

Programming with Data

Session 6: Forecasting Walmart Sales Dr. Wang Jiwei Master of Professional Accounting

Case: Walmart Store Sales Forecasting

The question

How can we predict weekly departmental revenue for Walmart, leveraging our knowledge of Walmart, its business, and some limited historical information

- Check out the Kaggle competition
- Predict weekly for 115,064 (Store, Department, Week) tuples
 - From 2012-11-02 to 2013-07-26: test dataset
- Using [incomplete] weekly revenue data from 2010-02-05 to 2012-11-01
 - By department (some weeks missing for some departments): training dataset

More specifically...

- Consider time dimensions
 - What matters:
 - Time of the year?
 - Holidays?
 - Do different stores or departments behave differently?
- Wrinkles:
 - Walmart won't give us weekly sales in the test data
 - But they'll tell us how well the algorithm performs when we submit the forecasts to Kaggle
 - We can't use past week sales for prediction because we won't have it for most of the prediction in the testing data...

Load data and packages


```
library(tidyverse) # we'll extensively use dplyr here
library(lubridate) # Great for simple date functions
library(broom) # Display regression results in a tidy way
weekly <- read.csv("Data/Session_6_WMT_train.csv")
weekly.test <- read.csv("Data/Session_6_WMT_test.csv")
weekly.features <- read.csv("Data/Session_6_WMT_features.csv")
weekly.stores <- read.csv("Data/Session_6_WMT_stores.csv")</pre>
```

- weekly is our training data
- weekly.test is our testing data -- no Weekly_Sales column
- weekly.features is general information about (week, store) pairs
 - Temperature, pricing, etc.
- weekly.stores is general information about each store

The data

- Revenue by week for each department of each of 45 stores
 - Department is just a number between 1 and 99
 - Date of that week
 - If the week is considered a holiday for sales purposes
 - Super Bowl (first Sunday in February), Labor Day (first Monday in September), Black Friday (fourth Friday of November), Christmas
- Store data:
 - Which store the data is for, 1 to 45
 - Store type (A, B, or C)
 - Store size
- Other data, by week and location:
 - Temperature, gas price, markdown, CPI, Unemployment, Holidays

The training data

##	Rc	ws: 421,570																					
##	Сс	lumns: 5																					
##	\$	Store	<int></int>	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	~
##	\$	Dept	<int></int>	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	~
##	\$	Date	<chr></chr>	"26	910-	02-	05"	י י	201	L0-0	92-1	,"L2	, "2	2010)-02	2-19)",	"20	910-	-02-	·26"	" ر	'~
##	\$	Weekly_Sales	<dbl></dbl>	249	924.	50,	46	6039	9.49	9, 4	4159	95.5	55,	194	.03	54,	21	L827	7.90), 2	2104	.3.3	}~
##	\$	IsHoliday	<lgl></lgl>	FAI	SE,	TR	UE,	FA	ALSE	E, F	-ALS	SΕ,	FAL	SE,	FA	LSE	., F	ALS	SΕ,	FAL	SE,	FA	√~

##		Store	Dept	Date	Weekly_Sales	IsHoliday
##	1	1	1	2010-02-05	24924.50	FALSE
##	2	1	1	2010-02-12	46039.49	TRUE
##	3	1	1	2010-02-19	41595.55	FALSE
##	4	1	1	2010-02-26	19403.54	FALSE
##	5	1	1	2010-03-05	21827.90	FALSE
##	6	1	1	2010-03-12	21043.39	FALSE

##	Store	Dept	Date	Weekly_Sales
##	Min. : 1.0	Min. : 1.00	Length:421570	Min. : -4989
##	1st Qu.:11.0	1st Qu.:18.00	Class :character	1st Qu.: 2080
##	Median :22.0	Median :37.00	Mode :character	Median : 7612
##	Mean :22.2	Mean :44.26		Mean : 15981
##	3rd Qu.:33.0	3rd Qu.:74.00		3rd Qu.: 20206
##	Max. :45.0	Max. :99.00		Max. :693099
##	IsHoliday			
##	Mode :logical			
##	FALSE:391909			
##	TRUE :29661			
##				
##				
##				

-

Walmart's evaluation metric

- Walmart uses MAE (mean absolute error), but with a twist:
 - They care more about holidays, so any error on holidays has 5 times the penalty
 - They call this WMAE, for *weighted* mean absolute error

$$WMAE = rac{1}{\sum w_i}\sum_{i=1}^n w_i \left|y_i - \hat{y}_i
ight|$$

- *n* is the number of test data points
- \hat{y}_i is your prediction
- y_i is the actual sales
- w_i is 5 on holidays and 1 otherwise

```
# Construct a function in R to calculate WMAE
wmae <- function(actual, predicted, holidays) {
    sum(abs(actual - predicted) * (holidays * 4 + 1), na.rm = TRUE) /
      (length(actual) + 4 * sum(holidays))
}</pre>
```

Before we get started...

- The data isn't very clean:
 - Markdowns are given by 5 separate variables instead of 1
 - Date is text format instead of a date
 - CPI and unemployment data are missing in around a third of the training data
 - There are some (week, store, department) groups missing from our training data!
- Some features to add:
 - Year
 - Week
 - A unique ID for tracking: (store-department-week) tuples
 - The ID Walmart requests we use for submissions: "1_1_2012-11-02"
 - Average sales by (store, department)
 - Average sales by (week, store, department)

Data cleaning


```
preprocess data <- function(df) {</pre>
 # Merge the data together (Pulled data from outside of function -- "scoping")
 # https://bookdown.org/rdpeng/rprogdatascience/scoping-rules-of-r.html
 df <- left join(df, weekly.stores)</pre>
 # last col 'isHoliday' is already in train data, join the first 11 col only.
 df <- left join(df, weekly.features[ , 1:11])</pre>
 # I am not sure what exactly the five markdowns represent
 # All missing markdowns will be assigned to 0 and record the last non-missing
 df$markdown <- 0
 df[!is.na(df$MarkDown1), ]$markdown <- df[!is.na(df$MarkDown1), ]$MarkDown1</pre>
 df[!is.na(df$MarkDown2), ]$markdown <- df[!is.na(df$MarkDown2), ]$MarkDown2
 df[!is.na(df$MarkDown3), ]$markdown <- df[!is.na(df$MarkDown3), ]$MarkDown3</pre>
 df[!is.na(df$MarkDown4), ]$markdown <- df[!is.na(df$MarkDown4), ]$MarkDown4
 df[!is.na(df$MarkDown5), ]$markdown <- df[!is.na(df$MarkDown5), ]$MarkDown5
 # Fix dates and add useful time variables
 df$date <- as.Date(df$Date)</pre>
 df$week <- week(df$date)</pre>
 df$year <- year(df$date)</pre>
 df
}
```

```
df <- preprocess_data(weekly)
df[df$Weekly_Sales < 0, ]$Weekly_Sales <- 0
df_test <- preprocess_data(weekly.test)</pre>
```

Model may perform better without using markdown

What this looks like

df[91:94,] %>%
 select(Store, date, markdown, MarkDown3, MarkDown4, MarkDown5) %>%
 html_df()

	Store	date	markdown	MarkDown3	MarkDown4	MarkDown5
91	1	2011-10-28	0.00	NA	NA	NA
92	1	2011-11-04	0.00	NA	NA	NA
93	1	2011-11-11	6551.42	215.07	2406.62	6551.42
94	1	2011-11-18	5988.57	51.98	427.39	5988.57

df[1:2,] %>% select(date, week, year) %>% html_df()

date	week	year
2010-02-05	6	2010
2010-02-12	7	2010

SINGAPORE MANAGEMENT UNIVERSITY SinGarone Management UNIVERSITY

Cleaning: Missing CPI and Unemployment

ungroup()

Apply the (store, year)'s average CPI and average Unemployment to missing data

Cleaning: Adding IDs

- Build a unique ID
 - Since store, week and department are all 2 digits, make a 6 digit number with 2 digits for each
 - sswwdd
- Build Walmart's requested ID for submissions
 - ss_dd_YYYY-MM-DD

```
# Unique IDs in the data
df$id <- df$Store *10000 + df$week * 100 + df$Dept
df_test$id <- df_test$Store *10000 + df_test$week * 100 + df_test$Dept</pre>
```

```
# Unique ID and factor building
swd <- c(df$id, df_test$id) # Pool all IDs
swd <- unique(swd) # Only keep unique elements
swd <- data.frame(id = swd) # Make a data frame
swd$swd <- factor(swd$id) # Extract factors for using later</pre>
```

```
# Add unique factors to data -- ensures same factors for both data sets
df <- left_join(df, swd)
df_test <- left_join(df_test, swd)</pre>
```

df_test\$Id <- paste0(df_test\$Store, '_', df_test\$Dept, "_", df_test\$date)</pre>

What the IDs look like

Store	week	Dept	id	swd	Id
8	27	33	82733	82733	8_33_2013-07-05
15	46	91	154691	154691	15_91_2012-11-16
23	52	25	235225	235225	23_25_2012-12-28

Add in (store, department) average *Secondary* sales

```
# Calculate average sales by store-dept
df <- df %>%
  group_by(Store, Dept) %>%
  mutate(store_avg = mean(Weekly_Sales, rm.na = T)) %>%
  ungroup()
# Select the first average sales data for each store-dept
df_sa <- df %>%
  group_by(Store, Dept) %>%
  slice(1) %>% # Select rows by position
  select(Store, Dept, store_avg) %>%
  ungroup()
# Distribute the store-dept average sales to the testing data
df_test <- left_join(df_test, df_sa)</pre>
```

```
## Joining, by = c("Store", "Dept")
```

```
# 36 observations have messed up department codes -- ignore (set to 0)
df_test[is.na(df_test$store_avg), ]$store_avg <- 0</pre>
```

```
# Calculate multipliers based on store_avg (and removing NaN and Inf)
df$Weekly_mult <- df$Weekly_Sales / df$store_avg
df[!is.finite(df$Weekly_mult), ]$Weekly_mult <- NA</pre>
```

Add in (week, store, dept) average sales

```
# Calculate mean by week-store-dept and distribute to df_test
df <- df %>%
  group_by(Store, Dept, week) %>%
  mutate(naive_mean = mean(Weekly_Sales, rm.na = T)) %>%
  ungroup()
df_wm <- df %>%
  group_by(Store, Dept, week) %>%
  slice(1) %>%
  ungroup() %>%
  select(Store, Dept, week, naive_mean)
df_test <- df_test %>% arrange(Store, Dept, week)
df_test <- left_join(df_test, df_wm)</pre>
```

Joining, by = c("Store", "Dept", "week")

SINGAPORE MAN UNIVERSITY School of Accountancy

ISSUE: New (week, store, dept) groups

- This is in our testing data!
 - So we'll need to predict out groups we haven't observed at all

```
table(is.na(df_test$naive_mean))
```

FALSE TRUE ## 113827 1237

- Fix: Fill with 1 or 2 lags where possible using ifelse() and lag()
- Fix: Fill with 1 or 2 leads where possible using ifelse() and lead()
- Fill with store_avg when the above fail
- Code is available in the code file -- a bunch of code like:

```
df_test <- df_test %>%
  arrange(Store, Dept, date) %>%
  group_by(Store, Dept) %>%
  mutate(naive_mean=ifelse(is.na(naive_mean), lag(naive_mean), naive_mean)) %>%
  ungroup()
```

Cleaning is done

- Data is in order
 - No missing values where data is needed
 - Needed values created

```
df %>%
  group_by(week, Store) %>%
  mutate(sales = mean(Weekly_Sales)) %>% slice(1) %>% ungroup() %>%
  ggplot(aes(y = sales, x = week, color = factor(Store))) +
  geom_line() + xlab("Week") + ylab("Sales for Store (dept average)") +
  theme(legend.position = "none") # remove the plot legend
```


How much time on data prep?

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

The Survey

Feature engineering techniques

There are many ways to prepare data. You may read the following articles for a summary of typical feature engineering techniques. We will apply more techniques in future topics.

Fundamental Techniques of Feature Engineering for Machine Learning

The Hitchhiker's Guide to Feature Extraction

Tackling the problem

First try

 Ideal: Use last week to predict next week!

No data for testing...

• First instinct: try to use a linear regression to solve this

What to put in the model?

First model

##	#	A tibble: 8 x 5				
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	1.25	0.0100	125.	0
##	2	factor(IsHoliday)TRUE	0.0597	0.00337	17.7	2.00e- 70
##	3	<pre>factor(markdown > 0)TRUE</pre>	0.0486	0.00240	20.3	3.42e- 91
##	4	markdown	0.000000697	0.000000237	2.94	3.32e- 3
##	5	Temperature	-0.000832	0.0000490	-17.0	1.16e- 64
##	6	Fuel_Price	-0.0721	0.00223	-32.3	1.23e-228
##	7	CPI	-0.0000842	0.0000241	-3.50	4.67e- 4
##	8	Unemployment	0.00406	0.000494	8.22	1.97e- 16

glance(mod1)

A tibble: 1 x 12 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## <dbl> <dbl> <dbl> ## 1 0.00556 0.00554 0.549 337. 0 7 -345649, 691317, 691415, ## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Prep submission and in-sample WMAE

Linear ## 3040.644

Performance for linear model

Your me	ost recent	submission						
Name WMT_linear.csv			SubmittedWait timejust now1 seconds			tion time nds	4954.4	Score 4928
Comp	olete							
Jump to) your pos	ition on the leaderboard $ imes$						
428	▼1	Bill Szaroletta, P.E.			E	4949.29906	2	5y
429	~ 1	Kalanand Mishra				4961.02377	9	5y
430	•3	TBarker				4970.66978	8	5y
431	•3	Yogesh Bhalerao			P	4972.22957	1	5y

Visualizing in-sample WMAE

Accountancy

Back to the drawing board...

Second model: Including week

##	# A	tibble: 60 x	5			
##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	1.01	0.0119	84.6	0
##	2	<pre>factor(week)2</pre>	-0.0604	0.00982	-6.16	7.48e- 10
##	3	<pre>factor(week)3</pre>	-0.0668	0.00983	-6.80	1.05e- 11
##	4	factor(week)4	-0.0911	0.00983	-9.27	1.93e- 20
##	5	factor(week)5	0.0432	0.00981	4.41	1.06e- 5
##	6	factor(week)6	0.166	0.00953	17.4	5.68e- 68
##	7	factor(week)7	0.227	0.00910	25.0	8.90e-138
##	8	factor(week)8	0.101	0.00896	11.3	1.09e- 29
##	9	factor(week)9	0.0722	0.00897	8.05	8.15e- 16
##	10	factor(week)10	0.0830	0.00899	9.23	2.63e- 20
##	# .	with 50 mor	e rows			

glance(mod2)

A tibble: 1 x 12 ## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 0.0640 0.533 490. 59 -332843. 665808. 666476. ## 1 0.0642 0 ## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Prep submission and in-sample WMAE


```
# Out of sample result
df_test$Weekly_mult <- predict(mod2, df_test)
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[ , c("Id", "Weekly_Sales")], "WMT_linear2.csv",
            row.names = FALSE)
# track
df_test$WS_linear2 <- df_test$Weekly_Sales
# Check in sample WMAE
df$WS_linear2 <- predict(mod2, df) * df$store_avg
w <- wmae(actual = df$Weekly_Sales, predicted = df$WS_linear2,
            holidays = df$IsHoliday)
names(w) <- "Linear 2"
wmaes <- c(wmaes, w)
wmaes
```

Linear Linear 2
3040.644 3208.144

Performance for linear model 2

Your mo	st recent	submission						
Name WMT_lir	iear2.csv		Submitted 10 minutes ago	Wait time 97 seconds	Execu 1 seco	tion time nds	5540.2	Score 29197
Compl	ete							
Jump to	your posi	ition on the leaderboa	rd 🕶					
<mark>4</mark> 65	▲3	Bullet Bill			P	5514.16117	25	5y
466		Jesus Fernandez-I	Bes		*	5547.45068	12	5y
467	•3	Carmine Genoves	e		9	5553.17509	8	5y
468	4	27685			9	5694.66116	5	5y

wmaes_out

Linear Linear 2
4954.4 5540.3

Visualizing in-sample WMAE

Visualizing in-sample WMAE by Store

SMU

Accountancy

Visualizing in-sample WMAE by Dept

34 / 52

Back to the drawing board...

Third model: Including week x Store x Dept

•••

Third model: Including week x Store x Dept

Use package:fixest's feols() -- it's really more efficient!

##	#	A tibble: 5 x	x 5			
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	markdown	-0.00000122	0.00000220	-5.56	2.63e- 8
##	2	Temperature	0.00130	0.000163	7.95	1.90e- 15
##	3	Fuel_Price	-0.0532	0.00226	-23.5	2.20e-122
##	4	CPI	0.000190	0.000366	0.518	6.04e- 1
##	5	Unemployment	-0.0291	0.00136	-21.3	8.12e-101

glance(mod3)

A tibble: 1 x 9 ## r.squared adj.r.squared within.r.squared pseudo.r.squared sigma nobs AIC <dbl> <dbl> <dbl> <dbl> <dbl> <int> ## <dbl> 0.526 0.00373 NA 0.379 421551 498237. ## 1 0.708 ## # ... with 2 more variables: BIC <dbl>, logLik <dbl>

Prep submission and in-sample WMAE

```
it of sample result
it sure why there are NA prediction output although all predictors have no missing d
:est$Weekly mult <- predict(mod3, df test)</pre>
:est$Weekly Sales <- df test$Weekly mult * df test$store avg</pre>
equired to submit a csv of Id and Weekly Sales
:e.csv(df_test[ , c("Id", "Weekly_Sales")], "WMT_FE.csv",
       row.names = FALSE)
rack
:est$WS FE <- ifelse(is.na(df test$Weekly Sales), 0, df test$Weekly Sales)</pre>
neck in sample WMAE
IS FE <- predict(mod3, df) * df$store avg</pre>
wmae(actual = df$Weekly Sales, predicted = df$WS FE,
       holidays = df$IsHoliday)
es(w) <- "FE"</pre>
es <- c(wmaes, w)</pre>
2S
```

Linear Linear 2 FE
3040.644 3208.144 1551.232

Accountance

The general predict() function

- predict() is a generic function for predictions from the results of various model fitting functions.
- The function invokes particular methods which depend on the class of the first argument.
- For example, if the first argument is an object from the lm() model, predict() will call the predict.lm() function
- Typically model functions have been defined such as predict.lm() and predict.glm()
- predcit.fixest() is defined in the fixest package
- You may replace the predict() with predict.fixest() and get same results.
- Refer the manual here

Performance for FE model

Your me	ost recent	t submission						
Name WMT_F	E.csv		Submitted just now	Wait time 1 seconds	Execut 1 secor	tion time nds	S 3357.8	core 8481
Comp	olete							
Jump to	o your pos	ition on the leaderboar	d -					
264		Sandeep				3349,90154	26	5
265	a 13	Satya Prakash			2	3364.07150	23	5
266	• 5	Prashant Kumar			-5	3365.02867	8	5
267	• 10	Gautam Gogoi				3370.85784	38	5

wmaes_out

##	Linear	Linear 2	FE
##	4954.4	5540.3	3357.9

Visualizing in-sample WMAE


```
geom_jitter(width = 0.25) + xlab("Week") + ylab("WMAE")
```


Problems with the data

Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13 Labor Day: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13 Thanksgiving: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13 Christmas: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13

- 1. The holidays are not always on the same week (the last indicates the week in the testing data)
 - The Super Bowl is in weeks 7, 7, 6 and 6
 - Labor day isn't in our *testing data* at all!
 - Black Friday is in weeks 48, 47, and 47
 - Christmas is in weeks 53, 52, and 52
 - Manually adjust the data for these differences
- 2. Yearly growth -- we aren't capturing it, since we have such a small time span
 - We can manually adjust the data for this
 - Code is in the code file -- a lot of package:dplyr

Performance overall

Your me	ost recent	submission						
Name Submitte WMT_FE_shift.csv just now			Submitted just now	d Wait time Execution time 1 seconds 1 seconds			Score 3249.12698	
Comp	lete							
Jump to	your pos	ition on the leaderboa	rd v					
240	- 9	RG50			P	3247.76071	13	5y
241	▲ 15	Will West				3248.16860	15	5y
242	•2	Ugly Duckling			P	3264.66376	19	5y
243	• 2	Chiranjeev			4	3266.39474	3	5y
wmaes	_out							
± #	line	ar linear 2	P FF Sł	nifted FF				

4954.4 5540.3 3357.9 3249.1

Performance overall

Your most recent submission										
Name WMT_naivemean.csv			Submitted just now	Exect s 1 sect	Execution time 1 seconds		Score 99329			
Comple	ate vour posi	tion on the leaderby	ard •							
219	<u>vou pos</u>	iona			4	3165.17441	20	4v		
220	1 3	abhirup mallik			-	3168.04232	4	4y		
221	^ 2	KaggleBob			F	3170.86773	19	4y		
222	- 2	pythonomic			F	3172.02059	13	4y		
wmaes_	out									

##	Linear	Linear 2	FE	Shifted	FE	Naive Mean
##	4954.40	5540.30	3357.90	3249.	.10	3167.99

Performance overall

##

4954.40

5540.30

3357.90

Your mos	st recent s	ubmission							
Name WMT_ens	S.CSV		Submitted just now		Wait time 1 seconds	Exe 1 se	cution time conds	3173	Score 32504
Comple	ete <u>your posit</u>	ion on the leaderboan	<u>d -</u>						
220	- 2	KaggleBob				9)	3170.86773	19	7y
221	-2	pythonomic				9	3172.02059	13	7y
222	• 12	Vyassa Baratham				4)	3172.93938	21	7y
223	• 8	Sriram Kovil				۲	3191.36644	15	7y
wmaes_	_out								
##	Linea	ar Linear 2	F	E Shifted	FE Naive	Mean	Ensemble		

3249.10

3167.99

3173.30

This was a real problem!

- Walmart provided this data back in 2014 as part of a recruiting exercise
 - Details here
 - Discussion of first place entry
 - Code for first place entry
 - Discussion of second place entry
- This is what the group project will be like
 - Each group tackling a data problem which is hosted on Kaggle or Tianchi
 - You will have training data but testing data will be withheld
 - You will need to submit to Kaggle/Tianchi for model evaluation

Project deliverables

- 1. Submission to Kaggle/Tianchi
 - For model evaluation purpose
- 2. Submission to me: A .rmd (and .html + .pdf) file including:
 - The integrated code chunks
 - Main points and findings
 - Exploratory analysis of the data used
 - Your model development, implementation, evaluation, and refinement
 - A conclusion on how well your group did and what you learned
 - No zipped file please
- 3. A group presentation in the last session
 - A presentation slides (.rmd or .pptx) shall also be submitted
 - All members to present
- If files > 50M, please submit through a shared folder using OneDrive or Google Drive. Keep all folder structure with all files and data, and make sure I can reproduce your code without any changes.

Kaggle 1st place winner cheated, \$10,000 prize declared irrecoverable

Summary of Session 6

For next week

Sthol of Accountancy

- Try to replicate the code
- You should have completed exploring your project data
- Continue your Datacamp career track
- Logistic regression for classification problems

R Coding Style Guide

Style is subjective and arbitrary but it is important to follow a generally accepted style if you want to share code with others. I suggest the The tidyverse style guide which is also adopted by Google with some modification

- Highlights of **the tidyverse style guide**:
 - *File names*: end with .R
 - *Identifiers*: variable_name, function_name, try not to use "." as it is reserved by Base R's S3 objects
 - *Line length*: 80 characters
 - *Indentation*: two spaces, no tabs (RStudio by default converts tabs to spaces and you may change under global options)
 - Spacing: x = 0, not x=0, no space before a comma, but always place one after a comma
 - *Curly braces* {}: first on same line, last on own line
 - Assignment: use <-, not = nor ->
 - *Semicolon(;)*: don't use, I used once for the interest of space
 - *return()*: Use explicit returns in functions: default function return is the last evaluated expression
 - *File paths*: use relative file path "../../filename.csv" rather than absolute path "C:/mydata/filename.csv". Backslash needs \\

R packages used in this slide

This slide was prepared on 2021-09-07 from Session_6s_Kaggle.Rmd with R version 4.1.1 (2021-08-10) Kick Things on Windows 10 x64 build 18362 (2).

The attached packages used in this slide are:

##	fixest	broom	lubridate	forcats	stringr	dplyr	purrr
##	"0.9.0"	"0.7.9"	"1.7.10"	"0.5.1"	"1.4.0"	"1.0.7"	"0.3.4"
##	readr	tidyr	tibble	ggplot2	tidyverse	kableExtra	knitr
##	"2.0.1"	"1.1.3"	"3.1.3"	"3.3.5"	"1.3.1"	"1.3.4"	"1.33"