Programming with Data

Session 2: R Programming (I)

Dr. Wang Jiwei
Master of Professional Accounting

Introduction to R

Whatis R? MU

R is free and open source
R is a “statistical programming language”
= Focussed on data handling, calculation, data analysis, and visualization
R is not a general programming language (wikipedia)
We will use R for all work in this course

3/72

https://en.wikipedia.org/wiki/General-purpose_programming_language
https://www.r-project.org/about.html

The History of R o

1993: developed by Ross Thaka and Robert Gentleman at University of
Auckland

Why R? "R & R"

R is written in C and is developed from Bell Laboratory's S language
2000.2.29: R 1.0.0 official release

#z0

2000/02/29
R e s

4/72

https://www.r-bloggers.com/celebration2020-a-great-get-together-to-celebrate-20-years-of-r-1-0-0/

The Happiest R

= based on programmers' pictures on GitHub

75

70

65

60

55

50

45

40 -

Mean Smilliness
By languages

Dﬁ o ‘#,;\D{\ 5@‘?“" ,‘,\s‘{&‘ = '@\5@{

B Language

£ SMU

SINGAPORE MANAGEMENT

URIVERSITY

|S:I|w|n|

ncy

5/72

https://github.com/
https://medium.com/swlh/what-programming-language-has-the-happiest-developers-f0636b08e898

R vs Python

| Each has its own merits

SINGAPORE MANAGEMENT

School of
Accountancy

R

Statistical analysis with smaller dataset Machine/Deep learning with large dataset

Data visualization

Python

General purpose which is great for automation

100x

10x

CPU time (relative to C and absolute)

for (NumPy)
forasach (NumPy)

for

foreach

n
VeC —,

L] In (NumPy)

niapr vec (NumPy)

in_ N for (Numba)

foreach -'{§ foreach (Numba)
for — for —

finfirst ~
{ o Julia Python

for
—-\.

forsach —

3 min

2 min

1 min

30 sec

10 sec

1 s8¢

172 sec

174 sec

6/72

https://towardsdatascience.com/r-vs-python-vs-julia-90456a2bcbab

= For this class, [will assume you are using RStudio for R programming. You
will need to first install R and then RStudio.
= R Installation
= RStudio downloads
= You will need a laptop or desktop for this
= For the most part, everything will work the same across all computer types
= Everything in these slides was tested using R version 4.1.1 (2021-08-10) Kick

Things on Windows 10 x64 build 18362

R and RStudio installation path should be in English. Any non-English
path may result in installation failure.

7/72

https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download

How to use RStudio ¢ SMU_

School of
Accountancy

1. R markdown file R

T-cF- 0 . D= sssm .

= integrate code into reports i e e e
= more interactive reports with A

analytics
= this slides written with R
Markdown using the g e e o
xaringan package R TSRS
2. Console
= Useful for testing code and
exploring your data
= Enter your code one line at a
time
3. R Markdown console
= Shows if there are any errors

when preparing your report

i by 112N TRE SR BUTESR W
wr carsor inside 1t and pressing

8/72

https://github.com/yihui/xaringan

How to use RStudio

. Environment - Shows all the
values you have stored

. Help - Can search documentation
for instructions on how to use a
function

. Viewer - Shows any output you
have at the moment.

. Files - Shows files on your
computer

ot Hinknry =

2 H 2 eport Delaaet - F At = -
T Glokal Emarunmst -
Dara
oer 4 T4B6 obs. of 12 variables
Ocf_s 200 b3, of 12 variables
Dare 57 ob3. of 3 variables
Ddfu 23 oo, of 3 veriables
values
cor 0.740014212652338
Oplar vist of 9
7
¥ & B
Fi Pioh Packges Help Viewes ==
;2
Dot Framat
data e frass} | g R Docamentation
Data Frames
Description
v Ranction dese ., Frame [| croates data rames, tohthy coupled ©oactions of vanables which share

wmarry of the propedins of matnces snd of knfy, used = the fundsmental dals dructure by most of i3
modakng softwean

Arguments
thorww sgumneniy ave of st Uve B valow or cag = valus. Component
names ar2 creaed based on the tag {if present) or the deparsed amement fiself

nime aingls imtager o chansctar atring spacifying & calimn to be Used na
oW chamcter o witager soctor geang The mw names for the data
e
. s e checkisd for convsistency of length and sames
shame mamay tagieal § TROE thon the raenes of the wnshiss i the dats fame am chocked to

annure that thay s symisctically valid warkabls namés snd s not duphested

necAnLAny Thay A Admntad (B maie . anes | A0 Thar thas s

nnnnnnnnnnnn MANAC

URIVERSITY

School of
Accountancy

CEMENT

9772

Basic R commands

Arithmetic I

= Anything in boxes like those on # Addition uses '+’
the right are R code 1+1

= The slides themselves are made in
R, so you could copy and paste # 1] 2

any code in the slides right into R

; # Subtraction uses '-'
to use it yourself

= Grey boxes: R Code fol
= Lines starting with hash # are w [1] 1
comments
u They only eXplain what # Multiplication uses '*'
the code does 3%3
= Boxes with ##: Output
[1] 9

Division uses '/'
4 / 2

[1] 2

11/72

Arithmetic

= Exponentiation
m WritexzYasx ~ vy
= Modulus %%
» The remainder after division
= Ex.:46 mod 6 =4
1.6 X 7=42
2.46 —42 =1
3.4 < 6,s04i1s the
remainder
= [nteger division %/% (not used
often)
m Like division, but it drops
any decimal

Exponentiation uses '’
5725

[1] 3125

25 A (1/2)

[1] 5

Modulus (remainder) uses '%%'
46 %% 6

[1] 4

Integer division uses '%/%'
46 %/% 6

[1] 7

12/72

Variable assignment

= Variable assignment lets you give
something a name
= This lets you easily reuse it
= In R, we can name almost
anything that we create
= Values
= Data
= Functions, etc...
= We will name things using the < -
or = command, with the first
being preferred

—~
X SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

Store 2 1n 'x' and 'x1'

X <- 2

x1 <- 2

Check the value of x and x1
X; X1

[1] 2

[1] 2

Store arithmetic in y
y <- X * 2

Check the value of y
y

[1] 4

13/72

Variable assignment o

Note that values are calculated at
the time of assignment

We previously sety <- 2 * x
If we change the values of x and y
remain unchanged!

Variables: combinations of
alphanumeric characters along
with periods (.) and underscores
(L), cannot start with a number or
an underscore though

Best practice: use actual names
for variables instead of single
letters.

Previous value of x and y
X

[1] 2

[1] 4

Change x, how about y?
X <- 200

X

[1] 200

[1] 4

14 /72

Variable assignment

= To remove a variable, use
function rm()
= free up memory
= Variable names are case sensitive

Assign value to
X <-1

remove variable
rm(x)

Check the value
X

[}

Store 2 in 'x
X <- 2

Check the value
X

of X

SINGAPORE MANAGEMENT

School of
Accountancy

15/72

Application: Singtel MU

School of
Accountancy

Set a variable growth to the amount of Singtel's earnings growth
percent in 2018

Data from Singtel's earnings reports, in Millions of SGD
singtel_2017 <- 3831.0
singtel 2018 <- 5430.3

Compute growth
growth <- singtel 2018 / singtel 2017 - 1

Check the value of growth
growth

[1] 0.4174628

16 /72

Recap FLm

= So far, we are using R as a glorified calculator
= The key to using R is that we can scale this up with little effort
= (Calculating all public companies' earnings growth isn't much harder than
calculating Singtel's!

| Scaling this up will give use a lot more value

= We can also leverage functions to automate more complex operations
= There are many functions built in, and many more freely available
= We'll also need ways to read data files and work with collections of numbers

Mumber of R packages ever published on CRAN

17772

https://blog.revolutionanalytics.com/2017/01/cran-10000.html

Working with data in R

Data types in R o

The four main types of data in R:
Numeric: Any number
= Positive or negative
= With or without decimals
Boolean/Logical: TRUE or FALSE
= (Capitalization matters!
= Shorthand is T and F
Character: "text in quotes"
= More difficult to work with
= Fither single or double quotes although double is recommended
Factor: Converts text into numeric data
= (Categorical data for statistical analysis
= ¢g, convert Male/Female into numbers to be included in statistical
analysis

19772

Data types in R

tech_firm <- TRUE # boolean data
earnings <- 12662 # numeric data

class(tech_firm)

[1] "logical"
is.logical(tech_firm)
[1] TRUE
is.numeric(earnings)

[1] TRUE

—~

' SMU
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

20/72

Data types in R

company_nhame <- "Google" # character data
company_nhame <- 'Google' # also character data
company_name

[1] "Google"
class(company _name)

[1] "character”
is.character(company _name)
[1] TRUE
nchar(company_name)

[1] 6

—~

' SMU
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

21/72

Practice: Data types Fo

= This practice is to make sure you understand main data types
= Do Exercise 1 on the following R practice file:
= R Practice

22/72

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_1:_Data_types

Scaling up...... MU

= We already have some data entered, but it's only a small amount
= We need to scale this up...

= Vectors using c()!

= Matrices using matrix()!

m Lists using 1ist()!

= Data frames using data.frame()!

| Each of these is covered in the coming slides

23/72

Vectors

Vectors: What are they? MU

........
ccccccccc

= Remember back to linear algebra...
= Examples:

or (1 2 3 4)

=~ W N

I Vector is a row (or column) of data

25772

Vector creation MU

School of
Accountancy

= Vectors are entered using the ¢ () command
= Any data type is fine, but all elements must be the same type

company <- c("Google", "Microsoft", "Goldman")
company

[1] "Google" "Microsoft" "Goldman"

tech_firm <- c(TRUE, TRUE, FALSE)
tech_firm

[1] TRUE TRUE FALSE

earnings <- c(12662, 21204, 4286)
earnings

[1] 12662 21204 4286

26/72

Vector has no dimension MU

A vector in R can be seen as a "concatenation" (in fact ¢ stands for
concatenate) of elements of 1 or more of the same data type, indexed
by their positions and so no dimensions (in a spatial sense), but just a
continuous index that goes from 1 to the length of the object itself.

m A vector is neither a row vector nor a column vector.

= So R will interpret a vector in whichever way makes the matrix product
sensible.

271772

Vector has no dimension ¢ SMU_

School of
Accountancy

dim(earnings) = c(1, 3) # add dimmensions
earnings

#it [,1] [,2] [,3]
[1,] 12662 21204 4286

dim(earnings) = c(3, 1)
earnings

#it [,1]
[1,] 12662
[2,] 21204
[3,] 4286

class(earnings)
[1] "matrix" "array"

dim(earnings) = NULL # remove dimensions
class(earnings)

[1] "numeric"

28 /72

Special cases for vectors

= Counting between integers using

colon and seq()
m :,eg 1:50r22:500
= seq(),e.g seq(from=0,
t0=100, by=5)
1:5
[1] 123 45

seq(from=0, to=100, by=5)

[1] o
[20] 95 100

T note that [20] means the 20th output

5 106 15 20 25 30 35

= Repeating something
= rep(),e.g.

rep(1,times=10) or
rep("hi",times=5)

rep(1l, times=10)

[1] 1111111111

rep("hi", times=5)

[1] Ilhill llhill llhill Ilhill llhill
40 45 50 55 60 65 70 75 80

85 90

29/72

Vector math MU

School of
Accountancy

| Works the same as scalars (real numbers), but applies element-wise

» First element with first element,
= Second element with second element,

earnings # previously defined

[1] 12662 21204 4286

earnings + earnings # Add element-wise

[1] 25324 42408 8572

earnings * earnings # multiply element-wise

[1] 160326244 449609616 18369796

30/72

Vector math MU

School of
Accountancy

| Canalso use 1 vector and 1 scalar
= Scalar is applied to all vector elements
earnings + 10000 # Adding a scalar to a vector
[1] 22662 31204 14286
10000 + earnings # Order doesn't matter
[1] 22662 31204 14286
earnings / 1000 # Dividing a vector by a scalar

[1] 12.662 21.204 4.286

31/72

Vector math MU

School of
Accountancy

= From linear algebra, you might remember multiplication being a bit different,
as a dot product. That can be done with %*7%

Dot product: sum of product of elements
earnings %*% earnings # returns a matrix though. ..

i [,1]
[1,] 628305656

drop(earnings %*% earnings) # drops excess dimensions

[1] 628305656

32/72

Vector math MU

School of
Accountancy

m QOther useful functions, length() and sum():
length(earnings) # returns the number of elements
[1] 3
sum(earnings) # returns the sum of all elements

[1] 38152

33/72

Naming vectors

= Vectors allow us to include a lot
of information in one object
= [t isn't easy to read though
= We can make things more
readable by assigning names ()
= Names provide a way to
easily work with and
understand the data

—~
i SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

Hard to read:
earnings
[1] 12662 21204 4286

Easy to read.:

names(earnings) <- c("Google",
"Microsoft",
"Goldman")
earnings

Google Microsoft Goldman
#t 12662 21204 4286

34/72

Selecting vectors

= Selecting can be done a few ways.

= By index, such as [1]
= By name, such as
["Google"]

earnings[1]

Google
12662

earnings["Google"]

Google
##t 12662

—~
X SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

= Multiple selection:
= earnings[c(1,2)]
= earnings[1:2]
m earnings[c("Google",
"Microsoft")]

Each of the above 3 1is equivalent
earnings[1:2]

#it Google Microsoft
H#H# 12662 21204

35/72

Combining vectors

= Combining is done using c ()

cl <- c(1, 2, 3)
c2 <- c(4, 5, 6)
c3 <- c(cl, c2)
c3

[1] 123 456

36/72

Factor vectors FLm

= Factors in R are stored as a vector of integer values with a corresponding set
of character values to use when the factor is displayed.
= convert character values into numerical values
m categorical variables in statistical modeling
m Levels of a factor are the unique values of that factor variable
= R is giving each unique value of a factor a unique integer, tying it back to
the character representation
= Levels can be ordered

37/72

Factor vectors MU

School of
Accountancy

x <- factor(c("High School", "College", "Masters", "PhD"))
X

[1] High School College Masters PhD
Levels: College High School Masters PhD

x <- factor(c("College", "High School"”, "PhD", "PhD", "Masters"),
levels = c("High School"”, "College", "Masters", "PhD"),
ordered = TRUE)

[1] College High School PhD PhD Masters
Levels: High School < College < Masters < PhD

as.numeric(x)

[1] 214 4 3

38/72

—~
i SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

Missing data

School of
Accountancy

= Missing data is represented by NA mean(z)
in R.
= an element of a vector ## [1] NA
= is.na tests each element of a
vector for missingness mean(z, na.rm = TRUE)

= NULL is the absence of anyting,
ie, nothingness
= atomical and cannot exist
within a vector

[1] 4.25

y <- c(1, NULL, 2)
y

z <- c(1, NA, 8, 3, 5) ## [1] 1 2
Z

is.null
[1] 1 NA 8 3 5 is.null(y)

[1] FALSE
is.na(z) [1]

[1] FALSE TRUE FALSE FALSE FALSE

39/72

Vector example MU

School of
Accountancy

Calculating profit margin for all public US tech firms
715 tech firms with >IM sales 1in 2017
summary(earnings_2017) # Cleaned data from Compustat, in $M USD

H## Min. 1st Qu. Median Mean 3rd Qu. Max.
-4307.49 -15.98 1.84 296.84 91.36 48351.00

summary(revenue_2017) # Cleaned data from Compustat, in $M USD

H#H# Min. 1st Qu. Median Mean 3rd Qu. Max.
Hit 1.06 102.62 397.57 3023.78 1531.59 229234.00

profit_margin <- earnings 2017 / revenue_2017
summary(profit_margin)

H#H# Min. 1st Qu. Median Mean 3rd Qu. Max.
-13.97960 -0.10253 0.01353 -0.10967 0.09295 1.02655

40/72

Vector example MU

School of
Accountancy

order() to sort and return the index for each element
head() to output the first few elements
head(order(profit_margin))

[1] 424 477 612 305 317 625

These are the worst and best profit margin firms in 2017.
profit_margin[order(profit_margin)][c(1, length(profit_margin))]

HELIOS AND MATHESON ANALYTIC CCUR HOLDINGS INC
-13.979602 1.026549

41/72

Practice: Vectors MU

= This practice explores the ROA of Goldman Sachs, JPMorgan, and Citigroup
in 2017
= Do Exercise 2 on the following R practice file:
= R Practice

42772

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_2:_Vectors

Matrices

Matrices: what are they? MU

........
ccccccccc

= Remember back to linear algebra...

= Example:
1 2 3 4
5 6 7 8
9 10 11 12

| Matrix is a rows and columns of data

44/ 72

Matrix creation ¢ SMU_

School of
Accountancy

= Matrices are entered using the matrix() command
= Any data type is fine, but all elements must be the same type

columns <- c("Google", "Microsoft", "Goldman")

rows <- c("Earnings","Revenue")

same: matrix(data=c(12662, 21204, 4286, 110855, 89950, 42254),ncol=3)

firm_data <- matrix(data=c(12662, 21204, 4286, 110855, 89950, 42254),
nrow=2)

firm_data

#it [,11 [,2] [,3]
[1,] 12662 4286 89950
[2,] 21204 110855 42254

45/72

Math with matrices ¢ SMU_

School of
Accountancy

| Everything with matrices works just like vectors
firm_data + firm_data

[,1] [,2] [,3]
[1,] 25324 8572 179900
[2,] 42408 221710 84508

firm_data / 1000

#it [,1] [,21 [,3]
[1,] 12.662 4.286 89.950
[2,] 21.204 110.855 42.254

46 /72

Math with matrices

= Matrix transposing, AT, uses t ()

firm_data T <- t(firm_data)
firm _data T

Hit [,1] [,2]
[1,] 12662 21204
[2,] 4286 110855
[3,] 89950 42254

= Matrix multiplication, A B, uses %*%
firm_data %*% firm_data_ T

#it [,1] [,2]
[1,] 8269698540 4544356878
[2,] 4544356878 14523841157

Matrix is the cornerstone of machine learning, although we don't use it

much for this course

—~
i SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

47772

Matrix naming MU

School of
Accountancy

= We can name matrix rows and columns, much like we named vector elements
= Use rownames () for rows
= Use colnames () for columns

rownames (firm_data) <- rows
colnames(firm_data) <- columns

firm_data
#Hit Google Microsoft Goldman
Earnings 12662 4286 89950

Revenue 21204 110855 42254

48 /72

Selecting from matrices

= Select using 2 indexes instead of 1:
= matrix_name[rows, columns]
» To select all rows or columns, leave that index blanks

firm_data[2, 3]
[1] 42254
firm_data[, c("Google","Microsoft")]

Hit Google Microsoft
Earnings 12662 4286
Revenue 21204 110855

firm_data[1,]

Hit Google Microsoft Goldman
H#it 12662 4286 89950

—~
X SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

49 /72

Combining matrices MU

School of
Accountancy

= Matrices are combined top to bottom as rows with rbind()

Preloaded: industry codes as 1indcode (vector)
- GICS codes: 40 = Financials, 45 = Information Technology
- https://en.wikipedia.org/wiki/Global_Industry Classification_Standard

mat <- rbind(firm_data, indcode) # Add a row
rownames(mat)[3] <- "Industry" # Name the new row

mat

Hit Google Microsoft Goldman
Earnings 12662 4286 89950
Revenue 21204 110855 42254
Industry 45 45 40

50/72

Combining matrices

= Matrices are combined side-by-side as columns with cbind()

Preloaded: JPMorgan data as jpdata (vector)

mat <- cbind(firm_data, jpdata) # Add a column
colnames(mat)[4] <- "JPMorgan" # Name the new column
mat

Hit Google Microsoft Goldman JPMorgan
Earnings 12662 4286 89950 17370
Revenue 21204 110855 42254 115475

—~

' SMU
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

51/72

Lists

Lists: what are they? ¢ SMU_

Schoal of
Accountancy

= Like vectors, but with mixed types
= Generally not something we will create, often returned by analysis functions
in R
= Such as the linear regression models 1m()

model <- summary(lm(earnings ~ revenue, data=tech_df))
model

H#it

Call:

lm(formula = earnings ~ revenue, data = tech_df)

H#it

Residuals:

Min 1Q Median 3Q Max

-16045.0 20.0 141.6 177.1 12104.6

H#t

Coefficients:

#Hit Estimate Std. Error t value Pr(>|t])

(Intercept) -1.837e+02 4.491e+01 -4.091 4.79e-05 ***

revenue 1.589e-01 3.564e-03 44.585 < 2e-16 ***

HH# ---

Signif. codes: © '***' 9,001 '**' @9.01 '*' ©0.05 '.' 0.1 ' ' 1
H#it

Residual standard error: 1166 on 713 degrees of freedom

Multiple R-squared: 0.736, Adjusted R-squared: ©0.7356
F-statistic: 1988 on 1 and 713 DF, p-value: < 2.2e-16

53/72

= str() will tell us what's in this list

str(model)

List of 11

H##
##
#H#
##
##
#
##
H##
H##
##
#H#
##
##
#
##
H##
H##
##
#H#
##
##
#
##
H##

H##
H##
##
#H#
##

$
$

T A A A A

call : language 1lm(formula = earnings ~ revenue, data = tech_df)
terms :Classes 'terms', 'formula' language earnings ~ revenue
..- attr(*, "variables")= language list(earnings, revenue)
.- attr(*, "factors")= int [1:2, 1] @ 1
.- attr(*, "dimnames")=List of 2
..$: chr [1:2] "earnings" "revenue"
..$: chr "revenue"
.- attr(*, "term.labels")= chr "revenue"
..- attr(*, "order")= int 1
.- attr(*, "intercept")= int 1
.- attr(*, "response")= int 1
.- attr(*, ".Environment")=<environment: R_GlobalEnv>
.- attr(*, "predvars")= language list(earnings, revenue)
.- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "earnings" "revenue"
residuals : Named num [1:715] -59.7 173.8 -620.2 586.7 613.6 ...

coefficients :

..- attr(*, "names")= chr [1:715] "4@" "103" "127" "135"
num [1:2, 1:4] -1.84e+02 1.59e-01 4.49e+01 3.56e-03 -4.09 ...

.- attr(*, "dimnames")=List of 2
..$: chr [1:2] "(Intercept)" "revenue"
..$: chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t])"

aliased

sigma

df
r.squared
adj.r.squared:
fstatistic
.- attr(*, "nam

es")= chr

num 0.736

: Named num

es")= chr

: Named logi [1:2] FALSE FALSE
..- attr(*, "nam
¢ num 1166
: int [1:3]
: num 0.736

[1:2] "(Intercept)" "revenue"

2 713 2

[1:3] 1988 1 713
[1:3] "value" "numdf" "dendf"

54772

Looking into lists MU

m Lists generally use double square brackets, [[ihdex]]
= Used for pulling individual elements out of a list
[[c()]] will drill through lists, as opposed to pulling multiple values
Single square brackets pull out elements as it is
Double square brackets extract just the element
For 1 level, we can also use $

model["r.squared"] earnings|["Google"]

$r.squared ## Google

[1] ©.7360059 ## 12662
model[["r.squared"]] earnings[["Google"]]

[1] 0.7360059 ## [1] 12662
model$r.squared #Can't use $ with vectors

[1] 0.7360059

55/72

Practice: Lists I

= [n this practice, we will explore lists and how to parse them
= Do Exercise 3 on the following R practice file:
= R Practice

56/72

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_3:_Lists

Data frames

Data frames: what? MU

= Data frames are like a hybrid between lists and matrices

Like a matrix: Like a list:
= 2 dimensional like matrices = Can have different data types for
= Can access data with [] different columns
= All elements in a column must be » Can access data with $

the same data type

Think of columns as variables, rows as observations, and data frames
as the Excel spreadsheet

58/72

Example of a data frame MU

library(DT) # The Library 1is for 1including larger collections of data in output
datatable(tech_df[1:20, c("conm","tic","margin")],
options = list(pagelLength = 5), rownames=FALSE)

Show 5+ entries Search: | |
conm tic margin
AVX CORP AVX 0.00314245229040611
BK TECHNOLOGIES BKTI -0.0920421373270719
ADVANCED MICRO DEVICES AMD 0.00806905610808782
ASM INTERNATIONAL NV ASMIY 0.613509486149511
SKYWORKS SOLUTIONS INC SWKS 0.276661006737142
Showing 1 to 5 of 20 entries Previous 1 2 3 = Next

59/72

How to create a df?

1. On import of data, usually you will get a data frame
2. Using the data.frame() function

df <- data.frame(companyName = company,
earnings = earnings,
tech_firm = tech_firm)

df

companyName earnings tech_firm
Google Google 12662 TRUE
Microsoft Microsoft 21204 TRUE
Goldman Goldman 4286 FALSE

—~
X SMU
e
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Accountancy

60 /72

Selecting from df

= Access like a matrix
df[, 1]
[1] "Google™ "Microsoft" "Goldman"

m Access like a list

df$companyName

[1] "Google" "Microsoft" "Goldman"
df[[1]]

[1] "Google" "Microsoft" "Goldman"

All are relatively equivalent. Using $ is generally most natural. Using
[,] is good for complex references.

—~
' SMU
e
SINGAPORE MANAC
UNIVERSITY

School of
Accountancy

SEMENT

61/72

Making new columns MU

| Suggested method: use $

df$all zero <- ©

df$revenue <- c(110855, 89950, 42254)

df$margin <- df$earnings / df$revenue

html_df() is a custom function for small tables
html_df(df)

companyName earnings tech firm all zero revenue margin

Google Google 12662 TRUE 0 110855 0.1142213
Microsoft Microsoft 21204 TRUE 0 89950 0.2357310
Goldman Goldman 4286 FALSE 0 42254 0.1014342

| Alternative method: use cbind() just like with matrices

62 /72

Sorting data frames MU

........
ccccccccc

= To sort a vector, we could use the sort()
sort(df$earnings)

[1] 4286 12662 21204

I THIS CAN'T SORT DATA FRAMES

= A column of a data frame is fine, but it can't sort the whole thing!

63 /72

Sorting data frames MU

School of
Accountancy

= To sort a data frame, we use the order () function
= [t returns the order of each element in increasing value
= | is the lowest value
= Then we pass the new order like we are selecting elements

ordering <- order(df$earnings)
ordering

[1] 3 1 2

df <- df[ordering,]

df

Hit companyName earnings tech_firm all_zero revenue margin
Goldman Goldman 4286 FALSE 0 42254 0.1014342
Google Google 12662 TRUE © 110855 0.1142213
Microsoft Microsoft 21204 TRUE © 89950 0.2357310

64 /72

Sorting data frames MU

School of
Accountancy

= Order can sort by multiple levels
= order(levell, level2, ...),where level are vectors or df
columns

example <- data.frame(firm=c("Google","Microsoft", "Google",
year=c(2017, 2017, 2016, 2016))

Microsoft"),

example

firm year
1 Google 2017
2 Microsoft 2017
3 Google 2016
4 Microsoft 2016

ordering <- order(example$firm, example$year)
example <- example[ordering,]
example

Hit firm year
3 Google 2016
1 Google 2017
4 Microsoft 2016
2 Microsoft 2017

65/72

Subsetting data frames MU

School of
Accountancy

1. We can use the selecting methods from before

2. We can pass a vector of logical values telling R what to keep
= This is pretty useful!

3. We can also use subset () function

df[df$tech firm,] # Remember the comma!

Hit companyName earnings tech_firm all_zero revenue margin
Google Google 12662 TRUE © 110855 0.1142213
Microsoft Microsoft 21204 TRUE © 89950 0.2357310

subset(df, earnings < 20000)

Hit companyName earnings tech_firm all_zero revenue margin
Goldman Goldman 4286 FALSE 0 42254 0.1014342
Google Google 12662 TRUE © 110855 0.1142213

66 /72

Practice: Data frames MU

,,,,,,,,
ccccccccc

= This exercise explores the nature of banks' deposits
= We will see which of Goldman, JPMorgan, and Citigroup have (since
2010):
m The least of their assets in deposits
= The most of their assets in deposits
= Do Exercise 4 on the following R practice file:
= R Practice

67/72

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_4:_Data_frames

Summary of Session 2

For next week FLm

= continue with your Datacamp and textbook
= review today's code and pre-read next week's seminar notes
= start the Assignment 1 which is due in two weeks.

I Tentatively, there will be the following progress assessment (30%):

1. Individual Assignment 1, on R Programming Basics
2. Individual Assignment 2, on Regressions
3. Two pop up quizzes

= Individual assignments will be in R Markdown (.rmd) file format

All sumbissions and feedback are on eLearn. Please pay attention to
academic integrity.

69 /72

https://rmarkdown.rstudio.com/

R Markdown: A quick guide MU

l‘c‘c 666666

Headers and subheaders start with #, ##, ..., ######

-

Code blocks starts with
accent)
= By default, all code and figures will show up in the output
= echo=FALSE: don't display code in output document
= results="hide": don't display results in output

{ r} and end with (backticks or grave

Inline code goes in a block starting with I" and ending with
Italic font can be used by putting * or _ around text
Bold font can be used by putting ** around text

m E.g.: *¥*bold text** becomes bold text

To render the document, click 5%/ Knit
Math can be placed between $ to use LaTeX notation
» E.g. $\frac{revt}{at}$ becomes

at
Full equations (on their own line) can be placed between $$

A block quote is prefixed with >
For a complete guide, see R Studio's R Markdown::Cheat Sheet
My slides are prepared using the xaringan template

= The assignment is prepared using the tufte style

70 /72

https://www.latex-project.org/
https://www.rstudio.com/resources/cheatsheets/
https://github.com/yihui/xaringan
https://github.com/rstudio/tufte

R Coding Style Guide

Style is subjective and arbitrary but it is important to follow a generally accepted
style if you want to share code with others. I suggest the The tidyverse style guide
which is also adopted by Google with some modification

= Highlights of the tidyverse style guide:

» File names: end with .R

m [dentifiers: variable name, function name, try not to use "." as it is
reserved by Base R's S3 objects

= Line length: 80 characters

m [ndentation: two spaces, no tabs (RStudio by default converts tabs to
spaces and you may change under global options)

= Spacing: x = 0, not x=0, no space before a comma, but always place one
after a comma

m Curly braces {}: first on same line, last on own line

m Assignment: use < -, not = nor ->

m Semicolon(;): don't use, I used once for the interest of space

= return(): Use explicit returns in functions: default function return is the
last evaluated expression

m File paths: use relative file path "../../filename.csv" rather than absolute
path "C:/mydata/filename.csv". Backslash needs \\

71/72

https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html
https://www.w3schools.com/html/html_filepaths.asp

R packages used in this slide MU

Accountancy

This slide was prepared on 2021-09-03 from Session_2s.Rmd with R version 4.1.1
(2021-08-10) Kick Things on Windows 10 x64 build 18362 ().

The attached packages used in this slide are:

#it DT kableExtra knitr
HH# "9.18" "1.3.4" "1.33"

72 /72

