
Programming with Data

Session 2: R Programming (I)
Dr. Wang Jiwei
Master of Professional Accounting

Introduction to R

What is R?
R is free and open source
R is a “statistical programming language”

Focussed on data handling, calculation, data analysis, and visualization
R is not a general programming language (wikipedia)
We will use R for all work in this course

3 / 72

https://en.wikipedia.org/wiki/General-purpose_programming_language
https://www.r-project.org/about.html

The History of R
1993: developed by Ross Ihaka and Robert Gentleman at University of
Auckland
Why R? "R & R"
R is written in C and is developed from Bell Laboratory's S language
2000.2.29: R 1.0.0 official release

4 / 72

https://www.r-bloggers.com/celebration2020-a-great-get-together-to-celebrate-20-years-of-r-1-0-0/

The Happiest R
based on programmers' pictures on GitHub

5 / 72

https://github.com/
https://medium.com/swlh/what-programming-language-has-the-happiest-developers-f0636b08e898

R vs Python
Each has its own merits

R Python

Statistical analysis with smaller dataset Machine/Deep learning with large dataset

Data visualization General purpose which is great for automation

6 / 72

https://towardsdatascience.com/r-vs-python-vs-julia-90456a2bcbab

Setup
For this class, I will assume you are using RStudio for R programming. You
will need to first install R and then RStudio.

R Installation
RStudio downloads

You will need a laptop or desktop for this
For the most part, everything will work the same across all computer types
Everything in these slides was tested using R version 4.1.1 (2021-08-10) Kick
Things on Windows 10 x64 build 18362 😄

R and RStudio installation path should be in English. Any non-English
path may result in installation failure.

7 / 72

https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download

1. R markdown file
integrate code into reports
more interactive reports with
analytics
this slides written with R
Markdown using the
xaringan package

2. Console
Useful for testing code and
exploring your data
Enter your code one line at a
time

3. R Markdown console
Shows if there are any errors
when preparing your report

How to use RStudio

8 / 72

https://github.com/yihui/xaringan

4. Environment - Shows all the
values you have stored

5. Help - Can search documentation
for instructions on how to use a
function

6. Viewer - Shows any output you
have at the moment.

7. Files - Shows files on your
computer

How to use RStudio

9 / 72

Basic R commands

Anything in boxes like those on
the right are R code
The slides themselves are made in
R, so you could copy and paste
any code in the slides right into R
to use it yourself
Grey boxes: R Code

Lines starting with hash # are
comments

They only explain what
the code does

Boxes with ##: Output

Arithmetic
Addition uses '+'
1 + 1

[1] 2

Subtraction uses '-'
2 - 1

[1] 1

Multiplication uses '*'
3 * 3

[1] 9

Division uses '/'
4 / 2

[1] 2

11 / 72

Exponentiation ^
Write as x ^ y

Modulus %%
The remainder after division
Ex.:

1.
2.
3. , so 4 is the

remainder
Integer division %/% (not used
often)

Like division, but it drops
any decimal

Arithmetic

xy

46 mod 6 = 4
6 × 7 = 42
46 − 42 = 4
4 < 6

Exponentiation uses '^'
5 ^ 5

[1] 3125

25 ^ (1/2)

[1] 5

Modulus (remainder) uses '%%'
46 %% 6

[1] 4

Integer division uses '%/%'
46 %/% 6

[1] 7

12 / 72

Variable assignment lets you give
something a name

This lets you easily reuse it
In R, we can name almost
anything that we create

Values
Data
Functions, etc...

We will name things using the <-
or = command, with the first
being preferred

Variable assignment
Store 2 in 'x' and 'x1'
x <- 2
x1 <- 2
Check the value of x and x1
x; x1

[1] 2

[1] 2

Store arithmetic in y
y <- x * 2

Check the value of y
y

[1] 4

13 / 72

Note that values are calculated at
the time of assignment
We previously set y <- 2 * x
If we change the values of x and y
remain unchanged!
Variables: combinations of
alphanumeric characters along
with periods (.) and underscores
(_), cannot start with a number or
an underscore though
Best practice: use actual names
for variables instead of single
letters.

Variable assignment
Previous value of x and y
x

[1] 2

y

[1] 4

Change x, how about y?
x <- 200

x

[1] 200

y

[1] 4

14 / 72

To remove a variable, use
function rm()

free up memory
Variable names are case sensitive

Variable assignment
Assign value to x
x <- 1

remove variable x
rm(x)

Check the value of x
x

Store 2 in 'x'
x <- 2

Check the value of X
X

15 / 72

Application: Singtel
Set a variable growth to the amount of Singtel's earnings growth
percent in 2018

Data from Singtel's earnings reports, in Millions of SGD
singtel_2017 <- 3831.0
singtel_2018 <- 5430.3

Compute growth
growth <- singtel_2018 / singtel_2017 - 1

Check the value of growth
growth

[1] 0.4174628

16 / 72

Recap
So far, we are using R as a glorified calculator
The key to using R is that we can scale this up with little effort

Calculating all public companies' earnings growth isn't much harder than
calculating Singtel's!

Scaling this up will give use a lot more value

We can also leverage functions to automate more complex operations
There are many functions built in, and many more freely available

We'll also need ways to read data files and work with collections of numbers

17 / 72

https://blog.revolutionanalytics.com/2017/01/cran-10000.html

Working with data in R

Data types in R
The four main types of data in R:
Numeric: Any number

Positive or negative
With or without decimals

Boolean/Logical: TRUE or FALSE
Capitalization matters!
Shorthand is T and F

Character: "text in quotes"
More difficult to work with
Either single or double quotes although double is recommended

Factor: Converts text into numeric data
Categorical data for statistical analysis
eg, convert Male/Female into numbers to be included in statistical
analysis

19 / 72

Data types in R
tech_firm <- TRUE # boolean data
earnings <- 12662 # numeric data

class(tech_firm)

[1] "logical"

is.logical(tech_firm)

[1] TRUE

is.numeric(earnings)

[1] TRUE

20 / 72

Data types in R
company_name <- "Google" # character data
company_name <- 'Google' # also character data
company_name

[1] "Google"

class(company_name)

[1] "character"

is.character(company_name)

[1] TRUE

nchar(company_name)

[1] 6

21 / 72

Practice: Data types
This practice is to make sure you understand main data types
Do Exercise 1 on the following R practice file:

R Practice

22 / 72

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_1:_Data_types

Scaling up......
We already have some data entered, but it's only a small amount
We need to scale this up...

Vectors using c()!
Matrices using matrix()!
Lists using list()!
Data frames using data.frame()!

Each of these is covered in the coming slides

23 / 72

Vectors

Vectors: What are they?
Remember back to linear algebra...

Examples:

Vector is a row (or column) of data

⎛
⎜ ⎜ ⎜
⎝

1

2

3

4

⎞
⎟ ⎟ ⎟
⎠

or (1 2 3 4)

25 / 72

Vector creation
Vectors are entered using the c() command
Any data type is fine, but all elements must be the same type

company <- c("Google", "Microsoft", "Goldman")
company

[1] "Google" "Microsoft" "Goldman"

tech_firm <- c(TRUE, TRUE, FALSE)
tech_firm

[1] TRUE TRUE FALSE

earnings <- c(12662, 21204, 4286)
earnings

[1] 12662 21204 4286

26 / 72

Vector has no dimension
A vector in R can be seen as a "concatenation" (in fact c stands for
concatenate) of elements of 1 or more of the same data type, indexed
by their positions and so no dimensions (in a spatial sense), but just a
continuous index that goes from 1 to the length of the object itself.

A vector is neither a row vector nor a column vector.
So R will interpret a vector in whichever way makes the matrix product
sensible.

27 / 72

Vector has no dimension
dim(earnings) = c(1, 3) # add dimmensions
earnings

[,1] [,2] [,3]
[1,] 12662 21204 4286

dim(earnings) = c(3, 1)
earnings

[,1]
[1,] 12662
[2,] 21204
[3,] 4286

class(earnings)

[1] "matrix" "array"

dim(earnings) = NULL # remove dimensions
class(earnings)

[1] "numeric"

28 / 72

Counting between integers using
colon and seq()
:, e.g. 1:5 or 22:500
seq(), e.g. seq(from=0,
to=100, by=5)

 note that [20] means the 20th output

Repeating something
rep(), e.g.
rep(1,times=10) or
rep("hi",times=5)

Special cases for vectors

1:5

[1] 1 2 3 4 5

seq(from=0, to=100, by=5)

[1] 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
[20] 95 100

↑

rep(1, times=10)

[1] 1 1 1 1 1 1 1 1 1 1

rep("hi", times=5)

[1] "hi" "hi" "hi" "hi" "hi"

29 / 72

Vector math
Works the same as scalars (real numbers), but applies element-wise

First element with first element,
Second element with second element,
......

earnings # previously defined

[1] 12662 21204 4286

earnings + earnings # Add element-wise

[1] 25324 42408 8572

earnings * earnings # multiply element-wise

[1] 160326244 449609616 18369796

30 / 72

Vector math
Can also use 1 vector and 1 scalar

Scalar is applied to all vector elements

earnings + 10000 # Adding a scalar to a vector

[1] 22662 31204 14286

10000 + earnings # Order doesn't matter

[1] 22662 31204 14286

earnings / 1000 # Dividing a vector by a scalar

[1] 12.662 21.204 4.286

31 / 72

Vector math
From linear algebra, you might remember multiplication being a bit different,
as a dot product. That can be done with %*%

Dot product: sum of product of elements
earnings %*% earnings # returns a matrix though...

[,1]
[1,] 628305656

drop(earnings %*% earnings) # drops excess dimensions

[1] 628305656

32 / 72

Vector math
Other useful functions, length() and sum():

length(earnings) # returns the number of elements

[1] 3

sum(earnings) # returns the sum of all elements

[1] 38152

33 / 72

Vectors allow us to include a lot
of information in one object

It isn't easy to read though
We can make things more
readable by assigning names()

Names provide a way to
easily work with and
understand the data

Hard to read:

Easy to read:

Naming vectors

earnings

[1] 12662 21204 4286

names(earnings) <- c("Google",
 "Microsoft",
 "Goldman")
earnings

Google Microsoft Goldman
12662 21204 4286

34 / 72

Selecting can be done a few ways.
By index, such as [1]
By name, such as
["Google"]

Multiple selection:
earnings[c(1,2)]
earnings[1:2]
earnings[c("Google",
"Microsoft")]

Selecting vectors

earnings[1]

Google
12662

earnings["Google"]

Google
12662

Each of the above 3 is equivalent
earnings[1:2]

Google Microsoft
12662 21204

35 / 72

Combining vectors
Combining is done using c()

c1 <- c(1, 2, 3)
c2 <- c(4, 5, 6)
c3 <- c(c1, c2)
c3

[1] 1 2 3 4 5 6

36 / 72

Factor vectors
Factors in R are stored as a vector of integer values with a corresponding set
of character values to use when the factor is displayed.

convert character values into numerical values
categorical variables in statistical modeling

Levels of a factor are the unique values of that factor variable
R is giving each unique value of a factor a unique integer, tying it back to
the character representation
Levels can be ordered

37 / 72

Factor vectors
x <- factor(c("High School", "College", "Masters", "PhD"))
x

[1] High School College Masters PhD
Levels: College High School Masters PhD

x <- factor(c("College", "High School", "PhD", "PhD", "Masters"),
 levels = c("High School", "College", "Masters", "PhD"),
 ordered = TRUE)
x

[1] College High School PhD PhD Masters
Levels: High School < College < Masters < PhD

as.numeric(x)

[1] 2 1 4 4 3

38 / 72

Missing data is represented by NA
in R.

an element of a vector
is.na tests each element of a
vector for missingness
NULL is the absence of anyting,
ie, nothingness

atomical and cannot exist
within a vector

Missing data

z <- c(1, NA, 8, 3, 5)
z

[1] 1 NA 8 3 5

is.na(z)

[1] FALSE TRUE FALSE FALSE FALSE

mean(z)

[1] NA

mean(z, na.rm = TRUE)

[1] 4.25

y <- c(1, NULL, 2)
y

[1] 1 2

is.null(y)

[1] FALSE

39 / 72

Vector example
Calculating profit margin for all public US tech firms
715 tech firms with >1M sales in 2017
summary(earnings_2017) # Cleaned data from Compustat, in $M USD

Min. 1st Qu. Median Mean 3rd Qu. Max.
-4307.49 -15.98 1.84 296.84 91.36 48351.00

summary(revenue_2017) # Cleaned data from Compustat, in $M USD

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.06 102.62 397.57 3023.78 1531.59 229234.00

profit_margin <- earnings_2017 / revenue_2017
summary(profit_margin)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-13.97960 -0.10253 0.01353 -0.10967 0.09295 1.02655

40 / 72

Vector example
order() to sort and return the index for each element
head() to output the first few elements
head(order(profit_margin))

[1] 424 477 612 305 317 625

These are the worst and best profit margin firms in 2017.
profit_margin[order(profit_margin)][c(1, length(profit_margin))]

HELIOS AND MATHESON ANALYTIC CCUR HOLDINGS INC
-13.979602 1.026549

41 / 72

Practice: Vectors
This practice explores the ROA of Goldman Sachs, JPMorgan, and Citigroup
in 2017
Do Exercise 2 on the following R practice file:

R Practice

42 / 72

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_2:_Vectors

Matrices

Matrices: what are they?
Remember back to linear algebra...

Example:

Matrix is a rows and columns of data

⎛
⎜
⎝

1 2 3 4

5 6 7 8

9 10 11 12

⎞
⎟
⎠

44 / 72

Matrix creation
Matrices are entered using the matrix() command
Any data type is fine, but all elements must be the same type

columns <- c("Google", "Microsoft", "Goldman")
rows <- c("Earnings","Revenue")

same: matrix(data=c(12662, 21204, 4286, 110855, 89950, 42254),ncol=3)
firm_data <- matrix(data=c(12662, 21204, 4286, 110855, 89950, 42254),
 nrow=2)
firm_data

[,1] [,2] [,3]
[1,] 12662 4286 89950
[2,] 21204 110855 42254

45 / 72

Math with matrices
Everything with matrices works just like vectors

firm_data + firm_data

[,1] [,2] [,3]
[1,] 25324 8572 179900
[2,] 42408 221710 84508

firm_data / 1000

[,1] [,2] [,3]
[1,] 12.662 4.286 89.950
[2,] 21.204 110.855 42.254

46 / 72

Math with matrices
Matrix transposing, , uses t()

Matrix multiplication, , uses %*%

Matrix is the cornerstone of machine learning, although we don't use it
much for this course

AT

firm_data_T <- t(firm_data)
firm_data_T

[,1] [,2]
[1,] 12662 21204
[2,] 4286 110855
[3,] 89950 42254

A B

firm_data %*% firm_data_T

[,1] [,2]
[1,] 8269698540 4544356878
[2,] 4544356878 14523841157

47 / 72

Matrix naming
We can name matrix rows and columns, much like we named vector elements
Use rownames() for rows
Use colnames() for columns

rownames(firm_data) <- rows
colnames(firm_data) <- columns
firm_data

Google Microsoft Goldman
Earnings 12662 4286 89950
Revenue 21204 110855 42254

48 / 72

Selecting from matrices
Select using 2 indexes instead of 1:

matrix_name[rows, columns]
To select all rows or columns, leave that index blanks

firm_data[2, 3]

[1] 42254

firm_data[, c("Google","Microsoft")]

Google Microsoft
Earnings 12662 4286
Revenue 21204 110855

firm_data[1,]

Google Microsoft Goldman
12662 4286 89950

49 / 72

Combining matrices
Matrices are combined top to bottom as rows with rbind()

Preloaded: industry codes as indcode (vector)
- GICS codes: 40 = Financials, 45 = Information Technology
- https://en.wikipedia.org/wiki/Global_Industry_Classification_Standard

mat <- rbind(firm_data, indcode) # Add a row
rownames(mat)[3] <- "Industry" # Name the new row
mat

Google Microsoft Goldman
Earnings 12662 4286 89950
Revenue 21204 110855 42254
Industry 45 45 40

50 / 72

Combining matrices
Matrices are combined side-by-side as columns with cbind()

Preloaded: JPMorgan data as jpdata (vector)

mat <- cbind(firm_data, jpdata) # Add a column
colnames(mat)[4] <- "JPMorgan" # Name the new column
mat

Google Microsoft Goldman JPMorgan
Earnings 12662 4286 89950 17370
Revenue 21204 110855 42254 115475

51 / 72

Lists

Lists: what are they?
Like vectors, but with mixed types
Generally not something we will create, often returned by analysis functions
in R

Such as the linear regression models lm()

model <- summary(lm(earnings ~ revenue, data=tech_df))
model

Call:
lm(formula = earnings ~ revenue, data = tech_df)

Residuals:
Min 1Q Median 3Q Max
-16045.0 20.0 141.6 177.1 12104.6

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.837e+02 4.491e+01 -4.091 4.79e-05 ***
revenue 1.589e-01 3.564e-03 44.585 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1166 on 713 degrees of freedom
Multiple R-squared: 0.736, Adjusted R-squared: 0.7356
F-statistic: 1988 on 1 and 713 DF, p-value: < 2.2e-16

53 / 72

str() will tell us what's in this list

str(model)

List of 11
$ call : language lm(formula = earnings ~ revenue, data = tech_df)
$ terms :Classes 'terms', 'formula' language earnings ~ revenue
.. ..- attr(*, "variables")= language list(earnings, revenue)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "earnings" "revenue"
..$: chr "revenue"
.. ..- attr(*, "term.labels")= chr "revenue"
.. ..- attr(*, "order")= int 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(earnings, revenue)
.. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "earnings" "revenue"
$ residuals : Named num [1:715] -59.7 173.8 -620.2 586.7 613.6 ...
..- attr(*, "names")= chr [1:715] "40" "103" "127" "135" ...
$ coefficients : num [1:2, 1:4] -1.84e+02 1.59e-01 4.49e+01 3.56e-03 -4.09 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:2] "(Intercept)" "revenue"
.. ..$: chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"
$ aliased : Named logi [1:2] FALSE FALSE
..- attr(*, "names")= chr [1:2] "(Intercept)" "revenue"
$ sigma : num 1166
$ df : int [1:3] 2 713 2
$ r.squared : num 0.736
$ adj.r.squared: num 0.736
$ fstatistic : Named num [1:3] 1988 1 713
..- attr(*, "names")= chr [1:3] "value" "numdf" "dendf"
$ l d [1 2 1 2] 1 48 03 2 83 08 2 83 08 9 35 12

54 / 72

Looking into lists
Lists generally use double square brackets, [[index]]

Used for pulling individual elements out of a list
[[c()]] will drill through lists, as opposed to pulling multiple values
Single square brackets pull out elements as it is
Double square brackets extract just the element
For 1 level, we can also use $

model["r.squared"]

$r.squared
[1] 0.7360059

model[["r.squared"]]

[1] 0.7360059

model$r.squared

[1] 0.7360059

earnings["Google"]

Google
12662

earnings[["Google"]]

[1] 12662

#Can't use $ with vectors

55 / 72

Practice: Lists
In this practice, we will explore lists and how to parse them
Do Exercise 3 on the following R practice file:

R Practice

56 / 72

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_3:_Lists

Data frames

Like a matrix:

2 dimensional like matrices
Can access data with []
All elements in a column must be
the same data type

Like a list:

Can have different data types for
different columns
Can access data with $

Data frames: what?
Data frames are like a hybrid between lists and matrices

Think of columns as variables, rows as observations, and data frames
as the Excel spreadsheet

58 / 72

Example of a data frame
library(DT) # The library is for including larger collections of data in output
datatable(tech_df[1:20, c("conm","tic","margin")],
 options = list(pageLength = 5), rownames=FALSE)

Show 5 entries Search:

Showing 1 to 5 of 20 entries Previous 1 2 3 4 Next

conm tic margin

AVX CORP AVX 0.00314245229040611

BK TECHNOLOGIES BKTI -0.0920421373270719

ADVANCED MICRO DEVICES AMD 0.00806905610808782

ASM INTERNATIONAL NV ASMIY 0.613509486149511

SKYWORKS SOLUTIONS INC SWKS 0.276661006737142

59 / 72

How to create a df?
1. On import of data, usually you will get a data frame
2. Using the data.frame() function

df <- data.frame(companyName = company,
 earnings = earnings,
 tech_firm = tech_firm)
df

companyName earnings tech_firm
Google Google 12662 TRUE
Microsoft Microsoft 21204 TRUE
Goldman Goldman 4286 FALSE

60 / 72

Selecting from df
Access like a matrix

Access like a list

All are relatively equivalent. Using $ is generally most natural. Using
[,] is good for complex references.

df[, 1]

[1] "Google" "Microsoft" "Goldman"

df$companyName

[1] "Google" "Microsoft" "Goldman"

df[[1]]

[1] "Google" "Microsoft" "Goldman"

61 / 72

Making new columns
Suggested method: use $

companyName earnings tech_firm all_zero revenue margin

Google Google 12662 TRUE 0 110855 0.1142213

Microsoft Microsoft 21204 TRUE 0 89950 0.2357310

Goldman Goldman 4286 FALSE 0 42254 0.1014342

Alternative method: use cbind() just like with matrices

df$all_zero <- 0
df$revenue <- c(110855, 89950, 42254)
df$margin <- df$earnings / df$revenue
html_df() is a custom function for small tables
html_df(df)

62 / 72

Sorting data frames
To sort a vector, we could use the sort()

THIS CAN'T SORT DATA FRAMES

A column of a data frame is fine, but it can't sort the whole thing!

sort(df$earnings)

[1] 4286 12662 21204

63 / 72

Sorting data frames
To sort a data frame, we use the order() function

It returns the order of each element in increasing value
1 is the lowest value

Then we pass the new order like we are selecting elements

ordering <- order(df$earnings)
ordering

[1] 3 1 2

df <- df[ordering,]
df

companyName earnings tech_firm all_zero revenue margin
Goldman Goldman 4286 FALSE 0 42254 0.1014342
Google Google 12662 TRUE 0 110855 0.1142213
Microsoft Microsoft 21204 TRUE 0 89950 0.2357310

64 / 72

Sorting data frames
Order can sort by multiple levels

order(level1, level2, ...), where level_ are vectors or df
columns

example <- data.frame(firm=c("Google","Microsoft","Google","Microsoft"),
 year=c(2017, 2017, 2016, 2016))
example

firm year
1 Google 2017
2 Microsoft 2017
3 Google 2016
4 Microsoft 2016

ordering <- order(example$firm, example$year)
example <- example[ordering,]
example

firm year
3 Google 2016
1 Google 2017
4 Microsoft 2016
2 Microsoft 2017

65 / 72

Subsetting data frames
1. We can use the selecting methods from before
2. We can pass a vector of logical values telling R what to keep

This is pretty useful!
3. We can also use subset() function

df[df$tech_firm,] # Remember the comma!

companyName earnings tech_firm all_zero revenue margin
Google Google 12662 TRUE 0 110855 0.1142213
Microsoft Microsoft 21204 TRUE 0 89950 0.2357310

subset(df, earnings < 20000)

companyName earnings tech_firm all_zero revenue margin
Goldman Goldman 4286 FALSE 0 42254 0.1014342
Google Google 12662 TRUE 0 110855 0.1142213

66 / 72

Practice: Data frames
This exercise explores the nature of banks' deposits

We will see which of Goldman, JPMorgan, and Citigroup have (since
2010):

The least of their assets in deposits
The most of their assets in deposits

Do Exercise 4 on the following R practice file:
R Practice

67 / 72

file:///D:/Teaching/Accounting/acct420ForecastingandForensicAnalytics/TeachingMaterials/acct674mpa/2021Fall/SeminarNotes/Session_2s_Exercise.html#Exercise_4:_Data_frames

Summary of Session 2

For next week
continue with your Datacamp and textbook
review today's code and pre-read next week's seminar notes
start the Assignment 1 which is due in two weeks.

Tentatively, there will be the following progress assessment (30%):

1. Individual Assignment 1, on R Programming Basics
2. Individual Assignment 2, on Regressions
3. Two pop up quizzes

Individual assignments will be in R Markdown (.rmd) file format

All sumbissions and feedback are on eLearn. Please pay attention to
academic integrity.

69 / 72

https://rmarkdown.rstudio.com/

R Markdown: A quick guide
Headers and subheaders start with #, ##, ..., ######

Code blocks starts with and end with (backticks or grave
accent)

By default, all code and figures will show up in the output
echo=FALSE: don't display code in output document
results="hide": don't display results in output

Inline code goes in a block starting with and ending with
Italic font can be used by putting * or _ around text
Bold font can be used by putting ** around text

E.g.: **bold text** becomes bold text

To render the document, click
Math can be placed between $ to use LaTeX notation

E.g. $\frac{revt}{at}$ becomes
Full equations (on their own line) can be placed between $$
A block quote is prefixed with >
For a complete guide, see R Studio's R Markdown::Cheat Sheet
My slides are prepared using the xaringan template

The assignment is prepared using the tufte style

revt

at

70 / 72

https://www.latex-project.org/
https://www.rstudio.com/resources/cheatsheets/
https://github.com/yihui/xaringan
https://github.com/rstudio/tufte

R Coding Style Guide
Style is subjective and arbitrary but it is important to follow a generally accepted
style if you want to share code with others. I suggest the The tidyverse style guide
which is also adopted by Google with some modification

Highlights of the tidyverse style guide:
File names: end with .R
Identifiers: variable_name, function_name, try not to use "." as it is
reserved by Base R's S3 objects
Line length: 80 characters
Indentation: two spaces, no tabs (RStudio by default converts tabs to
spaces and you may change under global options)
Spacing: x = 0, not x=0, no space before a comma, but always place one
after a comma
Curly braces {}: first on same line, last on own line
Assignment: use <-, not = nor ->
Semicolon(;): don't use, I used once for the interest of space
return(): Use explicit returns in functions: default function return is the
last evaluated expression
File paths: use relative file path "../../filename.csv" rather than absolute
path "C:/mydata/filename.csv". Backslash needs \\

71 / 72

https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html
https://www.w3schools.com/html/html_filepaths.asp

R packages used in this slide
This slide was prepared on 2021-09-03 from Session_2s.Rmd with R version 4.1.1
(2021-08-10) Kick Things on Windows 10 x64 build 18362 😃.

The attached packages used in this slide are:

DT kableExtra knitr
"0.18" "1.3.4" "1.33"

72 / 72

