Programming with Data

Session 3: R Programming (1)

Dr. Wang Jiwei
Master of Professional Accounting

Logical expressions

Why use logical expressions? o

= We just saw an example in our subsetting function
= earnings < 20000
= [ogical expressions give us more control over the data
m They let us easily create logical vectors for subsetting data

df$earnings
NULL
df$earnings < 20000

logical(@)

3/50

Logical operators MU

Schoal of
ccccccccc

==l=><>=<=1] &
= Equals: == = Not equals: =
m 2 == 2 - TRUE = The opposite of ==
m 2 == 3 — FALSE m 2 1= 2 FALSE
= 'dog'=="dog' — TRUE = 2 |= 3 - TRUE
m 'dog'=="cat' — FALSE m 'dog'!="cat' — TRUE

» Comparing strings is done character by character

4/50

Logical operators

=l=><>=<=1|&

m Qreater than: >
= 2 > 1— TRUE
= 2 > 2 — FALSE
= 2 > 3 FALSE
m 'dog'>'cat’' — TRUE

= Greater than or equal to: >=
= 2 >= 1 — TRUE
= 2 >= 2 — TRUE
= 2 >= 3 — FALSE

m [ess than: <
= 2 < 1— FALSE
m 2 < 2 —FALSE
= 2 < 3 TRUE
m 'dog'<'cat’' — FALSE

= [ess than or equal to: <=
m 2 <= 1— FALSE
m 2 <= 2— TRUE
m 2 <= 3 — TRUE

Accountancy

5/50

Logical operators

Not: !
= This simply inverts everything
= ITRUE — FALSE
= |FALSE — TRUE
And: &
= TRUE & TRUE — TRUE
= TRUE & FALSE — FALSE
m FALSE & FALSE — FALSE
Or: | (pipe, same key as '\')
= Note that | is evaluated after all &s
= TRUE | TRUE — TRUE
= TRUE | FALSE — TRUE
= FALSE | FALSE — FALSE
You can mix in parentheses for grouping as needed

l‘c‘c 666666

6/50

Examples for logical operators MU

= How many tech firms had >$10B in revenue in 2017?
sum(tech_df$revenue > 10000)
[1] 46

= How many tech firms had >$10B in revenue but had negative earnings in
20177

sum(tech_df$revenue > 10000 & tech_df$earnings < 0)

[1] 4

7750

Examples for logical operators MU

School of
Accountancy

= Who are those 4 with high revenue and negative earnings?

columns <- c("conm", "tic", "earnings", "revenue"
tech_df[tech_df$revenue > 10000 & tech_df$earnings < 0, columns]

Hit conm tic earnings revenue
##t 2100 CORNING INC GLW -497.000 10116.00
2874 TELEFONAKTIEBOLAGET LM ERICS ERIC -4307.493 24629.64
11804 DELL TECHNOLOGIES INC 7732B -3728.000 78660.00
##t 23377 NOKIA CORP NOK -1796.087 27917.49

8/50

Other special values MU

= We know TRUE and FALSE already
= Note that FALSE can be represented as 0
= Note that TRUE can be represented as any non-zero number
= There are also:
= Inf: Infinity, often caused by dividing something by 0
= NaN: "Not a number," likely that the expression 0/0 occurred
= NA: A missing value, usually not due to a mathematical error
= NULL: Indicates a variable has nothing in it
= We can check for these with:
m is.inf()
= is.nan()
m is.na()
m is.null()

9/50

https://www.rdocumentation.org/packages/splus2R/versions/1.3-3/topics/is.inf
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/is.finite
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/NA
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/NULL

i o SMU
if ... else
= Conditional statements (used for programming)

condl, cond2, etc. can be any logical expression
if(condl) {

Code runs if condl is TRUE
} else if (cond2) { # Can repeat ‘else if' as needed

Code runs 1if this 1s the first condition that is TRUE
} else {

Code runs 1if none of the above conditions TRUE

}

10 /50

Other uses

= Vectorized conditional statements using ifelse()
m [f else takes 3 vectors and returns 1 vector
= A vector of TRUE or FALSE
= A vector of elements to return from when TRUE
= A vector of elements to return from when FALSE

Outputs odd for odd numbers and even for even numbers
even <- rep("even", 5)

odd <- rep("odd", 5)

numbers <- 1:5

ifelse(numbers %% 2, odd, even)

[1] Iloddll llevenll lloddll Ilevenll lloddll

—~
i SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

11/50

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/ifelse

Practice: Subsetting df S

,,,,,,,,
ccccccccc

= This practice focuses on subsetting out potentially interesting parts of our data
frame
= We will also see which of Goldman, JPMorgan, and Citigroup, in which
year, had the lowest earnings since 2010
= Do Exercise 5 on the following R practice file:
= R Practice

12/50

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_5:_Subsetting_our_data_frame

Loops with control structure

Looping: While loop MU

m Awhile() loop executes code
repeatedly until a specified
condition is FALSE

» = An index shall be initiated before

the while loop, and it must be

changed within the loop,

otherwise the loop will never end.
End \ FALSE
loop i<-0

while(i < 5) {
print(i)
i<-1+2

}

While loop

TRUE

Run Code — # [1] o
[1] 2
[1] 4

14 /50

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Control

Looping: For loop o

= A for() loop executes code
repeatedly until a specified
condition 1s FALSE, while
increamenting a given variable

For loop

for(i in c(0, 2, 4)) {
print(i)
}

[1] 0
[1] 2
[1] 4

Next value

v

Run Code |

15/50

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Control

Dangers of looping in R o

School of
Accountancy

= Loops in R are very slow -- one calculation at a time but R is best for many
calculations at once via vectorization or matrix algebra
m Sys.time() to return the current system time

Profit margin, all US tech firms # Profit margin, all US tech firms
start <- Sys.time() start <- Sys.time()
margin_1 <- rep(9,length(tech _df$ni)) margin_2 <- tech_df$earnings /
for(i in seq_along(tech_df$ni)) { tech_df$revenue
margin_1[i] <- tech_df$earnings[i] / end <- Sys.time()
tech_df$revenue[i] time 2 <- end - start
} time_2

end <- Sys.time()

time_1 <- end - start . .
time 1 ## Time difference of 0.001999855 secs

Time difference of 0.00999999 secs

16 /50

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Sys.time

Dangers of looping in R o

School of
Accountancy

= Loops in R are very slow -- one calculation at a time but R is best for many
calculations at once via vectorization or matrix algebra

Are these calculations 1identical?
identical(margin_1, margin_2)

[1] TRUE

How much slower 1is the Loop?
paste(as.numeric(time_1) / as.numeric(time_2), "times")

[1] "5.00035765379113 times"

17 /50

Functions and packages

Help functions MU

Accountancy

= There are two equivalent ways to quickly access help files:
= ?and help()
= Usage to get the help file for data.frame():
= ?data.frame
= help(data.frame)
= To see the options for a function, use args ()

args(data.frame)

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
it fix.empty.names = TRUE, stringsAsFactors = FALSE)
NULL

19/50

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/data.frame

A note on using functions o

args(data.frame)

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
H# fix.empty.names = TRUE, stringsAsFactors = FALSE)
NULL

= The ... represents a series of inputs
= [n this case, inputs like name=data, where name is the column name and
data is a vector
= The = arguments are options for the function
= The default is prespecified, but you can overwrite it
= ¢g, you may change stringsAsFactors from FALSE (default) to
TRUE
= Options can be very useful or save us a lot of time!
= You can always find them by:
= Using the ? command
= Checking other documentation like www.rdocumentation.org
= Using the args () function

20/50

https://www.rdocumentation.org/

Packages in R FMU_

School of
Accountancy

= R packages are collections of functions and data sets developed by the
community.

= Most R packages are stored on the offcial CRAN repository and can be
installed within the RStudio directly

= Alternatively, you may download the package to local disk and use RStudio or
command install.packages(file.choose(), repos=NULL) to
install it

To install the tidyverse package which will be used for this course
tidyverse is a collection of useful packages in R

https://www. tidyverse.org/

install.packages("tidyverse")

or to install multiple packages in one go:
install.packages(c("ggplot2", "dplyr", "magrittr"))

= [oad packages using 1library()
= Need to do this each time you open a new instance of R

Load the tidyverse package
library(tidyverse)

21/50

https://cran.r-project.org/
https://rdrr.io/r/base/library.html

Pipe notation MU

......
ccccccccc

| Pipe: output from the left as an input to the right directly.

= The Base R (ie, without any external package) introduced the official pipe
notation | > as of R version 4.1 in 2021.
= The New R Pipe
= But a more popular pipe notation has already been provided by the
package:magrittr
= Part of package:tidyverse, an extremely popular collection of
packages
= Pipe notation is done using %>%
s Left %>% Right(arg2, ...) isthesameasRight(Left, arg2,

-

| Piping can drastically improve code readability

22/50

https://www.r-bloggers.com/2021/05/the-new-r-pipe/
https://magrittr.tidyverse.org/
https://tidyverse.tidyverse.org/

Piping example o

School of
Accountancy

| Plot tech firms' earnings vs. revenue, >$10B in revenue

%>% comes from magrittr and ggplot() comes from ggplot2, both part of tidyverse
alternatively you may launch these two packages separately

note that ggplot uses a special pipe notation "+"
library(tidyverse)

library(plotly)

plot <- tech_df %>%
subset(revenue > 10000) %>%
ggplot(aes(x = revenue, y = earnings)) + # Adds point, and ticker
geom_point(shape = 1, aes(text = sprintf("Ticker: %s", tic)))
ggplotly(plot) # Makes the plot interactive

50000 - o
40000

30000

£

€ 20000~ o

© o
® 10000- o o

®_ o
0- ‘ikb:?g 8 ©
0 50000 100000 150000 200000
revenue

23/50

Without piping MU

School of
Accountancy

library(tidyverse)
library(plotly)

plot <- ggplot(subset(tech_df, revenue > 10000),
aes(x = revenue, y = earnings)) +
geom_point(shape = 1, aes(text = sprintf("Ticker: %s", tic)))
ggplotly(plot) # Makes the plot interactive

50000 - 5
40000 -

© 30000

£

£ 20000 °

S o
Y 10000~ o o

0- iiﬁgfﬁ; 8 0

0 50000 100000 150000 200000
revenue

24/50

Practice: library usage P

Schoal of
ccccccccc

= This practice focuses on using an external library
= We will also see which of Goldman, JPMorgan, and Citigroup, in which
year, had the lowest earnings since 2010
= Do Exercise 6 on the following R practice file:
= R Practice

Note: The ~ indicates a formula the left side is the y-axis and the right
side is the x-axis

Note: The | tells lattice to make panels based on the variable(s) to the
right

25750

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_6:_External_library_usage

Math functions

= sum(): Sum of a vector
= abs(): Absolute value
m sign(): The sign of a number

vector = c(-2, -1, 0, 1, 2)
sum(vector)

[1] o
abs(vector)

[11 2101 2
sign(vector)

[1] -1 -1 @ 1 1

26/50

https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/MathFun.html
https://rdrr.io/r/base/sign.html

Stats functions

= mean(): Calculates the mean of a vector
= median(): Calculates the median of a vector
= sd(): Calculates the sample standard deviation of a vector
m quantile(): Provides the guartiles of a vector
= range(): Gives the minimum and maximum of a vector
m Related: min() and max()

quantile(tech_df$earnings)

0% 25% 50% 75% 100%
-4307.4930 -15.9765 1.8370 91.3550 48351.0000

range(tech_df$earnings)

[1] -4307.493 48351.000

—~
X SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

271750

https://rdrr.io/r/base/mean.html
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/median
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/sd
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/quantile
https://rdrr.io/r/base/range.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html

Make your own functions! MU

= Use the function() function!
= my func <- function(agruments) {code}
= recommended to explicitly use return() to specify what to return from
the function.

|SM@MMmmmAM2mammMr

add_two <- function(n) {
n+ 2

}
add_two(500)

[1] 502

add_two <- function(n) {
return(n + 2)

}
add_two(500)

[1] 502

28/50

Slightly more complex MU

Accountancy
mult_ together <- function(nl, n2=0, square=FALSE) {
if (!square) {
return(nl * n2)

} else {
return(nl * nl)

¥
}

mult together(5, 6)
[1] 30

mult_together(5, 6, square = TRUE)
[1] 25

mult_ together(5, square = TRUE)

[1] 25

29/50

Practice: Functions MU

= This practice focuses on making a custom function
= Currency conversion between USD and SGD!
= Do Exercise 7 on the following R practice file:
= R Practice

30/50

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_7:_Making_your_own_function

Challenging Practice MU

Define a function called digits(n) which returns the number of digits of a given
integer number. For simplicity, we assume n is zero or positive integer, ie, n >= 0.

= if you call digits(251), it should return 3
= if you call digits(5), it should return 1
= if you call digits (@), it should return 1

For practice, you are required to use if conditions and while loops when
necessary. You should use integer division %/% in the while loop to count the
number of digits. You are not allowed to use functions such as nchar() and
floor().

31/50

Loops with 1., functions

LOOpS with lapply() :SMU

You don't have to always write loops using for or while. There are a group of
lapply () functions which can implement loops.

= lapply(): Loop over a list, evaluate a function on each element, and return a
list

m there are some others too: sapply(); mapply();apply(); vapply();
tapply()

Let's see the structure of lapply (). It extracts the function using match.fun(),
checks whether it is a list (if not, convert to a list using as.1ist()) and finally
loop internally in C code (. Internal(lapply (X, FUN))).

lapply

function (X, FUN, ...)

#Ht {

it FUN <- match.fun(FUN)

it if (!is.vector(X) || is.object(X))
Hit X <- as.list(X)

Hit .Internal(lapply(X, FUN))

#Ht)}

<bytecode: 0x000000001ab7c2e8>
<environment: namespace:base>

33/50

https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/mapply.html
https://rdrr.io/r/base/apply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/tapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/match.fun.html
https://rdrr.io/r/base/list.html

Apply a function over a list

0 mean and 1 standard deviations.

set.seed(1) # make random number generation reproducible

x_list <- list(a = rnorm(10000), b = rnorm(20000, 1, 5))
str(x_1list)

List of 2

$ a: num [1:10000] -0.626 0.184 -0.836 1.595 0.33 ...
$ b: num [1:20000] -3.02 -4.28 -4.18 -4.93 -1.5 ...

x_list mean <- lapply(x_list, mean)
str(x_list_mean)

List of 2
$ a: num -0.00654
$ b: num 1.01

x_list mean_vector <- sapply(x_list, mean)
str(x_list_mean_vector)

Named num [1:2] -0.00654 1.00841
- attr(*, "names")= chr [1:2] "a" "b"

—
'« SMU
Ed
SINGAPORE MANAGEMENT
UKIVERSITY
School of
Accountancy

rnorm() to generate normal distributed numbers (in a vector format) with default

34/50

https://rdrr.io/r/stats/Normal.html

: o SMU
Apply a function over an array
array () are data objects which can store data in more than two dimensions
which allows different data types. Recall that matrix is two-dimensional data
with same data type and dataframe is two-dimensional data which allows
different data types. apply () can evaluate a function over an array.

set.seed(1) # make random number generation reproducible

create a 2-dimensional array (a matrix for this case)

x_array <- array(c(rnorm(10000), rnorm(20000, 1, 5)), dim = c(2, 10000))
str(x_array)

num [1:2, 1:10000] -0.626 ©0.184 -0.836 1.595 0.33 ...

apply mean() on the first dimension, 1ie, rows of a matrix/dataframe
Xx_array_mean <- apply(x_array, 1, mean)
str(x_array_mean)

num [1:2] ©.467 0.506

apply mean() on the second dimension, 1ie, columns of a matrix/dataframe
X_array_mean <- apply(x_array, 2, mean)
str(x_array_mean)

num [1:10000] -0.221 ©.38 -0.245 0.613 0.135 ...

35/50

https://rdrr.io/r/base/array.html
https://rdrr.io/r/base/apply.html

Managing datatframes with .-

Read files to data frames MU

The most popular file format among data analysts 1s the comma-separated values
(CSV) file that uses a comma (,) to separate values. Each line of the file is a data
record. Each record consists of one or more fields, separated by commas.

= you can save Excel file into CSV file

The simplest way to import smaller CSV is to use the read.csv() from the base
R (ie, without any additional packages). Other functions include: read.table()
(for .txt or a tab-delimited text file); read.delim() (for file with a separator that
is different from a tab, a comma or a semicolon)

df <- read.csv("data/session_2.csv")

Other packages also have import files functions:

= readr::read csv()

= data.table::fread()

= readxl::read excel()

= other packages for other data formats such as JSON, HTML, SAS, STATA,
etc

37/50

https://en.wikipedia.org/wiki/Comma-separated_values
https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/read.table
https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/read.table
https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/read.table
https://readr.tidyverse.org/reference/read_delim.html
https://rdatatable.gitlab.io/data.table/reference/fread.html
https://readxl.tidyverse.org/reference/read_excel.html
https://www.datacamp.com/community/tutorials/r-data-import-tutorial

Single table functions MU

package:dplyr is part of the package:tidyverse which provides useful
functions for data manipulation. A competing package is package:data.table
which is more efficient for large dataset (I suggest > 1G)

= Rows:

= filter() chooses rows based on column values.

slice() chooses rows based on location.
arrange () changes the order of the rows.

» Columns:

select () changes whether or not a column is included.

rename () changes the name of columns.

mutate() changes the values of columns and creates new columns.
relocate() changes the order of the columns.

= Groups of rows:

summarize() collapses a group into a single row.

38/50

https://dplyr.tidyverse.org/
https://tidyverse.tidyverse.org/
https://r-datatable.com/
https://atrebas.github.io/post/2019-03-03-datatable-dplyr/
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/summarise.html

Filter rows with fiiter() S

School of
Accountancy

filter() allows you to select a subset of rows in a data frame. The first
argument is the dataframe. The second and subsequent arguments refer to
variables within that dataframe, selecting rows where the expression is TRUE.

Select all rows with ticker = AAPL (Apple Inc.) and after 2013 fiscal year:

library(tidyverse)

df %>% filter(tic == "AAPL" & fyear > 2013)

gvkey datadate fyear indfmt consol popsrc datafmt tic conm curcd ni
1 1690 20140930 2014 INDL C D STD AAPL APPLE INC USD 39510
2 1690 20150930 2015 INDL C D STD AAPL APPLE INC USD 53394
3 1690 20160930 2016 INDL C D STD AAPL APPLE INC USD 45687
4 1690 20170930 2017 INDL C D STD AAPL APPLE INC USD 48351
Hit revt cik costat gind gsector gsubind

1 182795 320193 A 452020 45 45202030

2 233715 320193 A 452020 45 45202030

3 215091 320193 A 452020 45 45202030

4 229234 320193 A 452020 45 45202030

This 1s roughly equivalent to this base R code:

df[df$tic == "AAPL" & df$fyear > 2013,]

39/50

https://dplyr.tidyverse.org/reference/filter.html

Choose rows with siice(FE

School of
Accountancy

slice() is to select, remove, and duplicate rows by their (integer) locations.

df %>% slice(5:7)

gvkey datadate fyear indfmt consol popsrc datafmt tic conm curcd ni
1 1004 20150531 2014 INDL C D STD AIR AAR CORP UsSD 10.2
2 1004 20160531 2015 INDL C D STD AIR AAR CORP usb 47.7
3 1004 20170531 2016 INDL C D STD AIR AAR CORP USD 56.5
i revt cik costat gind gsector gsubind
1 1594.3 1750 A 201010 20 20101010
2 1662.6 1750 A 201010 20 20101010
3 1767.6 1750 A 201010 20 20101010

It is accompanied by a number of helpers for common use cases:

m slice head() and slice tail() select the first or last rows.

m slice sample() randomly selects rows.

m slice min() and slice max() select rows with highest or lowest values
of a variable.

40/ 50

https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html

Arrange rows with arrange() MU

School of
Accountancy

arrange() is to reorder the rows by a set of column names:

df %>% arrange(conm, desc(fyear)) %>%

head()
#H# gvkey datadate fyear indfmt consol popsrc datafmt tic conm
1 122519 20170630 2017 INDL C D STD FLWS 1-800-FLOWERS.COM
2 122519 20160630 2016 INDL C D STD FLWS 1-800-FLOWERS.COM
3 122519 20150630 2015 INDL C D STD FLWS 1-800-FLOWERS.COM
4 122519 20140630 2014 INDL C D STD FLWS 1-800-FLOWERS.COM
5 122519 20130630 2013 INDL C D STD FLWS 1-800-FLOWERS.COM
6 122519 20120630 2012 INDL C D STD FLWS 1-800-FLOWERS.COM
curcd ni revt cik costat gind gsector gsubind
1 USD 44.041 1193.625 1084869 A 255020 25 25502020
2 USD 36.875 1173.024 1084869 A 255020 25 25502020
3 USD 20.287 1121.506 1084869 A 255020 25 25502020
4 USD 15.372 756.345 1084869 A 255020 25 25502020
5 USD 12.321 735.497 1084869 A 255020 25 25502020
6 USD 17.646 716.257 1084869 A 255020 25 25502020

41/50

https://dplyr.tidyverse.org/reference/arrange.html

Select columns with setect() Fr

School of
Accountancy

select() allows you to subset a data frame by column names
(variables/features/predictors)

Select columns by name
df %>% select(gvkey, tic, conm, fyear) %>%
slice(1:3)

gvkey tic conm fyear
1 1004 AIR AAR CORP 2010
2 1004 AIR AAR CORP 2011
3 1004 AIR AAR CORP 2012

Select all columns between gvkey and conm (inclusive)

df %>% select(gvkey:conm)

Select all columns except those from gvkey to conm (inclusive)
df %>% select(!(gvkey:conm))

Select all columns ending with "d"

df %>% select(ends with("d"))

42/50

https://dplyr.tidyverse.org/reference/select.html

Rename COlllmnS With rename() :SMU

School of
Accountancy

rename () allows you to rename column names

rename columns
df %>% select(gvkey, tic, conm, fyear) %>%
rename(comp_name = conm) %>% slice(1:3)

gvkey tic comp_name fyear
1 1004 AIR AAR CORP 2010
2 1004 AIR AAR CORP 2011
3 1004 AIR AAR CORP 2012

43 /50

https://dplyr.tidyverse.org/reference/rename.html

Add new columns with nutate() MU

mutate() is to add new columns. package :DT helps to present larger dataset
using the datatable() function.

library(DT)

df %>% mutate(margin = ni / revt) %>% slice(1:20) %>%
select(gvkey, conm, tic, fyear, ni, revt, margin) %>%
datatable(options = list(pagelLength = 2), rownames = FALSE)

Show 2 v entries Search: | |

gvkey conm tic fyear ni revt margin
AAR

1004 AIR 2010 69.826 1775.782 0.0393212680385318
CORP
AAR

1004 CORP AIR 2011 67.723 2074.498 0.0326454882096777

Showing 1 to 2 of 20 entries

Previous 1 2 3 4 5 ... 10 Next

44 /50

https://dplyr.tidyverse.org/reference/mutate.html
https://github.com/rstudio/DT
https://rdrr.io/pkg/DT/man/datatable.html

Change column order with reocate) V2

Accountancy

relocate() uses a similar syntax as select() to move blocks of columns at
once

df %>% relocate(tic:revt, .after = fyear) %>%

tail()
it gvkey datadate fyear tic conm curcd ni revt indfmt
72720 324684 20171231 2017 ASLN ASLAN PHARMACEUTIC USD -39.892 0.0 INDL
72721 326688 20131231 2013 NVT NVENT ELECTRIC PLC usD NA NA INDL
##t 72722 326688 20141231 2014 NVT NVENT ELECTRIC PLC usbD NA NA INDL
72723 326688 20151231 2015 NVT NVENT ELECTRIC PLC usD NA NA INDL

72724 326688 20161231 2016 NVT NVENT ELECTRIC PLC USD 259.100 2116.0 INDL
72725 326688 20171231 2017 NVT NVENT ELECTRIC PLC USD 361.700 2097.9 INDL

#Hit consol popsrc datafmt cik costat gind gsector gsubind
##t 72720 C D STD 1722926 A 352010 35 35201010
72721 C D STD 1720635 A 201040 20 20104010
#it 72722 C D STD 1720635 A 201040 20 20104010
##t 72723 C D STD 1720635 A 201040 20 20104010
##t 72724 C D STD 1720635 A 201040 20 20104010
72725 C D STD 1720635 A 201040 20 20104010

45/50

https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/select.html

Summarise values with sumarise()

summarize() collapses a data frame to a single row.
df %>% summarise(ni_mean = mean(ni, na.rm = TRUE))

Hit ni_mean
1 263.1611

It's not that useful until we learn the group by () verb in a future topic.

46 /50

https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/group_by.html

Summary of Session 3

For next week MU

= continue with your Datacamp and textbook (R Cookbook or R for Data
Science)

= review today's code and pre-read next week's seminar notes

= complete the Assignment 1 and submit on eLearn

48 /50

https://datacamp.com/
https://rc2e.com/index.html
https://r4ds.had.co.nz/

R Coding Style Guide

Style is subjective and arbitrary but it is important to follow a generally accepted
style if you want to share code with others. I suggest the The tidyverse style guide
which is also adopted by Google with some modification

= Highlights of the tidyverse style guide:

» File names: end with .R

m [dentifiers: variable name, function name, try not to use "." as it is
reserved by Base R's S3 objects

= Line length: 80 characters

m [ndentation: two spaces, no tabs (RStudio by default converts tabs to
spaces and you may change under global options)

= Spacing: x = 0, not x=0, no space before a comma, but always place one
after a comma

m Curly braces {}: first on same line, last on own line

m Assignment: use < -, not = nor ->

m Semicolon(;): don't use, I used once for the interest of space

= return(): Use explicit returns in functions: default function return is the
last evaluated expression

m File paths: use relative file path "../../filename.csv" rather than absolute
path "C:/mydata/filename.csv". Backslash needs \\

49 /50

https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html
https://www.w3schools.com/html/html_filepaths.asp

R packages used in this slide MU

This slide was prepared on 2021-08-29 from Session 3s.Rmd with R version 4.1.1
(2021-08-10) Kick Things on Windows 10 x64 build 18362 (@Q.

The attached packages used in this slide are:

it DT plotly forcats stringr dplyr purrr readr
H#it "9.18" "4.9.4.1" "9.5.1" "1.4.0" "1.0.7" "9.3.4" "2.0.1"
#H# tidyr tibble ggplot2 tidyverse kableExtra knitr
H#t "1.1.3" "3.1.3" "3.3.5" "1.3.1" "1.3.4" "1.33"

50/50

