[df$Test == 0, ], family = binomial)
tidy(fit_glm_lambda.1se)

## # A tibble: 5 x 5
##   term         estimate std.error statistic   p.value
##   <chr>           <dbl>     <dbl>     <dbl>     <dbl>
## 1 (Intercept)    -7.22     0.316     -22.8  1.51e-115
## 2 logtotasset     0.315    0.0327      9.64 5.35e- 22
## 3 soft_assets     2.26     0.324       6.99 2.72e- 12
## 4 merger          0.421    0.141       2.98 2.89e-  3
## 5 Topic_2_n_oI   82.6     23.1         3.58 3.42e-  4
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Compare with Ridge and Elastic Net
# It takes 3 minutes on my Xeon W-2133 32G workstation
list.of.fits <- list() # To store the results
for (i in 0:10) {
  ## First, make a variable name that we can use later to refer
  ## to the model optimized for a specific alpha.
  ## For example, when alpha = 0, we will be able to refer to 
  ## that model with the variable name "alpha0".
  fit.name <- paste0("alpha", i/10)

  ## Now fit a model (i.e. optimize lambda) and store it in a list that 
  ## uses the variable name we just created as the reference.
  list.of.fits[[fit.name]] <-
    cv.glmnet(x = x, y = y, family = "binomial", alpha = i/10,
              type.measure = "auc")
}
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Which alpha?
## Now we see which alpha (0, 0.1, ... , 0.9, 1) does the best job
## predicting the values in the Testing dataset.
results <- data.frame()
for (i in 0:10) {
  fit.name <- paste0("alpha", i/10)

  ## Use each model to predict 'y' given the Testing dataset
  pred <- 
    predict(list.of.fits[[fit.name]], xp, type = "response",
            s = list.of.fits[[fit.name]]$lambda.1se)

  ROCpred_out <- prediction(as.numeric(pred[df$Test == 1 & !is.na(pred)]),
                            as.numeric(df[df$Test == 1 & !is.na(pred), ]$AAER))
  auc_out <- performance(ROCpred_out, measure = "auc")

  ## Store the results
  temp <- data.frame(alpha=i/10, auc = auc_out@y.values[[1]],
                     fit.name = fit.name)
  results <- rbind(results, temp)
}
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Which alpha?
alpha auc fit.name

0.0 0.7263743 alpha0

0.1 0.7145268 alpha0.1

0.2 0.7139278 alpha0.2

0.3 0.6957328 alpha0.3

0.4 0.6988006 alpha0.4

0.5 0.6904372 alpha0.5

0.6 0.7123501 alpha0.6

0.7 0.7122478 alpha0.7

0.8 0.7123574 alpha0.8

0.9 0.7169080 alpha0.9

1.0 0.7013864 alpha1

65 / 90



Supervised Learning with
Boosted Trees



Decision trees
We can make prediction through decision trees.
Here's an example of a decision tree which classifies whether someone will
like computer games.
Decision tree is prone to overfitting (high variance) as it can keep growing
until it has exactly one leaf node for every single observation (low bias).
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Decision tree ensembles
To mitigate the overfitting, we can limit the tree depth and creat more trees (of
course resulting in higher bias).
Here is an example of a tree ensemble of two trees. The prediction scores of
each individual tree are summed up to get the final score. An important
benefit is that the two trees try to complement each other.
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Random Forest
A popular tree ensembles is the random forest

Random sampling of training data points when building trees
Random subsets of features considered when splitting nodes

The random forest combines hundreds or thousands of decision trees, trains
each one on a slightly different set of the observations, splitting nodes in each
tree considering a limited number of the features.

It grows trees independently in parallel
The final predictions of the random forest are made by averaging the
predictions of each individual trees.
This process is known as bootstrap aggregating (or bagging)
The benefit is to reduce variance, ie, mitigate overfitting problem
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Gradient boosting through XGBoost
Boosting: we use an additive strategy: fix what we have learned, and add one
new tree at a time (ie, grow trees sequentially).

lower variance as we use multiple models (bagging)
lower bias by training subsequent trees using what errors the previous
trees made (boosting).

There are two main algorithms:
Adaboost: original, subsequent trees to punish more heavily observations
mistaken by previous trees
Gradient boosting: train each subsequent tree using residuals

package:xgboost is a library which provides a gradient boosting
framework for C++, Java, Python, R, and Julia.
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https://github.com/dmlc/xgboost


What is XGBoost
eXtreme Gradient Boosting
A simple explanation:

1. Start with 1 or more decision trees & check error
2. Make more decision trees & check error
3. Use the difference in error to guess another model
4. Repeat #2 and #3 until the model's error is stable
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What is Gradient Descent
Gradient descent algorithm is an iterative process that takes us to the
minimum of a loss function (such as the SSE in a linear model)

min: slope of the tangent line (gradient or partial derivatives) = 0
in fact OLS is to estimate coeffcients which equal PD of SSE to zero

Then why not OLS directly (or why iterate the gradient process?)
Many loss functions have no analytical solutions (ie, cannot solve PD
= 0 equation such as )
Have to rely on numerical solutions (by giving input values)

=
dy

dx

1
x
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https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e


What is Learning Rate
Gradient descent algorithms multiply the gradient by a scalar known as the
learning rate (also called step size) to determine the next point.

eg, if the gradient magnitude is 2.5 and the learning rate is 0.01, then the
gradient descent algorithm will pick the next point 0.025 away from the
previous point.
an optimal learning rate can increase the model efficiency to converge,
try the game

starting point

loss

(negative)
gradient

value of weight wi

next point
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https://developers.google.com/machine-learning/crash-course/reducing-loss/gradient-descent
https://developers.google.com/machine-learning/crash-course/fitter/graph


Steps of gradient descent
1. Take the derivative (gradient) of the loss function
2. Pick a random value of the parameters
3. Plug parameter values and calcuate gradient values (slope)
4. Step size = slope * learning rate
5. New parameter = old parameter - step size
6. Repeat 3-5 until step size is very small or reach max number of steps

Stochastic Gradient Descent: use random subset at every step rather
than the full dataset (to save time)
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XGBoost model setup
# XGBoost Model Setup
library(xgboost)
set.seed(2021)

# These params take some work to pin down
params <- list(max_depth = 5, # Maximum depth of a tree
               eta = 0.2, # learning rate or step size for each boosting
               gamma = 10, # Min loss reduction to make a further partition
               min_child_weight = 20, # min obs needed to be in each node
               objective = "binary:logistic") # "reg:linear" for simple OLS
# The cross-validation function of xgboost
xgbCV <- xgb.cv(params = params, data = x, label = y,
                nrounds = 100, # The number of rounds/iterations for boosting
                eval_metric = "auc",
                # randomly partitioned into nfold equal size subsamples
                nfold = 10,
                # stratified sampling by the values of outcome labels
                # ie, same proportion of outcomes for subsamples
                stratified = TRUE)
# Boost at minimum number of iterations with the max AUC
# which(): position of the elements in a logical vector which are TRUE
numRounds <- min(which(xgbCV$evaluation_log$test_auc_mean ==
                        max(xgbCV$evaluation_log$test_auc_mean)))
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Run XGBoost

Refer to the XGBoost Parameters Manual
Refer to the xgb.cv manual
Refer to the Assignment for parameter tuning
You can plot the trees from your model using xgb.plot.tree()

fit_XGB <- xgboost(params = params,
                data = x,
                label = y,
                nrounds = numRounds,
                eval_metric = "auc")
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https://xgboost.readthedocs.io/en/latest/parameter.html
https://www.rdocumentation.org/packages/xgboost/versions/0.81.0.1/topics/xgb.cv
https://cran.r-project.org/web/packages/ParBayesianOptimization/vignettes/tuningHyperparameters.html
https://xgboost.readthedocs.io/en/latest/R-package/xgboostPresentation.html


Relative importance of variables
# Display relative importance of variables for prediction
xtest <- model.matrix(BCE_eq, data = df[df$Test == 1, ])[ , -1]
ytest <- model.frame(BCE_eq, data = df[df$Test == 1, ])[ , "AAER"]
xgb.train.data = xgb.DMatrix(x, label = y, missing = NA)
xgb.test.data = xgb.DMatrix(xtest, label = ytest, missing = NA)
col_names = attr(xgb.train.data, ".Dimnames")[[2]]
imp = xgb.importance(col_names, fit_XGB)
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Plot relative importance of variables
# the bar represents the improvement in accuracy brought by a feature
xgb.plot.importance(imp)
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Model performance

##             1990s              2011             2000s      2000s + 2011 
##         0.7292981         0.6849225         0.6295414         0.7147021 
##               BCE LASSO, lambda.min       XGBoost AUC 
##         0.7599594         0.7290185         0.7817700
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Explaining XGBoost
# Use the following code to install the xgboostExplainer package
# You may need to launch the RStudio "as an administrator"
# It is also advised to launch a fresh RStudio without any startup files
# install.packages("devtools")
# library(devtools)
# install_github("AppliedDataSciencePartners/xgboostExplainer", force = T)
library(xgboostExplainer)
explainer = buildExplainer(fit_XGB, xgb.train.data, type = "binary",
                           base_score = 0.5, trees_idx = NULL)
pred.breakdown = explainPredictions(fit_XGB, explainer, xgb.test.data)
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How about Enron in 2000
# See what XGBoost is thinking of Enron Corp (gvkey 6127) in year 2000
# enron_row is the position of record for Enron (row number 2237 in the data)
# the prediction is -2.9 (the last black bar), so how much is the probability?
enron_row = 2237
showWaterfall(fit_XGB, explainer, xgb.test.data, data.matrix(df[df$Test == 1, ])
              enron_row, type = "binary") +
  ggtitle("Enron Corp in 2000 -- what's probability to have fraudulent report?")

81 / 90



The cutoff
Note that logistic regression does not predict 1 or 0 directly
Pick a cutoff value, ie, fraud (positive) classification if >= cutoff%
The optimal cutoff depends on data and context
Check a more detailed explanation
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http://ethen8181.github.io/machine-learning/unbalanced/unbalanced.html


Sesentivity vs. Cutoff
For imbalanced data, we care more about Sensitivity (TP), rather than
Accuracy (TP + TN)
The following plot shows the relation between Sensitivity and Cutoff values
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Confusion Matrix at Cutoff 0.05
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The impact on logodds
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Summary of Session 9



For next week
Try to replicate the code
Continue your Datacamp career track
Try the new models with your project data
Submit project by the dateline and prepare for presentation
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Supplementary readings
Many Ways to Lasso
Tune XGBoost with tidymodels
Using XGBoost with Tidymodels
Choosing Cutoff Value for Unbalanced Dataset
XGBoost
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https://jaredlander.com/content/2018/11/ManyWaysToLasso2.html
https://juliasilge.com/blog/xgboost-tune-volleyball/
https://www.tychobra.com/posts/2020-05-19-xgboost-with-tidymodels/
http://ethen8181.github.io/machine-learning/unbalanced/unbalanced.html#content
https://finnstats.com/index.php/2021/04/17/gradient-boosting-in-r/


R Coding Style Guide
Style is subjective and arbitrary but it is important to follow a generally accepted
style if you want to share code with others. I suggest the The tidyverse style guide
which is also adopted by Google with some modification

Highlights of the tidyverse style guide:
File names: end with .R
Identifiers: variable_name, function_name, try not to use "." as it is
reserved by Base R's S3 objects
Line length: 80 characters
Indentation: two spaces, no tabs (RStudio by default converts tabs to
spaces and you may change under global options)
Spacing: x = 0, not x=0, no space before a comma, but always place one
after a comma
Curly braces {}: first on same line, last on own line
Assignment: use <-, not = nor ->
Semicolon(;): don't use, I used once for the interest of space
return(): Use explicit returns in functions: default function return is the
last evaluated expression
File paths: use relative file path "../../filename.csv" rather than absolute
path "C:/mydata/filename.csv". Backslash needs \\
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https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html
https://www.w3schools.com/html/html_filepaths.asp


R packages used in this slide
This slide was prepared on 2021-09-08 from Session_9s.Rmd with R version 4.1.1
(2021-08-10) Kick Things on Windows 10 x64 build 18362 😀.

The attached packages used in this slide are:

##       data.table         ggthemes xgboostExplainer          xgboost 
##         "1.14.0"          "4.2.4"            "0.1"        "1.4.1.1" 
##           glmnet           Matrix             ROCR         coefplot 
##          "4.1-2"          "1.3-4"         "1.0-11"          "1.2.7" 
##            broom          forcats          stringr            dplyr 
##          "0.7.9"          "0.5.1"          "1.4.0"          "1.0.7" 
##            purrr            readr            tidyr           tibble 
##          "0.3.4"          "2.0.1"          "1.1.3"          "3.1.3" 
##          ggplot2        tidyverse       kableExtra            knitr 
##          "3.3.5"          "1.3.1"          "1.3.4"           "1.33"
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