
Programming with Data

Session 6: Forecasting Walmart Sales
Dr. Wang Jiwei
Master of Professional Accounting

Case: Walmart Store Sales
Forecasting

The question
How can we predict weekly departmental revenue for Walmart,
leveraging our knowledge of Walmart, its business, and some limited
historical information

Check out the Kaggle competition

Predict weekly for 115,064 (Store, Department, Week) tuples

From 2012-11-02 to 2013-07-26: test dataset

Using [incomplete] weekly revenue data from 2010-02-05 to 2012-11-01

By department (some weeks missing for some departments): training
dataset

3 / 52

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting

More specifically...
Consider time dimensions

What matters:
Time of the year?
Holidays?
Do different stores or departments behave differently?

Wrinkles:

Walmart won't give us weekly sales in the test data
But they'll tell us how well the algorithm performs when we submit
the forecasts to Kaggle

We can't use past week sales for prediction because we won't have it for
most of the prediction in the testing data...

4 / 52

Load data and packages

weekly is our training data
weekly.test is our testing data -- no Weekly_Sales column
weekly.features is general information about (week, store) pairs

Temperature, pricing, etc.
weekly.stores is general information about each store

library(tidyverse) # we'll extensively use dplyr here
library(lubridate) # Great for simple date functions
library(broom) # Display regression results in a tidy way
weekly <- read.csv("Data/Session_6_WMT_train.csv")
weekly.test <- read.csv("Data/Session_6_WMT_test.csv")
weekly.features <- read.csv("Data/Session_6_WMT_features.csv")
weekly.stores <- read.csv("Data/Session_6_WMT_stores.csv")

5 / 52

The data
Revenue by week for each department of each of 45 stores

Department is just a number between 1 and 99
Date of that week
If the week is considered a holiday for sales purposes

Super Bowl (first Sunday in February), Labor Day (first Monday in
September), Black Friday (fourth Friday of November), Christmas

Store data:

Which store the data is for, 1 to 45
Store type (A, B, or C)
Store size

Other data, by week and location:

Temperature, gas price, markdown, CPI, Unemployment, Holidays

6 / 52

The training data
Rows: 421,570
Columns: 5
$ Store <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
$ Dept <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
$ Date <chr> "2010-02-05", "2010-02-12", "2010-02-19", "2010-02-26", "~
$ Weekly_Sales <dbl> 24924.50, 46039.49, 41595.55, 19403.54, 21827.90, 21043.3~
$ IsHoliday <lgl> FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FA~

Store Dept Date Weekly_Sales IsHoliday
1 1 1 2010-02-05 24924.50 FALSE
2 1 1 2010-02-12 46039.49 TRUE
3 1 1 2010-02-19 41595.55 FALSE
4 1 1 2010-02-26 19403.54 FALSE
5 1 1 2010-03-05 21827.90 FALSE
6 1 1 2010-03-12 21043.39 FALSE

Store Dept Date Weekly_Sales
Min. : 1.0 Min. : 1.00 Length:421570 Min. : -4989
1st Qu.:11.0 1st Qu.:18.00 Class :character 1st Qu.: 2080
Median :22.0 Median :37.00 Mode :character Median : 7612
Mean :22.2 Mean :44.26 Mean : 15981
3rd Qu.:33.0 3rd Qu.:74.00 3rd Qu.: 20206
Max. :45.0 Max. :99.00 Max. :693099
IsHoliday
Mode :logical
FALSE:391909
TRUE :29661

7 / 52

Walmart's evaluation metric
Walmart uses MAE (mean absolute error), but with a twist:

They care more about holidays, so any error on holidays has 5 times the
penalty
They call this WMAE, for weighted mean absolute error

 is the number of test data points
 is your prediction
 is the actual sales
 is 5 on holidays and 1 otherwise

WMAE =
n

∑
i=1

wi |yi − ŷ i|
1

∑wi

n

ŷ i

yi

wi

Construct a function in R to calculate WMAE
wmae <- function(actual, predicted, holidays) {
 sum(abs(actual - predicted) * (holidays * 4 + 1), na.rm = TRUE) /
 (length(actual) + 4 * sum(holidays))
}

8 / 52

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/overview/evaluation

Before we get started...
The data isn't very clean:

Markdowns are given by 5 separate variables instead of 1
Date is text format instead of a date
CPI and unemployment data are missing in around a third of the training
data
There are some (week, store, department) groups missing from our
training data!

Some features to add:
Year
Week
A unique ID for tracking: (store-department-week) tuples
The ID Walmart requests we use for submissions: "1_1_2012-11-02"
Average sales by (store, department)
Average sales by (week, store, department)

9 / 52

Data cleaning

Model may perform better without using markdown

preprocess_data <- function(df) {
 # Merge the data together (Pulled data from outside of function -- "scoping")
 # https://bookdown.org/rdpeng/rprogdatascience/scoping-rules-of-r.html
 df <- left_join(df, weekly.stores)
 # last col 'isHoliday' is already in train data, join the first 11 col only.
 df <- left_join(df, weekly.features[, 1:11])
 # I am not sure what exactly the five markdowns represent
 # All missing markdowns will be assigned to 0 and record the last non-missing
 df$markdown <- 0
 df[!is.na(df$MarkDown1),]$markdown <- df[!is.na(df$MarkDown1),]$MarkDown1
 df[!is.na(df$MarkDown2),]$markdown <- df[!is.na(df$MarkDown2),]$MarkDown2
 df[!is.na(df$MarkDown3),]$markdown <- df[!is.na(df$MarkDown3),]$MarkDown3
 df[!is.na(df$MarkDown4),]$markdown <- df[!is.na(df$MarkDown4),]$MarkDown4
 df[!is.na(df$MarkDown5),]$markdown <- df[!is.na(df$MarkDown5),]$MarkDown5
 # Fix dates and add useful time variables
 df$date <- as.Date(df$Date)
 df$week <- week(df$date)
 df$year <- year(df$date)
 df
}

df <- preprocess_data(weekly)
df[df$Weekly_Sales < 0,]$Weekly_Sales <- 0
df_test <- preprocess_data(weekly.test)

10 / 52

What this looks like

Store date markdown MarkDown3 MarkDown4 MarkDown5

91 1 2011-10-28 0.00 NA NA NA

92 1 2011-11-04 0.00 NA NA NA

93 1 2011-11-11 6551.42 215.07 2406.62 6551.42

94 1 2011-11-18 5988.57 51.98 427.39 5988.57

date week year

2010-02-05 6 2010

2010-02-12 7 2010

df[91:94,] %>%
 select(Store, date, markdown, MarkDown3, MarkDown4, MarkDown5) %>%
 html_df()

df[1:2,] %>% select(date, week, year) %>% html_df()

11 / 52

Cleaning: Missing CPI and
Unemployment

Apply the (store, year)'s average CPI and average Unemployment to
missing data

Fill in missing CPI and Unemployment data
df_test <- df_test %>%
 group_by(Store, year) %>%
 mutate(CPI = ifelse(is.na(CPI), mean(CPI, na.rm = T), CPI),
 Unemployment = ifelse(is.na(Unemployment),
 mean(Unemployment, na.rm = T),
 Unemployment)) %>%
 ungroup()

12 / 52

Cleaning: Adding IDs
Build a unique ID

Since store, week and department are all 2 digits, make a 6 digit number
with 2 digits for each

sswwdd
Build Walmart's requested ID for submissions

ss_dd_YYYY-MM-DD

Unique IDs in the data
df$id <- df$Store *10000 + df$week * 100 + df$Dept
df_test$id <- df_test$Store *10000 + df_test$week * 100 + df_test$Dept

Unique ID and factor building
swd <- c(dfid, df_testid) # Pool all IDs
swd <- unique(swd) # Only keep unique elements
swd <- data.frame(id = swd) # Make a data frame
swd$swd <- factor(swd$id) # Extract factors for using later

Add unique factors to data -- ensures same factors for both data sets
df <- left_join(df, swd)
df_test <- left_join(df_test, swd)

df_test$Id <- paste0(df_test$Store, '_', df_test$Dept, "_", df_test$date)

13 / 52

What the IDs look like

Store week Dept id swd Id

8 27 33 82733 82733 8_33_2013-07-05

15 46 91 154691 154691 15_91_2012-11-16

23 52 25 235225 235225 23_25_2012-12-28

id: numerical
swd: factor
Id: character
html_df(df_test[c(20000, 40000, 60000),
 c("Store", "week", "Dept", "id", "swd", "Id")])

14 / 52

Add in (store, department) average
sales
Calculate average sales by store-dept
df <- df %>%
 group_by(Store, Dept) %>%
 mutate(store_avg = mean(Weekly_Sales, rm.na = T)) %>%
 ungroup()
Select the first average sales data for each store-dept
df_sa <- df %>%
 group_by(Store, Dept) %>%
 slice(1) %>% # Select rows by position
 select(Store, Dept, store_avg) %>%
 ungroup()
Distribute the store-dept average sales to the testing data
df_test <- left_join(df_test, df_sa)

Joining, by = c("Store", "Dept")

36 observations have messed up department codes -- ignore (set to 0)
df_test[is.na(df_test$store_avg),]$store_avg <- 0

Calculate multipliers based on store_avg (and removing NaN and Inf)
df$Weekly_mult <- df$Weekly_Sales / df$store_avg
df[!is.finite(df$Weekly_mult),]$Weekly_mult <- NA

15 / 52

Add in (week, store, dept) average
sales
Calculate mean by week-store-dept and distribute to df_test
df <- df %>%
 group_by(Store, Dept, week) %>%
 mutate(naive_mean = mean(Weekly_Sales, rm.na = T)) %>%
 ungroup()
df_wm <- df %>%
 group_by(Store, Dept, week) %>%
 slice(1) %>%
 ungroup() %>%
 select(Store, Dept, week, naive_mean)
df_test <- df_test %>% arrange(Store, Dept, week)
df_test <- left_join(df_test, df_wm)

Joining, by = c("Store", "Dept", "week")

16 / 52

ISSUE: New (week, store, dept)
groups

This is in our testing data!
So we'll need to predict out groups we haven't observed at all

Fix: Fill with 1 or 2 lags where possible using ifelse() and lag()
Fix: Fill with 1 or 2 leads where possible using ifelse() and lead()
Fill with store_avg when the above fail
Code is available in the code file -- a bunch of code like:

table(is.na(df_test$naive_mean))

FALSE TRUE
113827 1237

df_test <- df_test %>%
 arrange(Store, Dept, date) %>%
 group_by(Store, Dept) %>%
 mutate(naive_mean=ifelse(is.na(naive_mean), lag(naive_mean), naive_mean)) %>%
 ungroup()

17 / 52

Cleaning is done
Data is in order

No missing values where data is needed
Needed values created

df %>%
 group_by(week, Store) %>%
 mutate(sales = mean(Weekly_Sales)) %>% slice(1) %>% ungroup() %>%
 ggplot(aes(y = sales, x = week, color = factor(Store))) +
 geom_line() + xlab("Week") + ylab("Sales for Store (dept average)") +
 theme(legend.position = "none") # remove the plot legend

18 / 52

How much time on data prep?

The Survey

19 / 52

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/

Feature engineering techniques
There are many ways to prepare data. You may read the following
articles for a summary of typical feature engineering techniques. We
will apply more techniques in future topics.

Fundamental Techniques of Feature Engineering for Machine Learning

The Hitchhiker’s Guide to Feature Extraction

20 / 52

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114
https://towardsdatascience.com/the-hitchhikers-guide-to-feature-extraction-b4c157e96631

Tackling the problem

Ideal: Use last week to predict
next week!

No data for testing...

First instinct: try to use a linear
regression to solve this

We have this

First try

22 / 52

What to put in the model?

23 / 52

First model
mod1 <- lm(Weekly_mult ~ factor(IsHoliday) + factor(markdown > 0) +
 markdown + Temperature +
 Fuel_Price + CPI + Unemployment,
 data = df)
tidy(mod1)

A tibble: 8 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 1.25 0.0100 125. 0
2 factor(IsHoliday)TRUE 0.0597 0.00337 17.7 2.00e- 70
3 factor(markdown > 0)TRUE 0.0486 0.00240 20.3 3.42e- 91
4 markdown 0.000000697 0.000000237 2.94 3.32e- 3
5 Temperature -0.000832 0.0000490 -17.0 1.16e- 64
6 Fuel_Price -0.0721 0.00223 -32.3 1.23e-228
7 CPI -0.0000842 0.0000241 -3.50 4.67e- 4
8 Unemployment 0.00406 0.000494 8.22 1.97e- 16

glance(mod1)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00556 0.00554 0.549 337. 0 7 -345649. 691317. 691415.
... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

24 / 52

Prep submission and in-sample
WMAE
Out of sample result
df_test$Weekly_mult <- predict(mod1, df_test)
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg

Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[, c("Id", "Weekly_Sales")], "WMT_linear.csv",
 row.names = FALSE)

track
df_test$WS_linear <- df_test$Weekly_Sales

Check in sample WMAE
df$WS_linear <- predict(mod1, df) * df$store_avg
w <- wmae(actual = df$Weekly_Sales, predicted = df$WS_linear,
 holidays = df$IsHoliday)
names(w) <- "Linear"
wmaes <- c(w)
wmaes

Linear
3040.644

25 / 52

Performance for linear model

26 / 52

Visualizing in-sample WMAE
compute WMAE for each obs
wmae_obs <- function(actual, predicted, holidays) {
 abs(actual - predicted) * (holidays * 4 + 1) /
 (length(actual) + 4 * sum(holidays))
}
df$wmaes <- wmae_obs(actual = df$Weekly_Sales, predicted = df$WS_linear,
 holidays = df$IsHoliday)
ggplot(data = df, aes(y = wmaes, x = week, color = factor(IsHoliday))) +
 geom_jitter(width = 0.25) + xlab("Week") + ylab("WMAE")

27 / 52

Back to the drawing board...

28 / 52

Second model: Including week
mod2 <- lm(Weekly_mult ~ factor(week) + factor(IsHoliday) + factor(markdown>0) +
 markdown + Temperature + Fuel_Price + CPI + Unemployment, data=df)
tidy(mod2)

A tibble: 60 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 1.01 0.0119 84.6 0
2 factor(week)2 -0.0604 0.00982 -6.16 7.48e- 10
3 factor(week)3 -0.0668 0.00983 -6.80 1.05e- 11
4 factor(week)4 -0.0911 0.00983 -9.27 1.93e- 20
5 factor(week)5 0.0432 0.00981 4.41 1.06e- 5
6 factor(week)6 0.166 0.00953 17.4 5.68e- 68
7 factor(week)7 0.227 0.00910 25.0 8.90e-138
8 factor(week)8 0.101 0.00896 11.3 1.09e- 29
9 factor(week)9 0.0722 0.00897 8.05 8.15e- 16
10 factor(week)10 0.0830 0.00899 9.23 2.63e- 20
... with 50 more rows

glance(mod2)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0642 0.0640 0.533 490. 0 59 -332843. 665808. 666476.
... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

29 / 52

Prep submission and in-sample
WMAE
Out of sample result
df_test$Weekly_mult <- predict(mod2, df_test)
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg

Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[, c("Id", "Weekly_Sales")], "WMT_linear2.csv",
 row.names = FALSE)

track
df_test$WS_linear2 <- df_test$Weekly_Sales

Check in sample WMAE
df$WS_linear2 <- predict(mod2, df) * df$store_avg
w <- wmae(actual = df$Weekly_Sales, predicted = df$WS_linear2,
 holidays = df$IsHoliday)
names(w) <- "Linear 2"
wmaes <- c(wmaes, w)
wmaes

Linear Linear 2
3040.644 3208.144

30 / 52

Performance for linear model 2

wmaes_out

Linear Linear 2
4954.4 5540.3

31 / 52

Visualizing in-sample WMAE
df$wmaes <- wmae_obs(actual = df$Weekly_Sales, predicted = df$WS_linear2,
 holidays = df$IsHoliday)
ggplot(data=df, aes(y = wmaes, x = week, color = factor(IsHoliday))) +
 geom_jitter(width = 0.25) + xlab("Week") + ylab("WMAE")

32 / 52

Visualizing in-sample WMAE by
Store
ggplot(data=df, aes(y = wmae_obs(Weekly_Sales, WS_linear2, IsHoliday),
 x = week, color = factor(Store))) +
 geom_jitter(width = 0.25) + xlab("Week") + ylab("WMAE") +
 theme(legend.position = "none")

33 / 52

Visualizing in-sample WMAE by
Dept
ggplot(data = df, aes(y = wmae_obs(actual = Weekly_Sales,
 predicted = WS_linear2,
 holidays = IsHoliday),
 x = week, color = factor(Dept))) +
 geom_jitter(width = 0.25) + xlab("Week") + ylab("WMAE") +
 theme(legend.position = "none")

34 / 52

Back to the drawing board...

35 / 52

Third model: Including week x Store
x Dept

...

mod3 <- lm(Weekly_mult ~ factor(week):factor(Store):factor(Dept) +
 factor(IsHoliday) + factor(markdown>0) + markdown + Temperature +
 Fuel_Price + CPI + Unemployment, data = df)
Error: cannot allocate vector of size 606.8Gb

36 / 52

Third model: Including week x Store
x Dept

Use package:fixest's feols() -- it's really more efficient!

library(fixest)
mod3 <- feols(Weekly_mult ~ markdown + Temperature + Fuel_Price + CPI +
 Unemployment | swd, data = df) # now you know why create swd
tidy(mod3)

A tibble: 5 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 markdown -0.00000122 0.000000220 -5.56 2.63e- 8
2 Temperature 0.00130 0.000163 7.95 1.90e- 15
3 Fuel_Price -0.0532 0.00226 -23.5 2.20e-122
4 CPI 0.000190 0.000366 0.518 6.04e- 1
5 Unemployment -0.0291 0.00136 -21.3 8.12e-101

glance(mod3)

A tibble: 1 x 9
r.squared adj.r.squared within.r.squared pseudo.r.squared sigma nobs AIC
<dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 0.708 0.526 0.00373 NA 0.379 421551 498237.
... with 2 more variables: BIC <dbl>, logLik <dbl>

37 / 52

https://lrberge.github.io/fixest/

Prep submission and in-sample
WMAE
ut of sample result
ot sure why there are NA prediction output although all predictors have no missing d
test$Weekly_mult <- predict(mod3, df_test)
test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg

equired to submit a csv of Id and Weekly_Sales
te.csv(df_test[, c("Id", "Weekly_Sales")], "WMT_FE.csv",
 row.names = FALSE)

rack
test$WS_FE <- ifelse(is.na(df_test$Weekly_Sales), 0, df_test$Weekly_Sales)

heck in sample WMAE
WS_FE <- predict(mod3, df) * df$store_avg
- wmae(actual = df$Weekly_Sales, predicted = df$WS_FE,
 holidays = df$IsHoliday)
es(w) <- "FE"
es <- c(wmaes, w)
es

Linear Linear 2 FE
3040.644 3208.144 1551.232

38 / 52

The general predict() function
predict() is a generic function for predictions from the results of various
model fitting functions.
The function invokes particular methods which depend on the class of the first
argument.
For example, if the first argument is an object from the lm() model,
predict() will call the predict.lm() function
Typically model functions have been defined such as predict.lm() and
predict.glm()
predcit.fixest() is defined in the fixest package
You may replace the predict() with predict.fixest() and get same
results.
Refer the manual here

39 / 52

https://www.rdocumentation.org/packages/fixest/versions/0.8.4/topics/predict.fixest
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/predict

Performance for FE model

wmaes_out

Linear Linear 2 FE
4954.4 5540.3 3357.9

40 / 52

Visualizing in-sample WMAE
df$wmaes <- wmae_obs(actual = df$Weekly_Sales, predicted = df$WS_FE,
 holidays = df$IsHoliday)
ggplot(data=df, aes(y = wmaes,
 x = week,
 color = factor(IsHoliday))) +
 geom_jitter(width = 0.25) + xlab("Week") + ylab("WMAE")

41 / 52

Problems with the data
Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13 Labor Day:
10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13 Thanksgiving: 26-Nov-10,
25-Nov-11, 23-Nov-12, 29-Nov-13 Christmas: 31-Dec-10, 30-Dec-11,
28-Dec-12, 27-Dec-13

1. The holidays are not always on the same week (the last indicates the week in
the testing data)

The Super Bowl is in weeks 7, 7, 6 and 6
Labor day isn't in our testing data at all!
Black Friday is in weeks 48, 47, and 47
Christmas is in weeks 53, 52, and 52
Manually adjust the data for these differences

2. Yearly growth -- we aren't capturing it, since we have such a small time span
We can manually adjust the data for this

Code is in the code file -- a lot of package:dplyr

42 / 52

https://dplyr.tidyverse.org/

Performance overall

wmaes_out

Linear Linear 2 FE Shifted FE
4954.4 5540.3 3357.9 3249.1

43 / 52

Performance overall

wmaes_out

Linear Linear 2 FE Shifted FE Naive Mean
4954.40 5540.30 3357.90 3249.10 3167.99

44 / 52

Performance overall

wmaes_out

Linear Linear 2 FE Shifted FE Naive Mean Ensemble
4954.40 5540.30 3357.90 3249.10 3167.99 3173.30

45 / 52

This was a real problem!
Walmart provided this data back in 2014 as part of a recruiting exercise

Details here
Discussion of first place entry

Code for first place entry
Discussion of second place entry

This is what the group project will be like

Each group tackling a data problem which is hosted on Kaggle or Tianchi
You will have training data but testing data will be withheld
You will need to submit to Kaggle/Tianchi for model evaluation

46 / 52

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/discussion/8125
https://github.com/davidthaler/Walmart_competition_code
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/discussion/8023

Project deliverables
1. Submission to Kaggle/Tianchi

For model evaluation purpose

2. Submission to me: A .rmd (and .html + .pdf) file including:

The integrated code chunks
Main points and findings
Exploratory analysis of the data used
Your model development, implementation, evaluation, and refinement
A conclusion on how well your group did and what you learned
No zipped file please

3. A group presentation in the last session

A presentation slides (.rmd or .pptx) shall also be submitted
All members to present

4. If files > 50M, please submit through a shared folder using OneDrive or
Google Drive. Keep all folder structure with all files and data, and make sure I
can reproduce your code without any changes.

47 / 52

Ethics
Kaggle 1st place winner cheated, $10,000 prize declared irrecoverable

48 / 52

https://towardsdatascience.com/kaggle-1st-place-winner-cheated-10-000-prize-declared-irrecoverable-bb7e1b639365

Summary of Session 6

For next week
Try to replicate the code
You should have completed exploring your project data
Continue your Datacamp career track
Logistic regression for classification problems

50 / 52

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression

R Coding Style Guide
Style is subjective and arbitrary but it is important to follow a generally accepted
style if you want to share code with others. I suggest the The tidyverse style guide
which is also adopted by Google with some modification

Highlights of the tidyverse style guide:
File names: end with .R
Identifiers: variable_name, function_name, try not to use "." as it is
reserved by Base R's S3 objects
Line length: 80 characters
Indentation: two spaces, no tabs (RStudio by default converts tabs to
spaces and you may change under global options)
Spacing: x = 0, not x=0, no space before a comma, but always place one
after a comma
Curly braces {}: first on same line, last on own line
Assignment: use <-, not = nor ->
Semicolon(;): don't use, I used once for the interest of space
return(): Use explicit returns in functions: default function return is the
last evaluated expression
File paths: use relative file path "../../filename.csv" rather than absolute
path "C:/mydata/filename.csv". Backslash needs \\

51 / 52

https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html
https://www.w3schools.com/html/html_filepaths.asp

R packages used in this slide
This slide was prepared on 2021-09-07 from Session_6s_Kaggle.Rmd with R
version 4.1.1 (2021-08-10) Kick Things on Windows 10 x64 build 18362 😄.

The attached packages used in this slide are:

fixest broom lubridate forcats stringr dplyr purrr
"0.9.0" "0.7.9" "1.7.10" "0.5.1" "1.4.0" "1.0.7" "0.3.4"
readr tidyr tibble ggplot2 tidyverse kableExtra knitr
"2.0.1" "1.1.3" "3.1.3" "3.3.5" "1.3.1" "1.3.4" "1.33"

52 / 52

